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Abstract

We consider gravity driven flows of particle-laden thin films on an incline. Three distinct regimes are observed depending on the
inclination angle and the bulk volume fraction of particles: the particles either settle out of the flow, aggregate at the moving front,
or remain well-mixed. The experiments are carried out with a range of particle sizes and fluid viscosities. The results compare well
with an equilibrium theory balancing shear-induced migration with settling in the normal direction. We find that the well-mixed
regime is transient in nature, with both the particle size and the liquid viscosity affecting the time scale on which it occurs.
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1. Introduction and background

Particle-laden flows in general are important in a variety
of contexts, including environmental, industrial and biologi-
cal ones, where transport and manipulation of suspensions oc-
cur. Specific examples are mud flows, debris flows, slurry
transport, food processing, various coating processes in ce-
ramics and electronics industries, and manufacturing processes
in pharmaceutical and paper industries, where uniformity in
particle distribution is usually required. While many studies
in the literature address gravity-driven clear liquid flows (e.g.
see [1, 2, 3, 4, 5, 6]) and pure granular flows (e.g. [7, 8, 9]), com-
paratively fewer studies have centered on particle-laden thin
film flows [10, 11, 12, 13]. Apart from complexities associated
with moving contact lines, the study of slurries also involves an
intricate interplay between particle settling/migration and vis-
cous fingering mechanisms.

1.1. Settling of particles due to gravity
The settling of particles in quiescent liquids and sedimenta-

tion in suspensions have also garnered significant attention (e.g.
see [14, 15, 16, 17, 18, 19]). For rigid spherical particles, the
well-known Stokes’ Law applies, neglecting inertial effects of
the liquid due to the smallness of Reynolds number. In order
to account for the presence of a large number of identical par-
ticles, the velocity given by Stokes’ Law is typically modified
by a purely empirical multiplicative hindrance function which
depends on particle volume fraction, φ. This function, typically
denoted by f (φ), has been a matter of much discussion through
the decades. In [14], a so-called Richardson-Zaki expression
was proposed, where f (φ) ∼ (1 − φ)m, with m ≈ 5.1, and found

to compare favorably with experimental data for moderately di-
lute suspensions. For dilute dispersions, f (φ) ∼ (1 − 6.55φ)
was suggested in [15]. Other, more complex expressions for
f (φ) were discussed in [16, 17, 18] and [19]. In the presence of
shear, a hindrance function of form f (φ) ∼ (1 − φ) was shown
to be appropriate in [20].

1.2. Shear-induced migration of particles

Concentrated suspensions of spherical particles have been
shown to behave curiously when subjected to shear. This phe-
nomena was first detected in experiments with Couette vis-
cometer, where unusual decrease in measured viscosity oc-
curred during prolonged shearing. The theoretical framework
for this phenomena was laid out in [21, 22] and subsequently
rephrased in [23]. Its key element was shear-induced migra-
tion, a diffusive mechanism resulting from gradients in both
particle volume fraction and suspension viscosity, µ(φ). Net
fluxes caused by these gradients were deduced by consider-
ing irreversible interactions between pairs of smooth spheri-
cal particles (for details, see [22]). In [23], the predictions of
this model were shown to be in excellent agreement with ex-
perimental data for Couette flows, and the use of the model
was also extended to flows of concentrated suspensions through
cylindrical tubes. Recently, the model was employed in [24] to
carry out numerical simulations for suspension flows in more
complex geometries. Other studies, focusing on migration
of particles in pressure-driven channel flows [25], steady and
unsteady flows in various geometries [26], and inclined free-
surface channel flows [27], were carried out using a different
approach, based on Stokesian Dynamics.
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1.3. Particle-laden thin film flows

More recent studies addressed particle-laden thin film flows
with contact lines. Zhou et. al [10] reported on their prelim-
inary experimental results for incline flows of suspensions of
polydisperse glass beads with diameter ∼ O(100µm), focusing
on a single bead size. As they varied the bulk particle vol-
ume fraction, φ0, and the inclination angle, α, they identified
three distinct settling regimes: for small φ0 and α values, the
particles would settle out of the flow, clear liquid film would
flow over the particulate bed and the fingering instability re-
sulted; for large values of φ0 and α, the particles would move
faster than the liquid, leading to aggregation of particles in the
contact line region, formation of particle-rich ridge, and almost
complete suppression of the fingering instability; finally, inter-
mediate values of these parameters would lead to a well-mixed
regime in which fingering instability occurred. A theoretical
model was also derived in [10], based on the Navier-Stokes
equations for the liquid and a diffusive model for particle vol-
ume fraction, including capillary effects and hindered settling.
A simplified version of this model, which neglected higher or-
der capillary terms was studied in a shock dynamics framework
in [10] and [11]. Although successful in explaining qualita-
tively the formation of the particle-rich ridge, they did not pro-
vide a quantitative model nor did they ever attempt to model
the other regimes. In an effort to improve understanding of
these regimes, Cook [12] included shear-induced migration in
his model. He assumed that the outcome of particle settling
is guided by the balance between shear-induced migration and
hindered settling. Through his steady state formulation, he de-
rived a system of ODEs for φ and shear stress, σ. However, this
model did not include a significant hindrance effect due to the
presence of the solid track. Furthermore, while he found good
agreement between model’s predictions regarding well-mixed
regime and the experimental data, the data itself was from [10]
– old, preliminary and rather limited. Additional work in [13]
focused on studying the propagation of contact lines in particle-
laden thin film flows experimentally. Apart from varying φ0 and
α, particle size and density, and liquid viscosity were all varied
in order to examine their influence on the front speed. It was
found that the dependence of the front position on time was of
power-law type, with exponents similar to 1/3 proposed in [1].

1.4. The objectives

In this work we carry out a systematic study of settling
regimes over a range of particle sizes and liquid viscosities.
Through comparison between our experimental results and the
predictions of equilibrium theory, we uncover the transient na-
ture of the well-mixed regime, where bifurcation to either of
the remaining regimes eventually occurs. In addition, our ex-
perimental results clearly indicate how the particle size and the
liquid viscosity affect the time scale on which we observe this
transient regime.

In contrast to the preliminary experimental results from [10],
we perform experiments with three different particle sizes and
two different liquid types, and vary φ0 and α over wide ranges
of values. The liquid viscosity and the particle size are found

Figure 1: The experimental apparatus.

to affect the width of the region in (φ0, α)-space over which the
transition between settled and ridged regimes occurs. There-
fore, we show that these parameters dictate both the likelihood
of observing the well-mixed regime for given φ0 and α values,
and the time scale over which the well-mixed suspension is pre-
served. Next, a theoretical model is derived. We consider the
steady state of the system where hindered settling balances the
shear-induced migration of particles. Our modeling approach
is similar to the one in [12], with one important difference: we
also include the hinderance to settling due to the presence of the
solid track. We proceed by showing excellent agreement be-
tween model’s predictions and our experimental results over all
ranges of viscosities and particle sizes. Furthermore, we show
how the results of numerical simulations of our model provide
additional evidence for transiency of well-mixed regime.

This paper is organized as follows. In §2 we describe our
experimental set-up, list material parameters and identify the
techniques employed in collecting data. This is followed by a
discussion of our experimental results in §3, and the outline of
the derivation of our theoretical model in §4. In §5, we com-
pare the predictions of our model with the experimental results.
Finally, we summarize our findings and discuss challenges in
going from equilibrium to full dynamic theory in Conclusions.

2. Experimental apparatus and techniques

Figure 1 shows the experimental apparatus we use. It consists
of a steel base platform and an acrylic track, with adjustable in-
clination angle, α (range: 5◦ - 80◦). The track is 0.9 m long
and 0.14 m wide, with 0.02 m side walls. A liquid/particle
mixture prepared beforehand is poured into the reservoir sit-
uated at the top of the track and the gate is lifted, allowing it
to flow down the track, with the contact line initially straight.
Here, we only focus on experiments with finite, constant sus-
pension volume. The evolution of the flow is monitored us-
ing a digital camera, which is positioned above the track and
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ν (m2/s) ρl (kg/m3) ρp (kg/m3) d (mm)
L1 10−4 966 – –
L2 10−3 971 – –
P1 – – 2475 0.143
P2 – – 2475 0.337
P3 – – 2475 0.625

Table 1: Physical properties of liquids and particles used in the experiments.

captures images of the moving front at predetermined time in-
tervals, typically 0.25 − 4 s. Using this setup, we are able to
monitor the film motion, starting from release, until the front
has reached approximately 0.6 m down the track. Several fluo-
rescent lights are placed below the track for imaging purposes,
while food-coloring dye is employed to enhance contrast. Im-
ages are subsequently analyzed, and each experimental run is
classified, based on observed settling regime, as either ‘settled’,
‘well-mixed’ or ‘ridged’ (see §3 for details).

Our experiments involve three different particle types and
two different liquids. The particles are smooth spherical glass
beads (Ceroglass), and we consider three different diameters:
d = 0.143 mm (‘P1’), 0.337 mm (‘P2’), and 0.625 mm (‘P3’).
The standard deviation of particle diameters is 26% for all par-
ticle sizes. For suspending liquid, we use polydimethylsilox-
ane (PDMS) (AlfaAesar) in two different kinematic viscosities:
ν = 10−4 m2/s (‘L1’) and 10−3 m2/s (‘L2’). The particles are
heavy, i.e. ρp > ρl for all particle and liquid types, where ρp

and ρl are particle and liquid densities respectively. Relevant
material parameters are summarized in Table 1.

Suspensions are prepared by first weighing the particles and
PDMS individually, pouring PDMS into a container, and then
adding particles; slow manual stirring is used until uniform
mixture is obtained. This procedure prevents formation of air
bubbles. Typically, no haste is required between the prepara-
tion of suspension and its release down the track since uni-
formity of the mixture is preserved for sufficiently long time-
intervals. The bulk volume fraction of particles, φ0, is defined
as φ0 = Vp/V , where V = Vl + Vp is the total volume of the
mixture, and Vl and Vp are liquid and particles volumes respec-
tively. Here, we focus on V between 75 ml and 103 ml.

The experiments are carried out in open air and at room tem-
perature (298 K), maintained by the air-conditioning unit. The
fluorescent lights we use for imaging purposes radiate heat, but
the amount is insufficient to affect either viscosity of liquid,
flow dynamics, or observed particle behavior in any significant
manner. The track, gate and reservoir are cleaned after each
experimental run using a squeegee to remove the excess partic-
ulate and dust which may accumulate. Although this cleaning
procedure does not remove PDMS entirely, it ensures repro-
ducibility of our experimental results.

We carry out three different sets of experiments, conveniently
summarized in Table 2. In all experiments, we vary φ0 between
0.25 and 0.50, and α between 20◦ and 50◦. In Experiment A, we
consider medium-sized particles, P2, and both PDMS types in
order to study the influence of the viscosity of suspending liquid

P1 P2 P3
L1 Experiment C Experiments A,C –
L2 Experiment B Experiments A,B Experiment B

Table 2: Different liquid/particle combinations we consider. We study the man-
ner in which viscosity of suspending liquid (Experiment A) or particle size
(Experiments B and C) affects the settling regime.

of the settling regime. Experiments B and C focus on studying
the influence of particle size, by fixing the liquid type (L2 in B
and L1 in C) and varying the particle size. When L1 PDMS and
P3 particles are used, rapid settling occurs. Regardless of our
best efforts, significant fraction of particles often settles to the
bottom of the reservoir before suspension is ever released down
the track. Hence, we omit experiments with this mixture.

3. Experimental results

In all experiments, the observed flows are relatively slow. In
addition, settling behavior can only be classified after an ini-
tial transient stage which typically lasts up to 900 s. The set-
tling regimes observed in our experiments resemble the ones
discussed in [10]: each experimental run is labeled as either set-
tled, well-mixed, or ridged. Typical examples of these regimes
are shown in Fig. 2. In general, these three regimes occur in
each experimental set, A, B and C (an exception is discussed
below).

In settled regime, the particles tend to quickly settle out of
the flow, forming a particulate bed, with the suspending liq-
uid moving down the track faster than particles. Virtually clear
liquid film ultimately leaves the particulate bed far behind and
develops the fingering instability as described in [1]. Typically,
this regime occurs for small values of φ0 and α. In contrast,
when φ0 and α are large, the particles move faster than sus-
pending liquid, they aggregate in the contact line region, form-
ing a particle-rich ridge, often several times thicker than trail-
ing film. Hence, we refer to this regime as ridged. Large vol-
ume fraction of particles at the front appears to suppress the
fingering instability. Intermediate values of φ0 and α lead to
well-mixed regime, where volume fraction of particles remains
almost uniform throughout the film. The fingering instability
occurs, but compared to settled regime, it is typically character-
ized by longer wavelength.

For any particular liquid/particle combination, we classify
each experimental run and compile the results of the classifi-
cation in a corresponding (φ0, α) phase diagram (see Figs. 3, 4
and 5). Same-type settling behaviors cluster in these diagrams,
forming distinct bands. We use color to label these regime
bands: white for settled, light for well-mixed, and dark for
ridged. Figures 3, 4 and 5 each include a curve superposed on
the experimental results. These curves represent a well-mixed
regime prediction (i.e. φ′ = 0, where φ(z) is particle volume
fraction) of our theoretical model. The discussion regarding the
model and the agreement between its predictions and the exper-
imental results is given in §4 and 5.

3



Figure 2: The settling regimes: a) settled; b) well-mixed; and c) ridged. The fingering instability typical to clear liquid flows is only observed in settled and
well-mixed regimes.

We note that other more complex behavior also occurs. In
some experimental runs, we notice capillary motion of parti-
cles along the side walls or their alignment in linear streaks
along the track. Irregularities in shape and size of fingers, and
extreme cases of ridged regime, where sections of contact line
experience jamming with particles, become solid-like and vir-
tually break off in blocks are also observed. These phenomena
are attributed to either finite width of track and presence of side
walls or complex interplay between particle migration and con-
tact line effects. While very intriguing, we leave detailed study
of such complex behavior for future work, and focus here on
three settling regimes described above.

We proceed by discussing dependence of settling behavior on
viscosity of suspending liquid and particle size by presenting
results of Experiments A, B and C.

3.1. Experiment A: influence of viscosity of suspending liquid

In Experiment A, we consider intermediate size particles, P2,
and both the low and the high viscosity liquid (L1 and L2 re-
spectively). This allows us to study the dependence of observed
settling behavior on PDMS viscosity. Since, based on Stokes’
Law (e.g. see [15]), the settling velocity of particles is inversely
proportional to liquid viscosity, a decrease in PDMS viscosity
should result in enhanced tendency of particles to settle out of
the flow. Figure 3 shows phase diagrams which result for low
(a)) and high viscosity (b)).

At a first glance, the outcomes appear to be rather similar
for the two liquids, although the band for the settled regime is
somewhat wider in Fig. 3a) compared to b), confirming our ex-
pectations based on the settling time. A closer inspection also
reveals that the well-mixed band is noticeably wider when the
viscosity of the suspending liquid is lower (Fig. 3a)). In order
to better understand this difference, we consider the time scales
of the motion of the front and the settling of the particles. For
clear liquid inclined flows, the former time scale is proportional
to the viscosity of the liquid (e.g. see [10]), T ∝ µ. However,
for suspensions µ = µ(φ). For estimation purposes, we may

Figure 3: Phase diagrams for Experiment A. Particle type is fixed (P2), vis-
cosity of suspending liquid is varied: a) low (L1); and b) high (L2). Symbols
denote regimes observed in experimental runs: circles (�) for settled, triangles
(N) for well-mixed, and diamonds (�) for ridged. The solid curve represents
prediction of our theoretical model (see §4 and 5) for a regime where φ′ = 0
(well-mixed).
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assume uniformity of the slurry (i.e. well-mixed case), and by
using µ = ρlν(1 − φ/φmax)−2 as in [27], we get that T ∝ ν. It is
now clear that a decrease in the viscosity of the suspending liq-
uid, with all the other material parameters fixed, leads to a faster
propagation of the suspension front. On the other hand, for
purely gravity driven particle settling, the relevant time scale is
viscous and also directly proportional to ν (see §4) – a decrease
in viscosity leads to a faster settling of particles. Therefore, if
gravity were the only mechanism responsible for particle set-
tling, the width of the well-mixed bands in Fig. 3 would have
been independent of the viscosity. The fact it is not, suggests
that some part of the relevant settling dynamics occurs on a time
scale other than the viscous one. In §4, we conjecture that the
settling behavior is governed by a balance between the settling
due to gravity and the shear-induced migration. This balance
may lead to a settling which occurs on a different time scale,
introducing a correction to the pure viscous one. Accordingly,
while a decrease in the viscosity clearly affects the motion of
the front, it may only have a relatively minor effect on the set-
tling rate. Hence, due to the finite length of the track used in
the experiments, the suspensions with low viscosity PDMS are
likely to run out of track length before the final state of the sys-
tem has been achieved. As a result, some runs which, given
a longer track, would eventually become settled or ridged, are
classified as well-mixed. This argument not only explains the
differences between Figs. 3a) and b), but also gives a hint re-
garding the nature of the well-mixed regime: it appears to be an
intermediate transient state of the system that eventually, given
a sufficient time, bifurcates to either the settled or the ridged
regime. The notion of transiency of well-mixed regime is revis-
ited throughout this section and in §5.

3.2. Experiments B and C: influence of particle size
Next, we examine the manner in which particle size affects

the settling regime. For this purpose, we carry out Experiments
B and C, where liquid type is fixed and particle size is varied.

In Experiment B, we consider high viscosity suspending liq-
uid, L2, and all three particle sizes, P1, P2, and P3 (note: exper-
imental runs with L2/P2 combination have already been carried
out in Experiment A). According to Stokes’ Law, the settling
velocity is proportional to d2, and hence, largest particles are
most likely settle out of the flow. Based on this reasoning, the
settled band should be widest for P3. The phase diagrams re-
sulting from Experiment B are shown in Fig. 4.

Compared to Experiment A, the differences between dif-
ferent diagrams are much more pronounced. The speculation
based on Stokes’ Law is again proven correct – compared to
Figs. 4a) and b), the band corresponding to settled regime is
widest in Fig. 4c); it is narrowest for smallest particles in
Fig. 4a). But, the most striking feature here is a complete
absence of well-mixed regime for largest particles in Fig. 4c)
– all considered runs with L2/P3 configuration resulted in ei-
ther settled or ridged behavior. In addition, we notice that the
well-mixed band is significantly wider for smallest particles in
Fig. 4a) compared to intermediate ones in Fig. 4b). Hence, the
trend is obvious: for a fixed liquid viscosity, an increase in par-
ticle size makes the well-mixed outcome less likely. This result

Figure 4: Phase diagrams for Experiment B. Viscosity of suspending liquid is
fixed (high viscosity, L2), particle size is varied: a) small (P1); b) intermediate
(P2); and c) large (P3). Symbols denote regimes observed in experimental
runs: circles (�) for settled, triangles (N) for well-mixed, and diamonds (�) for
ridged. The solid curve represents prediction of our theoretical model (see §4
and 5) for a regime where φ′ = 0 (well-mixed).
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Figure 5: Phase diagrams for Experiment C. Viscosity of suspending liquid is
fixed (low viscosity, L1), particle size is varied: a) small (P1) and b) interme-
diate (P2). Symbols denote regimes observed in experimental runs: circles (�)
for settled, triangles (N) for well-mixed, and diamonds (�) for ridged. The
solid curve represents prediction of our theoretical model (see §4 and 5) for a
regime where φ′ = 0 (well-mixed).

further supports our hypothesis regarding the transient nature
of well-mixed regime. In particular, the diffusive fluxes of par-
ticles due to hindered settling and shear-induced migration are
both proportional to d2 (see §4). Since these are, in our opinion,
the two main mechanisms of particle motion in the system we
study, the smallest particles P1 are moving on a time scale much
longer than larger particles P2 and P3. Consequently, and as
seen in Fig. 4a), many runs involving P1 remain well-mixed for
the duration of the experiment. We suspect that given a longer
track and larger sample volume, majority of these flows would
eventually bifurcate to either settled or ridged regime. On the
other hand, the largest particles P3 move on shorter time scale
compared to both P1 and P2. Therefore, the flows involving
particles P3 quickly bifurcate to either settled or ridged, with
latter regime likely for most φ0 and α values. The complete ab-
sence of well-mixed band in Fig. 4c) serves as an indicator of
just how rapid this process is.

Finally, in Experiment C, we study the influence of parti-

cle size on the settling behavior for low viscosity PDMS, L1.
We focus on small and intermediate size particles, P1 and P2.
As discussed in §2, we do not consider the L1/P3 combination
since particles in all suspensions of that type undergo rapid set-
tling while still in the reservoir. We also note that runs with the
L1/P2 combination have already been carried out in Experiment
A.

The results of Experiment C are shown in Fig. 5. The trend
observed in Experiment B is very much noticeable here too: as
the particle size increases, the uniformity of the suspension is
less likely to be preserved. In particular, the well-mixed band
is significantly wider in Fig. 5a) compared to the one in b) for
larger particles. The explanation for this trend is identical to one
for Experiment B. For small particles, the time scale of particle
settling is much longer than for larger ones; therefore, unifor-
mity of suspension is likely to be preserved longer for small
particles. Furthermore, a comparison of diagrams in Figs. 3, 4
and 5 reveals that the well-mixed regime is more likely to oc-
cur for L1/P1 than for any other liquid/particle combination we
consider – the well-mixed band in Fig. 5a) is by far the widest.
This is particularly evident when Figs. 4a) and 5a) are com-
pared (small particle size, high and low viscosity suspending
liquid respectively). The latter comparison also shows that for
smallest particles, the influence of viscosity on both prolonging
the transient phase and making it more likely for wider range of
φ0 and α values is much more pronounced than in Experiment
A.

To summarize, Experiments A, B and C show that particle
size particularly affects the settling behavior. It dictates the
likelihood of occurrence of settled regime and the time scale
for particle-motion in general. The viscosity of the suspending
liquid also influences the particles motion, and increasingly so
for smaller particles. The experiments also reveal the transient
nature of the well-mixed regime. This is evident from the man-
ner in which both particle size and viscosity of the suspending
liquid affect the persistence of the well-mixed regime. We argue
that given a longer track length, a majority of, if not all, well-
mixed flows would bifurcate to either the settled or the ridged
regime. We revisit this argument again when we compare the
predictions of our theoretical model and the experimental re-
sults in §5.

4. Theoretical model

We consider a continuum model for particle volume fraction,
φ. The dynamics of φ are described by a conservation equation
for particles, written in Eulerian reference frame

Dφ
Dt

= −∇ ·
(
Jbd + Jgrav + Jcoll + Jvisc

)
. (1)

Here t denotes time, and D/Dt = ∂/∂t+v·∇, where v = (u,w); u
and w are components of liquid velocity vector v in x-direction
(down the track) and z-direction (normal to track) respectively.
Equation 1 includes hindered settling (Jgrav), and shear-induced
migration effects (Jcoll and Jvisc). It also includes Brownian dif-
fusive flux, Jbd = −D∇φ. We note that since the Péclet number
corresponding to our problem is small (i.e. Pe = γ̇d2/D ∼
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O(103), where γ̇ is magnitude of the local shear rate), hence-
forth we neglect this effect. The viscosity of the suspension is
a function of particle volume fraction, µ = µ(φ). Here, we use
the expression from [27], µ(φ) = µl (1 − φ/φmax)−2, where φmax

denotes maximum packing volume fraction, and restricts the
meaningful interval of values for φ to

[
0, φmax

]
, with the mix-

ture becoming almost solid-like as φ −→ φmax. Different values
of φmax have appeared in the literature, usually within the range
0.57−0.68 (e.g. see [12, 13, 17, 19, 22, 20, 23, 26, 27]). We use
the procedure described in [13] and obtain φmax ≈ 0.61. Also,
µl = νρl.

The settling of a particle due to gravity is hindered by the
presence of other particles and the solid track/wall [10]. The
net flux of particles caused by this effect is given by

Jgrav = −
d2φ

(
ρp − ρl

)
18µl

f (φ)ω(z)g. (2)

Here, we use the hindrance function from [20]: f (φ) = µl(1 −
φ)/µ(φ). The presence of a solid track at z = 0 is taken into ac-
count through ω(z) = A (z/d)2 /

√
1 + A2 (z/d)4 [10]; A = 1/18

so that ω(z) −→ 0 as z −→ 0, and ω ≈ 1 away from z = 0.
We note that this is the main difference between our model and
the one derived in [12]: we include the hindrance ω(z) in our
settling model, while in [12], this effect is neglected altogether.

The effect of shear-induced migration is included in Eq. 1
through two separate terms, Jcoll and Jvisc. These terms are de-
fined as in [22] and [23]. The net flux of particles due to irre-
versibility of collisions between pairs of particles is given by

Jcoll = −Kcoll
d2

4

(
φ2∇γ̇ + φγ̇∇φ

)
. (3)

On the other hand, the net flux due to gradients in viscosity,
µ(φ), is given as

Jvisc = −Kvisc
d2

4
φ2γ̇

1
µ(φ)

dµ
dφ
∇φ. (4)

Here, Kcoll and Kvisc are proportionality constants determined
from experiments. We follow [23] and use Kcoll = 0.41 and
Kvisc = 0.62.

The fluxes given in Eqs. 2, 3 and 4 are all proportional to
d2, a fact we have employed in §3, in our argument regarding
the influence of particle size on settling behavior of particles. It
is interesting to note that in Eq. 3, the first term suggests that
even if the particle distribution is uniform (i.e. ∇φ = 0), the mi-
gration will occur due to gradients in frequency of irreversible
particle collisions. This migration will then induce gradients in
φ and hence, the second term in Eq. 3 is activated.

The governing equation given in 1, is accompanied by
boundary conditions (zero normal flux at both z = 0 and z = h,
where h is film thickness) and coupled to Navier-Stokes equa-
tions for liquid with viscosity µ(φ). However, in order to gain
insight into settling behavior of particles, it is sufficient to con-
sider Eq. 1 at steady state [12]. Assuming the the thin film is
flat, the steady state is achieved when fluxes given in Eqs. 2, 3
and 4 balance in z-direction

Jgrav + Jcoll + Jvisc = 0. (5)

The boundary conditions are given by n̂ ·(Jgrav +Jcoll +Jvisc) = 0
at both z = 0 and z = h. Here, n̂ is the outward-pointing unit
vector in normal direction. We also assume that the flow is sim-
ple and unidirectional, so that γ̇ = ∂u/∂z. Henceforth, instead
of using γ̇, we revert to shear stress σ = µ(φ)γ̇. By scaling Eq. 5
using H as the length scale in z-direction and ρlgH sinα as the
scale for σ, and integrating once, we arrive at the following
ODE[

1 +
2 (Kvisc − Kcoll)

Kcoll

φ

φmax − φ

]
σφ′ = −σ′φ −

2ρs cotα
9Kcoll

(1 − φ) ω̄(z), (6)

where ρs = (ρp − ρl)/ρl, and ω̄(z) is the scaled version of ω(z).
Since we assume that the film is flat, the pressure is hydrostatic
in the suspension and the (scaled) gradient in shear stress is
given as [12]

σ′ = − (1 + ρsφ) . (7)

By substituting the expression from Eq. 7 into 6, we obtain[
1 +

2 (Kvisc − Kcoll)
Kcoll

φ

φmax − φ

]
σφ′ = (1 + ρsφ) φ −

2ρs cotα
9Kcoll

(1 − φ) ω̄(z). (8)

Finally, the accompanying boundary conditions are σ(0) =

(1 + ρsφ0) and σ(1) = 0 [12], which are substituted into scaled
versions of no-flux boundary conditions to obtain[

1 +
2 (Kvisc − Kcoll)

Kcoll

φ

φmax − φ

]
(1 + ρsφ0) φ′ =

(1 + ρsφ) φ, (9)

and

(1 + ρsφ) φ =
2ρsρlgH

27Kcollµl cosα
(1 − φ) , (10)

at z = 0 and z = 1 respectively. The system of ODEs and
accompanying boundary conditions given by Eqs. 7-10 may be
solved numerically for φ(z) and σ(z). The numerical solutions
of this system are discussed in §5.

Before proceeding further, we note that an identical system
of equations for φ(z) and σ(z) may be obtained directly from
Eq. 1 by employing scaling arguments typical to thin film flows
and considering the leading order terms in ε = (3Ca)1/3, where
Ca is capillary number (see Appendix for details).

5. Predictions of theoretical model vs. experimental results

The system of equations for φ(z) and σ(z) given by 7-10
is solved using a shooting method. The shooting is carried
out from z = 0, with φ(0) = 0 adjusted in order to satisfy∫ 1

0 φ(z)dz = φ0. Since ∂u/∂z = σ(z)/µ(φ(z)), once φ(z) and σ(z)
are known, u(z) is readily found, by simply integrating once and
using the no-slip boundary condition, u(0) = 0.
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Figure 6: Numerical solution for φ0 = 0.250 and α = 15◦: (a) particle volume
fraction, φ(z); and (b) velocity, u(z). Note that φmax > φ(0) > φ0 and φ(1) = 0.
This corresponds to settled regime.

As previously noted in [12], due to the fact that σ is non-
negative, φ is a monotonic function of z. This is because
σφ′ in Eq. 8 is determined by a function of φ only, with a
single unstable root φ̄(α) in the interval

[
0, φmax

]
. Hence, ei-

ther φmax > φ(0) > φ0 and φ(1) = 0, or φ(0) < φ0 and
φ(1) = φmax, corresponding to experimentally observed settled
and ridged regimes respectively. The well-mixed regime occurs
when φ′ = 0 and φ(z) = φ0 for 0 < z < 1. Setting φ′ = 0, φ = φ0
in Eq. 8 allows us to obtain an expression for α in terms of φ0

α = tan−1
[

2ρs

9Kcoll

1 − φ0

(1 + ρsφ0) φ0

]
. (11)

The curve corresponding to this expression is shown as a solid
line compared with the experimental results in the phase dia-
grams of Figs. 3, 4 and 5. The profiles for φ(z) and u(z) obtained
by numerically solving Eqs. 7-10 using several representative
combinations of φ0 and α values are shown in Figs. 6, 7 and 8.

Figure 6 shows the profiles for (φ0, α) = (0.250, 15◦), corre-
sponding to the settled regime in all phase diagrams in Figs. 3, 4
and 5. From Fig. 6a) it is evident this is the scenario where
φmax > φ(0) > φ0 and φ(1) = 0. Most of the particles are
in z ≤ 0.5, after which φ decreases rapidly. Effectively, the
particle-rich lower layer is covered by a less viscous clear liquid
layer. Furthermore, in Fig. 6b), the velocity increases sharply
for z > 0.5, causing clear liquid layer to flow faster than the
particle-rich one. This is equivalent to the regime seen in Fig-
ure 2a) in which particles settled to the substrate and clear liq-
uid continues down the track. In this case, the prediction of our
model agrees well with the experimental results.

In Fig. 7, the profiles for φ and u resulting from (φ0, α) =

(0.475, 45◦) are given. We note that in all our experiments with
these values of φ0 and α, the ridged regime occurs (see Figs. 3, 4
and 5). Figure 7a) shows, in contrast to Fig. 6a), that φ(0) < φ0
and φ(1) = φmax. Therefore, particles aggregate close to the
free surface of the film, and according to Fig. 7b), flow faster
than the more dilute lower layer. This behavior is typical in the
ridged regime observed in experiments and the model predic-
tions are again in good agreement with our experimental results.

Finally, for (φ0, α) = (0.310, 45◦), the resulting φ and u pro-
files are given in Fig. 8. With the exception of experiments with
the largest particles (see Fig. 4c)), this combination of φ0 and
α values leads to a well-mixed regime. From Fig. 8a), we see
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Figure 7: Numerical solution for φ0 = 0.475 and α = 45◦: (a) particle volume
fraction, φ(z); and (b) velocity, u(z). Note that φ(0) < φ0 and φ(1) = φmax. This
corresponds to ridged regime.
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Figure 8: Numerical solution for φ0 = 0.310 and α = 45◦: (a) particle volume
fraction, φ(z); and (b) velocity, u(z). Note that φmax > φ(0) > φ0 and φ(1) = 0
still apply.

that for most of the film thickness, the particles are uniformly
distributed. However, a close inspection reveals that this case
still belongs to the category of solutions to Eqs. 7-10 where
φmax > φ(0) > φ0 and φ(1) = 0, namely the settled regime. In
addition, Fig. 8b) indicates that the very thin layer of clear liq-
uid at the free surface still flows faster than the particle-laden
layer below it. While our model is a steady state one, one could
clearly see how in a dynamic setting the situation shown in
Fig. 8 eventually leads to a settled regime, with the top layer
of clear liquid becoming ever thicker and flowing ever faster as
the system evolves.

Next, we examine the agreement between the α(φ0) well-
mixed curve given by Eq. 11, and the experimental results. We
note that, apart from the inclusion of the hindrance due to the
presence of a solid track in our model, another important differ-
ence between this study and the one in [12] is that we compare
the predictions of our model to the results of much more ex-
tensive experiments. For this purpose, we go back to Figs. 3, 4
and 5. In all diagrams, except the one in Fig. 4c), the curve lies
completely within the well-mixed band, in excellent agreement
with the experimental results. For largest particles in Fig. 4c),
the well-mixed regime does not occur; however, the curve over-
laps a large section of the border between settled and ridged
bands marking the transition between these two regimes. This
again hints at the transiency of the well-mixed regime. The
structure of Eqs. 7-10 also indicates that the well-mixed regime
is an unstable root of the system. Even if φ0 and α values are
adjusted to lie exactly on the well-mixed curve, even small-
est perturbations eventually cause bifurcation to either settled
or ridged regime. The strongest evidence for this argument is
given by Fig. 4c), where relevant settling time scales are short
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enough so that bifurcation occurs rapidly and the well-mixed
band simply collapses to well-mixed curve. Other phase dia-
grams in Figs. 3, 4 and 5 are also in line with our argument, only
the time scales at which the bifurcation occurs are much longer
compared to the one in Fig. 4c), leading to observable well-
mixed regime. A sufficiently long experimental track would
allow for bifurcation to occur, resulting in eventual collapse of
all well-mixed bands in Figs. 3, 4 and 5.

Finally, it is worthwhile to emphasize that our model is a
steady state one, while the behavior shown e.g. in Fig. 2a),
where a clear film leaves a particle rich sediment behind and
develops fingers, is clearly a dynamic process, which could
only be captured by a more complete evolutionary-type model.
However, the settling behavior, which our simple model cor-
rectly predicts, is the most crucial ingredient, as it truly sets the
stage for these more complex dynamic processes. Therefore,
our model should be considered as one of the main components
of any fully dynamic model.

6. Conclusions

In this paper, we focus on experiments with particle-laden
thin film flows down an incline, where the effects of the vis-
cosity of the suspending liquid and the particle size are exam-
ined. We observe that the settling behavior of particles proceeds
in three distinct regimes: settled, well-mixed, and ridged, de-
pending on the bulk volume fraction, φ0, and the inclination an-
gle, α. Our theoretical model, based on an equilibrium theory,
where the hindered settling balances the shear-induced migra-
tion, is found to be in an excellent agreement with our exper-
imental data. More precisely, its predictions for the transition
between the settled and the ridged regime match the experi-
mental observations exactly over all ranges of viscosities and
particle sizes. Furthermore, both our model and our experi-
mental results suggest that the intermediate well-mixed regime
is a transient. In particular, our equilibrium theory predicts no
such regime; our experiments show how the well-mixed band
collapses as the relevant time scales are changed by varying
the viscosity and the particle size. Therefore, we argue that the
well-mixed regime eventually leads to a bifurcation to either the
settled or the ridged regime.

Our experimental results indicate that the particle size is a
significant parameter. The likelihood of observing the well-
mixed regime increases with the decrease in the particle diam-
eter. The viscosity of the suspending liquid is found to affect
the relevant time scale of the flow. For the smallest considered
particle size, the liquid viscosity also significantly affects the
likelihood of the well-mixed regime: it is more prevalent in the
case of a less viscous suspending liquid. A combination of a
low viscosity liquid and small particles significantly affects the
relevant time scales. The flowing film runs out of track length
before any substantial disturbance to the uniformity of the sus-
pension is observed. We argue that given a sufficiently long
track, the well-mixed bands in phase diagrams such as those in
Figs. 3, 4 and 5 might eventually collapse to a well-mixed line
given by Eq. 11, so that only the settled and the ridged regimes
are observed.

The development of a tractable theoretical model for particle-
laden thin films, incorporating all the relevant physical mecha-
nisms, is an interesting problem. This model would have to ac-
count for the momentum conservation and continuity in the liq-
uid, and include the capillary and the contact line effects, along
with those relevant to the particle migration. Hence, this task is
still a formidable one. Instead, a simplified steady state model
is derived here. The model considers a balance between the
hindered settling and the shear-induced migration of particles,
and it is shown to provide useful new information about the set-
tling behavior. This paper therefore makes a significant step
toward a fully quantitative model by identifying the dominant
equilibrium physics for the flow. In addition, it also implies fur-
ther modifications required in order to fully understand the tran-
siency of the well-mixed regime and the intricacies connected
to the time scales relevant to the front motion and the particle
settling. Our study also raises interesting questions regarding
the motion of the contact lines and the fingering instability. A
more complete theoretical model would allow for a comparison
with the time dependent experimental results from [13], regard-
ing the front motion in particle-laden films. In addition, the
experiments with clear liquid flows in [4] showed that once the
fingering instability occurred, the exponent in the power law
(e.g. see [1]) describing the evolution of the front position was
modified. Carrying out a similar study in the particle-laden set-
ting would indeed be compelling, especially since it would also
allow for examination of the connection between different set-
tling regimes and the wavelength of the fingering instability.
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A. Appendix

Here, we give an alternate approach for deriving Eq. 6 (i.e.
the steady state equation) directly from the dynamic equation
for φ, Eq. 1. First, the expressions for particle fluxes due to the
hindered settling and the shear-induced migration, Eqs. 2-4 are
substituted into Eq. 1. Assuming µ(φ) is given as in §4, and
γ̇ = ∂u/∂z, Eq. 1 becomes

φt + uφx + wφz =
d2Kcoll

4
(
φ (uzφ)x

)
x +

d2Kcoll

4

(
φ (uzφ)z

)
z
+

d2Kvisc

2φmax

uzφ
2
(
1 −

φ

φmax

)−1

φx


x

+

9



d2Kvisc

2φmax

uzφ
2
(
1 −

φ

φmax

)−1

φz


z

+

d2ρsρlg sinα
18µl

φ (1 − φ)
(
1 −

φ

φmax

)2

ω(z)


x

+

d2ρsρlg cosα
18µl

φ (1 − φ)
(
1 −

φ

φmax

)2

ω(z)


z

, (12)

where the subscripts denote derivatives. Next, we scale Eq. 12
using the time, length, and velocity scales typically utilized for
thin film flows (the lubrication approximation, e.g. see [10]).
Namely, the small parameter is ε = (3Ca)1/3, where Ca =

(ρlgH2 sinα)/(3γ) is the capillary number, and γ is the sur-
face tension of the liquid. The scale in the z-direction is H,
and the one in the x-direction is H/ε; u is scaled using usc =

(H2ρlg sinα)/(3µl), while w is scaled using εusc; the time scale
is given as H/(εusc). In addition, we assume that φ ∼ O(1). To
the leading order in ε, we obtain

Kcoll

(
φ (uzφ)z

)
z
+

2Kvisc

φmax

uzφ
2
(
1 −

φ

φmax

)−1

φz


z

+

2
3
ρs (cotα)

φ (1 − φ)
(
1 −

φ

φmax

)2

ω̄(z)


z

= 0. (13)

We proceed by substituting uz = 3(1 − φ/φmax)2σ and integrat-
ing Eq. 13 with respect to z. Finally, a simple manipulation
yields Eq. 6.
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