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Abstract

In this paper, we propose a unified primal-dual algorithm frame-
work for two classes of problems that arise from various signal and
image processing applications. We also show the connections to ex-
isting methods, in particular Bregman iteration [41] based method,
such as linearized Bregman [42, 9, 10, 49] and split Bregman [31].
The convergence of the general algorithm framework is proved un-
der mild assumptions. The applications to `1 basis pursuit, TV−L2

minimization and matrix completion are demonstrated. Finally, the
numerical examples show the algorithms proposed are easy to imple-
ment, efficient, stable and flexible enough to cover a wide variety of
applications.
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1 Introduction

The main goal of this paper is to propose a unified algorithm framework
for two classes of convex optimization problems arising from sparse recon-
struction. The framework proposed here is a continued work started in
[51], where a Bregmanized operator splitting (BOS) method is proposed
for nonlocal total variation regularization. In addition to unifying some
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existing algorithms, we also propose new ones such as an extension of split
Bregman [31] that linearized quadratic penalties to yield simpler iterations.

This work was originated from Bregman iteration, although we can find
the connections to other classical optimization concepts, such as augmented
Lagrangian method [44] and proximal point minimization. Bregman it-
eration for image processing problems was originally proposed by Osher,
Burger, Goldfarb, Xu and Yin in [41] to improve the classical Rudin-Osher-
Fatemi [45] total variation (TV) regularization model for image restoration.
For a given closed, proper convex functional J(u) : RN → R ∪ {+∞}, the
Bregman distance [7] is defined as

Dp
J (u, v) = J(u)− J(v)− 〈p, u− v〉, (1.1)

where p ∈ ∂J(v) is some subgradient of J at the point v and 〈·, ·〉 denotes
the canonical inner product in RN . It is well known that Bregman distance
(1.1) is not a distance in the usual sense since it is generally not symmetric.
However, it measures the closeness of two points since Dp

J (u, v) ≥ 0 for any
u and v. Furthermore, if the functional J is strictly convex, the following
relation is satisfied:

Dp
J(u, v) = 0 iff u = v.

We consider a standard unconstrained problem

min
x∈RN

(
µJ(x) +

1
2
‖Ax− b‖2

)
, (1.2)

where A ∈ RM×N , µ is a positive number, x is the unknown signal/image,
b is typically an input noisy measurement, and ‖ · ‖ denotes the l2 norm in
RM . We are also interested in the related equality constrained problem

min
x∈RN

J(x) s.t. Ax = b. (1.3)

Using the Bregman distance (1.1), an iterative regularization method is
proved in [41] to solve (1.3):

{
xk+1 = minx

(
µDpk

J (x, xk) + 1
2‖Ax− b‖2

)

pk+1 = pk + 1
µA>(b−Axk+1),

(1.4)

where pk+1 ∈ ∂J(xk+1) and A> is the adjoint operator of A. By a change
of variables pk = 1

µA>(yk − b), the above algorithm can be simplified as

{
xk+1 = minx

(
µJ(x) + 1

2‖Ax− yk‖2
)

yk+1 = yk + b−Axk+1
(1.5)
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for k = 0, 1, · · · starting with x0 = 0, y0 = b. From (1.5), the constrained
problem (1.3) can be solved by a sequence of unconstrained subproblems
such as (1.2) and gradient ascent steps. There are two main convergence
results for the sequence {xk} generated by (1.4):

‖Axk − b‖ ↘ 0 and Dpk

J (x, xk) → 0,

where x is a true solution of the problem (1.3). In practice, when there
is noise, this algorithm still can be applied with a stopping criterion ac-
cording to a discrepancy principle of the residual ‖Axk − b‖2. In [41], the
algorithm (1.5) was shown to be efficient for improving denoising quality
over the original model (1.2) when J(u) is the total variation functional,
since contrasts and micro-structures are refined by adding the residuals
back.

Solving the first subproblem of (1.5), which is equivalent to (1.2), can
sometime be difficult, since it involves inverting the operator A. There
are ways to decouple the variables related by A and simplify the uncon-
strained subproblems involving J . The minimization of the sum of two
convex functionals is still an active research area in the optimization com-
munity. In particular, by considering splitting and decomposition prin-
ciples, Combettes and Wajs in [19] applied a proximal forward-backward
splitting (PFBS) technique based on the proximal operator introduced by
Moreau in [40]. The PFBS algorithm [19] applied to (1.2) is described as

xk+1 = ProxδµJ (xk − δA>(Axk − b)), (1.6)

for a positive number 0 < δ < 2
‖A>A‖ where the proximal operator is

defined by

ProxJ(v) := arg min
u

(
J(u) +

1
2
||u− v||2

)
. (1.7)

A main advantage of the proximal operator is that the subproblem (1.7) be-
comes strictly convex. Then there exists a unique minimizer x̂ = ProxJ(v)
for any v. By introducing an auxiliary variable zk, the solution of the
minimization problem (1.2) can be computed by the following two-step
algorithm: {

zk+1 = xk − δA>(Axk − b)
xk+1 = ProxδµJ (zk+1) (1.8)

The proximal operator solution (1.7) has well known solutions for some
models. For example, when the regularization functional J is the `1 norm
of x, i.e. J(x) = ‖x‖1, then the solution for the second subproblem is
obtained by a soft shrinkage operator [21, 19, 33] as follows:

xk+1 = shrinkage(zk+1, δµ) := sign(zk+1)max{|zk+1| − δµ, 0} (1.9)
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where all the operations are pointwise performed. This idea of using oper-
ator splitting and Bregman iteration to benefit from the efficiency of soft
thresholding is thus applied to the `1 basis pursuit problem in [50, 42, 9].
The overall algorithm PFBS+Bregman for solving (1.3) is then





{
zk+1 = xk − δA>(Axk − yk)
xk+1 = Proxδµ(zk+1)

yk+1 = yk + (b−Axk+1)
. (1.10)

From (1.10), we can see that in general we need an infinite number of
inner iterations to get full convergence of xk+1 before we update yk+1. The
linearized Bregman in [20, 42, 9, 8] and the Bregmanized Operator Splitting
(BOS) in [51] are actually obtained by applying only one inner step for the
subproblem (1.2). In particular, linearized Bregman is formulated as

{
xk+1 = ProxδµJ (δA>yk)
yk+1 = yk + (b−Axk+1) (1.11)

and the BOS algorithm is




zk+1 = xk − δA>(Axk − yk)
xk+1 = ProxδµJ (zk+1)
yk+1 = yk + (b−Axk+1)

(1.12)

It is proved that BOS (1.12) converges to the solutions of (1.3), while
linearized Bregman (1.11) is proved to converge to the solutions of an ap-
proximated strictly convex functional

J̃(x) = µJ(x) +
1
2δ
‖x‖2 s.t. Ax = b (1.13)

When J(x) = ‖x‖1, it was proved in [49] that, for µ sufficient large, lin-
earized Bregman solves the original problem (1.3). One goal of this paper
is to generalize BOS algorithm in a primal-dual framework and establish
the connections to some existing methods such as augmented Lagrangian
methods [44] and proximal point minimization. Also, we will investigate
the applications of BOS algorithms in l1 basis pursuit in Section 5.1 and
matrix completion problem in Section 6.1.

Another class of problem we are interested in is related to the split
Bregman method for discrete TV regularization proposed by Goldstein
and Osher in [31]. The idea is to reformulate the original TV minimization
problem as l1 minimization to benefit from the efficiency of the soft thresh-
olding operation (1.9). Consider anisotropic TV minimization problem

min
x∈RN

‖∇x‖1 +
λ

2
‖Ax− b‖2,
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where ∇x ∈ R2N denotes the discrete gradient of x ∈ RN . We can rewrite
the above problem as a separable equality constrained problem

min
x∈RN ,z∈R2N

‖z‖1 +
λ

2
‖Ax− b‖2, s.t. ∇x = z. (1.14)

By using Bregman iteration to handle the introduced constraint and an
alternating approach to approximate the minimization over x, z, the split
Bregman algorithm in [31] is given as





xk+1 = arg minx

(λ

2
‖Ax− b‖2 +

δ

2
‖∇x− zk + yk‖2

)

zk+1 = arg minz

(
‖z‖1 +

δ

2
‖z −∇xk+1 − yk‖2

)

yk+1 = yk + (∇xk+1 − zk+1)

. (1.15)

Since the first subproblem only involves a least square type problem,
it can sometimes be efficiently solved, especially when A is a diagonaliz-
able operator, such as Fourier a sub-sampling matrix used in compressive
sensing, or a convolution operator with periodic boundary conditions. The
second subproblem is the `1 norm minimization. Thus it can be solved by
the soft thresholding operator (1.9). Furthermore, the algorithm is easy
to implement compared to other Newton based method such as [15]. The
split Bregman method is also applied to segmentation and surface recon-
struction in [30]. A similar splitting approach is also applied for TV−L1

minimization in [32, 48]. On the other hand, the convergence of the split
Bregman is not justified in [31]. Recently, several authors discussed the con-
vergence of this method. In [46, 25], the connection between split Bregman
and Douglas-Rachford Spitting [23], is pointed out, clarifying the conver-
gence. In [10], the authors also justified the convergence of the alternating
algorithm.

Interestingly, there is an extensive literature from the optimization com-
munity about methods for minimizing convex functionals with linear con-
straints such as (1.3) and problems with separable structures such as (1.14).
For example, the theoretical connection between Bregman iteration (1.5)
and the classical augmented lagrangian method is discussed in [50]. Such
multiplier methods and proximal point algorithms are largely studied in
classical nonlinear programming literature, such as by Arrow, Hurwicz and
Uzawa in [1], by Rockafellar [44], by Glowinski and Le Tallec in [29] and
references therein.

In this paper we will introduce a unified primal dual algorithm frame-
work for two classes of problems taking the form (2.5) and (2.6). The
framework is based on the generalized proximal point algorithm and the
augmented Lagrangian method, which we call it as a variant of inexact
Uzawa method [1, 6]. There are several advantages of this framework.



A unified primal-dual algorithm framework 6

First, most convergence results of classical Uzawa methods and Bregman
iteration methods are based on assumptions of the strict convexity of the
original functionals, while the convergence of our proposed algorithms are
guarantied without requiring strict convexity. Secondly, the proposed algo-
rithms can be applied in different settings when computing the inverse of a
linear operator becomes inefficient, thus it is suitable for a very large class
of problems. Finally, compared to the popular linearized Bregman method,
the proposed algorithm solves the original problem without approximation,
as a result it is robust to the choice of the parameter. Notice that we are
not declaring that we will propose a faster algorithm than existing meth-
ods, but we are proposing a simple and flexible algorithm framework for
different applications under minimum conditions. Also, some proposed al-
gorithms in the framework are apparently new.

The paper is organized as follows. First, we introduce the primal dual
formulations of the two classes of problems and briefly review some existing
methods. Then we present two generic algorithms under a unified frame-
work and discuss their convergence. Finally, we present several applications
in signal/image processing, such as `1 basis pursuit, TV-L2 minimization
and extension to matrix completion. Also, we compare the proposed algo-
rithms with existing popular Bregman based methods, such as linearized
Bregman [8] for `1 basis pursuit, SVT for matrix completion [35] and split
Bregman [31] for TV regularization.

2 Primal-Dual formulation

Before we consider the specific problems, we first introduce a general saddle
point problem notation. We consider a convex-concave function L(x; y) :
X × Y → R, where X and Y are closed convex sets in RN and RM . We
are interested in computing a saddle point pair (x, y) that satisfies

L(x; y) ≤ L(x; y) ≤ L(x; y), ∀x ∈ X, y ∈ Y. (2.1)

The primal convex problem is denoted by

inf
x∈X

J(x) (2.2)

where J(x) = supy∈Y L(x; y), and the dual problem is

sup
y∈Y

q(y) (2.3)

where q(y) = infx∈X L(x; y). The pair (x; y) is a saddle point of the
Lagrangian function L(x; y) if and only if x is an optimal solution of
the primal problem (2.2) and y is a solution of the dual problem (2.3)
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respectively. In general, the existence of solutions for a primal problem
does not imply the existence of saddle points of Lagrangian functions, but
the converse holds, see [29]. Here, we assume the existence of solutions to
the original primal problems and related saddle point problems.

Classical methods based on the gradient/subgradient for solving the
above saddle point problems have been of great interest since the seminal
work of Arrow, Hurwicz and Uzawa [1]. These methods alternate a mini-
mization of the Lagrangian function L(x; y) with respect to x given y and
gradient ascent with respect to y given x. More precisely, a general Uzawa
method can be written as

{
xk+1 = argminx∈X L(x, yk)
yk+1 = PY (yk + γ∂yL(xk+1; yk)) (2.4)

where ∂yL(xk+1; yk) is a subgradient of L(x; y) with respect to y at
(xk+1; yk), PY (·) is the orthogonal projection operator to Y and γ is a
positive number. The convergence is established assuming strict convexity.
This method and its variants are largely studied for quadratic programming
in the literature due to the simplicity. This method is in fact a gradient-type
algorithm and under certain conditions, a linear convergence rate can be
achieved [29]. Particularly, a class of inexact Uzawa methods are proposed
and analyzed in [6] for linear saddle points problems by introducing pre-
conditioning matrices in order to achieve fast convergence. Our proposed
methods are also based on the idea of the general Uzawa method and we
attempt to achieve the convergence without strong convexity assumptions.

Now, we consider two general convex programming problems which
cover various signal and image processing applications:

(P0) min
x∈RN

J0(x) s.t. Ax = b (2.5)

as in (1.3) and

(P1) min
x∈RN ,z∈RK

(
J1(z) + H(x)

)
s.t. Bx = z (2.6)

as (1.14), where J0 : RN → (−∞,∞], J1 : RK → (−∞,∞] and H :
RN → (−∞,∞] are closed proper convex functionals, and A ∈ RM×N ,
B ∈ RK×N .

The Lagrangian function for problem (2.5) and problem (2.6) are re-
spectively

L0(x; y) = J0(x)− 〈y, Ax− b〉 (2.7)

and

L1(x, z; y) = J1(z) + H(x)− 〈y, z −Bx〉, (2.8)
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where y is the Lagrange multiplier associated with the respective constraint
in each problem. Note that the multiplier variables in the two problems are
in different sets RM and RK , but here we use the same notation y without
confusion. The related dual problems are respectively defined as

(D0) min
y

J∗0 (A>y)− 〈b, y〉 (2.9)

(D1) min
y

J∗1 (y) + H∗(−B>y) (2.10)

where J∗0 , J∗1 and H∗ denote the Legendre-Fenchel transforms of the convex
functional J0, J1 and H respectively, defined by

J∗0 (A>y) = sup
x
〈A>y, x〉 − J0(x)

J∗1 (y) = sup
z
〈y, z〉 − J1(z)

H∗(−B>y) = sup
x
〈−B>y, x〉 −H(x).

In the following, we will focus on the Lagrangian formulations and
briefly review some primal-dual methods related to ours. Among them,
the augmented Lagrangian method, also called method of multipliers [34,
43, 44], plays an important role. By adding a quadratic penalty to the
Lagrangian formulation (2.7), we obtain the augmented Lagrangian formu-
lation for problem (2.5)

Lα
0 (x, y) = J0(x)− 〈y, Ax− b〉+

α

2
‖Ax− b‖2. (2.11)

Similarly modifying the Lagrangian from (2.8), the augmented Lagrangian
function for problem (2.6) is written as

Lα
1 (x, z, y) = J1(z) + H(x)− 〈y, z −Bx〉+

α

2
‖Bx− z‖2. (2.12)

We can observe that any saddle point of L0(x; y) and L1(x, z; y) are
saddle points of Lα

0 (x; y) and Lα
1 (x, z; y) respectively and that the con-

verse also holds. The method of multipliers [34, 43] is then obtained by
applying the general Uzawa algorithm (2.4) on the augmented Lagrangian
formulation and setting γ = α. More precisely, for (2.5) we get the sequence
(xk, yk)

{
xk+1 = arg minx

(
J0(x)− 〈yk, Ax〉+

α

2
‖Ax− b‖2

)

yk+1 = yk + α(b−Axk+1)
(2.13)
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and for (2.6) we get the sequence (xk, zk, yk)

{
(xk+1, zk+1) = arg minx,z

(
J1(z) + H(x)− 〈yk, z −Bx〉+

α

2
‖Bx− z‖2

)

yk+1 = yk + α(Bxk+1 − zk+1)
(2.14)

Using the augmented Lagrangian function, faster convergence can be
achieved compared to Lagrangian functions by carefully choosing the pa-
rameters. For example, the method achieves a superlinear convergence
when α ↗∞ [29], although this may cause instability due to ill condition-
ing. One advantage of this method is that the convergence does not require
a strict convexity of the functionals. It has been shown to be equivalent to
a proximal point algorithm applied to the dual [44]. However, algorithm
(2.14) could be difficult to solve since it involves the minimization over x
and z simultaneously because of the quadratic term ‖Bx − z‖2. To take
advantage of the separable structure of problem (P1), we can apply the al-
ternating direction method of multipliers (ADMM) introduced by Gabay in
[28]. This approximates the (x, z) minimization (2.14) with minimization
over x with z fixed and z with x fixed. That is




xk+1 = arg minx

(
H(x) + 〈yk, Bx〉+

α

2
‖Bx− zk‖2

)

zk+1 = arg minz

(
J1(z)− 〈yk, z〉+

α

2
‖Bxk+1 − z‖2

)

yk+1 = yk + α(Bxk+1 − zk+1)

(2.15)

This method can be interpreted from different perspectives. For example,
it is equivalent to Douglas-Rachford splitting method [23]. See [24, 29]
and references therein for more variants, such as exchanging the roles of
the variables x and z, and adding a multiplier update between x and z
to get a more symmetriozed method. In particular, when J1(z) = ‖z‖1,
H(x) = λ

2 ‖Ax − b‖2 and B = ∇ as in problem (1.14), the split Bregman
method (1.15) proposed in [31] is equivalent to the algorithm (2.15).

However, both the augmented method (2.13) for (P0) and the alternat-
ing method (2.15) for Problem (P1) involve inverting of A or B, which is
usually not practical for getting an accurate solution at a reasonable cost.
This requires us to develop a decoupled algorithm which does not involve
the inverse of A and B. A related algorithm called the predictor corrector
proximal multiplier method (PCPM) developed by Chen and Teboulle [17]
is obtained by introducing an auxiliary variable and iterating





pk+1 = yk + α(Bxk − zk)

xk+1 = arg minx

(
H(x) + 〈pk+1, Bx〉+

1
2δ
‖x− xk‖2

)

zk+1 = arg minz

(
J1(z)− 〈pk+1, z〉+

1
2δ
‖z − zk‖2

)

yk+1 = yk + α(Bxk+1 − zk+1)

(2.16)
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Since the minimization of x and z does not involve inverting the matrix
B, and the steps decouple, it is thus possible to parallelize. However, this
method is in general slow in practice due to the fact that the two primal
variables x and z are updated independently based on previous iteration
instead of most recent update.

The algorithm framework proposed in this paper combines the decou-
pling of PCPM and the efficiency of augmented Lagrangian methods. Our
goal is to develop a general algorithm that only requires mild regularity
assumptions and allows for simple stepsize choosing.

3 Proposed General Algorithms

Our algorithms are based on the principle of Bregman proximal iteration
[13, 16, 41] and Moreau-Yosida regularization [37]. The idea is to generalize
the proximal minimization (1.7) by replacing the quadratic penalty with
the Bregman distance of a strictly convex and continuously differentiable
function φ. The proximal minimization of a convex function J(x) becomes

xk+1 = arg min
x

(
J(x) + Dpk

φ (x, xk)
)
, (3.1)

where Dpk

φ (x, xk) is the Bregman distance defined as in (1.1), pk is the
unique gradient of φ(x) at xk since we assume φ is differentiable. In order
to design effective algorithms, here we are only interested in the quadratic
case. In particular, we choose a positive semi-definite matrix Q, and we
define

‖x‖Q :=
√
〈Qx, x〉.

Then we define φ(x) = ‖x‖2Q and note that

Dpk

φ (x, xk) = ‖x− xk‖2Q.

If Q is positive definite, then ‖ · ‖Q is a norm.
The general idea of our algorithms is to replace the augmented La-

grangian primal minimizations (2.13) and (2.15) by proximal-like iterations.
More precisely, we propose the following two algorithms for (P0) and (P1):
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Algorithm (A0) for Problem (P0)

xk+1 = argmin
x

(
J0(x)− 〈yk, Ax〉+

α

2
‖Ax− b‖2 +

1
2
‖x− xk‖2Q0

)

(3.2a)

Cyk+1 = Cyk + (b−Axk+1) (3.2b)

Algorithm (A1) for Problem (P1)

xk+1 = arg min
x

(
H(x) + 〈yk, Bx〉+

α

2
‖Bx− zk‖2 +

1
2
‖x− xk‖2Q1

)

(3.3a)

zk+1 = arg min
z

(
J1(z)− 〈yk, z〉+

α

2
‖Bxk+1 − z‖2 +

1
2
‖z − zk‖2Q2

)

(3.3b)

Cyk+1 = Cyk + (Bxk+1 − zk+1) (3.3c)

where Qi, for i = 0, 1, 2 and C are positive definite matrices.
We then have the freedom to choose different matrices to cancel out

or precondition the operators A and B, which might be difficult to invert
or ill conditioned in real applications. Another advantage of choosing such
proximal minimizations is to approximate the original objective functionals
by strictly convex ones when the original functions J0(·), J1(·) and H(·)
are not strictly convex. By introducing the strictly convex proximal term,
the minimizer of each subproblem is unique.

The algorithms proposed can be classified as inexact Uzawa methods
[6]. An example of the algorithm (A0) is BOS proposed in [51] when we
choose Q0 = 1

δ − αA>A. In the following, we discuss some connections
with other existing methods.

• For (A0), if we allow Q0 = 0, and C = 1
α , the algorithm is the method

of multipliers (2.13)
{

xk+1 = arg minx

(
J(x) +

α

2
‖Ax− (b +

1
α

yk)‖2
)

yk+1 = yk + α(b−Axk+1).
(3.4)

It is equivalent to the Bregman iteration method (1.5) with a different
initialization. The equivalence of the augmented Lagrangian method
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and Bregman iteration has been pointed out by several authors [25,
47].

• When Qi = Id, C = 1
γ , the algorithms are classical proximal point

algorithms on the augmented Lagrangian formulation proposed by
Rockafellar in [44]. This method can overcome non-strict convexity
of each functional and results in a more stable algorithm. However,
as the method of multipliers, the iterations for x involve inverse of
the operator A and B for both problems.

• For (A1), if we choose Q1 = 1
δ − αBT B, Q2 = 0, and C = 1

γ then we
obtain the algorithm:




pk+1 = yk + α(Bxk − zk)

xk+1 = arg minx

(
H(x) + 〈pk+1, Bx〉+

1
2δ
‖x− xk‖2

)

zk+1 = arg minz

(
J1(z)− 〈yk, z〉+

α

2
‖z −Bxk+1‖2

)

yk+1 = yk + γ(Bxk+1 − zk+1)

(3.5)

Compared to the PCPM algorithm (2.16), we update zk+1 using
Bxk+1 instead of zk. This algorithm also differs from the standard
proximal point method applied on the Lagrangian function due to
the first ”predictor” step.

• The algorithms (A0) and (A1) can be extended to solve other prob-
lems. For example, we can combine the two algorithms to solve the
mixed problem,

(P2) min
x

J(z) s. t. Ax = b, Bx = z (3.6)

by using two Lagrange multipliers. The idea can also be extended
to other primal dual formulations with more complicated constraint
sets. Some examples are discussed in [26] which uses a variant of the
PDHG method [52] and shows it to be a special case of the algorithm
(3.3) proposed here.

4 Convergence analysis

In this section, we establish the global convergence of algorithms (A0) and
(A1).

The proof for the algorithm (A0) is similar to the one of BOS presented
in [51], and the proof for the algorithm (A1) is similar to [51] and [10]. For
completeness, we will include short proofs for the two general algorithms.

In the following, we denote the smallest and largest eigenvalues of the
matrix C as λC

m and λC
M .
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Theorem 4.1 Let 0 < 1
λC

m
< 2α, Q0 be positive definite, C be positive

definite, and let the sequences (xk, yk) be generated by the algorithm (A0)
given in (3.2). Then

• limk ‖Axk − b‖ = 0.

• limk J0(xk) = J0(x).

• All limit points of (xk, yk) are saddle points of L0(x; y)(2.7).

Proof 4.2 We denote w = (x, y) and define a norm on w by

‖w‖2 = ‖x‖2Q0
+ ‖y‖2C

Let us recall that all the saddle-points of L0 (2.7), w = (x, y), are
characterized by

s−A>y = 0, Ax− b = 0, (4.1)

where s ∈ ∂J0(x).
Let wk = (xk, yk) be a sequence generated by the algorithm (A0). We

define sk+1 = A>yk − αA>(Axk+1 − b)−Q0(xk+1 − xk), then we can see
sk+1 ∈ ∂J0(xk+1) by the optimality condition of (3.2a). We denote the
errors as follows:

sk+1
e := sk+1−s, wk+1

e := wk+1−w = (xk+1
e , yk+1

e ) = (xk+1−x, yk+1−y)
(4.2)

Using the optimality condition (4.1), the sequence (sk
e , wk

e ) satisfies:
{

sk+1
e + αA>Axk+1

e + Q0x
k+1
e = Q0x

k
e + A>yk

e

Cyk+1
e = Cyk

e −Axk+1
e

Taking the inner product with xk+1
e on both sides of the first equality, we

get

1
2
(‖xk+1

e ‖2Q0
+ ‖xk+1 − xk‖2Q0

− ‖xk
e‖2Q0

)

= −〈sk+1
e , xk+1

e 〉 − α‖Axk+1
e ‖2 + 〈yk

e , Axk+1
e 〉

Similarly, from the second equality, we can derive

1
2
(‖yk+1

e ‖2C − ‖yk
e‖2C − ‖Axk+1

e ‖2C−1) = −〈yk
e , Axk+1

e 〉.

Adding the above two equalities together yields
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1
2
‖wk+1

e ‖2 +
1
2
‖xk+1 − xk‖2Q0

+ 〈sk+1
e , xk+1

e 〉+ α‖Axk+1
e ‖2 − 1

2
‖Axk+1

e ‖2C−1)

=
1
2
‖wk

e‖2. (4.3)

By the convexity of the functional J0(·), we have 〈sk+1
e , xk+1

e 〉 ≥ 0 since
sk+1 ∈ ∂J0(xk+1) is monotone. Together with the condition 0 < 1

λC
m

< 2α,
we derive

〈sk+1
e , xk+1

e 〉+ α‖Axk+1
e ‖2 − 1

2
‖Axk+1

e ‖2C−1 ≥ 0,

which yields
‖wk+1

e ‖2 ≤ ‖wk
e‖2.

This implies the boundness of the sequence wk = (xk, yk). Furthermore,
the summation of (4.3) leads to

∞∑

k=0

〈sk+1
e , xk+1

e 〉+
∞∑

k=0

1
2
‖xk+1 − xk‖2Q0

+
∞∑

k=0

(α‖Axk+1
e ‖2 − 1

2
‖Axk+1

e ‖2C−1)

≤ 1
2
‖w0

e‖2 < ∞ (4.4)

Since
1

λC
m

< 2α, this implies also

‖xk+1 − xk‖2Q0
→ 0 (4.5)

‖Axk+1
e ‖2 → 0 (4.6)

〈sk+1
e , xk+1

e 〉 → 0. (4.7)

Then (4.6) implies

‖b−Axk+1‖ = ‖Axk+1
e ‖ → 0. (4.8)

(4.7) implies
J0(xk+1) → J0(x).

By the boundness of wk, there exists a subsequence wkl converges to a
point w∞ = (x∞, y∞). Now we will prove that the limit point w∞ is a
saddle point of L0, which means that x∞ is a solution of (P0). We define
s∞ := limk skl , and we have s∞ ∈ ∂J0(x∞) and

sk+1 −A>yk = Q0(xk − xk+1)− αA>(Axk+1 − b)
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Taking the limit over the appropriate subsequences, we then have

s∞ −A>y∞ = 0
Ax∞ − b = 0.

Thus any limit point w∞ = (x∞, y∞) is a saddle point of L0.

In the following, we prove the convergence of the algorithm (A1) given
in (3.3).

Theorem 4.3 Let the sequence (xk, zk, yk) be defined by (3.3). Assume

that Q1 is positive definite, Q2 is positive semi-definite, and 0 <
1

λC
m

≤ α,,

then

• limk ‖Bxk − zk‖ = 0.

• limk J1(zk) = J1(z).

• limk H(xk) = H(x).

• All limit points of (xk, zk, yk) are saddle points of L1(x, z; y)(2.8).

Proof 4.4 The proof is similar to the above one. With the same kind of
notation for xk

e , zk
e , yk

e and sk
e := sk − s, tke := tk − t where sk ∈ ∂J1(zk),

s ∈ ∂J1(z), tk ∈ ∂H(xk) and t ∈ ∂H(x). Then the sequence (xk, zk, yk)
generated by the algorithm (3.3) in terms of the error satisfies





tk+1
e + Q1x

k+1
e = Q1x

k
e − αBT (Bxk+1

e − zk
e +

1
α

yk
e )

sk+1
e + Q2z

k+1
e = Q2z

k
e + yk

e − α(zk+1
e −Bxk+1

e )
Cyk+1

e = Cyk
e + (Bxk+1

e − zk+1
e )

(4.9)

By taking inner products of the above equalities with xk+1
e , zk+1

e and yk
e ,

we then obtain

1
2
(‖xk+1

e ‖2Q1
+ ‖xk+1 − xk‖2Q1

− ‖xk
e‖2Q1

) + 〈tk+1
e , xk+1

e 〉

= α〈Bxk+1
e , zk

e −
1
α

yk
e −Bxk+1

e 〉

1
2
(‖zk+1

e ‖2Q2
+ ‖zk+1 − zk‖2Q2

− ‖zk
e ‖2Q2

) + 〈sk+1
e , zk+1

e 〉
= 〈yk

e , zk+1
e 〉 − α〈zk+1

e −Bxk+1
e , zk+1

e 〉,
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1
2
(‖yk+1

e ‖2C − ‖yk
e‖2C − ‖Bxk+1

e − zk+1
e ‖2C−1) = −〈zk+1

e −Bxk+1
e , yk

e 〉
Summing over these three equalities, we obtain

1
2
(‖xk+1

e ‖2Q1
+ ‖xk+1 − xk‖2Q1

− ‖xk
e‖2Q1

) + 〈tk+1
e , xk+1

e 〉

+
1
2
(‖zk+1

e ‖2Q2
+ ‖zk+1 − zk‖2Q2

− ‖zk
e ‖2Q2

) + 〈sk+1
e , zk+1

e 〉

+
1
2
(‖yk+1

e ‖2C − ‖yk
e‖2C)

= α〈Bxk+1
e , zk

e −Bxk+1
e 〉 − α〈zk+1

e −Bxk+1
e , zk+1

e 〉+
1
2
‖Bxk+1

e − zk+1
e ‖2C−1

= (
1
2
‖Bxk+1

e − zk+1
e ‖2C−1 − α

2
‖Bxk+1

e − zk+1
e ‖2)

− α

2
‖Bxk+1

e − zk
e ‖2 +

α

2
(‖zk

e ‖2 − ‖zk+1
e ‖2) (4.10)

By the convexity of the functionals J1(·) and H(·), we have

〈tk+1
e , xk+1

e 〉 ≥ 0, 〈sk+1
e , zk+1

e 〉 ≥ 0

and the condition 0 < 1
λC

m
≤ α yields

1
2
‖Bxk+1

e − zk+1
e ‖2C−1 − α

2
‖Bxk+1

e − zk+1
e ‖2 ≤ 0.

The equality (4.10) then implies

(‖xk+1
e ‖2Q1

+ ‖zk+1
e ‖2Q2

+ α‖zk+1
e ‖2 + ‖yk+1

e ‖2C)

≤ ‖xk
e‖2Q1

+ ‖zk
e ‖2Q2

+ α‖zk
e ‖2 + ‖yk

e‖2C .

Since the matrices Q1 and C are positive definite, the sequence (xk, zk, yk)
is then bounded. By summing (4.10) from 0 to ∞, we can also derive

∞∑

k=0

(‖xk+1 − xk‖2Q1
+ ‖zk+1 − zk‖2Q2

) < ∞,

∞∑

k=0

‖Bxk+1
e − zk

e ‖2 < ∞

and ∞∑

k=0

〈tk+1
e , xk+1

e 〉 < ∞,

∞∑

k=0

〈sk+1
e , tk+1

e 〉 < ∞

Thus the equalities

lim
k
‖Bxk+1

e − zk+1
e ‖ = lim

k
‖Bxk+1 − zk+1‖ = 0
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and
lim

k
H(xk) = H(x) lim

k
J1(zk) = J1(z)

hold. By the boundness of the sequence, there exists convergent subse-
quence of (xk, zk, yk), and each cluster point (x∞, z∞, y∞) satisfies





t∞ + BT y∞ = 0,
s∞ − y∞ = 0,

Bx∞ − z∞ = 0
(4.11)

Thus (x∞, z∞, y∞) is a saddle point of L1(x, z; y) and (x∞, z∞) is a solu-
tion of (2.6).

Remark 4.5 For algorithm (A0), if the functional J0(x) + α
2 ‖Ax − b‖2

is strictly convex with respect to x, the positive definitive condition for
the matrix Q0 can be relaxed to semi-positive. Also, if the functional
H(x) + α

2 ‖Bx − zk‖2 is strictly convex with respect to x for algorithm
(A1), then the condition for Q1 can be relaxed to positive semi-definite.
The proofs follows the ones of Theorem 4.1 and 4.3.

5 Applications

In this section, we consider the applications of the algorithms (A0) and
(A1) in signal and image processing. We will present new algorithms and
also draw the connection to some existing methods. Throughout, we choose

C =
1
γ

I,

where γ > 0 for both algorithms and Q2 = 0 for the algorithm (A1) since
Q2 can be positive semi-definite.

5.1 `1 Basis pursuit

The basis pursuit problem [18] solves the constrained minimization problem

(Basis Pursuit) min
x∈RN

‖x‖1 s.t. Ax = b. (5.1)

Since A is often under-determined, the linear equation Ax = b has more
than one solution. This problem arises in many applications of compressive
sensing (CS), for which some of the original work was done in [12] by Candes
et al. and in [22] by Donoho. The fundamental principle of CS is that if a
signal is sparse in a chosen basis, the signal can be recovered through convex
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optimization with very few measurements. There are extensive references
in this domain. See [50] and references therein.

To be consistent with the parameters in [50] and for linearized Bregman
in [42], we choose J(x) = µ‖x‖1 with a positive parameter µ > 0 and set
α = 1. The generic algorithm (A0) applied to this problem is written as
{

xk+1 = arg minx

(
µ‖x‖1 − 〈yk, Ax〉+

1
2
‖Ax− b‖2 +

1
2
‖x− xk‖Q0

)

yk+1 = yk + γ(b−Axk+1)
(5.2)

• If Q0 = 0, and γ = 1, then
{

xk+1 = arg minx

(
µ‖x‖1 +

1
2
‖Ax− (yk + b))‖2

)

yk+1 = yk + (b−Axk+1)
(5.3)

With a change of variable, we obtain the equivalent Bregman itera-
tion for `1 basis pursuit used in [50]. Note that even though Q0 is not
positive definite in this case, and J(u) is not strictly convex, the con-
vergence of the above algorithm is still established by the equivalence
to method of multipliers. In general, solving the first subproblem
exactly requires infinite inner iterations. In particular, in [50], the
first subproblem is solved by the Fixed Point Continuation (FPC)
method proposed by Hale, Yin and Zhang [33]. The idea is based
on forward-backward operator splitting (1.8) and a dynamic µ. Note
that the first subproblem can be also solved by other methods, such
as the iterative shrinkage by Daubechies, De Frise and De Mol in [21],
GPSR[27], `1 ls [36], a greedy algorithm [38], FISTA [3] and NESTA
[4].

• Another popular `1 basis pursuit algorithm called linearized Bregman
starts with x0 = 0, y0 = b and updates xk+1 with

{
xk+1 = minx µ‖x‖1 +

1
2δ
||x−A>yk+1||2

yk+1 = yk + δ(b−Axk+1)
(5.4)

This algorithm can be derived by applying the classical uzawa method
(2.4) to the approximated problem

x = arg min
(
µ‖x‖1 +

1
2δ
||x||2

)
s.t. Ax = b

Since the functional is strictly convex, the convergence can be also
guaranteed. To make it equivalent to the original problem, we need
to choose a sufficiently large µ. The equivalence of solutions of this
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problem and the original basis pursuit problem is demonstrated in
[49]. On the other hand, a large µ leads to a slow convergence. An
acceleration technique called ”kicking” is used in [42].

• Based on a similar idea as linearized Bregman, we want to be able
to explicitly solve for the updates in every iteration. By applying
the algorithm A0 (3.2) with Q0 = 1

δ −A>A, we obtain the proposed
inexact Uzawa algorithm (which is equivalent to BOS in [51]): x0 =
0, y0 = 0,
{

xk+1 = arg minu

(
µ‖x‖1 + 1

2δ ||x− ((1− δA>A)xk + δA>(yk + b))||2
)

yk+1 = yk + γ(b−Axk+1)
.

(5.5)

This is equivalent to : x0 = 0, y0 = b:




zk+1 = xk − δA>(Axk − yk))
xk+1 = Shrinkage(zk+1, µδ)
yk+1 = yk + γ(b−Axk+1)

(5.6)

This algorithm can be also interpreted as PCPM (2.16), and each
step can be computed explicitly. Note that this formulation can also
be viewed as a one-step inner iteration of PFBS with outer Bregman
iterations. A similar idea is also applied in [5] for parallel compressive
sensing, where a continuation technique is used instead of Bregman
iterations.

Finally, the proposed inexact uzawa numerical scheme (5.5) is presented in
the following:

Algorithm 1 Inexact Uzawa Method for `1 basis pursuit
Require: Initialization: x0 = 0, y0 = b.

while ‖b−Axk‖ ≥ btol and k < K do
xk+1 = shrinkage(xk + δA>(yk −Axk), µδ);
yk+1 = yk + γ(b−Axk+1);

end while

In the following, we demonstrate the numerical performance of the pro-
posed algorithm. We will also compare it with linearized Bregman and
PFBS+Bregman with additional inner iterations. We generate sparse sig-
nals x of length n with different sacristies. More precisely, we fix the
length of the measurements b to be m = n/2, and the number of non-zeros
of the signals equal to ρm where ρ = 0.02 and ρ = 0.2. The stopping
tolerance is btol = ‖Axk−b‖

‖b‖ ≤ 10−5 and the maximum number of itera-
tions is 1000. Two kinds of standard compressive sensing measurements
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matrices are used: orthogonalized Gaussian matrices and partial discrete
cosine transform (DCT). For the random Gaussian matrices, the elements
are generated from i.i.d normal distributions N(0, 1) and the rows of A
were orthogonalized. For the DCT measurements, we use the fast DCT
transform without explicitly storing the measurement matrix.

According to Theorem 4.1: the parameter δ must be chosen so that
the matrix Q0 = 1

δ − A>A is positive definite, that is 0 < δ < 1
‖A>A‖ . In

the case of compressive sensing, we can choose 0 < δ < 1. The parameter
γ is a step-size for the gradient ascent step for the dual variable. The
convergence of the algorithm (A0) is guaranteed when 0 < γ < 2 (α = 1),
while in linearized Bregman and PFBS+Bregman iterations this parameter
γ is fixed as 1. Numerically, we observe that a larger γ generally yields a
faster convergence while the residual converges to zero in an oscillating
fashion. In general γ = 1 gives a good convergence rate. Thus, we fix
γ = 1 and δ = 0.99 for the inexact Uzawa method. We use the relative
error (RelErr): ‖xk−x‖

‖x‖ to measure reconstruction quality.
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Figure 1: Residual decay (left) and RelErr decay (right) of full sequence
and residual-decreasing subsequence of inexact Uzawa method. DCT mea-
surements for n = 1024,m = 512, ρ = 0.02, γ = 1, δ = 0.99, µ = 1.

In Figure 1, we show the residual and the corresponding RelErr to
the true signal for the sequence generated by the inexact Uzawa method.
Theoretically, the residual ‖Axk − b‖ → 0, but the residual is not mono-
tonically decreasing. This is due to the fact that we are not minimizing
the quadratic term ‖Ax − b‖2 in one iteration. To avoid this and keep a
relatively faster convergence, we only record a subsequence of xk which has
decreasing residual, see Figure 1. Note that this treatment will not change
or accelerate the algorithm, and by the convergence result (Theorem 4.1)
this subsequence will converge to an optimal solution. In the following, we
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use the subsequence for the inexact Uzawa method.
Now we compare our algorithm to linearized Bregman and PFBS+Bregman.

Note that we do not compare to other more complicated implicit algo-
rithms for solving the first subproblem, such as FPC [33] and methods
based on Nestorov’s approach such as Fista [3], Nesta [4]. The efficiency
of these algorithms depends on more sophisticated parameter selections
and stopping criterions. Among the three algorithms we are comparing,
FFBS+Bregman has one more parameter for the number of inner itera-
tions. In our experiments, we fix this number as nInner = 10. For both
linearized Bregman and PFBS+Bregman, we choose δ = 1.99 since we can
choose 0 < δ < 2

‖A>A‖ and they achieve the best convergence rate when δ

is close to the upper bound. The most important parameter is µ. The to-
tal number of iterations and running time of these three algorithms closely
depend on µ. As we mentioned previously, a large µ is preferred for lin-
earized Bregman, so as not to get a wrong solution. In [42], the authors
propose an approximated accelerating algorithm, which is called linearized
Bregman with kicking. The idea is to jump some steps when the signal is
not changing due to a big shrinkage. In Table (5.1), we show the behaviors
of the three algorithms with different choices of parameter µ under two
experimental setting: sparsity ρ = 0.02 and ρ = 0.2. For each setting, the
first row denotes the linearized Bregman result, the second row is for the
inexact Uzawa method and the last row is for PFBS+Bregman. We can
see from this table that when µ (µ = 0.1) is small, linearized Bregman can
fail (RelErr = 0.25) even when the residual decreases to 0. This could be
severe for the less sparse case (ρ = 0.2, RelErr = 0.61). In contrast, for
PFBS+Bregman, a smaller µ leads to faster convergence and higher accu-
racy rate. When µ is large (µ = 10) and ρ = 0.2, the convergence is very
slow since a lot of sub-steps are wasted. Among these three algorithms,
the inexact Uzawa method is relatively more robust to µ compared to lin-
earized Bregman and PFBS+Bregman. In the following, we fix µ = 0.1
for the inexact Uzawa method and PFBS+Bregman, µ = 1 for ρ = 0.02,
and µ = 10 for ρ = 0.2 respectively for linearized Bregman with kicking.
The comparisons of these three methods for different sizes of problems and
different measurement matrices are presented in Tables. 2 and 3. We can
observe that with the best µ for each method, linearized Bregman converges
faster than the inexact Uzawa method for the case of very sparse signals,
while the inexact Uzawa method is faster when signals are denser. The
PFBS+Bregman method is in general slower than the other two methods,
but it can achieve a slightly lower Relerr rate for most of cases.

For the noisy case, the optimization model is different. We can also
apply the inexact Uzawa method for the related primal-dual formulation.
This example is discussed in a continued work [26].
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ρ = 0.02 ρ = 0.2
RelRes RelErr Time RelRes RelErr Time

µ = 0.1
9.9e-6 0.25 0.88 1e-5 0.61 1.1
7.4e-6 7.8e-6 0.043 7.2e-6 1.1e-5 0.094
2.1e-6 2.1e-6 0.016 7.2e-6 1.1e-5 0.31

µ = 1
4.6e-6 4.9e-6 0.018 1e-5 0.082 2.4
6.7e-6 7.1e-6 0.044 8.4e-6 1.2e-5 0.32
2.6e-6 2.7e-6 0.13 2.7e-6 3.2e-5 1.4

µ = 10
4.8e-6 5.1e-6 0.037 7.4e-6 1.1e-5 0.27
8e-6 8.5e-6 0.2 1.1e-5 1.5e-5 2.7

2.2e-6 2.3e-6 1.2 1.5e-3 1.7e-3 3.4

Table 1: Experimental results using 20 DCT runs for n = 1024,m =
n/2, k = ρm, ρ = 0.02 and ρ = 0.2. For each experiment, the first row is
the result with linearized Bregman with kicking and the second row is the
inexact Uzawa method, and the last row is PFBS with Bregman iterations
(nInner = 10).

5.2 TV−L2 regularization

Now we demonstrate an application of problem (2.6) with separable struc-
ture. We consider TV-L2 minimization problems in an unconstrained form,

min
u

(
µTV(x) +

1
2
||Ax− b||2

)
(5.7)

where TV(x) =
∑

i,j ‖(∇x)i,j‖1, and (∇x)i,j ∈ R2 denotes a discrete gra-
dient of x at (i, j). As in [51], the related constrained formulation can be
formulated as

min
u

TV(x) s.t. Ax = b (5.8)

and it can be solved either by Algorithm (A0) or (A1). Similar to the
`1 basis pursuit problem, the algorithm (A0) applied to (5.8) is BOS as
presented in [51], with the `1 minimization step replaced by a ROF [45]
denoising step. Some efficient algorithms, such as graph cuts [20] or the
dual projection method of Chambolle [14] can be applied.

Here, we are more interested in solving the unconstrained problem (5.7)
by the algorithm (3.3). Following the split Bregman method proposed in
[31], we first reformulate the problem (5.7) as

min
x,z

(
µ‖z‖1 +

1
2
||Ax− b||2

)
s.t. ∇x = z
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n m ρ RelErr Time
mean std max mean std max

1024 512 0.02 4.9e-6 2.4e-6 9.1e-6 0.014 0.007 0.031
7.8e-6 2.8e-6 1.1e-5 0.042 0.01 0.062
4.4e-6 2.7e-6 9.8e-6 0.029 0.014 0.047

4096 2048 0.02 4.1e-6 2.3e-6 1.1e-5 0.094 0.033 0.16
9.2e-6 1.2e-6 1e-5 0.17 0.082 0.51
5.1e-6 2.6e-6 9.7e-6 0.33 0.66 3.1

32768 16384 0.02 4.8e-6 2.8e-6 9.5e-6 1.9 0.21 2.2
8.6e-6 2.7e-6 1.1e-5 1.8 1.3 6.6
4.9e-6 2.8e-6 1e-5 12 21 97

1024 512 0.2 1.1e-5 2.2e-6 1.5e-5 0.28 0.051 0.41
1.1e-5 2.7e-6 1.6e-5 0.1 0.068 0.37
9.9e-6 2.1e-6 1.3e-5 0.27 0.46 2.1

4096 2048 0.2 9.8e-6 2.3e-6 1.5e-5 2.1 0.38 3.1
1.1e-5 3e-6 1.5e-5 0.52 0.38 1.9
8.9e-6 2.2e-6 1.3e-5 2.1 2.3 10

32768 16384 0.2 9.8e-6 2.2e-6 1.2e-5 59 5.6 69
9.2e-6 2.2e-6 1.4e-5 6.8 2.2 12
9.2e-6 2.2e-6 1.1e-5 30 9.8 46

Table 2: Experimental results using 20 DCT runs for n,m, k = ρm. For
each experiment, the first row is the result with linearized Bregman with
kicking (µ = 1 for ρ = 0.02 and µ = 10 for ρ = 0.2), the second row is the
inexact Uzawa algorithm proposed(µ = 0.1 for both cases) and the last row
is PFBS with Bregman iterations (µ = 0.1, nInner = 10 for both cases)
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n m ρ RelErr Time
mean std max mean std max

1024 512 0.02 3.6e-6 2e-6 7.6e-6 0.12 0.038 0.2
7.6e-6 2.6e-6 1.1e-5 0.22 0.045 0.31
3.8e-6 2e-6 7.8e-6 0.1 0.037 0.19

4096 2048 0.02 5e-6 2.9e-6 1.1e-5 1.6 0.37 2.5
7.9e-6 1.7e-6 1e-5 2.8 0.96 6.8
4.9e-6 2.2e-6 8.6e-6 6.1 14 65

1024 512 0.2 1.2e-5 2.5e-6 1.9e-5 1.3 0.31 2.3
1.2e-5 2.4e-6 1.5e-5 0.47 0.3 1.4
9.7e-6 2.8e-6 1.5e-5 1.5 3.1 12

4096 2048 0.2 1e-5 2.2e-6 1.4e-5 34 6.1 48
1.2e-5 2.5e-6 1.6e-5 8.3 6.6 31
9.2e-6 2.2e-6 1.4e-5 33 38 160

Table 3: Experiment results using 20 Gaussian runs for different n, m, k =
ρm. For each experiment setting, the first row is with linearized Bregman
with kicking (µ = 1 for ρ = 0.02 and µ = 10 for ρ = 0.2), the second row is
the inexact Uzawa algorithm proposed(µ = 0.1 for both cases) and the last
row is PFBS+Bregman iterations (µ = 0.1, nInner = 10 for both cases)

The Algorithm (A1) applied to the unconstrained problem (5.7) is writ-
ten as x0 = 0, z0 = 0, y0 = 0,




xk+1 = arg minx

(1
2
‖Ax− b‖2 + 〈yk,∇x〉+

α

2
‖∇x− zk‖2 +

1
2
‖x− xk‖2Q1

)

zk+1 = arg minz

(
µ‖z‖1 − 〈yk, z〉+

α

2
‖∇xk+1 − z‖2 +

1
2
‖z − zk‖2Q2

)

Cyk+1 = Cyk + (∇xk+1 − zk+1)
(5.9)

Since we choose Q2 = 0 and C = 1
γ for simplicity, we obtain





xk+1 = (A>A + Q1 − α∆)−1(A>b + div(yk − αzk) + Q1x
k)

zk+1 = shrinkage(∇xk+1 +
1
α

yk,
µ

α
)

yk+1 = yk + γ(∇xk+1 − zk+1)
(5.10)

where ∆ denotes discrete Laplace operator and div denotes the divergence
operator, the adjoint of the gradient operator. The variants of algorithms
then depend on how we choose the matrix Q1.

• Let Q1 = 1
δ −A>A + α∆, then xk+1 is updated as

xk+1 = xk − δA>(Axk − b) + δdiv(α∇xk − αzk + yk). (5.11)
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In this case, the step corresponds to a one-step gradient descent and
it is very efficient since it doesn’t involve any operator inverting. We
notice that this is an explicit algorithm. Note that δ must be chosen
such that Q1 is positive definite, therefore 0 < δ < 1

||A>A−α∆|| .

• If A is not diagonalizable, we can choose Q1 as Q1 = 1
δ − A>A And

xk+1 is solved by

xk+1 = (
1
δ
− α∆)−1((

1
δ
−A>A)xk + A>b + div(yk − αzk)). (5.12)

We refer to this algorithm as a semi-implicit variant. According to
Theorem 4.3, the condition for δ is 0 < δ < 1

‖A>A‖ .

• If A is diagonalizable in Fourier basis or DCT depending on the
boundary conditions, then A>A − α∆ is diagonalizable. We can
choose Q1 = 1

δ . Then xk+1 is solved by

xk+1 = (A>A− α∆ +
1
δ
)−1(

1
δ
xk + A>b + div(yk − αzk)). (5.13)

This is exactly the alternating split Bregman method proposed by
Goldstein and Osher in [31]. The condition for δ is 0 < δ < ∞. We
refer to this as an implicit algorithm.

Finally, note that the three algorithms can be written in one unified scheme
as Algorithm 2.

Algorithm 2 Generalized Split Bregman Method for TV −L2 regulariza-
tion
Require: Input parameters µ, δ, γ, α, btol, K.

Initialization: x0 = 0, y0 = b, k = 0, r0 = b−Ax0.
while ‖r0‖ ≤ btol and k < K do

if mode is ’explicit’ then
Update xk+1 by (5.11)

else if mode is ’semi-implicit’ then
Update xk+1 by (5.12)

else
Update xk+1 by (5.13){mode is ’explicit’}

end if
zk+1 = shrink(∇xk+1 +

1
α

yk,
µ

α
).

yk+1 = yk + γ(∇xk+1 − zk+1)
end while
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In the following, we provide an example of TV-L2 for Computerized To-
mography (CT). In a simplified parallel tomographic problem, an observed
body slice is modeled as a two-dimensional function, and projections mod-
eled by line integrals represents the total attenuation of a beam of x-rays
when it traverses the object. The acquired projections are parameterized
by the angle of each beam and the signed perpendicular distance from each
line to the origin. The projections can be represented by the Radon trans-
form, and the tomographic reconstruction problem is then to estimate the
function from a finite number of measured line integrals, see [2] for more
background. The standard reconstruction algorithm in clinical applications
is Filtered Back Projection (FBP). In the presence of noise, this problem
becomes difficult since the inverse of the Radon transform is unbounded.
Therefore, we use total variation as a regularizer. The model we consider
takes the form (5.7) with A being the Radon transform matrix. We simu-
late a 128×128 Shepp-Logan phantom image and its 50 uniformly oriented
projections with Gaussian noise. For this case, it is easier to compute the
adjoint instead of inverse of the Radon transform, thus we only consider
the semi-implicit and explicit modes. The results are shown in Figure 2.
Both methods are very efficient and obtain similar results. Figure 3 shows
the evolution of the energy for the two algorithms. As we expect, the semi-
implicit mode converges in fewer iterations than the explicit method, but
it takes more time for each iteration. They take roughly the same amount
of time to achieve similar results.

6 Extensions

6.1 Matrix Completion

A related problem to compressive sensing is matrix completion. The matrix
completion problem consists of recovering a low rank matrix X from its
incomplete known entries. However, a rank minimization problem is in
general NP hard. In [11], Candès and Recht showed that some low rank
matrices can be recovered exactly from an incomplete sampling by solving
a convex optimization problem:

min
X
‖X‖∗ s.t. PΩ(X) = b (6.1)

where ‖X‖∗ is the nuclear norm of X defined as the sum of singular values
of X, Ω is the index set of known entries, PΩ is the projection operator,
and b is the vector of known entries.

If we denote 〈X, Y 〉 = trace(X∗Y ) and ‖X‖2F = 〈X, X〉, a key property
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Original FBP

TV-L2, explicit, SNR=18.95, 70s TV-L2, semi-implicit, SNR=18.99,79s

Figure 2: A tomographic reconstruction example for a 12 × 128 image,
with 50 projections. The initial guess for both explicit and semi-implicit
methods is the FBP image.
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Figure 3: log100(energy) vs iterations of explicit and semi-implicit methods
for the above example

presented in [35] is based on the proximity operator of the nuclear norm:

arg min
X

(
τ‖X‖∗ +

1
2
‖X − Y ‖2) = Shrinkage(Y, τ) (6.2)

where Shrinkage(Y, τ) is soft-thresholding with parameter τ of the singu-
lar values of the matrix Y . More precisely, consider the singular value
decomposition of a matrix Y ∈ Rn1×n2 with rank r: Y = UΣV ∗, Σ =
diag({σi}r

i=1) where U, V are respectively n1 × r and n2 × r matrices with
orthonormal columns, and σi are positive singular values. The analogue of
soft-shrinakage of a signal (1.9), soft-shrinkage of matrix Y is defined as

Shrinkage(Y, τ) := Udiag({max(σi − τ, 0)})V ∗. (6.3)

Now we can use this proximal point minimization of the nuclear norm
to solve the matrix completion problem. We first write the primal-dual
formulation of (6.1) as

L(X, p) = µ‖X‖∗ +
1
2
‖PΩ(X)− b‖2 + 〈PΩ(X)− b, p〉. (6.4)

Similar to the basis pursuit problem, a Singular Value Thresholding
(SVT) algorithm, based on linearized Bregman, is proposed in [35]. Fix
τ > 0 and a positive number δ (or a sequence {δk}k≥0), the algorithm is
as follows {

Xk+1 = Shrinkage(P>Ω Y k, τ)
Y k+1 = Y k + δ(b− PΩXk+1). (6.5)
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In [35], the authors have proved that the algorithm (6.5) is an applica-
tion of the classic Uzawa method to the convex optimization problem:

min τ‖X‖∗ +
1
2
‖X‖2F , s.t. PΩ(X) = b.

Due to the strict convexity of the approximated functional, the algorithm
converges to a unique solution.

Our analogous algorithm for the matrix completion problem is derived
in the same way as `1 basis pursuit. The idea is to solve the original
problem (6.1) by using the inexact Uzawa method (3.2)

{
Xk+1 = Shrinkage(Xk − δPT

Ω (PΩXk − Y k), δµ)
Y k+1 = Y k + γ(b− PΩ(Xk+1)) (6.6)

The convergence of this algorithm follows from the proof of Theorem 4.1
and Theorem 4.2 in [35]. Another algorithm we consider is the Bregman
iterations method with possibly more than one iteration of PFBS solving
the subproblem, that is





{
Zk+1 = Xk − δPT

Ω (PΩXk − Y k)
Xk+1 = Shrinkage(Zk+1, δµ)

Y k+1 = Y k + γ(b− PΩ(Xk+1))
(6.7)

Note that this is a simplified version of the fixed point continuation (FPC)
method with Bregman iterations in [39], where a dynamic parameter µ is
used in addition to the Bregman iterations.

In the following, we compare the performance of the three methods:
SVT(linearized Bregman) (6.5), the inexact Uzawa method (6.6) and Breg-
man iterations with PFBS (6.7). As in [35], we simulate n× n matrices of
rank r by multiplying two random matrices of size n×r and then the given
entries support Ω of cardinality m are uniformly randomly sampled. We
use the same stopping criterion as in [35], that is ‖PΩ(Xk)−b‖

‖b‖ ≤ 10−4. We
first look at the behavior of the inexact Uzawa method (6.6) with different
µ. Figure 4 shows the evolution of the residual ‖PΩ(Xk)− b‖ and the rank
of Xk. We can see that the residual decreases faster with a smaller µ.
The behavior of the rank is different. With a smaller µ, the rank of Xk is
big at the beginning and it starts to decrease afterward. With a larger µ
the rank increases and stabilizes. Thus a smaller µ will result in a large
rank matrix at the beginning. It requires more singular value decompo-
sition computation, even though it converges in fewer iterations. In fact,
for the example in Figure 4, the computation times are 407s and 101s for
µ = 0.1n and µ = n respectively. We also want to compare the perfor-
mance of the three methods mentioned above. Table 4 shows the results.
As in the l1 compressive sensing case, the parameter µ needs to be big for
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the SVT method. We use the proposed µδ = 5n in [35] for SVT, δ = 1 and
µ = n for the Uzawa method, and δ = 1, µ = 0.2n for the PFBS+Bregman
with n = 10 inner steps. We can see that the inexact Uzawa method is
slower than linearized Bregman and PFBS+Bregman when the rank is low
(n = 1000, r = 10), but it is faster than the other two methods when the
rank is higher (n = 1000, r = 50, r = 100).
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Figure 4: Matrix Completion by inexact Uzawa method with different µ =
n and µ =

n

10
for n = 1000, r = 10,m = 0.12 ∗ n2, δ = 1 .

n r p RelErr Time Steps
1000 10 0.12 1.637e-4 154.3 119

1.666e-4 224.7 202.4
1.438e-4 202.4 240.6

1000 50 0.39 1.628e-4 344.4 116
1.55e-4 109.5 61.6
1.147e-4 320.4 105.4

1000 100 0.57 1.703e-4 631.5 130
1.53e-4 197.1 48
1.349e-4 1144 85

Table 4: Experiment results using 5 runs for different matrices of size n×n,
rank r, and sampling rate p = m/n2. The 1st row is linearized Bregman
with δ = 1.2/p, µ = 5n/δ. The 2nd row is the inexact Uzawa algorithm
with δ = 1, µ = n. The last row is PFBS(10 inner steps)+Bregman with
δ = 1, µ = n/5.
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7 Conclusions

We have proposed two general primal-dual methods for solving linearly
constrained problems arising from signal and image processing applica-
tions. The algorithms generalize Bregman operator splitting (BOS) pro-
posed in [51] and are connected to other popular methods, such as lin-
earized Bregman, split Bregman methods and PCPM. The numerical ex-
amples show the proposed algorithms are efficient, robust to the param-
eter selection and flexible enough to be widely applicable. In theory,
our algorithms can be extended to minimize other TV or `1 based func-
tionals, such as TV−L1 as well as more general primal dual formula-
tions of convex programming involving more complicated constraint sets.
The code for the applications presented in this paper will be available at
http://www.math.ucla.edu/∼xqzhang/html/code.html.
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