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Abstract

The visibility level set function introduced by Tsai et al. allows for gradient
based and variational formulations of many classical visibility optimization
problems. In this work we propose solutions to two such problems. The
first asks where to position n-observers such that the area visible to these
observers is maximized. The second problem is to determine the shortest
route an observer should take through a map such that every point in the
map is visible from at least one vantage point on the route. These problems
are similar to the art gallery and watchman route problems, respectively. We
propose a greedy iterative algorithm, formulated in the level set framework
as the solution to the art gallery problem. We also propose a variational
solution to the inspection route problem which achieves complete visibility
coverage of the domain while attaining a local minimum of path length.

Keywords: Visibility, Optimization, Level Set Method

1. Introduction

Visibility is the mathematical abstraction that divides a domain (Ω) pop-
ulated with occluders into visible and invisible regions as observed from a
vantage point (xo) in the domain. For our purposes, an observer is omni-
directional and views the scene along rays emanating from xo, which rep-
resent lines of sight. In this work we restrict ourselves to a bounded, two-
dimensional, planar domain. We assume that the map of the domain is known
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a priori (unexplored domains are discussed in [7, 8]). Visibility optimization
usually refers to maximizing the visible region in a constrained optimization
problem, therefore visibility optimization is a set cover problem [6]. In this
work we will address two such problems:

1. What is the minimum number of observers required required to cover
the entire domain, and where must they be placed?

2. What is the shortest path through the domain such that every point
in the domain is visible from at least one point on the path?

These problems resemble the classical “art gallery” and “watchman route”
problems, respectively [5, 9, 11]. In both of these problems our primary
goal will be to achieve complete visibility coverage of the domain. Due to
the non-convex nature of these problems gradient ascent methods are inad-
equate in achieving globally maximal visibility coverage [4]. Therefore our
goal is to introduce computationally tractable solutions which achieve com-
plete visibility coverage of the domain while achieving only locally optimal
performance in other metrics. For example, our solution to (2) is guaranteed
to attain maximal visibility coverage of the domain, by construction, while
achieving only a local minimum of path length. For many of our military
applications the importance of attaining complete sensor coverage far out-
weighs secondary objectives of minimizing the number of sensors in (1) and
minimizing the route length in (2) [10].

The curve separating the visible regions from the invisible regions is called
the visibility boundary, or shadow boundary. Classically, visibility bound-
aries have been computed using computationally intensive ray tracing tech-
niques [1]. Tsai, Osher, et al. recast the visibility computation into a bound-
ary value problem and used a numerical PDE solver called fast sweeping to
compute a numeric approximation of visibility boundaries. The fast sweeping
computation produces an embedding of codimension-one of the approximate
visibility boundary, called the visibility level set function [15]. As we will see,
this implicit representation of the visibility boundary has many well known
advantages popularized by level set methods [12]. The analytic expression
for the visibility level set function can be written as

Φ(x;x0) = min
z∈L(x,x0)

Ψ(z) (1)

where Ψ is signed distance embedding of the occluders defined over the do-
main such that Ψ > 0 outside the occluders, and L(x, x0) is the line segment
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Figure 1: The visibility level set function (right) and signed distance embed-
ding of the occluders (left) for fixed x0

connecting the observer stationed at xo to a point x. If the value of Φ is
negative at x then the point x is occluded from the observer at x0. Points
where Φ = 0 are at the edge of visibility, these points constitute the visibility
boundary with respect to xo. The visibility level set function is a real valued
function which measures the largest depth of occlusion (if x is occluded), or
the shortest distance from the ray to the nearest occluder (if x is visible), see
Figure 1. This property is crucial for enabling gradient-based and variational
visibility optimization as introduced by Cheng et al. in [4].

2. Discrete Visibility Optimization Problems

In the level set framework the observed visible volume for a single observer
is defined as

V (x0) =

∫
Ω

H(Φ(y;xo)) dy (2)

where H(·) is the one-dimensional Heaviside step function, with H(0) = 0.
Visibility optimization problems generally seek to maximize this volume.

We can extend this definition to multiple observers and define the joint
visible volume of n observers as

V (x1, x2, . . . , xn) =

∫
Ω

H

(
n∑

i=1

H(Φ(y, xi))

)
dy (3)

3



Finally, we may define the visible volume seen by a continuum of observers
located on a parameterized closed 1 curve C(s) as

V (C(s)) =

∫
Ω

H

(∫
C

H(Φ (y;C(s)) ds

)
dy (4)

The above expression may also be interpreted as the cumulative visible vol-
ume covered by an observer traversing the curve C(s). Similar notions were
defined by Cheng et al. [4].

The visible volume of observers is optimized over their vantage points x ∈
Ω. Discrete optimization problems defined by (2) and (3) will be discussed in
this section. Equation (4) is a functional and is optimized using variational
techniques over the curve C(s), usually while imposed other constraints on
the curve. The variational problem relating to (4) will be discussed in the
next section.

In [4] Cheng et al. propose a gradient ascent algorithm for maximizing
the visible volume of an observer by allowing the observer to move in the
direction specified by a numerical implementation of the partial differential
equation

∂tx0 = ∇x0V (x0) (5)

The above equation may be regarded as the gradient ascent on the surface
V (x0). This surface may be constructed by evaluating Equation (2) at all
possible observer locations. That is, for each point in the domain (Ω) we
assign the value of the integral in (2). The visible volume function for a
single observer is a mapping which takes the form

V : Ω ⊂ R2 7→ V (x0) ∈ R+

The surface is shown in Figure 2 with its level curves. The brightness at
each point is proportional to the area visible to an observer stationed at that
location. The single observer placement problem reduces to finding the global
maximum on this surface. The trajectory of an observer moving according to
(5) is normal to the level lines of the visible volume surface, see [4]. However,
due to the non-convexity of the visible volume function there is no guarantee
that the observer will arrive at a globally optimal observer location (red point
on far right).

1The curve may be open, however for ease of implementation in the level set framework
we restrict ourselves to closed curves in this work.
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Global optimization methods should be used to find an optimal observer
position. The computational complexity of the fast sweeping algorithm for
each xo scales linearly with the number of grid points (N) [15], therefore it is
computationally feasible to perform exhaustive search in order to determine
the globally optimal solution for the single observer placement problem. The
overall exhaustive search computation over the observer grid scales as O(N3).
Course to fine searches can be used to accelerate the process in large domains.

Figure 2: The visible volume function with its level-curves

Multiple observer visibility optimization seeks to maximize the visible vol-
ume seen jointly by n observers. In general, the visible volume in a bounded
domain is bounded between

0 ≤ V ≤
∫

Ω

H(Ψ(y))dy (6)

The art gallery problem seeks to cover the entire domain, excluding the
area occupied by the occluders, with a minimum number of observers. To
cover the entire domain with n observers is to achieve equality in the upper
bound of (6) by maximizing (3) over the observer locations. The solution to
the art gallery problem must satisfy the following∫

Ω

H

(
n∑

i=1

H(Φ(y, xi))

)
dy =

∫
Ω

H(Ψ(y))dy

In fact, for the art gallery problem the above condition is equivalent to

H

(
n∑

i=1

H(Φ(y, xi))

)
= H(Ψ(y))
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It is useful to define the fraction of the domain visible to (covered by) the
n observers as

Vnorm :=

∫
Ω

(
∑n

i=1H(Φ(y, xi))) dy∫
Ω
H(Ψ(y))dy

(7)

We call Vnorm the normalized visible volume; it is a useful quantity for
measuring the convergence of visibility optimization algorithms. Analogous
measures can be defined for Equations (2) and (4). Note that 0 ≤ Vnorm ≤ 1.

The problem of multiple observer optimization is much larger than single
observer optimization[11]. The function defined by (3) is a mapping of the
form

V : Ωn ⊂ R2n 7→ V (x1, x2, . . . , xn) ∈ R+

As before, we discretize the domain into N regularly spaced grid points.
The computational complexity of exhaustive search for n-observer placement
is of order O(Nn). Even if the visibility level set function is computed a priori
at each grid point, exhaustive search through all possible placements for more
than a few observers becomes computationally prohibitive. On the other
hand, gradient ascent approaches, such as those found in [4], are prone to
local maxima and will require at least as many observers as exhaustive search
to cover an area. A good compromise is to avoid gradient based optimization
altogether and perform iterative exhaustive searches in a reduced space.

We propose an alternating maximization scheme for multiple observer
optimization. For each observer, indexed by j, the globally optimal solution
to

arg max
xj∈Ω

∫
Ω

H

H(Φ(y;xj))−H

 n∑
i=1
i 6=j

H(Φ(y;xi))


 dy (8)

is obtained by computing (8) at every grid point outside of the occluders.
The first term in the above expression represents the visible region seen by
the jth observer stationed at xj. The second term is the joint visible region
of all other observers. The scheme exhaustively searches for the optimal lo-
cation of one observer at a time, discounting the region visible to already
placed observers. The process is repeated for each observer. The optimal ob-
server positions may not be unique, therefore an optimal position is chosen
at random in order to avoid limit cycles. Observers are updated in random
order for the same reason. Once all observers have been positioned in this
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way, we proceed to the second iteration by removing an observer and repo-
sitioning it by solving (8) again. This process is repeated for all observers
until the normalized visible volume seen by the observers (7) converges to
some value. This algorithm is similar to the heuristic algorithm for finding
a set cover from finite subsets proposed in [6]. The pseudocode for multiple
observer optimization is as follows

1: Arbitrarily initialize observer positions x1, x2, . . . , xn
2: Initialize V k

norm using Equation (7)
3: Initialize V k−1

norm = 0
4: while V k

norm > V k−1
norm do

5: for all n observers do
6: choose an observer j at random without replacement
7: find a globally optimal solution to Equation (8) for observer j
8: end for
9: V k−1

norm = V k
norm

10: recompute V k
norm using the new observer positions

11: end while

The algorithm is illustrated in Figure 4. In this example we initialize
the observer positions by solving (8), although the observer positions can
be initialized arbitrarily without greatly increasing the number of iterations
required for convergence. The first observer is positioned by solving (8) with
only one observer, making the second term in (8) zero. This is how the visible
region A (in light gray) is obtained in Figure 4(a). Next, the second observer
is positioned to maximize the visible volume not contained within A, again
by solving (8), this time the second term will correspond to the visible region
seen by the first observer (A). The third observer is positioned to maximize
the visible region not contained within A ∪ B . This process is repeated in
the second iteration. One way to ensure that the entire domain is covered
(i.e. to solve the art gallery problem) is to increment the number of observers
and repeat the placement algorithm if Vnorm < 1 after convergence.

Figure 3(b) shows the result of the final iteration of the placement of
six observers using the proposed procedure. The entire map could not be
covered with only six observers. Figure 3(d) depicts the resulting placement
found in the final iteration of the algorithm for eight observers on the same
map. Figure 3(c) depicts the surface defined by (8) for the positioning of the
7th observer. Figure 3(a) depicts the percent visibility as a function of the
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observer repositioned. The first observer placed covers approximately 55%
of the map, the first two cover approximately 77%, at the end of the first
iteration (first red point) the observers cover over 99% of the map. It is clear
that the visible volume must be increasing as the observers are repositioned to
more optimal locations. We have also noted that the visible volume function
is bounded, as given by (6). The visible volume function can therefore be
regarded as a bounded increasing sequence, which must converge. Therefore
the multiple observer placement algorithm must converge. However, the
algorithm does not necessarily converge to a unique solution.
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Figure 3: Multiple observer placement in a complex environment
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(a) A (b) B

(c) A ∪B (d) C

(e) A ∪B ∪ C first iteration (f) A ∪B ∪ C fourth and final iteration

Figure 4
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3. Variational Visibility Optimization

Until now we have only considered finite dimensional visibility problems.
Many practical visibility based problems require variational formulations; the
watchman route problem discussed in the introduction is only one example.
We will approach the watchman route problem by representing the various
objectives involved using energy functionals. The inspection route itself will
be represented by an implicit curve using the level set representation [12, 13].
We will consider only closed curves mainly due to their simple representation
in the level set framework. We note that many practical applications, for
example computing optimal patrol routes, require closed paths.

The authors in [4] evolved parameterized curves according to gradient de-
scent on the Euler-Lagrange equation of a visibility based functional. In this
section we define a new visibility functional and introduce a variational solu-
tion to the watchman route problem. Unlike the work in [4] which disregards
global optimality, our goal will be to formulate a solution to the watchman
route problem which achieves complete visibility coverage of the domain. We
will discuss how to initialize and evolve the route in order to avoid local vis-
ibility extrema and achieve complete visibility coverage. Before proceeding
we note that in the computational geometry literature the watchman route
problem is defined for domains with polygonal boundaries [11, 14]; here we
do not make any assumptions about the geometry or topology of the domain.
Nevertheless we refer to this problem as the watchman route problem.

In the previous section we defined the cumulative visible volume covered
by an observer traversing the curve C(s) by Equation (4). We may rewrite
(4) in a more compact form using the concept of exposure introduced in
[4]. Exposure is a useful quantity in visibility problems for observers with
memory. Consistent with the notation of [4], the exposure is defined as

X (x;C(s)) =

∫
C

H(Φ (x;C(s)) ds (9)

where s is the arc length parameter. The exposure may be interpreted as the
length of time spent observing the point x while traversing the curve C at
unit speed[4]. Using (9) we rewrite the functional defined by (4) in a more
compact form

V (C(s)) =

∫
Ω

H (X (y;C(s))) dy (10)

Our motivation for defining (10) is to measure the visible area seen from
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the curve C(s). In contrast, [4] defined a visibility based functional which
measures the deviation of the exposure from some constant value (A), for all
points in the domain outside of the obstacles (D). We restate their functional
for comparison ∫

Ω\D
(X (y;C(s))− A)2 dy

Because the exposure is a positive semidefinite function, (10) exactly cor-
responds to the zero-norm of the exposure. On the other hand, the above
functional is the square of the two-norm of the exposure.

We call the variational derivative of Equation (10) with respect to the
curve, C(s), the velocity field due to visibility coverage (~vvis), or the visibility
velocity field for short. The visibility coverage attained by the curve may
be locally maximized by performing gradient ascent on the curve using the
visibility velocity field. The following lemma will be used to compute ~vvis.

Lemma 1. It has been shown in [3] that a functional which takes the form

E(C(s)) =

∫
C

Wds

has the first variation

dE

dt
=

∫
C

(
(∇W · ~N) ~N −Wκ ~N

)
Ct ds

where κ and ~N are the curvature and inward unit normal, respectively, of
the curve C. Gradient ascent may be performed on the curve using the cor-
responding Euler-Lagrange equation

dC

dt
= (∇W · ~N) ~N −Wκ ~N (11)

Applying (11) to the functional (10) we obtain

dC

dt
=

[∫
Ω

δ{X (y;C(s))}δ {Φ(y;C(s))}∇x0Φ(y;C(s)) · ~Ndy
]
~N

−
[∫

Ω

H {X (y;C(s))dy}
]
κ ~N (12)
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Because the Heaviside function is positive semi-definite and ~N is the inward
normal, the curvature term in the above expression will be in the direction
of convexity when it is not null, making it numerically unstable [12]. There-
fore, we disregard the curvature term in Equation (12), thus the resulting
expression will be denoted as ~vvis.

~vvis =

[∫
Ω

δ{X (y;C(s))}δ {Φ(y;C(s))}∇x0Φ(y;C(s)) · ~Ndy
]
~N (13)

The resulting equation expresses how the curve C should be deformed
in order to optimally increase visibility coverage measured by the functional
in (10). The term δ{X (y;C(s))} is a line integral along the entire curve
which represents areas of the domain which are not visible from anywhere
on the curve. The term δ{Φ(y;C(s))} determines if the point y is at the
edge of visibility from the vantage point C(s) on the curve. Finally, the term
∇x0Φ(y;C(s)) denotes the gradient of the visibility level set function with
respect to the observer position. This is the direction in which the observer
at C(s) should move in order to increase visibility of the point y. We will
use the following lemma about ~vvis later in our discussion.

Lemma 2. ~vvis = 0 inside the occluders.

Proof. To see this, consider a point C(s0) on the curve which is inside an
occluder, i.e. Ψ(C(s0)) < 0 or H(−Ψ(C(s0))) = 1. Now consider the term
δ{Φ(y;C(s))} in the definition of ~vvis at the point C(s0) and recall the defi-
nition of Φ from Equation (1).

Φ(y;C(s0)) = min
z∈L(y,C(s0))

Ψ(z) ≤ Ψ(C(s0)) < 0

Therefore δ{Φ(y;C(s0))} = 0 for all y, and thus ~vvis = 0.

Figure 5 shows the result of allowing a curve (blue circle) to evolve under
~vvis for several iterations. Note that the curve deforms only at those loca-
tions which will optimally increase visibility coverage. As in many gradient
based optimization applications initialization is crucial. Complete visibility
coverage cannot be attained by evolving an arbitrarily initialized curve under
~vvis in all but the most basic, convex cases.

Recall that in addition to achieving total visibility coverage we require
that the route not pass through any occluders, which also act as obstacles,
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(a) Initial (b) 30 Iterations

Figure 5: Action of Visibility Velocity Field on a Curve

and be as short as possible. Since (10) does not take path length or intersec-
tions with occluders into account, ~vvis will not minimize these other objec-
tives. These constraints are treated as separate penalty energy functionals
and have their own corresponding gradient descent velocity field. After dis-
cussing obstacle avoidance and route shortening we will introduce a way to
combine these constraints with the visibility coverage objective.

If the obstacles are embedded in a signed distance function, Ψ, such that
Ψ > 0 outside the occluders, then the following energy functional imposes a
penalty on those portions of the curve which intersect with the occluders.

Eo(C(s)) =

∫
C

H(−Ψ)(Ψ)ds (14)

The corresponding gradient ascent on the curve is obtained by applying (10)
to (14).

dC

dt
= ([−δ(−Ψ)Ψ∇Ψ +H(−Ψ)∇Ψ] · ~N) ~N −H(−Ψ)Ψκ ~N

= (H(−Ψ)∇Ψ · ~N) ~N −H(−Ψ)Ψκ ~N (15)

The above expression was simplified using the fact that δ(−Ψ)Ψ = 0.
The last objective in the watchman route problem is to make the path

as short as possible outside the obstacles. This is given by the arc length
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functional whose corresponding gradient descent is the well known curvature
flow.

EL(C(s)) =

∫
C

ds

dC

dt
= κ ~N (16)

We combine (15) and (16) into a single velocity field, called the path planning
velocity field.

~vp = H(−Ψ)([∇Ψ · ~N ] ~N −Ψκ ~N) +H(Ψ)κ ~N (17)

Note that (16) is applied only to portions of the curve outside the obstacles.
The action of the path planning gradient descent velocity field acting on

a curve is shown in Figure 6. The curve initially intersects the obstacles.
Due to the first term in Equation (17) the curve moves out of each obstacle
in the direction specified by the gradient of the signed distance function.
Only curvature flow has any effect on the curve outside the obstacles; it
contracts the curve as much as possible without increasing intersections with
the obstacles.

The initial curve in Figure 6 (a) is a simple, closed polygon which was con-
structed by using the observer positions shown Figure 3 (b) as its vertices.
Complete visibility coverage of the domain was attained by the initialized
curve. In fact, any curve containing these observer positions is guaranteed to
attain complete visibility coverage by virtue of its construction. The recent
work of Andrews and Sethian [2] on the continuous traveling salesman prob-
lem can be used to initialize the curve as the shortest, obstacle avoiding path
connecting the observers. However, because of the non-convex nature of this
problem the shortest initial path will not necessarily guarantee the short-
est final path. As the path planning flow is applied to the curve visibility
coverage is lost, as illustrated in Figure 6 (b)-(d).

Until now our discussion on the watchman route problem has been some-
what disconnected. We have discussed the visibility requirement and intro-
duced ~vvis, the velocity field which corresponds to the gradient of visibility
coverage. We have also discussed the path planning objectives and their
corresponding gradient descent velocity field, ~vp. Finally, we have just men-
tioned how to initialize a curve which attains complete visibility coverage.
Together, these three ingredients suggest the following solution to the watch-
man route problem:
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(a) Initial (b) 100 Iterations

(c) 400 Iterations (d) 2000 Iterations

Figure 6: Action of Path Planning Velocity Field on a Curve

Initialize a curve that attains complete visibility coverage of the domain and
evolve it in the direction which minimizes its length and intersections with
obstacles, as long as this evolution does not reduce visibility coverage.

More precisely, the curve will be forced to evolved in the positive direction
of the visibility velocity field (~vvis). If the initialized curve attaints complete
visibility coverage then this is equivalent to evolving the curve in the null
direction of ~vvis. However, if the initialized curve does not achieve complete
visibility coverage then evolving in the positive direction of ~vvis will insure
that visibility coverage may increase but will never decrease. The resulting
projected velocity field which will act on the curve can be expressed as

~vproj = ~vp −H(−~vvis · ~vp)~vp (18)

Notice that ~vproj = 0 if ~vvis has a component in the negative direction of
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~vp. This means that those portions of the curve which are necessary for
maintaining visibility coverage on some subset of the domain will remain
fixed.

Evolving a curve under (18) will ensure that visibility coverage is pre-
served throughout the evolution while minimizing the curve’s length and its
intersections with the obstacles. This evolution is depicted in Figure 7. The
initial curve attains complete visibility coverage and is identical to the initial
curve in Figure 6 (a). However, unlike the evolution depicted in Figure 6
the curve in Figure 7 maintains complete visibility coverage throughout its
evolution.

(a) Initial (b) 50 Iterations

(c) 100 Iterations (d) 2000 Iterations

Figure 7: Action of Projected Velocity Field on a Curve

Since the action of projecting ~vp in the positive direction of ~vvis can cause
the curve to remain fixed at some locations, it is natural to ask whether
this will prevent the minimization of the obstacle avoidance and path length
objectives. Intuitively, it is clear that complete visibility coverage cannot
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be attained by an arbitrarily short curve, therefore we expect that ~vproj will
prevent the curve from contracting at those locations which are necessary for
maintaining visibility coverage. We also reason that since the visibility cov-
erage attained by an observer passing through an occluder is zero; visibility
coverage cannot be reduced if any part of the curve is moved outside an oc-
cluder. Therefore, we expect that the action of projecting ~vp in the positive
direction of ~vvis will not hinder the minimization of the obstacle avoidance
objective. We will now analyze the behaviour of ~vproj more closely in order
to analytically derive these properties.

Theorem. The action of projecting ~vp into the positive direction of ~vvis will
not prevent minimizing intersections with occluders.

Proof. We begin by evaluating the term ~vvis · ~vp in (18) which leads to

~vvis · ~vp = ~vvis ·H(−Ψ)([∇Ψ · ~N ] ~N −Ψκ ~N) + ~vvis ·H(Ψ)κ ~N

= ~vvis ·H(Ψ)κ ~N (19)

We have simplified the above expression using the fact that ~vvis = 0 in-
side the occluders (Lemma 2). Using (19) and the orthogonality property
H(−Ψ)H(Ψ) = 0, we can simplify (18) as follows

~vproj = ~vp −H(−~vvis ·H(Ψ)κ ~N)~vp

= ~vp −H(Ψ)H(−~vvis · κ ~N)~vp

= H(−Ψ)
(

[∇Ψ · ~N ] ~N −Ψκ ~N
)

+H(Ψ)
(
κ ~N [1−H(−~vvis · κ ~N)]

)
From the above expression it is clear that ~vproj consists of two orthogonal

components: the first component is the velocity field inside the occluders
(H(−Ψ) term) and the second component is the velocity field outside the
occluders (H(Ψ) term). The velocity field inside the occluders is independent
of ~vvis and can be recognized as the gradient descent on occluder intersection
(Equation 15). This shows that occluder intersections can always be reduced
without interfering with visibility coverage. On the other hand, we see that
the second term will be equal to zero (the curve will remain fixed) if ~vvis has a

component in the negative direction of κ ~N . The second term shows that the
curve cannot be made arbitrarily short outside the occluders without losing
visibility coverage.
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4. Conclusion

In this work, we have presented solutions to two visibility-based optimiza-
tion problems. An iterative greedy algorithm was discussed as the solution
to the art gallery problem. This solution is less prone to local maxima when
compared to gradient based approaches. It was shown how this solution can
be used to initialize a curve which attains complete visibility coverage of
the domain. A gradient projection strategy was proposed for evolving the
curve in a way which minimizes the cost associated with other constraints
while preserving visibility coverage. In this way, our solution to the watch-
man route problem is guaranteed to attain complete visibility coverage of
the domain. Our solutions make use of the continuous visibility level-set
function developed in [15], and were inspired by the variational approaches
introduced in [4]. The novel contribution of our work is the introduction of
a framework which generates solutions that attain complete visibility cov-
erage of the domain. In future works more detailed convexity analysis of
the functionals involved will be presented in order to identify local minima
specific to this problem. Issues pertaining to numerical implementation and
convergence will also be discussed in future works. We will also make use of
global optimization search strategies, and propose more efficient strategies
for computing the quantities involved.
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