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ABSTRACT 2. THE ALGORITHM

We will describe an alternating direction (aka split Bregina \ye replace 1 with the equivalent problem
method for solving problems of the formin,, || Au — f||* +

n||u||; suchthat: > 0, whereA is anm x n matrix, andy is a miny g [|Au — f[[* + 13 u; @)
nonnegative parameter. The algorithm works especially wel u = P(d),

for solving large numbers of small to medium overdeterminethere the operataP is defined componentwise by
problems (i.e.m > n) with a fixed A. We will demonstrate

applications in the analysis of hyperspectral images. d d>0

. Pld) = { 0 otherwise
Index Terms— Nonnegative least squares, hyperspectral '

demixing, over-determined linear systems, split Bregman  Next, we replace the constrained problem 2 with the sequence
of unconstrained problems

1. INTRODUCTION P = ming o Al Au — I 4+ A0 S u

. . . . o . + ||lu — P(d) — b*||?
In this note we will describe an alternating direction (aftits (3)
Bregman) method modeled on the approach in [1] for solving PR = bk (AR -k
problems of the form ’
where\ is a parameter chosen by the user.
min, ||Au — f||* + n||u|]1; () This is a classical augmented Lagrangian method [2, 3].
u >0, In order to further simplify the subproblems, we split thetfir

_ ) ) _ subproblem in two, obtaining
where A is anm x n matrix, andn is a nonnegative param-

eter. The algorithm works especially well for solving large d"" = ming A|[[Au” — f[|> + A Y- u + [[uF — P(d)
numbers of small to medium overdetermined problems (i.e.u* ™" = min, A||Au — f|[> + Xn > u + |Ju — P(d*+!) — b*|?
m > n) with a fixedA. This is different from the usual com-  b*™' = b* + P(uF*1) — o* 1.
pressed sensing or sparse coding situation, where m.
The overdetermined problem occurs naturally in some stati
tical and signal processing applications; for example & th
analysis of hyperspectral images. dFtt = P(uf —bF),

In this case, each pixel in the image hasbands, cor-  u"™' = (AATA + 1)1 (P(d*+!) + b* + XAT f — A1),
responding to the intensities @f EM frequencies recorded b = b% + P(d*™1) — uF 1.
by a sensor. Assuming that all pixels in a given image ar
a nonnegative combination of a small collectiomofateri-

_bk||2

Now each subproblem can be solved exactly, giving rise to
She iterations

Shis splitting trick also has a long history, see [4] for aeic

. . . .. discussion. We note the similarity of the method presented
als with known spectra, and that a mixture of materials wit v b

iven proportions has a spectrum close to the combination g ere and the primal method in [S]; however, there, the choice
g prop > & SPeCt _ of splitting is different and the subproblems are not easy to
the known spectra with the given proportions; we are led tqQ
(1) Solve exactly.
' The method here is most similar to the method presented
*Research supported by DMS-0811203 in [6]. The method there arose from Bregman iterations on
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wherey > 0if u > 0, andy = o if u < 0; the method here
uses Bregman iterations on

[ IR i
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min [[Au — fI[* + I (u) + [uly

wherel(u) = oo if w < 0andI(u) = 0if w > 0. The
algorithmic differences appear in the treatment of the spau
sity term, and more importantly for the computation time, th -30
Bregman iterations here do not updatesthwectorsfy, using
AT f for the whole computation. ki is significantly larger
thann, this results in a large speedup. _sol
If A is fixed for manyf andn is not too large, we can
precomputé\AT A+ I)~! and save run time. Also note that 601
using an SVD of4, it is not necessary to compute the fall ‘
inverse in the underdetermined case< n. That is, if 0 20 40 60 80 100

A=UXV,

Fig. 1. Distance to the minimizer. Theaxis is log scale, the
whereX is am x m diagonal matrix{/ is am x m orthogonal  « axis is in iterations. Each iteration took on average 3.5e-5
matrix, andV’ is am x n matrix with orthogonal rows; and  seconds on a two core 3.0 Ghz pc running Matlab 7.7.0; thus
is a vector, then the entirex axis plus the time taken to comput€’ f is .005

seconds. The time taken to compied” A+ I)~! was .014

MATA+ D) w=V\22+1,)"'VTv+ (v - VTVu).  seconds. For comparison, Matlab’s command Isqgnonneg took

.38 seconds.

Up to a constant, this multiplication takes the same amotunt o
time as multiplication byA.

Matlab’s command Isgnonné&gpok on average .38 seconds,
3. EXPERIMENTS more than a hundred times slower. All experiments were car-
ried out on a two core 3.0 Ghz pc running Matlab 7.7.0.
In the next two sections we will test the algorithm on artélci
data and real data from hyperspectral images. 3.2. Demixing hyperspectral images
3.1. Artificial data Each pixel of a hyperspectral image isr_adimensional vec-
tor corresponding to the: EM frequencies recorded by the
We test the method using randomly generateshd f. More  sensor. It is often the case that different materials hafferdi
specifically: forp = 0,1, 10,100 we generaté00 512 x 256  ent characteristic frequency profiles. Here, we will worlkhwi
Gaussian normal matrice$ and512 x 1 Gaussian normal images from satelites, and the materials of interest wikge
vectorsf. We fix A\ = 1/500, and run the algorithm for each phalt, grass, metal, water, etc. Given a listnoprespecified
instantiation ofA and f. In figure 1, we plot the distance frequency profiles (called endmembers) correspondingego th
between betweed” and d2°°, for n > 0, andd* and the materials of interest, we would like to label each of the [sixe
output of the Matlab function Isgnonneg fpr= 0. Note that  in the image with its matching material. However, because
to precision,d??° satisfies the KKT conditions, and becauseof the limited resolution of the image, it is often the casatth
the energy and constraints are convex and differentiabke, i a single pixel contains more than one material, and we need
minimum. to “demix” the endmembers in the pixels. While a precise
The method experimentally converges quite rapidly to thelemixing could be quite difficult, an approximation can be
minimizer, on average getting single precision accuracy ibtained using the linear mixture model [7, 8, 9], where we
less than 40 iterations. assume
The time to compute\ AT A+1)~! was on averag®087 f ~ Au,
seconds; but in applications such as hyperspectral imagin
this would only need be done once for all the signals to b
processed. The average time to compditef was.0014 sec-
onds, and the average time for an iteration \B&s- 10~°
seconds. Wit AAT A + I)~" precomputed, the average run ~ inote that between Matlab release 7.6 and 7.7 Isqnnoneg \gaiisi
time to single precision wa$)03 seconds For comparison, cantly improved. We use the newer version.

hereA is the mixing matrix consisting af m-dimensional
endmembers written as columns. In practieeis often less
than or nearly less tham. Because we assume that no pixel




contains a negative amount of any of the endmembers, we
stipulate thai, > 0.

With this assumption, given the endmembers, we can sim-
ply run the algorithm described above to get the proportions
of endmembers contained in each pixel. Note that because
the matrix A is fixed for all the pixels in an image (and in
fact, often fixed over many images), as above, we only need
compute them x m matrix (AT A + I)~! once and then
store it. We will work on the “urban” image available at
http://ww. agc. army. m |/ Hyper cube/ . This im-
age is comprised df07 x 307 pixels each with 210 spectral
bands. However, several of the bands are corrupted; we re-
move these, obtaining 87 x 3072 matrix f. We choose 6

(a) The ‘Urban’ image; the highlighted locations have sgzeat

endmembersgl by hand, as shown in figure 2. In figure 3.2, in figure 2.
we see the output of the demixing. Each of the six images
corresponds to one of the six endmembers; the brighter th endmember 1 endmember 2
pixel, the more of that endmember makes up the pixel. 1 :
0.8
The computation times for th&07 x 307 x 187 image o5 " 0.6
are shown in figure 3, which plots iterations of the proposed 200 g':
algorithm against the relative error of the iteration of pe- i / o 300 0
posed algorithm and the output of Matlab’s function Isgn- 100 200 300 100 200 300
noneg. Each iteration took .026 seconds; the computation o endmember 3 N endmember 4
AT f took .16 seconds, and the computatiorg.af A + 7)~! e =¥ 0.8
took .003 seconds. The parametavas set a200/||AT A|». o5 0.6
All tests were run on a two core 2.16 Ghz pc running Matlab 0.4
7.7.0; for comparison, using Matlab’s built in function fisq ARV : o
noneg took 27 seconds; thus, to get results to single poecisi 100 200 300 100 200 300
using the proposed algorithm took roughly 1/5 the time of the endmember 5 endmember 6
Matlab function. - & ! : !
We also show results on the Smith island dataset, whict 05 0.5

we obtained from the U.S. Naval Research Laboratory. An
RGB version of the image and location of the chosen end-
members and the the demixing results are shown in figure 3.2
This larger dataset h&d6 x 679 pixels in 126 bands. We re-
move 14 noisy bands and about 20% of the pixels which arg) The demixing of the Urban image using the endmembers edoeations are
zero in every band, obtaining 495354 pixels each with 112hown in the subfigure above. Each image corresponds to aneenider. The
bands. On this dataset each iteration of the proposed a|96c_>lor value_in imagg at a given pixelr denotes the proportion of endmember
rithm took about .14 seconds; the computatiomdff took atthe locationr.

.41 seconds, and the computation(df’ A + I)~! took .001

100 200 300 100 200 300

seconds. Again, the paramefewas set a200/|| AT A||2. By v7af -
comparision, Isqnonneg took about 128 seconds, so to obtain § E
results to single precision using our method took 1/4 thetim ' =
of the Matlab function. -

The reader may have noticed that the convergence rate o
was slowest on the Smith Island dataset, and fastest on the e N |
artificial data. We have observed in our experiments that the i ] | Nt |
convergence rate of the algorithm seems to depend on the con- T e

dition number ofA, which was roughly 85 for Smith Island,
45 for the Urban dataset, and 5 for the artificial data. We su
pect that some sort of preconditioning trick will lead to an
even faster algorithm.

Fig. 2. The ‘Urban’ endmembers; the pink bands were re-
moved during preprocessing.



(a) RGB view of the Smith Island dataset.
Fig. 3. Thex axis is iterations, and thgaxis is relative error

(in a logarithmic scale) between iteratianof the proposed

algorithm and the output of Matlab’s function Isgnnoneg on
the pixels of the Urban dataset in blue, and the Smith Islanc
dataset in red. Each iteration took .026 seconds on the Urba

endmember 1

endmember 2

0.5
dataset, and .14 seconds on the Smith Island Dataset
200400600800 200400600800 0
endmember 3 endmember 4
4. CONCLUSIONS !
We have presented a novel method for the rapid solution o 05
problem (1) which is especially fast in the overdetermined
case, and vyhen_ the nja}trAus fixed for manyf. This is pre- 00400600800 00400500800 0
cisely the situation arising from the problem of demixing hy
) i ) A endmember 5 endmember 6
perspectral images under the assumption of a linear mixtur: , 1 1
model. We gave experiments demonstrating the efficiency
and accuracy of the method on artificial data and on data fron 05 05
real hyperspectral images. i
0 = 0

200400600800
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