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Abstract

This paper introduces an efficient method based on total variation-
based functionals to solve the reconstruction problem of closed surfaces
from a set of unorganized points in R2 and R3. Recent developments
in optimization have provided fast, accurate, and robust algorithms
to solve total variation-based problems in imaging. We propose to
use the efficient split-Bregman method to solve the problem of sur-
face reconstruction without tuning any parameter and without using
any additional information such as surface normals. Our surface re-
construction algorithm can handle dense and sparse collections of data
points, while being robust to the presence of outliers. Our experiments
show that our algorithm is fast and can recover surface details while
using no more and often less information than related methods.

1 Introduction

Surface reconstruction is a highly challenging problem because sets of
scattered points lack ordering information, connectivity, and may be noise
contaminated. There exist two kinds of surface representations; explicit rep-
resentations and implicit representations. Explicit surface representations
track the exact locations of points on a surface, while implicit surface rep-
resentations embed surfaces as a level set of a scalar-valued function. More
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precisely, explicit representations include parametric surfaces s.a. [3, 4] and
triangulated surfaces such as [6, 7, 8, 9, 10]. Implicit representations include
e.g. [13, 14, 15, 16, 17, 18]. In this paper, we focus on implicit repre-
sentations because they easily handle arbitrary and dynamically changing
topology. Also, recent fast convex optimization techniques for implicit rep-
resentations can be used.

One of the earliest successful implicit surface reconstruction methods
was introduced by Zhao et al. in [15, 16]. Given a set of unorganized points,
{xi}, the reconstructed surface is the minimizing solution of the weighted
length/area energy:

E(Γ) =
∫

Γ
d(x)dΓ, (1)

where Γ is a curve in R2 or a surface in R3, dΓ is the arc length element or
the surface parametrization, and d ∈ R+ is the distance function of the set
of points. This distance function satisfies the eikonal equation

|∇d(x)| = 1 x ∈ Ω \ {xi} (2)
d(xi) = 0,

and can be efficiently computed using the fast sweeping method of [19, 20].
The gradient flow of energy (1) is:

∂tC = (dκ− < ∇d,N >)N (3)

where t is an artificial time parameter. The variables κ and N are respec-
tively the curvature and the normal to the surface Γ. If the surface Γ is
represented by the zero level set of a function φ, then the gradient flow
becomes:

∂tΦ = |∇φ|∇ ·
[
d
∇φ

|∇φ|
]

= |∇φ|
[

< ∇d,
∇φ

|∇φ| > +d∇ · ∇φ

|∇φ|
]
, (4)

where∇· ∇φ
|∇φ| is the curvature of level sets of φ. The above PDE-based model

provides accurate reconstructed surfaces (see [15] and [16] for more details).
However, solving the PDE (4) is time consuming because the gradient flow
requires very small time steps according to the CFL condition[1] to ensure
a stable evolution of the surface. Furthermore, the energy functional (1)
is non-convex, making results sensitive to the initial condition. In order to
avoid non-meaningful local minimizers, the initial surface must lie close to
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the true surface.

There exist alternative methods for evolving the surface Γ with the flow
(3). Almgren et al. introduced in [21] an implicit scheme to evolve the con-
tour. In [22], Chambolle modified Almgren’s method to evolve the contour
under the mean curvature motion using a sequence of convex optimization
problems involving the Rudin-Osher-Fatemi(ROF) model. Based on [22],
Bresson and Chan showed in [23] that the following iterative weighted ROF
model can implicitly solve the gradient flow (3):

uk+1 = arg min
u

∫

Ω
d|∇u|+ 1

2h
(u− dΓk)2, (5)

where Ω is the image domain, d is the distance function of the set of points,
dΓk is the signed distance function for the evolving surface Γ at iteration
k, and h is the time step. In [18], the authors apply the split-Bregman
method to iteratively minimize (5). Since split-Bregman efficiently solves
the optimization problem (5), the iterative method for the surface recon-
struction problem in [18] is faster than Zhao et.al.’s minimal surface model.
However, the method in [18] is iterative, which means that several weighted
ROF problems need to be solved. Also, the signed distance function dΓk+1

must be recomputed at each iteration.

In [17], Lempitsky and Boykov introduced a discrete optimization method
to reconstruct surfaces implicitly. The proposed algorithm uses surface nor-
mals as the input and maximizes the number of weakly oriented data points
contained in the surface while minimizing the surface area. This objective
corresponds to minimize the energy function defined as:

min
Γ

λ

∫

Γ
dΓ−

∫

Γ
< ~np,N > dΓ (6)

where λ > 0 controls the regularity of the surface, ~np =
∑

i ρi(p)~ni,∀p ∈ R3

and ~ni are input normals, and ρi(p) is a Gaussian whose variance depends on
the density and the noise level of the data. Lempitsky and Boykov applied
the parametric max flow/min cut (a.k.a. graph-cuts) to solve the optimiza-
tion problem (6) with an implicit surface representation.

In this paper, we introduce an algorithm for surface reconstruction that
only requires a set of unorganized points as input (e.g. surface normals are
not required as inputs). Our algorithm consists of three steps. First, an

3



estimation of the surface will be determined using the eikonal equation and
a convex formulation of the weighted Chan-Vese model [25, 26]. Second,
surface normals will be approximated by denoising the surface estimation
with the weighted ROF model. Finally, the Bregman iterative method [29]
will be used to accurately reconstruct the surface, while removing noise and
outliers. Our approach offers several advantages. The proposed algorithm is
not only fast and accurate, it is also easy to code in 2D and 3D. In addition,
numerical schemes are isotropic, sub-pixel accurate and the memory require-
ment in 3D is low. Our approach does not need extra information such as
surface normals. Finally, the algorithm is robust to noise and outliers.

2 Proposed Method

In this section, we will describe the three steps of the surface reconstruc-
tion algorithm. The first step is to estimate the reconstructed surface based
on the eikonal equation and the Chan-Vese model. The second step is to
estimate the surface normals based on the weighted ROF model. The last
step is to do the surface reconstruction using Bregman iteration. The com-
putational cost for each step is low, so the overall algorithm is fast.

2.1 Step 1: Estimation of the Reconstructed Surface Based
on the Eikonal Equation and the Chan-Vese Model

The objective is to compute an estimation of the surface using the set of
scattered points. To estimate the surface, we will apply a convex formulation
of the segmentation model of Chan and Vese [12] to a two-value image whose
edges are located along the set of points. This two-value image is determined
as follows. We observe that the gradient ∇d of the distance function of the
data points is equivalent to a vector flow pointing toward the data points.
Hence, the function d can be considered as an edge detector function. A
typical choice of an edge detector for an image f is:

g(x) =
1

ε + |∇f(x)|p , p > 0. (7)

Because d is an edge detector we can write g = d + ε and we can approxi-
mate the corresponding image f to this edge detector by solving the eikonal
equation:

|∇f | = 1
g1/p + ε

(8)
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The boundary condition applied here is f = 0 on the far field boundary.
Figures 1(a-b) show the solution f of (8) for p = 1 and p = 1

2 . As expected,
the images look like a binary-valued function whose edges are located along
the white spikes which are the data points. In our experiments, we pick
p = 1

2 which produces approximately binary images for convex and non-
convex shapes. We also take ε = 1 for all experiments.

(a) p = 1 (b) p = 1
2

Figure 1: Solutions f of the eikonal equation (8).

Given the binary image f computed by (8), we would like to compute an
implicit representation of the surface. This problem is equivalent to a binary
image segmentation problem. It can be solved with the Chan and Vese model
[12], which is the two-phase piecewise approximation of the Mumford and
Shah energy[2]. The Chan-Vese model is defined as a variational model:

min
D,c1,c2

Per(D) + µ

∫

D
(c1 − f)2 + µ

∫

Dc

(c2 − f)2, (9)

where D is a subset of the image domain Ω, Dc = Ω\D, Per is the perimeter,
µ > 0, and c1, c2 ∈ R are respectively the mean intensity values inside
and outside the region D. Chan and Vese used the level set method to
find a minimizer of (9). However, the level set method is sensitive to the
initial contour position of D because the corresponding energy is non-convex.
Besides, the numerical implementation of the level set method is relatively
slow. To overcome the shortcomings of the non-convex Chan-Vese model,
Chan et al. introduced in [25] a convex formulation of their model. The
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authors prepose to minimize the convex energy

min
0≤u≤1

∫

Ω
|∇u|+ µ < u, r >, (10)

where
∫
Ω |∇u| is the total variation of u, < v1, v2 >=

∫
Ω v1v2, and r =

(c1−f)2− (c2−f)2. Chan et al. showed that for any minimizer of (10), any
thresholding of the minimizer produces a minimizer of the original problem
(9). In [26], Bresson et al. extended the convex formulation of the Chan-Vese
model to get an elegant hybrid model which combines both the Chan-Vese
model and GAC/snakes model:

min
0≤u≤1

∫

Ω
g|∇u|+ µ < u, r > (11)

where r = (c1 − f)2 − (c2 − f)2, and g is an edge detector. Bresson et al.
also improved the speed of optimization of [25] by a factor 5− 10 using the
projection algorithm of Chambolle [22].

As we said above, the surface reconstruction problem is analogous to an
image segmentation problem. Indeed, the binary image f computed with
the eikonal equation will be segmented using the model (11) to give an im-
plicit representation of the surface. We call u1 the solution of (11) when
the function f is the solution of the eikonal equation and the edge detector
is chosen to be g = d + ε, where ε > 0 ensures a better stability of the
numerical scheme. The model (11) is minimized using the efficient split-
Bregman algorithm of Goldstein and Osher [27]. In [18], it is shown that
the split-Bregman algorithm can solve the hybrid model extremely quickly.
For example, a C implementation of the algorithm segments the classic test
image “Cameraman” with 256×256 grid points in less than 0.1 seconds on a
standard laptop. The split-Bregman algorithm is thus applied to find a good
estimate of the surface to reconstruct. We summarize the split-Bregman al-
gorithm below (see [18] for more details):

1: while ‖uk+1 − uk‖ > ε do
2: Define rk = (ck

1 − f)2 − (ck
2 − f)2

3: uk+1 = GShybrid(rk, ~dk,~bk)
4: ~dk+1 = shrinkg(∇uk+1 +~bk, µ)
5: ~bk+1 = ~bk +∇uk+1 − ~dk+1

6: Find Ωk = {x : uk(x) > µ}
7: Update ck+1

1 =
∫
Ωk

fdx, and ck+1
2 =

∫
Ωc

k
fdx
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8: end while

Figure (2) presents a good estimation of the surface from the given set of
scattered points. However, the estimation lacks smoothness because it has
some “dimple” effects. These artifacts are the result of spikes in the solution
f of the eikonal equation. In the next step, we will apply a shape denoising
process to remove the artifacts on the contour and get a good estimate of
the surface normals.

(a) (b)

Figure 2: Estimation of the reconstructed surface using the model (11). The
dark dots are the data points and the blue contour is the 0.5-level set of the
solution u1 of (11). Fig. (b) presents an enlarged view of the rectangular
region located in Fig. (a).

2.2 Step 2: Estimation of Surface Normals Based on the
Weighted ROF Model

As discussed above, the model (11) gives a course approximation to the
desired surface. We can obtain a “smoother” surface by using the coarse
approximation to estimate the surface normals, and then using these normals
to reconstruct the final surface. However, before the model (11) can be used
for normal estimation, we must smooth out the “dimples” that arise from the
spikes in the eikonal equation. We do this using a shape denoising method
for implicit surface representations. From the result u1 of the convex model

7



(11), we obtain a smoothed surface u2, using the convex model

u2 = min
0≤u≤1

∫

Ω
d|∇u|+ λ

2
(u− u1)2, (12)

which is well known as the weighted ROF (WROF) model. Note that d
denotes the signed distance function of the scattered points, as defined in
(2). Figure (3) shows that the WROF model has removed the artifacts
produced by the first step of our algorithm, without decreasing too much
the accuracy of the estimated surface.

(a) (b)

Figure 3: Shape smoothing using the weighted ROF model. The dark dots
are the data points, the blue contour is the 0.5-level set of the solution u1 of
(11) and the red contour is the 0.5-level set of the solution u2 of (12). Fig.
(b) presents an enlarged view of the rectangular region located in Fig. (a).

We have observed that the solution u2 of the shape denoising model
(12) is relatively insensitive to the exact choice of the function f used in
the data part of the model (11). The choice of the edge detector in (11) is
more critical. For example, we may replace f by its super level set function
f̄ = Threshα(f) or an indicator function of a rectangle as shown by the
green contour in Figure 4. Here Threshα(f) = 1 if f ≥ α; Threshα(f) = 0
otherwise. We can see that the final results are almost identical. When the
function f is replaced by a binary function, it also allows us to speed up
the minimization scheme by choosing a large fidelity constant. This is more
useful for 3D computations. In addition, the super level set function does
not have any spikes inherited from the solution of the eikonal equation.
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(a) Super level set function. (b) Indicator function of a rectangle

Figure 4: Solution u2 with two different choices of f used in the data part
of (11). The dark dots are the data points, the green contour is the 0.5-level
set of the function f used in the data part of (11), and the blue contour is
the 0.5-level set of the solution u2 of (12). Fig. (a) defines the function f
used in the data part of (11) as the super level set function of the solution
of the eikonal equation. Fig. (b) defines f as an indicator function of a
rectangle. Final results are almost identical, but the result in Fig. (a) was
obtained more quickly.
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Once we have obtained the denoised solution u2 of (12), we can use the
result to estimate the surface normals at the data points using the following
non-linear difference operator:

~np =
∇u2

|∇u2| (13)

Although step 2 of our algorithm refines the jagged approximation of the
surface produced in step 1 by smoothing the contours. However, the results
of steps 1 and 2 are not robust with respect to outliers, and may contain
artifacts when extremely sparse data is used as input.

The final step of the reconstruction algorithm will make the reconstruc-
tion more robust to both outliers and sparse data by applying a Bregman
iterative scheme.

2.3 Step 3: Surface Reconstruction using Bregman Iteration

In this section, we apply Bregman iteration to the results of step 2 in
order to remove the effects of artifacts and outliers. Recall that we obtained
the approximation u2 by smoothing the approximation u1. The smoothness
of u2 allows the surface normals to be accurately estimated using (13). These
surface normals can then be used to obtain a new approximation to the sur-
face by solving the following optimization problem, which is the continuous
analogue of the discrete model of Lempitsky and Boykov [17].

u3 = arg min
0≤u≤1

∫

Ω
|∇u| − λ < ~np,∇u >, (14)

where ~np are the estimated normal to the data points. Using integration by
parts, the above energy can be written

u3 = arg min
0≤u≤1

∫

Ω
|∇u|+ λ < div ~np, u > (15)

where div ~np is the flux at each point of the surface Γ.
Inspired by [17], we compute the flux at a point Q as follows div ~nq =∑

p
1√
2πσ

e−|~xPQ|2/2σ2 · < ~xPQ, ~np >, where ~xPQ is the vector centered at each
neighboring data point P and pointed to the points Q inside a ball of radius
r centered at P . In the calculation of the flux, we take into account both
the distance to the data point and the angle between the surface normal
and the vector from the data point to the neighboring points. Note that
the flux at each data point is a signed function, which is negative inside the
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surface and positive outside the surface. Figure 5(a) shows the semi-dense
field of surface normals surrounding the data points. Figure 5(b) presents
the flux at the data points. The split-Bregman algorithm is applied to solve
(15) and the solution u3 will be used as the initial surface in the Bregman
iterative scheme.

We now remove the artifacts from the approximation u3 using a Bregman
iterative scheme. Schemes of this type were originally introduced in [29] to
denoise images while preserving edges and image contrast. The Bregman
method is defined by the following iterative scheme k = 4, 5, 6, ...

uk = arg min
u

∫

Ω
|∇u|+ λ||vk−1 − u||22

vk = vk−1 − uk (16)

starting from v3 = SDF (u3). We have found the choice λ = 0.5 to be
effective for an extremely wide range of data sets.

(a) Surface normals. (b) Flux at each data point.

Figure 5: Figure (a) presents the semi-dense field of surface normals ~np.
Figure (b) presents the flux at each data point. The red crosses correspond
to positive values of the divergence of flux div ~np, and the blue crosses
correspond to negative values.

We do not start the Bregman iterative scheme directly from the binary
function z = u3, but from a signed distance function of u3. Indeed, the
original Bregman method[28] was designed to denoise image intensities and
normals of image level sets. The signed distance function better fits the Breg-
man framework since signed distance function gives a better representation
of the interpolated surface than binary representation. Figure 6 presents
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the evolution of the zero level set of uk for k = 4, 5, 6. As expected, the first
iteration produces a very smooth surface and successive iterations converge
more and more to the green surface corresponding to the zero level set of
u3.

(a) Original contour. (b) 1st step.

(c) 2nd step. (d) 3rd step.

Figure 6: Bregman iterative scheme for surface reconstruction. The green
contour in Figure (a) presents the zero level set of u4. The blue contour in
Figures (b-d) represent the successive Bregman iteration for k = 4, 5, 6.

We now show the importance of using the Bregman method in the chal-
lenging case of sparse data and the presence of outliers. Figure 7(a) presents
the data points and the solution f of the eikonal equation (8). Figure 7(b)
shows the result u1 computed by the model (11). Figure 7(c) is the result
u3 given by the model (15). Observe the presence of an outlier at the bot-
tom right of the contour. Figures 7(d-f) show the first three steps of the
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Bregman iterative method. In the last figure, the reconstructed surface is
smooth and accurate. The outlier is removed and all the major geometric
features are recovered.

2.4 Algorithm

Here is the summary of our algorithm.

Algorithm 1 Surface Reconstruction Algorithm
1: Step 1:

1.1 Compute the distance function of the set of points using the eikonal
equation (2).
1.2 Compute the image f with the eikonal equation (8).
1.3 Replace f by f̄ = Thresh(f) and use the segmentation model (11)
to find an initial estimate of the surface.

2: Step 2:
2.1 Use the WROF model (5) to regularize the geometry of the surface.
2.2 Estimate the surface normals from the solution of the WROF model.

3: Step 3:
3.1 Calculate the divergence of normal field.
3.2 Compute the initial function for Iterative Bregman scheme using
(14).
3.3 Iterate the Bregman scheme (16).

3 Numerical Results

In this section, we will present several three-dimensional surface recon-
struction results. Figure 8 shows the different steps to reconstruct the
“bunny” surface. Figure 9 also reconstructs the bunny surface, but with
a higher resolution. We also show the reconstructions of the “cow” surface
(Figure 10), the “Buddha” surface (Figure 11), the “dragon” surface (Figure
12), the “armadillo” surface (Figure 13), and the “skeleton hands” surface
(Figure 14). Figure 15 shows the reconstruction of the “church” surface.

This last test shows the limitations of our reconstruction method. The
result is not fully satisfactory because our method is designed to reconstruct
closed surfaces. The surface in Figure 15 is not completely closed, which
limits the applicability of the level set representation. In all experiments
for 3D real data, the parameters are the same, i.e. µ = 0.01 for (11) and
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(a) Solution f from the eikonal
equation (8)

(b) Solution u1 from (11).

(c) Solution u3 from (15). (d) 1st Bregman iteration.

(e) 2nd Bregman iteration. (f) 3rd Bregman iteration.

Figure 7: Surface reconstruction for sparse data and in the presence of
outliers. Fig. (a) presents the data points and the function f solution of the
eikonal equation (8). Fig. (b) shows the result u1 computed by the model
(11). Fig. (c) is the result u3 given by the model (15). Figs (d-f) show the
first three steps of the Bregman iterative method. Observe that the final
result is accurate, without outliers.
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λ = 0.5 for (15). Mesh sizes and computing times are reported for all of
these examples in table 1.

Table 1: Computational times (for the whole algorithm)
data set size time (in seconds)

bunny 71x71x60 13.01

bunny 141x140x114 198.25

cow 53x119x81 22.41

Buddha 71x143x71 35.55

Buddha 121x264x121 242.17

dragon 221x162x110 214.25

armadillo 141x164x130 255.69

skeleton hand 221x161x90 150.27

4 Conclusion

Several attempts have been make to apply variational methods to recon-
struction problems. These methods have been proven accurate and robust
to noise, but they have been limited by speed. In this paper, we have sig-
nificantly improved the reconstruction speed of these models by proposing
a convex model that can be efficiently minimized using the split-Bregman
algorithm. Furthermore, our algorithm only requires a set of unorganized
data points as input. Finally, we have shown that our method can deal with
dense data, sparse data, and the presence of outliers.
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