
1

Efficient Boundary Tracking Through Sampling
Alex Chen, Todd Wittman, Alexander Tartakovsky, Senior Member, IEEE, and Andrea Bertozzi

Abstract—The proposed algorithm for image segmentation
is inspired by an algorithm for autonomous environmental
boundary tracking. The algorithm relies on a tracker that
traverses a boundary between regions in a sinusoidal-like
path. Page’s cumulative sum (CUSUM) procedure and other
methods are adapted to handle a high level of noise. Ap-
plications to large data sets such as hyperspectral, are of
particular interest.

Index Terms—Image segmentation, boundary tracking,
high resolution, high dimension, sampling.

I. INTRODUCTION

Interpreting important features in an image often in-
volves some simplification that discards detail in favor
of generality. In image segmentation, two approaches are
particularly common: region-based methods and edge-
based methods. Partitioning an image into homoge-
neous regions gives a “cartoon-like” appearance which
identifies the most important objects and their rough
boundaries. Many algorithms using this approach rely
on identifying some feature common to each region
and classifying individual pixels according to how well
they match this feature. The classification is often based
on matching pixel intensities with some spatial bias,
such as regularity of object boundaries. This idea of
image segmentation is the method adopted in region-
based methods like the algorithm of Chan and Vese [1],
using the level set method [2] to minimize the piecewise
constant Mumford-Shah functional [3]. In many of these
methods, changes in topology are also allowed, so that
multiple objects may be detected.

Another approach is to consider the statistical patterns
observed in real data. The seminal work of Geman and
Geman [4] describes attributes such as pixel intensity
and image edges as a Markov Random Field. This model
places images in a Bayesian framework, in which fea-
tures can be described based on similar features found in
the same image or in other data sets that share the same
characteristics. Methods such as region competition rely
on this statistical model and are often solved using en-
ergy minimization [5], [6]. Sometimes the segmentation
can be successively refined with further user interaction
[7].

Manuscript received. This work was supported by ONR grant
N000140810363, the Department of Defense, ARO MURI grant 50363-
MA-MUR and NSF grant DMS-0914856.

A. Chen, T. Wittman, and A.L. Bertozzi are with the Department of
Mathematics, University of California, Los Angeles, CA 90059, U.S.A.
E-mail: {achen,wittman,bertozzi}@math.ucla.edu.

A.G. Tartakovsky is with the Center for Applied Mathematical
Sciences, University of Southern California, Los Angeles, CA 90090-
1113 U.S.A. E-mail: tartakov@math.usc.edu.

These approaches are generally less sensitive to noise,
due to the spatial regularity requirement and the use
of information from many pixels in the image. This ro-
bustness, however, comes at the expense of computation
time, since calculations often must be done on every
pixel, even if some pixels are far from object boundaries
or clearly belong to a certain region.

Recent advances have greatly improved the computa-
tional efficiency of segmentation methods based on the
Mumford-Shah functional using more efficient methods
for energy minimization [8], [9], [10], [11]. Another pos-
sibility is to make calculations only in a narrow band
around the zero level set, reducing the need to make
irrelevant calculations [12].

Alternatively, tracking edges or boundaries of objects
gives the location at which significant changes in the
image take place. Local searching algorithms such as
image snakes and gradient vector flow [13], [14] are
designed to work faster than region-based methods.
Note that since curves are evolved near the boundaries
of objects, it is only necessary to consider pixels near
these boundaries.

In contrast to the region-based methods, noise is often
a problem with such local searching methods since far
fewer pixels are used in calculations. Moreover, such
methods often use an edge-detection function based on a
gradient. While the gradient is intended to locate edges,
it has the side-effect of making the edge-detector highly
sensitive to noise.

Furthermore, certain shapes such as those with large
concavities or sharp corners may not be detected accu-
rately due to requirements in the regularity of the curve.
These points can be somewhat resolved with a balloon
term [15] designed to encourage evolution past local
minima of the underlying energy functional or replacing
the second order PDE for snakes evolution with a fourth
order PDE designed to preserve corners [16], [17]. Other
edge-based methods include the use of random walks to
test hypotheses for the most likely layout of edges [18]
and the Canny edge detector [19].

Theoretically, the use of fewer pixels in local search-
ing gives these methods a shorter run time than with
region-based methods. These algorithms scale only with
the number of pixels in the boundary, rather than the
number of pixels in the image. This speed advantage is
thus even more pronounced for large images.

In this work, we propose a novel segmentation
method that seeks to minimize the number of calcula-
tions. By sampling points, the boundary of an object
can be tracked without the need to process a large

2

number of pixels. The method is based on an algorithm
for tracking environmental boundaries [20], [21] which
utilizes robots that walk in a sinusoidal path along
the boundary between two regions. The robots change
directions as they cross from one region into another. The
robot walking method is related to the class of “bug”
algorithms that seek a target while avoiding obstacles
[22], [23]. Such algorithms utilize only local information
and theoretically should not visit the same location
twice. Only the points that are near the boundary in
question are tracked, resulting in substantial savings in
run-time.

Sinusoidal tracking patterns have been observed in a
variety of contexts as an efficient path for travel. Ants
walk in a sinusoidal manner along pheromone trails laid
down by other ants, predicting the proper direction of
travel and compensating if they stray too far in a certain
direction [24], [25]. For atomic force microscopy, using a
sinusoidal pattern for scanning can avoid imaging points
that are irrelevant to the region of interest [26], [27].

Some “walking” methods for boundary tracking exist
in image processing as well. Moore’s algorithm [28]
tracks an edge of a binary image using an ordered search
for image intensity values of 1 (alternatively, 0) through
a neighborhood of each pixel in the iteration. Another
method follows the maximum gradient magnitude of the
3 × 3 neighborhood of each pixel [29]. These methods,
however, clearly fail in the presence of any noise.

As with local searching methods in image processing,
noise can cause problems since the tracking is done
as a local search. It was proposed [21] that the use
of a change-point detection algorithm such as Page’s
cumulative sum (CUSUM) procedure [30] would allow
objects to be tracked in noise. Testbed implementations
of the boundary tracking algorithm suggest that robots
can indeed track boundaries efficiently in the presence
of a moderate amount of sensor noise [31].

One of the greatest advantages for using the algo-
rithm for segmentation is the computational efficiency.
By considering only pixels near the boundary of an
object, as with local searching methods, many pixels
are not considered. Furthermore, the tracking method
travels through each location only once, resulting in
run-time savings even over other local searching meth-
ods. As mentioned earlier, noise can be particularly
troublesome when fewer points are considered. Further
improvements can be made that are not practical in the
environmental tracking case. Many of these improve-
ments are based on hypothesis testing for two regions,
with the use of the CUSUM algorithm as a special
case. Hypothesis testing is an important part of many
statistical segmentation methods [32], [33], [34].

The boundary tracking algorithm in the context of
image processing was briefly introduced in [35]. In this
work, we give a more detailed treatment with expanded
theory and applications. In subsequent sections, we will
adapt the boundary tracking algorithm to the image
processing problem and discuss improvements that can

be made in this context. Section II briefly reviews the
boundary tracking algorithm and compares the original
environmental tracking and image processing problems.
In Section III, various methods for better performance in
the presence of noise are suggested. Other improvements
to the algorithm are discussed in Section IV. Section V
shows numerical results and images, including examples
with hyperspectral and high resolution data. Finally,
discussion and issues for further study are given in
Section VI.

II. A TWO-STEP LOCATING AND TRACKING METHOD

The boundary tracking algorithm is first initialized
with some given decision function, which determines
whether it is in one of two regions. Boundary tracking is
done as a two-step process using the decision function
in both steps. The first step involves locating a boundary
point via a global search. The boundary point found
by this global search serves as an initial point to be
used in the local sampling step. At this second step,
boundary points are found by using a tracker that travels
near the boundary in a sinusoidal path. Sometimes the
tracker can move off of the boundary, particularly when
the noise is high or when the decision function is not
very accurate. When this happens, it is necessary to
use the global search step again to locate the boundary.
This paper discusses the global search step briefly, and
focusses on the local sampling algorithm.

A. Global search to locate a boundary point
There are several options for the global search step.

The simplest is just a user-defined point near the bound-
ary that can be directly used by the local sampling step.
For a more automated approach, a random initial point
in the image can be given. Then the tracker travels in a
spiral away from the initial point until a boundary point
is detected (see Fig. 1). It is sometimes necessary to refine
this estimate, since the spiral pattern may not detect the
exact crossing point accurately.

Another option for global search is to use a hybrid
approach. Boundary location can be done by using a
coarse segmentation by another method. The resulting
segmentation gives initial boundary points to be used in
the local sampling step. This method will be explained
further in Section V.

B. Local sampling to track the boundary
For the physical problem [21], [20], a robot is used to

track an environmental boundary. The robot is placed
near the boundary in question, and it then uses a bang-
bang steering controller to move through the boundary
of the two regions.

It is relatively straightforward to adapt the algorithm
for images. Let the image domain be represented by
Ω, with B the boundary between two regions Ω1 and
Ω2, so that Ω = Ω1 ∪ Ω2 ∪ B and Ω1 ∩ Ω2 = ∅. Define

3

an initial starting point ~x0 = (x10, x
2
0) for the boundary

tracker and an initial value θ0, representing the angle
from the +x1 direction, so that the initial direction
vector is (cos θ0, sin θ0). Also define the step size V and
angular increment ω, which depend on estimates for
image resolution and characteristics of the boundary to
be detected. In general, V is chosen smaller for greater
detail, and ω is chosen smaller for straighter boundaries.
A decision function between Ω1 and Ω2 must also be
specified and has the following form:

d(~x) =

 1, if ~x ε Ω1,
0, if ~x ε B,
−1, if ~x ε Ω2.

(1)

The simplest example is thresholding of the image in-
tensity I(~x) at a given spatial location ~x (in the case of
a grayscale image):

d(~x) =

 1, if I(~x) > T ,
0, if I(~x) = T ,
−1, if I(~x) < T ,

(2)

where T is a fixed threshold value. Later in this section
we use statistical information about prior points sampled
along the path to modify d(~x). At each step k, the direc-
tion θk and current location ~xk are updated recursively.
Specifically,

~xk = ~xk−1 + V ∗ (cos θk−1, sin θk−1), (3)

and θk is updated according to the new location of
the tracker ~xk. A simple update for θ is the bang-bang
steering controller, defined by

θk = θk−1 + ωd(~xk). (4)

Midpoints of the tracker locations the iteration be-
fore and the iteration after change are taken to be the
boundary points. Linear interpolation can be used to
obtain a boundary curve. Note that unlike many other
segmentation methods, it is not assumed that the curve
is smooth. This allows the detection of very irregular
objects, especially those with large concave regions or
high curvature boundaries.

An angle-correction modification [21] can be used for
(4) if step k is a region crossing:

θk = θk−1 + d(~xk)(tω − 2θref)/2, (5)

where t is the number of steps since the last region
crossing, and θref is a small fixed reference angle chosen
based on the expected curvature of the edge being
tracked.

A further consideration is the stopping condition.
Several options for the termination of the algorithm
are possible: the tracker completes a certain number of
iterations, arrives at the image border, or arrives near
the first boundary point detected with some minimum
number of iterations.

There are several differences between the environmen-
tal problem and image processing problem. The primary
difference is the conversion from a continuous model to

Fig. 1. Left: Global search via a spiral-like pattern. Right: Basic
procedure for the boundary tracking (local sampling) algorithm.

a discrete model. While a robot samples data wherever it
travels, image data is pixelated so that the tracker cannot
sample data at the sub-pixel level. Instead, the nearest
neighbor intensity reading is used. Thus, the level of
detail is limited by the image resolution. However, while
sampling is only done at the pixel locations, the tracker
still travels at the sub-pixel level, as indicated in Fig. 1.
Moreover, the tracker can move with step sizes less than
1. The redundancy of sampling the same pixel more than
once makes the algorithm more robust to noise and gives
a sharper segmentation without increasing computation
time much. Indeed, numerical experiments confirm that
the step size giving optimal results is often less than 1.

Conversion to the image segmentation problem also
has several advantages. A robot is restricted to sampling
data only at its current location. In images, however, in-
formation from the pixels surrounding the tracker can be
used to mitigate mistakes due to noise. Using these extra
pixels, of course, negates some computational benefits,
but as long as the number of extra pixels considered is
small, the main advantages are retained. Various meth-
ods for using this nonlocal information while preserving
the speed of the algorithm are presented in the next
section. Also, robots used in experiments [36], [31] make
smooth changes of direction, but this restriction is not
required in the image processing case. Lastly, robots have
a fixed position at any point in time and cannot make
instantaneous jumps. In images, however, it is possible to
place the tracker in another location in a single step. This
ability allows the boundary tracker to correct mistakes
detected at a later time without having to backtrack
through many pixels.

III. CHANGE-POINT DECISIONS

The boundary tracking method presented works well
when a clear and accurate decision function can be de-
fined. However, in many applications a clear distinction
between the two regions cannot be made, particularly in
noisy images. For boundary tracking, errors in classifica-
tion by the decision function can lead to serious errors
in tracking, since the local sampling algorithm is only
valid when the tracker is near the boundary. With some
method to average nearby pixels, however, the algorithm
can be made much more robust to noise.

4

Fig. 2. An illustration of the path of the boundary tracker. For clarity,
a large step size V is used.

The change-point detection theory is well-suited to
tracking image edges in noise. In particular, the CUSUM
algorithm has been used to improve tracking perfor-
mance in the environmental tracking problem [37], [31].
This section reviews relevant information from change-
point detection and its application to the boundary
tracking problem.

Change-point problems deal with rapid detection of
abrupt changes in statistical properties (distributions) of
data. One standard application of change-point detection
is in manufacturing [38], [39], [40]. For a certain process,
it may be acceptable to have a certain failure rate. If
the process is able to operate below this tolerance level,
then it is allowed to continue operation. If, however, this
tolerance level is exceeded, one would like to stop as
soon as possible to make repairs. Making a false stop,
however, is costly as well, so it is important to bal-
ance the two considerations. Other applications include
surveillance, computer network security (rapid detection
of intrusions), failure detection in dynamical systems
and communication networks, financial markets, seis-
mology, navigation, speech segmentation, etc. See, e.g.,
[41], [42], [43], [44] and references therein.

More explicitly, given a sequence of independent ob-
servations s1 = I(x1), . . . , sn = I(xn) and two probabil-
ity density functions (pdf) f (pre-change) and g (post-
change), determine whether there exists N such that the
pdf of si is f for i < N and g for i ≥ N .

One of the most efficient change-point detection meth-
ods is the CUSUM algorithm proposed by Page in 1954
[30]. Write Zk = log[g(sk)/f(sk)] for the log-likelihood
ratio and define recursively

Uk = max (Uk−1 + Zk, 0) , U0 = 0 (6)

the CUSUM statistic and the corresponding stopping
time τ = min{k | Uk ≥ U}, where U is a threshold
controlling the false alarm rate. Then τ is a time of
raising an alarm. In our applications, assuming that f
is the pdf of the data in Ω1 and g is the pdf in Ω2, the
value of τ may be interpreted as an estimate of the actual
change-point, i.e., the boundary crossing from Ω1 to Ω2.

Changes from Ω2 to Ω1 can also be tracked in this

manner. Analogously to (6) define recursively the de-
cision statistic Lk = max(Lk−1 − Zk, 0), L0 = 0 and
the stopping time τ = min{k | Lk ≥ L}, where L is
a threshold associated with a given false detection rate.
The description of the basic boundary tracking algorithm
is now complete; the steps are shown in Fig. 3.

The CUSUM algorithm and optimality can be under-
stood intuitively. Consider two distributions of data Df

and Dg with density functions f and g, respectively.
In the change-point detection problem, observations are
conditionally independent given the point of change.
Given a sequence of observations xk−l+1, . . . , xk for a
fixed natural number l (the change point), test the hy-
potheses

H0 : xk−l+1, . . . , xk are all from distribution Df ,

H1 : xk−l+1, . . . , xk are all from distribution Dg.

Then the likelihood ratio test gives the procedure
g(xk−l+1)···g(xk)
f(xk−l+1)···f(xk)

≥ α.
This test, however, requires k− l+1 observations after

a change has actually occurred, since the hypotheses are
that the observations all come from one distribution or
the other. Instead, the number of observations l can be
allowed to vary, which is beneficial for our applications
where the point of change from Df to Dg is not known in
advance. In this case, a reasonable approach is to declare
that a change is in effect if there exists some l = 1, . . . , k

such that g(xl)···g(xk)
f(xl)···f(xk)

≥ α for some k ≥ 1. In other words,
the change is declared when it is reasonably certain
that some number of the most recent entries provides
evidence that a change has occurred. The threshold
α describes the confidence level for the change. This
modification allows for the reduction of the number
of false alarms due to noise while still allowing rapid
detection in case of an actual change.

Taking the logarithm, this rule can be associated with
the stopping time

τ = min{k |
k∑
i=l

log
g(xi)

f(xi)
≥ U for some l = 1, . . . , k}

= min{k | max
1≤l≤k

k∑
i=l

Zi ≥ U}

where U is a certain threshold that controls the rate of
false alarms and Zi = g(xi)

f(xi)
is the log-likelihood ratio for

the ith observation.
It is easily seen that the trajectories of the statistic

max1≤l≤k
∑k
i=l Zi coincide with the trajectories of the

CUSUM statistic Uk = maxl≥1
∑k
i=l Zi on the positive

half-plane. Note that the CUSUM statistic also obeys the
recursion (6) (i.e., it is a reflected from the zero barrier
random walk). Therefore, whenever the threshold U is
positive (which is usually the case) the stopping time
τ is nothing but the CUSUM algorithm that can be
equivalently written as

τ = min{k | Uk ≥ U}

5

Fig. 3. Flowchart of the boundary tracking algorithm.

where Uk is the CUSUM statistic given in (6).
A few basic observations from (6) can be made.

As mentioned earlier, the algorithm indicates a change
from Ω1 to Ω2 only when observations generated by
Ω2 accumulate. Furthermore, an accumulation of many
(negative) values from Ω1 does not affect performance
since the minimum value for U is 0. Lastly, the CUSUM
procedure can be interpreted as a collection of one-sided
sequential probability ratio tests (in this connection, see
Lorden [45]) .

In adapting change-point detection theory to region
changes, the assumption of independent observations
has been made. The samples are not independent, how-
ever, since they are taken from the tracking path. This
assumption is not altogether problematic in practice,
especially when noise is spatially uncorrelated. With a
high level of noise, the spatially uncorrelated noise gives
approximate independence. For a low level of noise,
using change-point detection is less important.

As alluded to earlier in this section, the effectiveness
of a change-point detection algorithm can be quantified.
Generally, the important factors are the delay in detec-
tion of a real change (which is random) and false alarms.
Detection delay measures the number of observations it
takes to detect a change after it has actually occurred,
while a false alarm occurs when a change is detected but
has not actually occurred (Type 1 errors). In general, the
detection delay should be small and the false alarm rate
should be low. Clearly, the two goals are antagonistic.
By increasing thresholds U,L the false alarm rate can be
lowered, but this will unavoidably lead to an increase in
the detection delay. Thus, one has to adjust parameters in
the change-point detection algorithm to moderate both
indices.

Typically, operating characteristics of change-point de-
tection algorithms are expressed via the average run
length (ARL) to detection versus the ARL to false alarm.
These performance indices have been first introduced by
Page in [30]. The ARL is the average time to a change
detection for a certain scenario. Under this notation,
the false alarm rate is measured by the ARL when
no change takes place (i.e., by the mean time to false
detection El(τ |τ < l)), while the average detection delay
is measured by the ARL when a change takes place
immediately after observations begin, i.e., E0τ . The ARL
is not the only method to measure the effectiveness
of change-point detection algorithms [41], [45], [46].
For example, why should we restrict our attention to
the detection delay when the change occurs from the
very beginning? The conditional average detection delay
El(τ − l|τ > l) for any fixed point of change l > 0 is a
more reasonable measure. Also, in place of measuring
the false alarm rate with the ARL to false alarm one may
prefer to work with a probability of false alarm in a fixed
time interval. See [46] for a more detailed discussion.

In 1971, Lorden [45] introduced the minimax (worst-
worst case) performance measure – the essential supre-
mum average detection delay DD = ess sup suplEl(τ −
l)+|x1, . . . , xl) and proved that the CUSUM procedure
is asymptotically optimal with respect to this detection
delay measure for a low false alarm rate when the ARL
to false alarm is large, among all procedures for which
the ARL to false alarm is fixed at a given level. Later,
Moustakides [47] proved that actually CUSUM is exactly
optimal for any false alarm rate with respect to Lorden’s
criterion. Other optimality properties of CUSUM are
discussed in [46]. For CUSUM, the following relation

6

holds (asymptotically as ARL to false alarm is large):

DD ∼ El(τ − l|τ > l) ∼ logARLFA

K(g, f)
, l ≥ 0,

where ARLFA denotes the ARL to false alarm and

K(g, f) = Eg

(
log

g(x)

f(x)

)
is the Kullback-Leibler information number [41].

IV. FURTHER IMPROVEMENTS TO THE BOUNDARY
TRACKING ALGORITHM

This section introduces further modifications to the
algorithm, possible only in the image processing case,
improving performance in the presence of noise. To
mitigate the effects of noise further, a mean filter can
be used; that is, the nearest neighbor intensity at the
tracker can be replaced by an average of intensity values
of nearby pixels. The idea is that nearby pixels are
most likely to be in the same region, so that taking an
average filters noise without using values from the other
region. The same principle is at work with region-based
segmentation methods, in which it is assumed that an
image can be partitioned into a few contiguous regions
with the same characteristics.

Mean filters can help the performance of the boundary
tracker in noise. But since the tracker follows the bound-
ary closely, it is important to use the uniform region as-
sumption conservatively. Using a large number of pixels
around the tracker would average noise but likely would
also use values from the other region. Using these values
can result in a much more serious error. In practice, a
3×3 window centered on the tracker works well. Instead
of averaging the entries in the window, one can apply
reasoning similar to the hypothesis testing mentioned for
the CUSUM algorithm. As with observations along the
boundary tracking path, the entries in the 3× 3 window
can also be treated as independent measurements. Thus,
in the hypothesis testing of the CUSUM procedure (see
appendix), the nearest neighbor observation is replaced
by the nine observations in the 3× 3 window.

The replacement of an observation by a window is
not standard in change-point detection theory, since it
requires using extra data points not typically available.
While the implementation may pose some difficulty in
the environmental boundary tracking problem, there is
no such problem for the corresponding image processing
problem.

Besides noise, there can be other difficulties with the
boundary tracker. Occasionally, the boundary tracker
becomes stuck in a certain area due to ambiguities in the
object boundaries or irregularity of its shape. To prevent
this occurrence, the boundary tracker receives a “kick”
if it has not left a certain window by a certain number of
iterations. The kick is in the opposite direction to which
the boundary tracker entered the window.

More explicitly, starting at a point ~xi, let M1 be a
constant representing the “window” size that the tracker

must leave, and M2 a constant representing the number
of iterations before receiving a “kick.” If ‖~xi − ~xi+j‖2 <
M1 for each j ≤ M2, then the tracker location ~xi+M2

is
moved to ~xi+M2

− 2(~xi+M2
− ~xi), and the new starting

point for the kicking algorithm becomes ~xi+M2
.

Theoretically, this direction is justified by assuming
that the boundary tracker enters the kicking window
due to chance noise effects and that a slightly different
path can avoid problems. In experiments, the efficacy of
kicking is confirmed in that after going off course, the
tracker often finds its way back to the boundary after
kicking.

Another improvement is to use the theoretical av-
erage detection delay to backtrack along the path. In
cases where the structure of noise is known or can
be estimated, the average detection delay can often be
calculated. Since this is the average time to detection
after a change-point has actually occurred, backtracking
along the path by this amount will give the correct
change-point on average. This results in a more accurate
detection of the actual boundary points.

The statistical nature of the CUSUM algorithm can be
used to detect inaccurate trackings. The idea is to observe
whether the algorithm is making accurate tracking or
detecting an object only because it is forced between the
two classes. If the object is not being tracked accurately,
the algorithm should switch from the local sampling
algorithm back to the global searching step to find a
boundary point. Once a new boundary point is found,
local sampling can begin again.

Recalling the log-likelihood ratio Zk for each point
along the tracking path, tracking the statistic C =
1
N

∑N
k=1 |Zk|, where N is the total number of points in

the path, gives a measurement of the confidence that the
tracking is valid. If C > T for some constant threshold
T , then one can be reasonably sure that a large portion of
data points are well-separated by the density functions
f, g. In contrast for C < T , the tracking is likely to
be inaccurate as boundary points are classified mainly
because they are forced into one class or the other. This is
particularly a problem if the assumption of a two-region
decomposition for Ω is false.

V. NUMERICAL AND IMAGE EXAMPLES

In Fig. 4, several results on a “U” image in heavy noise
are shown. The results for boundary tracking are com-
parable to a region-based method. Furthermore, corners
are not rounded as in the case with many energy-based
segmentation methods. This fact can make boundary
tracking more well-suited for segmentation problems
with more man-made objects or with sharper edges.

The segmentation accuracy of the boundary tracking
algorithm is comparable to that of other segmentation
methods. The run-time and storage costs, however, are
much less for boundary tracking than for many global
methods, especially for high dimensional data.

The boundary tracking algorithm is ideally suited
for segmentation in large data sets. Detection delays of

7

Fig. 4. Top Left: A 100 × 100 image was corrupted with additive Gaussian noise, N(0,0.5). Top center: Boundary tracking without change-
detection. Top right: Boundary tracking with CUSUM. Bottom left: Boundary tracking with CUSUM and a 3×3 window average. Bottom center:
Threshold dynamics [11]. Bottom right: Boundary tracking on a 1000 × 1000 version of the “U” image.

boundary points are the same in terms of number of
steps, whether for low resolution or high resolution data.
Thus, relative to the size of objects, detection delays are
much shorter. Furthermore, steps with smaller angular
increment can be used, effectively taking straighter steps
and tracking the boundary more sharply. Using a lower
angular increment also increases the speed of tracking,
lowering the number of iterations needed to track the
object completely. A tracking of a 1000 × 1000 version
of the “U” image is also shown in Fig. 4. Note that the
“units” of detection delay is in pixels. That is, for a high
resolution image, the detection delay is much smaller
in terms of the characteristic width of features. Thus,
the tracking result looks much more accurate. While the
jagged tracking of the 100 × 100 version still exists in
the 1000× 1000 version, the scale of the jagged behavior
is small compared to the features and thus is almost
invisible.

In the “San Francisco Bay” data set [48], a multispec-
tral data set taken by the Landsat 7 satellite, the data
is 3000 × 3500 pixels, with boundaries of the object of
interest touching the edge of the image. The Normalized
Difference Vegetation Index (NDVI), commonly used for
water detection [49], is taken as the decision function.
This index is a combination of two images at the same
spatial coordinates, taken at a red wavelength band and
an infrared wavelength band.

The algorithm compares favorably with other seg-

Fig. 5. Boundary tracking of the San Francisco Bay coastline. In
this example, multiple trackers need to be used since the coastline
boundary is not connected. The combination of these tracking paths
gives an accurate depiction of the coastline.

mentation methods designed for fast computation time.
The split Bregman globally convex segmentation (GCS)
method of [8] is one such method. Table 6 shows a

8

comparison of the two methods. Note that the boundary
tracking method scales much better with an increase in
image size.

A comparison of run-times (s)

Image Boundary Tracking Split Breg. GCS

100× 100 U 0.0025 0.034
300× 300 U 0.0089 0.620
1000× 1000 U 0.0420 6.600

Fig. 6. A comparison of run-times for various images and segmen-
tation methods. Computations were done with an Intel Core 2 Duo
Processor T8300 (2.4 GHz).

The boundary tracking method also has a natural
extension to hyperspectral data, which consists of a
group of spatially co-registered images taken at differ-
ent wavelengths in the electromagnetic spectrum. Thus,
each spatial pixel now has a vector-valued “spectral
signature” instead of a scalar intensity. In fact, it has
been observed that different objects have distinct spectral
signatures, so that objects are readily distinguishable by
observing spectral signatures.

In the tracking algorithm, all that is required is a
decision function that determines whether the tracker is
in one of two regions. Then replacing a simple threshold
by a suitable distance can still give a good boundary
detection. One distance that has been found to work
especially well with hyperspectral data is the spectral
angle distance [50], [51]:

Spectral angle = cos−1
(

u · v
‖u‖‖v‖

)
(7)

If there are multiple objects to be detected, one may
wish to compare two classes of objects, rather than two
specific objects. In this case, the decision function should
compare distance to one class (the minimum distance
to an object in the class) and distance to the other
class. This comparison is especially useful in the case
of hyperspectral imagery. The theoretical background
on using such class comparisons is given in [46]. The
segmentation resulting from a class comparison between
building references and background references for the
Urban data set, a hyperspectral data [52] set taken by
HYDICE, an airborne sensor, is shown in Fig. 7.

With the change to a different decision function, the
choice of f, g becomes more unclear. It is difficult or
impossible to estimate the structure of the data in terms
of spectral angle distance. By choosing a large number
of sample points, it may, however, be possible to create
an approximation of f, g from the data itself.

With hyperspectral imagery, the number of spectral
bands can number in the hundreds. With this amount
of data, it is often necessary to reduce the size of the
data, either in the spectral dimension or through spatial
subsampling. Using the boundary tracking algorithm
equipped with the spectral angle distance, segmentation
can be fast and accurate.

Fig. 7. Building segmentation with spectral angle decision function.

The Smith Island H20000508 southendBIP data set
[53], [54], [55], [56] is a large hyperspectral data set
obtained by an airborne hyperspectral scanner (HyMAP)
on May 8, 2000, over Smith Island, VA, a barrier island in
the Virgina Coast Reserve. The boundary between land
and sea is often ambiguous, causing problems especially
when the full spectral information is not used. The
NDVI of the data generally gives a good threshold for
land and sea, but sandy and swampy areas occupy a
range of values that constitute the ambiguous region.
Considering spectral signatures, however, gives a clearer
indication of the various types of terrain. Moreover, it is
also possible to assign these ambiguous areas to either
region according to user preference, simply by changing
the reference points for each region.

In Fig. 8, each pixel is unmixed as a linear combination
of various reference spectral signatures using the L1

unmixing model of [57]. The reference signatures used
are that of beach, dark dirt, light dirt, vegetation, light
water, and dark water. Each pixel is assigned to either a
land class or water water class based on the maximum
abundance of the material at that location. The plots
of the reference signatures are shown in Fig. 9. Fig. 10
shows that tracking the maximum abundance shows the
boundary more clearly than using the NDVI result.

More generally, boundary tracking can be used to
efficiently track features that can be derived from the
solution of an inverse problem. Since boundary tracking
is a subsampling algorithm, the number of pixels that
require intense processing is minimal. In certain cases,
the decision function for each pixel may be a complex
calculation requiring a high run-time. This is especially
true when calculating the decision function accurately
is more computationally expensive as the boundary is
approximated with greater precision. The next example
for fractals is an example of this fact.

Tracking fractal boundaries such as coastlines is an-

9

Fig. 8. Left: Reference points used in the land/water classification by full unmixing. The reference signatures are that of 1 - dark dirt, 2 - light
dirt, 3 - vegetation, 4 - beach, 5 - dark water, 6 - light water. Right: The land/water classmap using maximum abundance of the unmixed result.

Fig. 9. Left: Plots of the reflectances of the reference signatures of the land class: dark dirt, light dirt, vegetation, beach. Right: Plots of the
reflectances of the reference signatures of the water class: dark water, light water.

other interesting example of the efficiency of boundary
tracking. For fractals such as the Mandelbrot set, the
escape algorithm [58] can be used to calculate whether
a point is in the set or outside. While it can be com-
putationally expensive to implement the algorithm for
very fine detail, tracking the boundary only can be
much faster. In addition, the potential detail is unlimited
since the fractal is defined in continuous space rather
than the discrete space of images. Moreover, boundary
tracking follows rough boundaries without introducing
extra smoothing, as in many segmentation methods with
a penalty on the length of the boundary. This fact makes
boundary tracking a method well-suited for dealing with
fractal-like structure. Fig. 11 shows various magnifica-

tions of boundary tracking on the Mandelbrot set. Table
12 gives a timing comparison between the boundary
tracking algorithm and the calculation of the escape
algorithm at the corresponding resolution.

By tracking the boundary of the fractal at various
magnification factors, it is possible to measure the fractal
dimension using the box-counting method. The fractal
dimension of a set is defined to be

D = lim
ε→0

log(N(ε))

log(1/ε)
,

where N represents the number of boxes of size ε that are
needed to cover the set. At a given scale ε, there exists
a simple relationship between the length L(ε) and the
number of boxes N(ε): L(ε) = εN(ε). Using this formula,

10

Fig. 10. Tracking the boundary of the “Smith Island” hyperspectral data set. Left: Grayscale boundary tracking using the NDVI as an indicator
between land and sea. Right: Boundary tracking using unmixing on each pixel of the data set. Only pixels visited by the boundary tracker are
unmixed.

Mandelbrot set timing comparison

Pixel Width BT (s) Full EA (s)

10−2 1.6 32.9
5× 10−3 3.7 132.1
3× 10−3 7.3 367.1

10−3 42.2 −

Fig. 12. A table comparing the run-time of the boundary tracking
algorithm (BT) and calculation of the full escape algorithm (EA) for
the Mandelbrot set at the corresponding resolution (pixel width). The
precision of the escape algorithm is 2000 iterations.

the fractal dimension can be rewritten as

lim
ε→0

log(L/ε)

log(1/ε)
= 1− lim

ε→0

log(L)

log(ε)
.

Using various step sizes V , boundary tracking yields
boundary points at various scales. Thus, a log-log plot of
of log(L) versus log(ε) is approximately a line with slope
equal to one minus the fractal dimension. A calculation
of the boundary for the Julia set with c = 1/4 is
shown in Table 13. The calculated slope is -0.0799, so
the measured fractal dimension is 1.0799, which is close
to the theoretical value of 1.0812 [59]. The corresponding
set and log-log plot is shown in 14.

Similar fractal dimension calculations can be done for
real coastlines, as long as the resolution of the data
set is sufficient. For the Smith Island data set, a fractal
dimension can be calculated using boundary tracking.
The results are shown in Fig. 15. From the fitted slope
of -0.1739 for the log-log plot, the measured fractal
dimension is thus 1.1739.

For the tracking of more than one object, it is possible
to use another segmentation method first on a subsam-

Julia set lengths

V Boundary Points Length

5× 10−5 42 582 3.7706
10−4 20 152 3.5642

3× 10−4 6210 3.2655
5× 10−4 3538 3.1364

10−3 1668 2.9773
3× 10−3 513 2.7254
5× 10−3 308 2.5925

10−2 137 2.4744

Fig. 13. A table of the length calculations for the Julia set at various
scales.

pled version of the image to obtain topology and the
rough locations of objects. This has the added benefit of
giving estimates for the mean and variance, which can
be used in the case of Gaussian noise. Furthermore, if the
initial segmentation is reasonably accurate, the boundary
tracking algorithm can be restricted to detecting only
boundary points close to those detected in the initial seg-
mentation. Thus, the boundary tracking algorithm acts
as a fast refinement to another segmentation method.
The resulting detection can also be used as an initial-
ization to another segmentation method on the full data
set. The last modification would give fast convergence
while preserving the strengths of an alternative method.

An example on a simple, noisy image is shown in
Fig. 16. The original image is 1000 × 1000. Threshold
Dynamics was first applied to a heavily subsampled
version (100 × 100) of the image. Then one pixel from
each connected component was taken as the starting
point for a boundary tracker.

11

Fig. 11. Tracking the boundary of the Mandelbrot set. Top left: Original magnification. Top right: 10 times magnification. Bottom left: 100 times
magnification. Bottom right: 1000 times magnification.

VI. DISCUSSION

The greatest advantage of the boundary tracking algo-
rithm over region-based methods for segmentation is the
computation speed. Calculations and measurements are
taken over samples, with the number of samples having
the same order as the boundary length of the tracked
object. In region-based methods, however, calculations
and measurements are done over the entire image. Thus,
boundary tracking is O(n), while region-based methods
are O(n2), where the size of the image is n×n. Then the
savings becomes more apparent for larger images and
those with higher resolution.

There is a substantial savings in memory requirements
as well. Since only local information is used in the
decision function, it is not even necessary for the entire

image to be stored at once. Instead, image values can be
read as needed whenever the tracker visits a new point.
On the other hand, many segmentation methods require
not only the original data to be stored but also evolved
data of the same size.

With high-noise data, change-point detection is vital
in minimizing mistakes due to noise. Parameters are
often chosen in order to minimize detection delay and
false alarms. In the boundary tracking problem, the
former is of paramount importance, since region changes
happen very frequently. While false alarms can be tol-
erated to some extent, consistent detection delays can
seriously hamper the algorithm’s performance, causing
false alarms to increase as well, by leading the tracker
away from the boundary. Improving the algorithm’s

12

Fig. 14. Left: The Julia set for c = 1/4. Right: Log-log plot of log10(L) versus log10(V).

Fig. 16. A hybrid threshold dynamics - boundary tracking segmentation on a 1000 × 1000 image. Left: Initial segmentation by threshold
dynamics. The image is subsampled by a factor of 10 on each axis. Right: Final segmentation by boundary tracking, with starting points for the
trackers from the initial segmentation.

ability to recover from such mistakes is an important
consideration.

The change-point modifications run very quickly, re-
quiring only a minimal amount of extra storage and
computation over the boundary tracking algorithm
alone. Using a window replacement is slightly slower
since more pixels are sampled. In this case, however, the
algorithm still operates in O(n). Moreover, the greater
accuracy with which the boundary is tracked can lead
to additional savings in computation time, as fewer

tracking mistakes are made and thus fewer iterations are
needed.

While it is desirable in general to minimize the false
alarms and detection delay, these indices do not provide
a complete understanding of a change detection algo-
rithm’s effectiveness in the boundary tracking problem.
This is due to the fact that a false alarm of just one
change point can cause the boundary tracker to travel
far from the boundary. In subsequent readings, change-
point detection may be completely accurate and have

13

Smith Island set lengths

V Boundary Points Length

0.5 14 431 8162
1 6111 7057
2 2939 6830
4 1271 6024
8 464 4651
16 199 4651
32 93 3976

Fig. 15. Top: A table of the length calculations for the Smith Island
set at various scales. Bottom: Log-log plot of log10(L) versus log10(V)
for Smith Island.

low detection delay, but give no useful information
about the boundary. Thus, the effectiveness of a change
point detection algorithm must be measured visually
with respect to the final segmentation result as well.
Nevertheless, these parameters are useful numerical in-
dicators of a procedure’s effectiveness.

The change-point detection literature studies various
measures of false alarms and detection delays. Due to
the interdependency of each change-point detection test
that is run, simply tracking these two indices may not be
a good indicator of how the algorithm performs. Also,
most of the examples presented involve some a priori
assumption on the probability distribution of the data.
This assumption may not be accurate for some data,
especially for complicated data sets like hyperspectral
imagery. Some possibilities from change-point detection
[41] have been studied, but it is also not clear whether
these would represent an improvement over a priori
assumptions on the distributions.

Another important factor in the effectiveness of the
algorithm is the characteristic width of the object to
be tracked. If the step size of the boundary tracker is
of the same order of magnitude as the characteristic
width of the object, it can be difficult to track an object
effectively. But with a characteristic width much larger
than boundary tracker step size (equivalently, higher

resolution) data, the algorithm can be highly effective
without a corresponding large jump in run-time. Note
that step size cannot be decreased arbitrarily; the res-
olution restricts the amount of data that can be used
when the step size becomes too small. Thus, narrow
objects are difficult to track if the resolution of the data
is not sufficient. Of course, this limitation on tracking
features smaller than characteristic dimensions is true
for all segmentation methods.

When there are more than two regions to be differ-
entiated, different possibilities arise. One method is a
modification to track classes of objects. This is especially
relevant to the case with hyperspectral data, in which
there are multiple objects with different spectral signa-
tures. In this case, the decision function can be altered
so that a given pixel is measured against proximity to
an entire class, rather than just to one object. Particular
care needs to be taken, however, to choose the classes
carefully.

It is also important to take into account the structure
of the data when using a different decision function. In
some of the examples presented, images were corrupted
with additive Gaussian noise. But for real images, the
noise parameters or structure of the data is not known a
priori. The assumption of Gaussian data, however, does
seem to fit a wide variety of data.

An extension to the boundary tracking algorithm is to
use multiple trackers. The algorithm is easily paralleliz-
able, adding a stopping condition for each tracker; for
example, the algorithm for one tracker terminates if it
meets the path taken by any other tracker. Aside from
parallelization for the sake of run-time, information from
multiple trackers can potentially be used in concert to
improve tracking.

The boundary tracking algorithm can be of use in
many problems in which run-time is important. For
video tracking, the large number of frames used can
lead to a large computation time. By using the boundary
tracking algorithm with initialization taken from previ-
ous frames, objects can be found and tracked quickly
through each frame. Other applications include surface
segmentation and more sophisticated parameter estima-
tion models by using shape priors.

ACKNOWLEDGMENTS

The authors would like to thank Dr. C. Bachmann and
the Naval Research Laboratory for helpful discussions
on geospatial tracking problems as well as the use of the
“Smith Island” data set, Z. Hu and V. Mejia for earlier
work on the boundary tracking algorithm in the image
processing context [60], [61], and T. Goldstein for the
implementation of the split Bregman GCS method.

REFERENCES

[1] T. Chan and L. Vese, “Active contours without edges,” IEEE Trans-
actions on Image Processing, vol. 10, no. 2, pp. 266–277, February
2001.

14

[2] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formu-
lation,” J. Comput. Phys., vol. 79, pp. 12–49, 1988.

[3] D. Mumford and J. Shah, “Optimal approximation by piecewise
smooth functions and associated variational problems,” Commu-
nications on Pure and Applied Math, vol. XLII, no. 5, pp. 577–684,
July 1989.

[4] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721–
741, 1984.

[5] S. C. Zhu and A. L. Yuille, “Region competition: unifying snakes,
region growing, and Bayes/MDL for multiband image segmen-
tation,” IEEE Trans. on PAMI, vol. 18, no. 9, pp. 884–900, 1996.

[6] Z. Tu and S. C. Zhu, “Image segmentation by data-driven Markov
chain Monte Carlo,” IEEE Trans. on PAMI, vol. 24, no. 5, pp. 657–
673, May 2002.

[7] C. Rother, V. Kolmogorov, and A. Blake, “GrabCut: Interactive
foreground extraction using iterated graph cuts,” in ACM Trans-
actions on Graphics (SIGGRAPH), August 2004.

[8] T. Goldstein and S. Osher, “The split Bregman algorithm for L1
regularized problems,” SIAM Journal on Imaging Sciences, vol. 2,
no. 2, pp. 323–343, 2009.

[9] J. Darbon, “A note on the discrete binary Mumford-Shah model,”
in Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2007, vol. 4418, pp. 283–294.

[10] N. El-Zehiry, S. Xu, P. Sahoo, and A. Elmaghraby, “Graph cut
optimization for the Mumford-Shah model,” in Proceedings of the
Seventh IASTED International Conference Visualization, Imaging, and
Image Processing., Palma de Mallorca, Spain, August 2007.

[11] S. Esedoglu and Y. R. Tsai, “Threshold dynamics for the piecewise
constant Mumford-Shah functional,” J. Comput. Phys., vol. 211,
no. 1, pp. 367–384, 2006.

[12] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A pde-
based fast local level set method,” J. Comput. Phys, vol. 155, pp.
410–438, 1999.

[13] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International Journal of Computer Vision, vol. 1, no. 4, pp.
321–331, 1988.

[14] C. Xu and J. Prince, “Gradient vector flow: A new external force
for snakes,” Proc. IEEE Conf. on Comp. Vis. Patt. Recog. (CVPR),
pp. 66–71, June 1997.

[15] L. Cohen, “On active contour models and balloons,” CVGI: Image
Understanding, vol. 53, no. 2, pp. 211–218, March 1991.

[16] J. Tumblin and G. Turk, “LCIS: A boundary hierarchy for detail-
preserving contrast reduction,” in SIGGRAPH annual conference on
computer graphics, Los Angeles, CA, August 1999, p. 8390.

[17] A. Bertozzi and J. Greer, “Low-curvature image simplifiers: Global
regularity of smooth solutions and laplacian limiting schemes,”
Communications on Pure and Applied Mathematics, vol. 57, no. 6, pp.
764–790, 2004.

[18] N. Azzabou, N. Paragios, and F. Guichard, “Random walks, con-
strained multiple hypotheses testing and image enhancement,”
9th European Conference in Computer Vision (ECCV), 2006.

[19] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 8, pp.
679–714, 1986.

[20] M. Kemp, A. L. Bertozzi, and D. Marthaler, “Multi-UUV perimeter
surveillance,” in Proceedings of 2004 IEEE/OES Workshop on Au-
tonomous Underwater Vehicles, 2004, pp. 102–107.

[21] Z. Jin and A. Bertozzi, “Environmental boundary tracking and
estimation using multiple autonomous vehicles,” 2007 46th IEEE
Conference on Decision and Control, pp. 4918–4923, December 2007.

[22] C. H. Chiang and J.-S. Liu, “Boundary following in unknown
polygonal environment based on fast marching method,” in IEEE
International Conference on Advanced Robotics and its Social Impacts,
2008.

[23] J. Ng and T. Bräun, “Performance comparison of bug navigation
algorithms,” in Journal of Intelligent and Robotic Systems. Springer
Netherlands, September 2007, vol. 50, no. 1, pp. 73–84.

[24] W. Hangartner, “Spezifitt und inaktivierung des spurpheromons
von lasius fuliginosus (latr.) und orientierung der arbeiterinnen
im duftfeld,” Z. vergl. Physiol., vol. 57, pp. 103–136, 1967.

[25] I. D. Couzin and N. R. Franks, “Self-organized lane formation and
optimized traffic flow in army ants,” P. Roy. Soc. Lond. B. Bio., vol.
270, pp. 139–146, 2003.

[26] P. I. Chang and S. B. Andersson, “Smooth trajectories for imag-
ing string-like samples in AFM: A preliminary study,” in 2008
American Control Conference, Seattle, Washington, June 2008.

[27] S. Andersson, “Curve tracking for rapid imaging in AFM,” IEEE
Transactions on Nanobioscience, vol. 6, no. 4, December 2007.

[28] R. Gonzalez and R. Woods, Digital Image Processing. Prentice
Hall, 2008.

[29] K. Castleman, Digital Image Processing. Prentice Hall, 1996.
[30] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,

no. 1-2, pp. 100–115, June 1954.
[31] A. Joshi, T. Ashley, Y. Huang, and A. Bertozzi, “Experimental

validation of cooperative environmental boundary tracking with
on-board sensors.” in American Control Conference, St. Louis, MO,
June 2009, pp. 2630–2635.

[32] X. Bai and G. Sapiro, “Distancecut: Interactive segmentation and
matting of images and videos,” IEEE ICIP, vol. 2, pp. 249–252,
2007.

[33] A. Protiere and G. Sapiro, “Interactive image segmentation via
adaptive weighted distances,” IEEE Transactions on Image Process-
ing, vol. 16, no. 4, pp. 1046–1057, 2007.

[34] D. Geman and B. Jedynak, “An active testing model for tracking
roads in satellite images,” IEEE Trans. Patt. Anal. and Machine
Intel., vol. 18, no. 1, pp. 1–14, January 1996.

[35] A. Chen, T. Wittman, A. Tartakovsky, and A. Bertozzi, “Image
segmentation through efficient boundary sampling,” in Proceed-
ings of the 2009 Workshop on Sampling Theory and Applications, May
2009.

[36] C. H. Hsieh, Z. Jin, D. Marthaler, B. Q. Nguyen, D. J. Tung,
A. L. Bertozzi, and R. M. Murray, “Experimental validation of
an algorithm for cooperative boundary tracking,” in Proceedings
of the American Control Conference, Portland, 2005, pp. 1078–1083.

[37] K. K. Leung, C. H. Hsieh, Y. R. Huang, A. Joshi, V. Voroninski,
and A. L. Bertozzi, “A second generation micro-vehicle testbed
for cooperative control and sensing strategies,” in Proceedings of
the 2007 American Control Conference, 2007, pp. 1900–1907.

[38] D. Montgomery, Introduction to statistical quality control. John
Wiley & Sons, Inc., 1985.

[39] E. del Castillo, Statistical Process Adjustment for Quality Control, ser.
Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.,
2002.

[40] T. P. Ryan, Statistical Methods for Quality Improvement, 2nd ed., ser.
Wiley Series in Probability and Statistics. John Wiley & Sons,
Inc., 2000.

[41] M. Basseville and I. Nikiforov, Detection of Abrupt Changes - Theory
and Applications, ser. Information and System Sciences Series.
Englewood Cliffs, NJ, US: Prentice Hall, 1993.

[42] A. Tartakovsky, B. Rozovskii, R. Blažek, and H. Kim, “Detection
of intrusions in information systems by sequential change-point
methods,” Statistical Methodology, vol. 3, no. 3, pp. 252–293, July
2006.

[43] A. Tartakovsky and V. Veeravalli, “Change-point detection in
multichannel and distributed systems with applications,” in Ap-
plications of Sequential Methodologies, N. Mukhopadhyay, S. Datta,
and S. Chattopadhyay, Eds. New York: Marcel Dekker, Inc., pp.
331–363.

[44] A. Willsky, “A survey of design methods for failure detection in
dynamical systems,” Automatica, vol. 12, pp. 601–611.

[45] G. Lorden, “Procedures for reacting to a change in distribution,”
Annals of Mathematical Statistics, vol. 42, pp. 1897–1908, 1971.

[46] A. Tartakovsky, “Asymptotic performance of a multichart
CUSUM test under false alarm probability constraint,” Proceedings
of the 44th IEEE Conference on Decision and Control, and the European
Control Conference, pp. 320–325, 2005.

[47] G. Moustakides, “Optimal stopping times for detecting changes
in distributions,” Annals of Statistics, vol. 14, pp. 1379–1387, 1986.

[48] “San Francisco Bay multispectral data set,” Landsat 7 satellite
images. [Online]. Available: http://americaview.org/

[49] J. Rouse, R. Hass, J. Schell, and D. Deering, “Monitoring veg-
etation systems in the grain plains with ERTS,” in Third ERTS
Symposium, NASA SP-351 I, 1973, pp. 309–317.

[50] R. Yunas, A. Goetz, and J. Boardman, “Discrimination among
semi-arid landscape endmembers using the spectral angle mapper
(SAM) algorithm,” in Summaries of the Third Annual JPL Airborne
Geoscience Workshop, 1992, pp. 147–149.

[51] P. Shippert, “Introduction to hyperspectral image analysis,” On-
line J. of Space Commun., 2003.

http://americaview.org/

15

[52] “Urban hyperspectral data set,” HYDICE sensor imagery.
[Online]. Available: http://www.agc.army.mil/Hypercube/

[53] C. Bachmann, T. Donato, G. Lamela, W. Rhea, M. Bettenhausen,
R. Fusina, K. D. Bois, J. Porter, and B. Truitt, “Automatic classifica-
tion of land cover on Smith Island, VA, using HyMAP imagery,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 10,
pp. 2313–2330, October 2002.

[54] C. M. Bachmann, “Improving the performance of classifiers in
high-dimensional remote sensing applications: An adaptive re-
sampling strategy for error-prone exemplars (aresepe),” IEEE
Transactions on Geoscience and Remote Sensing, vol. 41, no. 9, pp.
2101–2112, 2003.

[55] C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, “Exploiting
manifold geometry in hyperspectral imagery,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 441–454, 2005.

[56] ——, “Improved manifold coordinate representations of large
scale hyperspectral imagery,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 44.

[57] Z. Guo, T. Wittman, and S. Osher, “L1 unmixing and its appli-
cation to hyperspectral image enhancement,” March 2009, UCLA
CAM report.

[58] A. Douady and J. H. Hubbard, “Etude dynamique des polynômes
complexes,” Prépublications mathématiques d’Orsay, vol. 2/4,
1984/85.

[59] C. T. McMullen, “Hausdorff dimension and conformal dynamics,
III: Computation of dimension,” American Journal of Mathematics,
vol. 120, no. 4, pp. 691–721, 1998.

[60] Z. Hu, “Gradient-free boundary tracking,” undergraduate
research project. [Online]. Available: http://www.math.ucla.
edu/∼wittman/hyper/zhong/report zhong.pdf

[61] V. Mejia, “Multiple robot boundary tracking,” undergraduate
research project. [Online]. Available: http://www.math.ucla.edu/
∼wittman/hyper/victor/report F07.pdf

http://www.agc.army.mil/Hypercube/
http://www.math.ucla.edu/~wittman/hyper/zhong/report_zhong.pdf
http://www.math.ucla.edu/~wittman/hyper/zhong/report_zhong.pdf
http://www.math.ucla.edu/~wittman/hyper/victor/report_F07.pdf
http://www.math.ucla.edu/~wittman/hyper/victor/report_F07.pdf

	introduction
	A two-step locating and tracking method
	Global search to locate a boundary point
	Local sampling to track the boundary

	Change-Point Decisions
	Further Improvements to the Boundary Tracking Algorithm
	Numerical and Image Examples
	Discussion
	References

