
A SPLIT BREGMAN METHOD FOR NON-NEGATIVE SPARSITY PENALIZED LEAST
SQUARES WITH APPLICATIONS TO HYPERSPECTRAL DEMIXING

Arthur Szlam ∗

The Courant Institute
NYU

New York, NY

Zhaohui Guo †

Department of Mathematics
UCLA

Los Angeles, CA

Stanley Osher‡

Department of Mathematics
UCLA

Los Angeles, CA

ABSTRACT

We will describe an alternating direction (aka split Bregman)
method for solving problems of the formminu ||Au− f ||2 +
η||u||1 such thatu ≥ 0, whereA is anm×n matrix, andη is a
nonnegative parameter. The algorithm works especially well
for solving large numbers of small to medium overdetermined
problems (i.e.m > n) with a fixedA. We will demonstrate
applications in the analysis of hyperspectral images.

Index Terms— Nonnegative least squares, hyperspectral
demixing, over-determined linear systems, split Bregman

1. INTRODUCTION

In this note we will describe an alternating direction (aka split
Bregman) method modeled on the approach in [1] for solving
problems of the form

minu ||Au − f ||2 + η||u||1;
u ≥ 0,

(1)

whereA is anm × n matrix, andη is a nonnegative param-
eter. The algorithm works especially well for solving large
numbers of small to medium overdetermined problems (i.e.
m > n) with a fixedA. This is different from the usual com-
pressed sensing or sparse coding situation, wheren > m.
The overdetermined problem occurs naturally in some statis-
tical and signal processing applications; for example in the
analysis of hyperspectral images.

In this case, each pixel in the image hasm bands, cor-
responding to the intensities ofm EM frequencies recorded
by a sensor. Assuming that all pixels in a given image are
a nonnegative combination of a small collection ofn materi-
als with known spectra, and that a mixture of materials with
given proportions has a spectrum close to the combination of
the known spectra with the given proportions; we are led to
(1).

∗Research supported by DMS-0811203
†Research supported by a grant from the department of defense.
‡Research supported by a grant from the department of defense.

2. THE ALGORITHM

We replace 1 with the equivalent problem

minu,d ||Au − f ||2 + η
∑

u;
u = P (d),

(2)

where the operatorP is defined componentwise by

P (d) :=

{

d d > 0
0 otherwise,

Next, we replace the constrained problem 2 with the sequence
of unconstrained problems

dk+1, uk+1 = mind,u λ||Au − f ||2 + λη
∑

u
+ ||u − P (d) − bk||2

bk+1 = bk + P (dk+1) − uk+1,

(3)

whereλ is a parameter chosen by the user.
This is a classical augmented Lagrangian method [2, 3].

In order to further simplify the subproblems, we split the first
subproblem in two, obtaining

dk+1 = mind λ||Auk − f ||2 + λη
∑

u + ||uk − P (d) − bk||2

uk+1 = minu λ||Au − f ||2 + λη
∑

u + ||u − P (dk+1) − bk||2

bk+1 = bk + P (uk+1) − uk+1.

Now each subproblem can be solved exactly, giving rise to
the iterations

dk+1 = P (uk − bk),
uk+1 = (λAT A + I)−1(P (dk+1) + bk + λAT f − λη1),
bk+1 = bk + P (dk+1) − uk+1.

This splitting trick also has a long history, see [4] for a nice
discussion. We note the similarity of the method presented
here and the primal method in [5]; however, there, the choice
of splitting is different and the subproblems are not easy to
solve exactly.

The method here is most similar to the method presented
in [6]. The method there arose from Bregman iterations on

min
u

|µu|1 + 1/2||Au − f ||2,

whereµ > 0 if u > 0, andµ = ∞ if u < 0; the method here
uses Bregman iterations on

min
u

||Au − f ||2 + I(u) + |u|1

whereI(u) = ∞ if u < 0 andI(u) = 0 if u ≥ 0. The
algorithmic differences appear in the treatment of the spar-
sity term, and more importantly for the computation time, the
Bregman iterations here do not update them-vectorsfk, using
AT f for the whole computation. Ifm is significantly larger
thann, this results in a large speedup.

If A is fixed for manyf andn is not too large, we can
precompute(λAT A+ I)−1 and save run time. Also note that
using an SVD ofA, it is not necessary to compute the fulln2

inverse in the underdetermined casem < n. That is, if

A = UΣV,

whereΣ is am×m diagonal matrix,U is am×m orthogonal
matrix, andV is am× n matrix with orthogonal rows; andv
is a vector, then

(λAT A + I)−1v = V (λΣ2 + Im)−1V T v + (v − V T V v).

Up to a constant, this multiplication takes the same amount of
time as multiplication byA.

3. EXPERIMENTS

In the next two sections we will test the algorithm on artificial
data and real data from hyperspectral images.

3.1. Artificial data

We test the method using randomly generatedA andf . More
specifically: forη = 0, 1, 10, 100 we generate100 512× 256
Gaussian normal matricesA and512 × 1 Gaussian normal
vectorsf . We fix λ = 1/500, and run the algorithm for each
instantiation ofA andf . In figure 1, we plot the distance
between betweendk and d200, for η > 0, anddk and the
output of the Matlab function lsqnonneg forη = 0. Note that
to precision,d200 satisfies the KKT conditions, and because
the energy and constraints are convex and differentiable, is a
minimum.

The method experimentally converges quite rapidly to the
minimizer, on average getting single precision accuracy in
less than 40 iterations.

The time to compute(λAT A+I)−1 was on average.0087
seconds; but in applications such as hyperspectral imaging
this would only need be done once for all the signals to be
processed. The average time to computeAT f was.0014 sec-
onds, and the average time for an iteration was3.5 · 10−5

seconds. With(λAT A + I)−1 precomputed, the average run
time to single precision was.003 seconds For comparison,

0 20 40 60 80 100
−70

−60

−50

−40

−30

−20

−10

0

10

η = 0

η = 1

η = 10

η = 100

Fig. 1. Distance to the minimizer. They axis is log scale, the
x axis is in iterations. Each iteration took on average 3.5e-5
seconds on a two core 3.0 Ghz pc running Matlab 7.7.0; thus
the entirex axis plus the time taken to computeAT f is .005
seconds. The time taken to compute(λAT A+ I)−1 was .014
seconds. For comparison, Matlab’s command lsqnonneg took
.38 seconds.

Matlab’s command lsqnonneg1 took on average .38 seconds,
more than a hundred times slower. All experiments were car-
ried out on a two core 3.0 Ghz pc running Matlab 7.7.0.

3.2. Demixing hyperspectral images

Each pixel of a hyperspectral image is am dimensional vec-
tor corresponding to them EM frequencies recorded by the
sensor. It is often the case that different materials have differ-
ent characteristic frequency profiles. Here, we will work with
images from satelites, and the materials of interest will beas-
phalt, grass, metal, water, etc. Given a list ofn prespecified
frequency profiles (called endmembers) corresponding to the
materials of interest, we would like to label each of the pixels
in the image with its matching material. However, because
of the limited resolution of the image, it is often the case that
a single pixel contains more than one material, and we need
to “demix” the endmembers in the pixels. While a precise
demixing could be quite difficult, an approximation can be
obtained using the linear mixture model [7, 8, 9], where we
assume

f ∼ Au,

whereA is the mixing matrix consisting ofn m-dimensional
endmembers written as columns. In practice,m is often less
than or nearly less thann. Because we assume that no pixel

1Note that between Matlab release 7.6 and 7.7 lsqnnoneg was signifi-
cantly improved. We use the newer version.

contains a negative amount of any of the endmembers, we
stipulate thatu ≥ 0.

With this assumption, given the endmembers, we can sim-
ply run the algorithm described above to get the proportions
of endmembers contained in each pixel. Note that because
the matrixA is fixed for all the pixels in an image (and in
fact, often fixed over many images), as above, we only need
compute them × m matrix (AT A + I)−1 once and then
store it. We will work on the “urban” image available at
http://www.agc.army.mil/Hypercube/. This im-
age is comprised of307 × 307 pixels each with 210 spectral
bands. However, several of the bands are corrupted; we re-
move these, obtaining a187 × 3072 matrix f . We choose 6
endmembersA by hand, as shown in figure 2. In figure 3.2,
we see the output of the demixing. Each of the six images
corresponds to one of the six endmembers; the brighter the
pixel, the more of that endmember makes up the pixel.

The computation times for the307 × 307 × 187 image
are shown in figure 3, which plots iterations of the proposed
algorithm against the relative error of the iteration of thepro-
posed algorithm and the output of Matlab’s function lsqn-
noneg. Each iteration took .026 seconds; the computation of
AT f took .16 seconds, and the computation of(AT A + I)−1

took .003 seconds. The parameterλ was set at200/||AT A||2.
All tests were run on a two core 2.16 Ghz pc running Matlab
7.7.0; for comparison, using Matlab’s built in function lsqn-
noneg took 27 seconds; thus, to get results to single precision
using the proposed algorithm took roughly 1/5 the time of the
Matlab function.

We also show results on the Smith island dataset, which
we obtained from the U.S. Naval Research Laboratory. An
RGB version of the image and location of the chosen end-
members and the the demixing results are shown in figure 3.2.
This larger dataset has946× 679 pixels in 126 bands. We re-
move 14 noisy bands and about 20% of the pixels which are
zero in every band, obtaining 495354 pixels each with 112
bands. On this dataset each iteration of the proposed algo-
rithm took about .14 seconds; the computation ofAT f took
.41 seconds, and the computation of(AT A + I)−1 took .001
seconds. Again, the parameterλ was set at200/||AT A||2. By
comparision, lsqnonneg took about 128 seconds, so to obtain
results to single precision using our method took 1/4 the time
of the Matlab function.

The reader may have noticed that the convergence rate
was slowest on the Smith Island dataset, and fastest on the
artificial data. We have observed in our experiments that the
convergence rate of the algorithm seems to depend on the con-
dition number ofA, which was roughly 85 for Smith Island,
45 for the Urban dataset, and 5 for the artificial data. We sus-
pect that some sort of preconditioning trick will lead to an
even faster algorithm.

(a) The ‘Urban’ image; the highlighted locations have spectra as
in figure 2.

endmember 1

100 200 300

100

200

300 0

0.5

1
endmember 2

100 200 300

100

200

300 0

0.2

0.4

0.6

0.8

endmember 3

100 200 300

100

200

300 0

0.5

1
endmember 4

100 200 300

100

200

300 0

0.2

0.4

0.6

0.8

endmember 5

100 200 300

100

200

300 0

0.5

1
endmember 6

100 200 300

100

200

300 0

0.5

1

(b) The demixing of the Urban image using the endmembers whose locations are
shown in the subfigure above. Each image corresponds to an endmember. The
color value in imagej at a given pixelx denotes the proportion of endmemberj

at the locationx.

Fig. 2. The ‘Urban’ endmembers; the pink bands were re-
moved during preprocessing.

0 20 40 60 80 100 120 140 160 180 200
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Fig. 3. Thex axis is iterations, and they axis is relative error
(in a logarithmic scale) between iterationx of the proposed
algorithm and the output of Matlab’s function lsqnnoneg on
the pixels of the Urban dataset in blue, and the Smith Island
dataset in red. Each iteration took .026 seconds on the Urban
dataset, and .14 seconds on the Smith Island Dataset

4. CONCLUSIONS

We have presented a novel method for the rapid solution of
problem (1) which is especially fast in the overdetermined
case, and when the matrixA is fixed for manyf . This is pre-
cisely the situation arising from the problem of demixing hy-
perspectral images under the assumption of a linear mixture
model. We gave experiments demonstrating the efficiency
and accuracy of the method on artificial data and on data from
real hyperspectral images.

5. ACKNOWLEDGMENTS

The authors would like to thank Charles Bachmann and the
U.S. Naval Research Laboratory for the use of the “Smith Is-
land” data set.

6. REFERENCES

[1] T. Goldstein and S. Osher, “The split Bregman method for l1 regularized
problems,”SIAM. J. Imaging Sci, vol. 2, pp. 323–343, 2009.

[2] M. R. Hestenes, “Multiplier and gradient methods,”J. Optimiz. Theory
App., vol. 4, pp. 303–320, 1969.

[3] M. J. D. Powell, “A method for nonlinear constraints in minimization
problems,”Optimization.

[4] E. Esser, “Applications of lagrangian-based alternating direction meth-
ods and connections to split bregman,” Tech. Rep. TR09-31, UCLA
CAM, 2009.

[5] J. Yang and Y. Zhang, “Alternating direction algorithm for l1 problems
in compressive sensing,” Tech. Rep. TR09-37, Rice CAAM, 2009.

(a) RGB view of the Smith Island dataset.

endmember 1

200400600800

200

400

600
0

0.5

1
endmember 2

200400600800

200

400

600
0

0.5

1

endmember 3

200400600800

200

400

600
0

0.2

0.4

0.6

0.8

endmember 4

200400600800

200

400

600
0

0.5

1

endmember 5

200400600800

200

400

600
0

0.5

1
endmember 6

200400600800

200

400

600
0

0.5

1

(b) The demixed Smith Island dataset, according to the endmembers whose lo-
cations are shown in the subfigure above. Each image corresponds to an end-
member. The color value in imagej at a given pixelx denotes the proportion of
endmemberj at the locationx.

[6] Z. Guo, T. Wittman, and S. Osher, “L1 unmixing and its application
to hyperspectral image enhancement,” inProc. SPIE Conference on
Algorithms and Technologies for Multispectral, Hyperspectral, and Ul-
traspectral Imagery XV, 2009.

[7] B. Hapke, “Bidirection reflectance spectrocopy. i. theory,,” J. Geophys.
Res., vol. 86, pp. 3039–3054, 1981.

[8] P. Johnson, M. Smith, S. Taylor-George, and J. Adams, “A semiem-
pirical method for analysis of the reflectance spectra of binary mineral
mixtures,” J. Geophys. Res., vol. 88, pp. 3557–3561, 1983.

[9] N. Keshave and J.F. Mustard, “unmixing,”Signal Processing Magazine,

vol. 19, pp. 44–57, 2002.

