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Abstract

In this paper we propose a new local discontinuous Galerkin method
to directly solve Hamilton-Jacobi equations. The scheme is a natural
extension of the monotone scheme. For the linear case, the method is
equivalent to the discontinuous Galerkin method for conservation laws.
Thus, stability and error analysis are obtained under the framework
of conservation laws. For both convex and nonconvex Hamiltonian,
optimal (k+1)-th order of accuracy for smooth solutions are obtained
with piecewise k-th order polynomial approximations. The scheme is
numerically tested on a variety of one and two dimensional problems.
The method works well to capture sharp corners (discontinuous deriva-
tives) and converges to the viscosity solution.
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1 Introduction

In this paper we develop a new discontinuous Galerkin (DG) finite element
method to directly solve Hamilton-Jacobi (H-J) equations,

Φt + H(Φx, Φy) = 0, (x, y) ∈ Ω (1.1)

augmented with suitable initial data Φ(x, y, 0) = Φ0(x, y), and periodic
boundary conditions. Hamilton-Jacobi equations arise in many applications
areas, from optimal control theory and geometrical optics, to level set meth-
ods. Examples include crystal growth, ray tracing, etching, robotic motion
planning, and computer vision.

Solutions to H-J equations are typically continuous but may develop sin-
gularities in the derivatives even if the initial condition is smooth. An appro-
priate definition of generalized solution must therefore be used, namely the
viscosity solution, for which existence and uniqueness hold under suitable
assumptions (see details in [11] by Crandall and Lions).

Finite difference type numerical methods for solving H-J equations have
been well developed in the last two decades. In [12] Crandall and Lions
first introduced a monotone numerical scheme to approximate H-J equations
(1.1) and proved convergence to the viscosity solution. Later, a second order
finite difference ENO scheme was developed by Osher and Sethian in [18],
a general framework for higher-order ENO scheme was given by Shu and
Osher in [19], and extension to a higher-order WENO scheme was proposed
by Jiang and Peng in [15]. However, on an unstructured mesh the finite
difference WENO scheme [24] is complicated to implement. Also for level
set applications to two-phase flow, the interface is hard to track accurately
with WENO scheme [13], which in the literature is called the ”mass loss”
problem. All these trigger the necessity to design other good algorithms to
solve H-J equations.

The discontinuous Galerkin method is a finite element method using a
completely discontinuous piecewise polynomial space for the numerical so-
lution and the test functions. Major development of discontinuous Galerkin
methods was carried out by Cockburn, Shu and their collaborators in a se-
ries of papers [7, 6, 5, 3, 9] for nonlinear hyperbolic conservation laws. While
it was being actively developed, the DG method found rapid applications in
many areas, see [4, 10]. Discontinuous Galerkin methods become attractive
and popular due to the following nice features: 1) it is easy to apply high
order approximations, thus allowing for efficient p adaptivity; 2) it is flexible
on complicated geometries, thus allowing for efficient h adaptivity; 3) it is
extremely local in data communications, thus allowing for efficient parallel
implementations.
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For solving H-J equations with discontinuous Galerkin method, however,
there are conceptual difficulties. This is because the H-J equations cannot be
written in a “conservation form”, which is suitable for integration by parts,
and is a crucial property for discontinuous Galerkin methods. On the other
hand, it is well known that H-J equations are closely related to conservation
laws. In the 1-D case we can claim they are equivalent. Based on this obser-
vation and the success of discontinuous Galerkin methods to conservation
laws, Hu and Shu [14] developed a DG method for H-J equations in 1999.
Recently in [2] Cheng and Shu proposed a new DG method directly solving
H-J equations. Our goal is also to design a direct DG method for solving
H-J equations. The DG method we use is essentially a local discontinuous
Galerkin (LDG) method.

Local discontinuous Galerkin methods are designed to solve partial dif-
ferential equations with higher order spatial derivatives. The idea is to
introduce new variables to approximate the solution derivatives and rewrite
the equation as a first order system, then apply the discontinuous Galerkin
method for the system. The first LDG method was developed by Cockburn
and Shu in [8] for the convection diffusion equation involving second order
spatial derivatives. Their work was motivated by the successful numeri-
cal experiments of Bassi and Rebay [1] for the compressible Navier-Stokes
equations. Later, Yan and Shu [23] developed a LDG method for the gen-
eral KdV type equation involving third order spatial derivatives. Recently
LDG methods have been rapidly developed for a large number of nonlinear
problems, e.g. [16, 17, 22].

The procedure of applying LDG method to solve H-J equations is the
following. First, we introduce 4 new variables p1, p2 and q1, q2 to respectively
approximate Φx and Φy,

{
p1 − Φx = 0
p2 − Φx = 0

{
q1 − Φy = 0
q2 − Φy = 0.

This is carried out by solving the standard upwind discontinuous Galerkin
method, namely p1 and p2 are auxiliary variables used to approximate Φx

with numerical flux chosen from the right (Φ+
x ) and the left (Φ−x ) respec-

tively, and q1 and q2 are used to approximate Φ+
y and Φ−y correspondingly.

We see p1 is identical to p2 when the solution is smooth, but at the same
time p1 and p2 can fully capture the characteristic of Φx when the solution
have corners. Similarly, this mechanism guarantees q1 and q2 can capture
complete information of Φy. Then we plug them into a monotone consistent
numerical Hamiltonian Ĥ(p1, p2, q1, q2) and solve the H-J equation in the
weak sense, namely multiply the equation by a test function and integrate
over the element. Note here we use the numerical Hamiltonian Ĥ in the
scheme formulation. With piecewise constant approximation, our scheme
degenerates to the standard monotone scheme, that guarantees its conver-
gence to the viscosity solution. In some sense, we can claim our scheme is a
natural extension of the monotone scheme whithin DG framework.

For the linear constant coefficient case, the method is equivalent to the
discontinuous Galerkin method for conservation laws. Thus, stability and
error analysis are carried out in the same way as for conservation laws. For
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the linear variable coefficient problem, our scheme is not exactly the same
as the standard discontinuous Galerkin method, but the LDG scheme cap-
tures the characteristics correctly and numerically we obtain optimal order
of accuracy with smooth variable coefficients. We test the LDG methods on
a variety of one and two dimensional Hamilton-Jacobi equations. For both
convex and nonconvex Hamiltonian, optimal (k+1)-th order of accuracy for
smooth solutions are obtained with piecewise kth degree polynomial approx-
imations. The method works well to capture sharp corners (discontinuous
derivatives) and the LDG solution converges to the viscosity solution.

In this paper we use capital letters Φ etc. to denote the exact solutions
to the H-J equations and lower case letters φ to denote the discontinuous
Galerkin numerical solutions. This paper is organized as follows: In §2,
we introduce the formulation of local discontinuous Galerkin method for the
one-dimensional H-J equations. The generalization of LDG methods to two-
dimensional H-J equations is discussed in §3. In §4, we present a series of
numerical results to validate the LDG methods. Conclusions and remarks
are given in §5.

2 The LDG scheme formulation and theoretical
results for the one-dimensional case

In this section we define our LDG method for solving Hamilton-Jacobi
equation(1.1) in one-dimensional setting,

Φt + H(Φx) = 0, x ∈ Ω. (2.2)

First let’s introduce some notations. The computational mesh is given by
Ω = {Ij = (xj− 1

2
, xj+ 1

2
), j = 1, ..., N}. We denote xj = 1

2

(
xj− 1

2
+ xj+ 1

2

)
as

the center of the cell Ij and ∆xj = xj+ 1
2
− xj− 1

2
as the size of each cell. We

denote ∆x = maxj ∆xj . The numerical solution space V∆x is defined as the
piecewise polynomial space where there is no continuity requirement at the
cell interface xj±1/2.

V∆x =
{

v ∈ L2(Ω) : v|Ij ∈ P k(Ij), j = 1, ..., N
}

, (2.3)

where P k(Ij) denotes the polynomial space on Ij with degree at most k.
The local discontinuous Galerkin method is defined as the following: We
seek a numerical solution φ ∈ V∆x such that for all test function u ∈ V∆x

we have,
∫

Ij

φtu dx +
∫

Ij

Ĥ(p1, p2)u dx = 0 ∀j = 1, · · · , N (2.4)

where p1 and p2 are two new variables we introduce to approximate Φx, and
Ĥ(p1, p2) is the monotone consistent numerical Hamiltonian we choose to
approximate H(Φx).

Just as those defined in the LDG method[8], p1 and p2 are two auxiliary
variables. Both p1 and p2 are introduced to approximate Φx. Here p1 is to
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approximate Φx with numerical flux chosen from the right (upwind right),
like φ+

x in [15]. In a word, for any test function v ∈ V∆x, p1 is obtained by
solving the following right upwind DG scheme,

∫

Ij

p1vdx +
∫

Ij

φvxdx− φ+
j+1/2v

−
j+1/2 + φ+

j−1/2v
+
j−1/2 = 0. (2.5)

Variable p2 is introduced to approximate Φx with the numerical flux chosen
from the left (upwind left). For any test function w ∈ V∆x, p2 is obtained
through the following left upwind DG scheme,

∫

Ij

p2wdx +
∫

Ij

φwxdx− φ−j+1/2w
−
j+1/2 + φ−j−1/2w

+
j−1/2 = 0. (2.6)

Finally we replace H(Φx) in equation (2.2) by a monotone consistent nu-
merical Hamiltonian Ĥ(p1, p2), for monotone we mean Ĥ(↓, ↑) that is a none
increasing function for the fist argument and a none decreasing function for
the second argument. For consistency we mean Ĥ(p, p) = H(p). At each
time step, we first locally compute p1 and p2 from (2.5) and (2.6), then plug
p1 and p2 into the numerical Hamiltonian Ĥ(p1, p2), multiply it with any test
function u ∈ V∆x, integrate over cell Ij and update φ to the next time level.
This completes the definition of the LDG scheme. For time discretization,
we use explicit third-order TVD Runge-Kutta method as in [20].

In this paper, we simply use the Lax-Friedrichs numerical Hamiltonian,

Ĥ(p1, p2) = H(
p1 + p2

2
)− 1

2
α(p1 − p2)

with α = maxp∈D|∂H(p)
∂p |. With D taken as a local domain, namely D

is evaluated locally as D = [min(p1, p2),max(p1, p2)]|Ij we call it a lo-
cal Lax-Friedrichs scheme. With D taken as a global domain, namely D
is evaluated over the whole computational domain and defined as D =
[min(p1, p2), max(p1, p2)]|Ω we call it the global Lax-Friecrichs scheme.

Now we turn to the question of the quality of the numerical solution
defined by the LDG method. If the Hamiltonian H(Φx) is a linear function,
equation (2.2) degenerates to a linear wave equation (2.7), for simplicity we
assume a > 0 is a constant.

Φt + aΦx = 0 (2.7)

Now the numerical Hamiltonian Ĥ(p1, p2) degenerates to a simple upwind
flux ap2, and LDG scheme (2.4)-(2.6) is simplified as follows:

{ ∫
Ij

φtudx +
∫
Ij

ap2udx = 0∫
Ij

p2wdx +
∫
Ij

φwxdx− φ−j+1/2w
−
j+1/2 + φ−j−1/2w

+
j−1/2 = 0.

(2.8)

It’s easy to see, with the same test function u = w, the LDG scheme (2.8)
is nothing but a standard upwind DG scheme. So we have the following
optimal error estimate for the linear problem (2.7).
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Proposition 2.1 (error estimate) Suppose the exact solution Φ of (2.7)
is smooth and numerical solution φ is obtained with our scheme (2.8). Let
e(·, t) be the approximation error Φ− φ. Then we have,

‖e(·, T )‖L2(Ω) ≤ C|Φ0|k+2(∆x)k+1, (2.9)

where C depends on k, a and the final time T .

For variable coefficient linear Hamilton-Jacobi equation

Φt + a(x)Φx = 0 (2.10)

the scheme (2.4) becomes,
∫

Ij

φtudx+
∫

Ij

{p1

2
(a(x)− |a(x)|)u +

p2

2
(a(x) + |a(x)|)u

}
dx = 0 (2.11)

Note that even the scheme (2.11) is not exactly the same as the standard DG
method for (2.10), however the scheme catches the upwind directions cor-
rectly, always takes p2 with a(x) > 0 and p1 with a(x) < 0. Numerically we
obtain optimal (k+1)th order of accuracy for pk polynomial approximations
with smooth variable coefficient a(x).

3 The LDG scheme formulation for the two di-
mensional case

In this section, we generalize the LDG scheme discussed in the previous sec-
tion to the two spatial dimensions. The algorithm in more spatial dimensions
is similar. For 2D, the scalar HJ equation is,

Φt + H(Φx, Φy) = 0, (x, y) ∈ [0, 1]× [0, 1], (3.12)

with initial condition Φ(x, y, 0) = Φ0(x, y) and periodic boundary condi-
tions. Notice that the assumption of a unit box geometry and periodic
boundary conditions is for simplicity only and is not essential: the method
can be easily designed for arbitrary domain and for non-periodic boundary
conditions.

Let’s denote a triangulation of the unit box by T∆x = {K}, consisting
of non-overlapping polyhedra covering completely the unit box. We assume
the triangles K to be shape-regular. Here ∆x = diam{K} measures the
diameter of the triangle K. We again denote the finite element space by

V∆x =
{

v ∈ L2 : v|K ∈ P k(K), ∀K ∈ T∆x

}
. (3.13)

where P k(K) is the set of all polynomials of degree at most k on cell K.
We propose a discontinuous Galerkin method for (3.12) as follows: we seek
φ ∈ V∆x such that for all test function u ∈ V∆x and all cells K ∈ T∆x we
have,

∫

K
φtu dxdy +

∫

K
Ĥ(p1, p2, q1, q2)u dxdy = 0 (3.14)
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Here again Ĥ(p1, p2, q1, q2) is a monotone consistent numerical Hamiltonian
we choose to approximate H(Φx, Φy). Four new auxiliary variables p1, p2

and q1, q2 are introduced to approximate Φx and Φy respectively.
Variables p1 and p2 are both used to approximate Φx. Similar to the 1D

case, we obtain p1 and p2 by solving two simple upwind DG schemes. We
seek p1 ∈ V∆x and p2 ∈ V∆x such that for any test functions v1 ∈ V∆x and
v2 ∈ V∆x we have

{ ∫
K p1v1 dxdy +

∫
K φ(v1)x dxdy − ∫

∂K φ+nxvintK
1 ds = 0∫

K p2v2 dxdy +
∫
K φ(v2)x dxdy − ∫

∂K φ−nxvintK
2 ds = 0

(3.15)

with

φ+ =
{

φextK , if nx ≥ 0
φintK , else

and

φ− =
{

φintK , if nx ≥ 0
φextK , else

where ∂K is the boundary of element K, n = (nx, ny) is the outward unit
normal for element K along the element boundary ∂K. Here we use φintK

to denote the value of φ on ∂K evaluated from inside the element K. Cor-
respondingly we use φextK to denote the value of φ on ∂K evaluated from
the outside element K (inside the neighboring element K

′
which shares the

same edge with K).
The two new variables q1 and q2 are used to approximate Φy and obtained

by solving the following two upwind DG schemes. We seek q1 ∈ V∆x and
q2 ∈ V∆x such that for any test functions w1 ∈ V∆x and w2 ∈ V∆x we have

{ ∫
K q1w1 dxdy +

∫
K φ(w1)y dxdy − ∫

∂K φ+nyw
intK
1 ds = 0∫

K q2w2 dxdy +
∫
K φ(w2)y dxdy − ∫

∂K φ−nyw
intK
2 ds = 0

(3.16)

with

φ+ =
{

φextK , if ny ≥ 0
φintK , else

and

φ− =
{

φintK , if ny ≥ 0
φextK , else

.

Finally, to complete the definition of LDG scheme, we choose a monotone
consistent numerical Hamiltonian Ĥ(p1, p2, q1, q2), for monotone we mean
Ĥ(↓, ↑, ↓, ↑) and for consistency we mean Ĥ(p, p, q, q) = H(p, q). Then plug
p1, p2, computed from (3.15) and q1, q2 computed from (3.16), into the
numerical Hamiltonian Ĥ(p1, p2, q1, q2), multiply it with any test function
u ∈ V∆x and integrate over the element K and update φ(x, y, t) to the next
time level.

Here we simply use the Lax-Friedrichs type numerical Hamiltonian,

Ĥ(p1, p2, q1, q2) = H(
p1 + p2

2
,
q1 + q2

2
)− 1

2
α(p1 − p2)− 1

2
β(q1 − q2)
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with
α = maxp∈D q∈E |∂H(p, q)

∂p
|.

With D = [min(p1, p2), max(p1, p2)]|Ω and E = [min(q1, q2),max(q1, q2)]|Ω
we call it the global Lax-Friedrichs scheme. If D and E are rather local do-
main, in a word, D = [min(p1, p2), max(p1, p2)]|K and E = [min(q1, q2),max(q1, q2)]|K
we call it the local local Lax-Friecrichs scheme. Note similar fashion is ap-
plied to coefficient β

β = maxp∈D q∈E |∂H(p, q)
∂q

|.

4 Numerical Examples

In this section we provide a series of numerical examples to illustrate the
accuracy and capacity of the LDG method for solving H-J equations. For
time discretization explicit third order Runge-Kutta method [21, 20] is used.
We obtain optimal order of accuracy with piecewise pk polynomial approx-
imations and capture the entropy solution for both convex and nonconvex
Hamiltonian.

Example 4.1 : variable coefficient linear Hamiltonian

φt + sin(x)φx = 0, 0 ≤ x ≤ 2π, (4.17)

with initial condition φ(x, 0) = sin(x) and periodic boundary condition. The
exact solution is given as

φ(x, t) = sin(2 tan−1(e−t tan(
x

2
))).

As discussed in §2, for variable coefficient linear problem(4.17) our LDG
method (2.11) is not exactly the same as the standard DG method. We use
this example to demonstrate that the same optimal order of accuracy can
be obtained as the standard DG method for variable coefficient conservation
laws. We compute the solution up to t = 1 and check the L1 and L∞ errors
with refined mesh, (k+1)th order of accuracy is obtained with pk polynomial
approximations. Results are listed in Table 4.1.

Example 4.2 : linear Hamiltonian with kink solutions

φt + φx = 0, −1 ≤ x < 1, (4.18)

with initial φ(x, 0) = g(x− 0.5) and periodic boundary condition, here

g(x) = −(
√

3
2

+
9
2
+

2π

3
)(x+1)+





2cos(3πx2

2 )−√3, −1 ≤ x < −1
3 ;

3
2 + cos(2πx), −1

3 ≤ x < 0;
15
2 − 3cos(2πx), 0 ≤ x < 1

3 ;
28+4π+cos(3πx)

3 + 6πx(x− 1), 1
3 ≤ x < 1.

We take the example from [15], and use it to test the ability of our scheme
to catch the kinks after a long term run. We compute the LDG numerical
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k N=40 N=80 N=160 N=320
error error order error order error order

0 L1 2.47e-01 1.28e-01 0.95 6.52e-02 0.97 3.29e-02 0.99
L∞ 1.93e-01 9.80e-02 0.98 4.95e-02 0.98 2.48e-02 0.99

1 L1 8.95e-03 2.28e-03 1.97 5.79e-04 1.98 1.46e-04 1.99
L∞ 1.63e-02 4.44e-03 1.87 1.15e-03 1.95 2.92e-04 1.98

2 L1 3.63e-04 4.52e-05 3.00 5.67e-06 2.99 7.12e-07 2.99
L∞ 5.87e-04 9.10e-05 2.70 1.31e-05 2.80 1.85e-06 2.83

3 L1 1.43e-05 9.14e-07 3.97 5.79e-08 3.98 3.66e-09 3.98
L∞ 2.74e-05 1.86e-06 3.88 1.24e-07 3.90 7.95e-09 3.97

Table 4.1: 1D variable coefficient linear problem (4.17). L1 and L∞ errors
at t = 1.0. pk polynomial approximations with k = 0, 1, 2, 3.

solution with piecewise linear and quadratic approximations up to t = 32(16
periods), see Figure 4.1. We can observe better resolution with increased or-
der of approximation. Compared to finite difference ENO/WENO schemes
in [15] and [24], the DG method can sharply capture corners with discon-
tinuous derivatives even after a long term run (16 periods when t = 32).

Example 4.3 : nonlinear convex Hamiltonian(1D Burgers Equation)

φt +
(φx + 1)2

2
= 0, x ∈ [−1, 1] (4.19)

with φ(x, 0) = −cos(πx) and periodic boundary condition.
The solution is smooth till the discontinuous derivative develops at t =

1.0
π2 . We compute the L1 and L∞ errors at t = 0.5

π2 and t = 3.5
π2 , before

and after the singularity develops, and list the errors and orders in Table
4.2 and Table 4.3. For t = 3.5

π2 , the errors are computed away from the
singularity with distance 0.15. Here we use the global Lax-Friedrichs scheme
for the numerical Hamiltonian and roughly (k + 1)th order of accuracy is
obtained with pk polynomial approximations. In Figure 4.2, we show the
LDG approximation at t = 3.5

π2 with p1 and p2 polynomials. The corner is
clearly resolved for both piecewise linear and quadratic approximations.

Another example is the Burgers equation with none smooth initial condi-
tion

φ(x, 0) =
{

π − x, x < π;
x− π, x ≥ π.

It is designed in [2] to check the convergence of the numerical solution to the
entropy solution. In Figure 4.3 we plot the LDG numerical solution with
piecewise linear and quadratic approximations, clearly the LDG solution
opens up and converges to the entropy solution.

Example 4.4 : 1D nonconvex Hamiltonian

φt − cos(φx + 1) = 0, x ∈ [−1, 1] (4.20)
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Figure 4.1: Solid line is the exact solution. Symbol circle is LDG approx-
imation with mesh n=96. Top: linear approximation. Bottom: quadratic
approximation.

k N=20 N=40 N=80 N=160
error error order error order error order

0 L1 1.35e-01 6.92e-02 0.96 3.51e-02 0.98 1.77e-02 0.99
L∞ 1.73e-01 9.08e-02 0.92 4.67e-02 0.96 2.36e-02 0.98

1 L1 6.56e-03 1.75e-03 1.91 4.31e-04 2.02 1.07e-04 2.00
L∞ 1.34e-02 4.55e-03 1.56 1.12e-03 2.02 2.73e-04 2.03

2 L1 2.26e-04 2.86e-05 2.98 3.57e-06 3.00 4.45e-07 3.00
L∞ 1.25e-03 1.88e-04 2.73 2.41e-05 2.96 2.93e-06 3.05

3 L1 9.57e-05 7.98e-06 3.58 6.21e-07 3.68 4.33e-08 3.84
L∞ 2.35e-04 2.21e-05 3.41 1.75e-06 3.66 1.77e-07 3.30

Table 4.2: 1D Burgers equation. L1 and L∞ errors. pk approximations with
k = 0, 1, 2, 3 at t = 0.5/π2.
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k N=20 N=40 N=80 N=160
error error order error order error order

0 L1 1.80e-01 8.29e-02 1.11 3.98e-02 1.06 1.95e-02 1.02
L∞ 2.63e-01 1.37e-01 0.94 6.95e-02 0.98 3.48e-02 1.00

1 L1 7.89e-03 1.30e-03 2.60 2.25e-04 2.52 4.17e-05 2.43
L∞ 3.93e-02 9.69e-03 2.02 2.32e-03 2.06 4.84e-04 2.26

2 L1 7.15e-05 5.86e-06 3.60 6.78e-07 3.11 8.32e-08 3.02
L∞ 6.59e-04 1.15e-05 5.83 1.31e-06 3.13 1.60e-07 3.03

3 L1 4.54e-06 3.09e-07 3.87 1.76e-08 4.13 9.31e-10 4.24
L∞ 1.07e-05 6.80e-07 3.97 4.20e-08 4.01 2.55e-09 4.04

Table 4.3: 1D Burgers equations. L1 and L∞ errors. pk approximations
with k = 0, 1, 2, 3 at t = 3.5/π2.
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Figure 4.2: 1D Burgers equation at t = 3.5
π2 with mesh N=41. Solid line is

the exact solution and symbol circle are the p1 and p2 polynomial approxi-
mations
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Figure 4.3: Solid line is the exact solution and symbol circle is p1 and p2

polynomial approximations at t = 1 with N=81.

k N=20 N=40 N=80 N=160
error error order error order error order

0 L1 1.03e-01 5.13e-02 1.00 2.56e-02 1.00 1.28e-02 1.00
L∞ 1.44e-01 7.21e-02 1.00 3.61e-02 1.00 1.80e-02 1.00

1 L1 6.01e-03 1.49e-03 2.01 3.69e-04 2.01 9.22e-05 1.99
L∞ 2.11e-03 6.25e-04 1.75 1.44e-04 2.12 3.70e-05 1.96

2 L1 2.90e-04 3.31e-05 3.13 4.19e-06 2.98 5.19e-07 3.01
L∞ 2.22e-04 3.63e-05 2.61 5.66e-06 2.68 7.57e-07 2.90

3 L1 1.22e-05 1.18e-06 3.36 7.59e-08 3.96 4.61e-09 4.04
L∞ 8.39e-05 1.20e-05 2.80 1.35e-06 3.15 9.05e-08 3.91

Table 4.4: 1D nonconvex problem (4.20). L1 and L∞ errors. pk polynomial
approximations with k = 0, 1, 2, 3 at t = 0.5/π2.

with φ(x, 0) = −cos(πx) and periodic boundary condition.
Similar to the previous example, discontinuous derivative appears at t =

1.0
π2 . We compute the L1 and L∞ errors and obtain (k+1)th order of accuracy
for t = 0.5

π2 and t = 1.5
π2 , before and after discontinuous derivatives developed,

see Table 4.4 and Table 4.5. In Figure 4.4 we show the LDG approximations
at t = 1.5

π2 and kinks are clearly resolved.

Example 4.5 : 1D Riemann problem with nonconvex Hamiltonian

φt − 1
4
(φ2

x − 1)(φ2
x − 4) = 0, x ∈ [−1, 1] (4.21)

with initial condition as φ(x, 0) = −2|x|.
This is a benchmark problem to test a numerical scheme’s capability to

capture the entropy(viscosity) solution. The corresponding conservation law
for φx have two shocks propagating to the left and right connected in between
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k N=20 N=40 N=80 N=160
error error order error order error order

0 L1 5.02e-02 2.33e-02 1.10 1.17e-02 0.99 5.84e-03 1.00
L∞ 1.72e-01 8.70e-02 0.98 4.36e-02 0.99 2.17e-02 1.00

1 L1 3.18e-03 7.20e-04 2.14 1.75e-04 2.04 4.31e-05 2.02
L∞ 1.42e-02 3.05e-03 2.22 7.53e-04 2.01 1.80e-04 2.02

2 L1 7.26e-05 7.75e-06 3.22 9.47e-07 3.03 1.16e-07 3.01
L∞ 7.84e-04 9.49e-05 3.04 1.25e-05 2.92 1.55e-06 3.01

3 L1 5.50e-06 2.68e-07 4.35 1.70e-08 3.98 1.05e-09 4.01
L∞ 4.57e-05 4.86e-06 3.23 3.26e-07 3.90 2.00e-08 4.02

Table 4.5: 1D noneconvex problem (4.20). L1 and L∞ errors. pk polynomial
approximations with k = 0, 1, 2, 3 at t = 1.5/π2. Errors are computed in
interval [-0.25,0] in which the solution is smooth.
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Figure 4.4: 1D noneconvex Hamiltonian with piecewise linear and quadratic
approximation at t = 1.5/π2.
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Figure 4.5: 1D Riemann problem with none convex Hamiltonian (4.21).
mesh N = 81 at t = 1.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L1 2.01e-01 1.03e-01 0.99 5.13e-02 1.00 2.56e-02 1.00
L∞ 2.93e-01 1.44e-01 1.02 7.21e-02 1.00 3.61e-02 1.00

1 L1 2.43e-02 6.01e-03 2.00 1.49e-03 2.01 3.69e-04 2.01
L∞ 9.60e-03 2.88e-03 1.70 6.25e-04 1.75 1.44e-04 2.12

2 L1 2.33e-03 2.90e-04 3.01 3.31e-05 3.13 4.19e-06 2.98
L∞ 1.65e-03 2.22e-04 2.56 3.63e-05 2.61 5.66e-06 2.68

Table 4.6: 2D Burgers equations (4.22). L1 and L∞ errors at t = 0.5
π2 . pk

polynomial approximation with k = 0, 1, 2 .

with a rarefaction wave. With piecewise constant approximation our LDG
scheme is monotone, and converges to the entropy solution. With piecewise
linear or higher order approximations, limiter is needed for the convergence
to the entropy solution. For this example and the 2D Riemann problem we
use the TVB slope limiter as in [19]. Numerical results at t = 1 with 81
elements, using the local Lax-Friedrichs flux, is shown in Figure 4.5.

Example 4.6 : 2D Burgers equation

φt +
(φx + φy + 1)2

2
= 0, x ∈ Ω = [−2, 2]X[−2, 2] (4.22)

with initial condition φ(x, y, 0) = − cos(π(x+y)
2 ) and periodic boundary con-

ditions.
We use local local Lax-Friedrichs numerical Hamiltonian in the computa-

tions. At t = 0.5
π2 , the solution is still smooth. We compute the L1 and L∞

errors with pk(k = 0, 1, 2) polynomial approximations, and list the errors
and order of accuracy in Table 4.6. At t = 1.5

π2 the discontinuous derivative
has developed, the result of LDG solution is shown in Figure 4.6.
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Figure 4.6: 2D Burgers equation (4.22) at t = 1.5/π2 where corner has
developed. p1 polynomial approximation with mesh N=40X40.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L1 1.35e-01 6.90e-02 0.97 3.47e-02 0.99 1.74e-02 1.00
L∞ 6.07e-01 3.05e-01 0.99 1.51E-01 1.01 7.31e-02 1.05

1 L1 5.34e-02 1.56e-02 1.78 4.03e-03 1.95 9.73e-04 2.05
L∞ 1.02e-01 2.85e-02 1.84 7.80e-03 1.87 2.10e-03 1.90

2 L1 7.83e-03 1.38e-03 2.50 2.12e-04 2.71 3.08e-05 2.78
L∞ 4.48e-02 8.79e-03 2.35 1.52e-03 2.53 2.55e-04 2.58

Table 4.7: 2D problem with nonconvex Hamiltonian (4.23). L1 and L∞

errors at t = 0.5
π2 . with k = 0, 1, 2, 3.

Example 4.7 : 2D problem with nonconvex Hamiltonian

φt − cos(φx + φy + 1) = 0, (x, y) ∈ Ω = [−2, 2]X[−2, 2] (4.23)

with initial condition φ(x, y, 0) = − cos(π(x+y)
2 ) and periodic boundary con-

ditions. Similar to the previous case, the solution develops discontinuous
derivatives at t = 1.0

π2 . We check the LDG errors and order of convergence at
t = 0.5

π2 , and we obtain (k + 1)th order of accuracy, see Table 4.7. Figure 4.7
shows the LDG numerical solution approximation at t = 1.5

π2 where corners
have developed.

Example 4.8: 2D Riemann problem

φt + sin(φx + φy) = 0, x ∈ Ω = [−1, 1]X[−1, 1] (4.24)

with initial condition φ(x, y, 0) = π(|y| − |x|). With piecewise constant
approximation LDG scheme degenerates to the monotone scheme, so it con-
verges to the viscosity solution. With piecewise linear or higher order poly-
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Figure 4.7: 2D equation with none convex Hamiltonian (4.23). t = 1.5
π2 , p1

and p2 polynomial approximations with mesh N=40X40.
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Figure 4.8: 2D Riemann problem (4.24) at t = 1, piecewise constant and
linear polynomial approximation with mesh N=40X40.

nomial approximations, we need limiters in this example to have its conver-
gence to the viscosity solution. LDG approximation with mesh N = 40x40
at t = 1 is listed in Figure 4.8.

5 Conclusions and Remarks

We propose a local discontinuous Galerkin method for directly solving Hamilton-
Jacobi equations. For both convex and nonconvex Hamiltonian, optimal
(k+1)-th order of accuracy for smooth solutions are obtained with piecewise
k-th polynomial approximations. The method works well to capture sharp
corners(discontinuous derivatives) and converges to the viscosity solution.
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