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Abstract—Can images be decomposed into the f = u + v, such thatu represents a cartoon
sum of a geometric part and a textural part? In  or geometric (piecewise-smooth) component of
a theoretical breakthrough, Yves Meyer [28] pro- ¢ \yhile 4 represents the oscillatory or textured

posed variational models that force the geometric .
part into the space of functions with bounded component off. The oscillatory part should

variation, and the textural part into a space of contain essentially the noise and the texture.

oscillatory distributions. Meyer’'s models are simple The general variational framework for decom-

minimization problems extending the famous total . : P . ,
variation model. However, their numerical solution posing f into u + v is given in Meyer's models

has proved challenging. It is the object of a lit- &S a@n energy minimization problem
erature rich in variants and numerical attempts.
This paper starts with the linear model, which

reduces to a low-pass/high-pass filter pair. A simple inf {Fi(u) + AF3(v) : f = u+ v},
conversion of the linear filter pair into a non- (u,v)€X1 X X
linear filter pair involving the total variation is 1)

introduced. This new-proposed nonlinear filter pair Where Fy, F;, > 0 are functionals andX;, X»
retains both the essential features of Meyer's models are spaces of functions or distributions such that
and the simplicity and rapidity of the linear model. Fi(u) < oo and Fy(v) < oo if and only if

It depends on only one transparent parameter: the :
texture scale, measured in pixel mesh. Comparative (u,0) € Xy x Xp. The constanth > 0 is a

experiments show a better and faster separation of tuning parameter. A good mOde|_ for. (1) is given
cartoon from texture. One application is illustrated: by a choice ofX; and X, so that ifu is cartoon

edge detection. and if v is texture, thenF} (u) << F>(u) and
Index Terms—image decomposition, filter, total Fi(v) >> Fy(v) (such condltlolns WOUld Insure
variation, cartoon, texture a clear cartoon+texture separation; in other words,

if » is only cartoon, without texture, then texture
components must be penalized By, but not by
F3, and vice-versa).

The long story of this problem can be summa-
rized in a list of proposed choices for both spaces
X; and X, and both functionalsFi(u) and
F5(v). In fact the choice forFy (u) has quickly

I. INTRODUCTION TO THE CARTOON+
TEXTURE PROBLEM AND PRIOR WORK

A grey level or color image will be denoted
by f : (z,y) € Q — IR (respectively IR?)
where Q) is an open subset alR?, typically a
rectangle or a square. An imageis defined on o
a continuous domain by interpolating a digitaponverged_to t_he total var|at|9n of that excludes
image defined on a finite set of pixels. We arstrong oscillations but permits sharp edges. The

interested in decomposinginto two components main point under discussi_on has been what space
posing P X5 would model the oscillatory part. Since the
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problem is In [17] strong mathematical geometric argu-
ments are put forward in favor of th&V-
inf {/ | Du|?dx (2) L' model: explicit solutions can be computed
(uv)ESBVI)XLA(D) & Ja\s, for simple geometric objects. These examples
+H1(Ju>+>\”v”%2(ﬂ)ﬂ f:quv}, demonstrate that, based on the perimeter/area
ratio, shapes are unambiguously put either in the
where H! denotes the 1-dimensional HausdorfV part or in theL! part. This study connects the
measure (the length if,, is sufficiently smooth), TV-L!' model with the classical morphological
and A > 0 is a tuning parameter. With the abovegranulometry [38]. Accurate regularity results for
notations,X; = SBV(Q) is the De Giorgi space the level set boundaries of minimizers of the
of special functions with bounded variatioh; TV — L' model are also given, in any dimension,
is composed of the first two terms in the energin [1]. Probably the most populd&V minimiza-
from (3), while the third term isF»(v) = [v?, tion algorithm is Chambolle’s projection algo-
the quadratic norm. It is difficult to solve thisrithm [14]. Recent years have, however, shown a
model in practice, because of its non-convettend to abandon th&8V norm and replace it by
nature coming from#; (u). a so-called “non-local” norm [34] inspired from
An easier decomposition can be obtained bji3].
the Rudin, Osher, and Fatemi (ROF) total vari- Yet, as pointed outin [28]V —L? or TV —L*
ation (TV) minimization model [37] for image do not characterize the oscillatory components.
denoising. Their functional is convex and thereindeed, these components do not have small
fore more amenable to efficient minimizationnorms in LP(2), p > 1, [4]. To overcome this
The variational model is drawback, Y. Meyer [28] proposed in his seminal
book weaker norms to replacg- [|7, in the
inf {/ |Dul + N[[v|72(q):  (3) ROF model, that would better model oscillatory
(u,v)EBV (2) x L2(£2) Q . 4
feus U} components with zero mean. The Meyer model is

inf {/ | Du| +)\HU||*},
where (u,w)E(BV(Q)XG,F.E),f=ut+v L\ Jq @
/ |Du| = sup {/ udivgdz, ¢ € CL(Q, IR?), where|| - |, is the norm in one of the following
Q Q . spaces, denoted iy, F' or E (defined below for
Il <1} Q= R2).
Definition 1: A distribution v belongs toG if
denotes the total variation fin €2, also denoted and only if v = div(g) for someg € (L>°)? in
by TV (u) or by |u|py o). The component: the distributional sense. The endowed norm is
belongs to the space of functions of bounded
variation BV (Q) = {u € L'(Q) : [,|Du| < [vll« = lvlle = ~€Lojr§)f,dm~”§”“°'
oo}. This space penalizes oscillations (such as _ ) genrma N
noise or texture), but allows for piecewise-smootthne spacel” is defined ag, but the condition
functions, made of homogeneous regions with € (L>)* is substituted by the weaker condition
sharp boundaries. Since almost all level lines (¢ € BMO? (thus if § = (g1,92), then g;
isolines) of aBV function have finite length, are functions with bounded mean oscillation).
the BV space is considered adequate to modEfnally, the spacer is the Besov spac# =
images containing shapes. These shapes can &ge,oc: dual to the spacé; ;. \lNe also have that
tually be extracted by edge detection or by imagé' = W %> and F = BMO .
binarization and morphology [38]). The introduction of the spaceS, F' and £
The bibliography on algorithms minimizing theis motivated by the fact that highly oscillatory
ROF functional and its multi-scale variants [41]signals or images have small normsGh F' or
[43] is rich [6], [44], [21], [33]. Convex dual E. For instance||cosnz||c = L. The presence
numerical methods have been tested in [15], [32f a nonBV part in images is corroborated by the
Hybrid models with wavelets are described irexperimental-numerical study [20]. However, the
[27], [26]. Models where thé.?2 norm is replaced three norms proposed by Meyer are not expressed
by the L' norm are now classical [16]. as integrals and are therefore difficult to compute.



It is also difficult to set up the right value of |—imimized energy or filters | Name Ref.

2 T 2 2

for real images. This problem is addressed in [4‘2]%3!|2:}{|v?é]“) el ivag {33}
and [10]. The numerical experiments have shown/ |Du| + [ |v| TV-L! [16]
promising results and justified further inquiries.| J1Dul+ VIl 1.0 TVediv(L) ] [28]

There has been an extensive line of papers“g”HHUHH’1 TVHT )18
(starting with [46]) modifying and interpreting ﬂDZIinH?ﬁO” 1&835\5403 Eg”ig}gi}
Meyer's models, and proposing minimization TTDu] +f|If:OvT§ V-Hibert [TT][10]
schemes: [7], [40], [9], [47], [24], [45]. [22]. | T |Du2 ' |jv|12,_, H'-H-! Here, [39]
An extensive mathematical analysis of Meyer'sw = wL, = f + (1 — w)f | nonlin. filter | Here
model in a bounded domain is performed in [5]. TABLE |
For many formal properties of th&-norm the  TABLE OF ALL f = u + v = cartoon + texture
reader can refer to [35]_ In [36] th€-norm is MODELS IN APPROXIMATE CHRONOLOGICAL

laced by thety Th h Using .CRDER THESE MODELS ARE DIVIDED INTO FOUR
replaced by t norm. This approach Using gsroups THE FIRST GROUP CONTAINS THE CLASSIC

Sobolev spaces with negative exponents was eV OR SBV +NOISE MODELS THE SECOND GROUP

tended in [25] and [18] The = div(BMO) STARTING WITH MEYER'S MODEL INTRODUCES A
. . ) . . KEY NEW FEATURE: THE NORM OF THE
variant was numerically studied in [23] and [18].  5sc|LLATORY PART» DECREASES WHENy

There have also been extensions intending tOSCILLATES MORE THIS IS OBTAINED BY PUTTING

decomposeu into three components, namely A NORMONv THAT IS ACTUALLY A NORM ON A
P P ! y PRIMITIVE OF v. THE TV-H !, TV-DIV(BMO) AND

BV, texture, and a residual (e.g., noise). In thety_Besov MODELS FOLLOW THE SAME PATTERN
model [46] (where the spac& = W 1> is  THE THIRD GROUP SIMPLIFIES THE PANORAMA BY

approximated bﬁ — W—l,p for |argep) this POINTING OUT THAT THE NORM OF A PRIMITIVE OF
P ’ v IS MUCH EASIER TO COMPUTE BY CONVOLUTION

is done by solving WITH A FILTER K (IN FACT THE TV-H ~! MODEL

ALSO BELONGS TO THAT GROUR. BUT HERE, THE

: 2 MAIN FACT IS THAT THE SECOND MODEL IN THE
inf Du|+ M|f —u—w + allv . -

/Q| | ) ||L2(Q) lvlle, THIRD GROUR H' — H™', BOILS DOWN TO THE

. DECOMPOSITION INTO A CLASSIC LOWPASS AND
In [46] the norm||v||¢ of v = divg is approxi- HIGH-PASS DECOMPOSITIONAS WILL BE SHOWN IN

m T 2 S . SECT. IV SUCH LINEAR DECOMPOSITIONS DO GIVE
ated byl| /g1 + g3lp, p > 1 Whichis of course =\ o U e CUiTS THE LAST ROW IS THE

far from the real Pr0b|e_m_ withp = co. Aujol et prOPOSED NONLINEAR FILTERWHICH TAKES THE
al. [8] addressed the original Meyer problem and BEST OF EACH WORLDS BY USINGBV, BUT

proposed an alternate method to minimize RELYING MAINLY ON A PREVIOUS PAIR OF LINEAR
HIGH-PASS AND LOWPASS FILTERS

inf/ |Du|+>\||f*U*U||QL2(Q)
Q

subject to the constrainfv||c < p. functions, it is fair to say that the Besov model
The 2006 paper [11] presents a sort of reviewefines distributions that are second derivatives of
where the above mentioned variants and othefgnctions that have (almost) bounded gradients.
are summarized. Following this paper’s terminol- In conclusion (as also pointed out by Y. Meyer
ogy, the funding models that inspired this lind28]), the four spacesG = div(L>), H™' =
of research ard'V — L? (ROF) and the original A(H'), F = div(BMO) andA(BY, ) (Besov)
Meyer models'V — div(L>), TV —div(BMO) can be considered as variants of each other, since
(numerically tried in [23], [18]), and'V-Besov they all appear as first derivatives of (bounded-
(numerically tried in [19], [9]). A simpler variant like) functions. Experimental evidence does not
is TV — H~!, since also thed ~* norm is small favor one of them.

on oscillatory signals. The hierarchy of the spaces Generalizingl'V — H—', a generic'V -Hilbert
used for the oscillatory part is complefiv(L>)  ,0qel [11] can be defined using a smoothing
anddiv(BMO) are distributional first derivatives o nel K. The associated Meyer energy is

of vector fields inL> and BMO respectively. '

The Besov model takes the oscillatory part — inf 7(u) = /|Du|+)\|\K*(f—u)||2L2. (5)
into B!, := A(BL, ) which is a space of BV
second derivatives of functions satisfying a ZygThis model has also been proposed in [19]. The
mund regularity condition. Since this conditionZ? norm of K * (f — u) can be substituted by

is close to assuming a Lipschitz bound on than LP norm,p > 1. One obtains slightly better



results withp = 1 [18]. Our numerical trials yield as a reference the best linear model. Separation

no significant difference betwednl/-Hilbert and of scales in images is classically obtained by

the other mentionedV — X models. Because applying a complementary pair of low-pass and

of its simplicity, we shall retain this version (5)high-pass filters to the datg#, namely v =

in the experiments after fixing adequately th&.PF(f), and thenv = f —u = HPF(f). The

kernel K. This is precisely the object of the nextI'V — H! model is easily linearized by replacing

section. The main goal of the manuscript is tthe total variation| |Du| by the Dirichlet inte-

propose here a simpler and faster model thagral | |Du|*. Then the most natural variational

the variational model (5), while better separatintinear model associated with Meyer's ideas is

cartoon from texture. H' — H~'. Indeed,H! is dual to H%, in the
We wish to recall here the function spacesame way a€- is dual toBV'. The low pass filter

notations used in the next sectiol8? = L? f — u is obtained by the minimization

denotes the space of square-integrable functions.

The Sobolev spacél! is defined byH' = {u e min {04 / |Dul® + || f — u||§{1} . (6)

L?, Du € L? x L?}, or in the Fourier domain “

by H' = {u : [[1 4+ (2«]¢])?]|a(¢)*d¢ < The meaning ofs* will be shortly explained.

oo}. We will also make use of the spadé—! This model can be compared with the classical

(dual to the homogeneous version &f'), de- Tikhonov quadraticZ' — L? minimization

fined in the Fourier domain by the set of func-
tions and distributionsH~* = {u : [[1 + min{02/|Du|2+/(fu)2}, 7
(27|€))? " Ha(€)|?dé < oo} (the corresponding “
homogeneous versions, used in the next sectiongich is equivalent in the Fourier domain to the
are obtained by dropping the constant 1). low-pass filtera = mf. This Wiener
The rest of the paper is organized as followdilter is known to remove high-frequency com-
in Section 2 we formulate the linear cartoon 4ponents due to the edges fifand not only those
texture H! — H—! model inspired from Y. Meyer due to oscillations (See Fig. 1).
[28], which can be easily and rapidly solved in Using the Fourier transform in (6), thél*
the Fourier domain in one step. Since this modeemi-norm ofu is [ [Dul? = [(2x|¢)?|a(€)|?
introduces blurring in the cartoon component and theH~! semi-norm ofv is [ (gﬁfg‘; This
we propose in Section 3 a novel nonlinear cartodimplies in particular thatu — f = v has zero
+ texture model that retains the simplicity andnean, since feasible solutions satigf§0) = 0.
efficiency of the linear one, while the cartoorMinimizing this quadratic functional (6) inu
component: is piecewise-smooth and with sharpyields in Fourier the unique solutiod = L, f,
edges. Section 4 illustrates numerical compagvhere
isons between the linear model, the nonlinear Lo(¢) = 1 ) (8)
minimization model (5) and the proposed fast 1+ (2mol€])*
nonlinear model; an application to edge detectionhe meaning of the parameter is now eas-
is also shown, together with a discussion on thig; explained: if the frequency is significantly
local texture scale. smaller thanz—, then the¢ frequency is kept
We would like to mention that the algorithmip u, while if £ is Significanﬂy |arger thanzﬂ_l_g,
proposed in this paper is tested on the web sitghen the frequency is considered a textural

http://www.ipol.im/pub/algo/bimwnonlinear frequency and attributed to. Thus, the solution
cartoon texture decomposition/#index5h1 (u,v) = (Ls * f, (Id — L) * f) is nothing but a
showing many more experiments. An on lingair of complementary low pass and high pass
demo can be found at filters. Note that ass — 0, L, — Id. We
http://mw.cmla.ens-cachan.fr/megawave/demo/ will also consider the filteti,,, where K, (¢) =
cartoon texture/ e~(7aleD* which behaves still more like the
which allows to test arbitrary images. characteristic function of the ball centered at zero
with radius 5.
Il. LINEAR VERSION OFMEYER’'S MODEL It is worth mentioning that related linear and

In view of the multiplicity and complexity of nonlinear three-term decompositiofis= u+ v+
nonlinear models, it seems reasonable to first fix based on thél ' —H ~! duality were introduced



functionz — A, (z), given by
LTVU(f)(m) - LTVU(LU * f)(JJ)
LTV,(f)(=)

which gives us the local oscillatory behavior of
the functionf. If )\, is close to 0, we have
LTV,(f) — LTV,(Ly * [) <
LTV, (f) =77
&
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which means that there is little relative reduc-

tion of the local total variation by the low pass
Fig. 1. Fourier transform of the low pass filter obtained witHfilter. If instead )\, is close to 1, the reduction
the H! — L? functional (7) (dotted line), the filtel., (8) ia j i i
associated with thél' — H—1 model (6) (dashed line) and IS _|mportant, which means thaF the considered
the filter K, (solid line) for o = 1. Among the three filters, pomf[ belongs to a textured region. Thu§, a fast
Ko behaves more like the sharpest possible low-pass filtenonlinear low pass and high pass filter pair can be
namely the characteristic function pf27o, 270]. computed by weighted averages pfand L,  f

depending on the relative reduction bf'V. We

_ _ _ can set
in [39]: the linear case is thei/!, H°, H!) de-

composition, while the nonlinear decomposition u(z) = whe(@))(Lo * f)(z) 9
uses piecewiséH ', H°, H—') (where piecewise + (1= w(2)f(2),
H' is the SBV space for the cartoon, combined o

v(x) = flz)—u(x)

with piecewiseH ~! for the texture).

where w(x) : [0,1] — [0,1] is an increasing

function that is constant and equal to zero near

zero and constant and equal to 1 near 1. In

all experiments the soft threshold functian is
The observed efficiency of the linear paidefined by

(L,,Id — L,) (see Figure 3) leads to consider

nonlinear versions that would retain its main

feature, namely the excellent extraction of thé’\*) = (z —a1)/(az — a1)

texture by a high pass filtdid — L,. On the other 1 T 2 a

. L (20)
hand, the non-oscillatory parts of the initial image o the parametets anda, have been respec-

f should be kept unaltered even if they have ShaER/er fixed t0 0.25 and 0.5. If A, (z) is small

edges. This is of course impossible with a Iinea}rhe function f is non-oscillatory around: and

f"tef- Thus, a Ioca_l indicator ”T‘“St be built totherefore the function i3V (or cartoon) around

decide at each point whether it belongs to a . . . )

textural region or to a cartoon region. The main’ Thusu(z) = f(z) is the right choice. [f instead
9 gion. ~(z) is large, the functiorf is locally oscillatory

characteristics of a cartoon region is that its tot roundz and locally replaced b{L, « f)(x). The
variation does not decrease by low pass ﬁlterin%hoice of L — 1 aZ un%erlying hz;rd thres.hold is
2

_The main charact_er!stlcs of te_xtured [Fegion 13, servative: it permits to keep all step edges on
its high total variation due to its oscillations. : .
the cartoon side, but puts all fine structures on the

This tc_)tal yanauon de_c_reases very fast under |0\f\éxture side, as soon as they oscillate more than
pass filtering. Formalizing these remarks leads to

! e once. Of course changes in the parametgrsr
define thelocal total variation (LTV) at =, a2 would slightly modify the separation results.

LTV, (f)(z) := Lo * |Df|(z) Since it is desirable to have a one-parameter
method, it seems advisable to fix the threshold

(note thatL, can be substituted by<,). The functionw once and for all, as has been done in
relative reduction rate of LTMs defined by a all experimentsin that way the method keeps the

Ill. PROPOSED FAST CARTOOMTEXTURE
NON-LINEAR FILTERS

0 r < a
a1 <z <a



scaleo of the texture as the only method param- Figure 5 illustrates the efficiency of the sepa-
eter. That this last parameter cannot be avoidexhtion of texture from thé3V part by applying a

is obvious: textural details become shapes whe@anny filter to the cartoon pauat (right) obtained
their sizes grow, and therefore should be moveuy the proposed nonlinear filter. The edges be-
from the texture to théBV side. This is apparent tween textural regions are indeed detected on the

in the experiments of Figs. 6 and 7. cartoon part. If applied directly on the original
image (left), these edges are mixed up with nu-
IV. COMPARING RESULTS merous texture edges.

A serious advantage of the proposed nonlinear
In this section the results of three main repfiter s that the Lagrange parameterin the
resentative models will be compared. First, thgiginal Meyer model is now interpreted as a scale
simplest linear Meyer model, namely the lineap, Thys, it is easy to fix- in the low pass filter to
H' — H~' model, second the standadV" — pyt (or not) this texture in the textural part: it is
Hilbert model (5), and finally the fast nonlinearenough to evaluate the wave-length (in pixels) of
filter defined in Section Ill. Implementing theihe texture and to fix accordingly. In Fig. 6, the
TV — Hilbert model amounts to minimize theyansparent choice of is shown on the classical
energy textured image Barbara. The micro-textures are
_ A ) put in the oscillatory part for = 4, and the
ue}zng(n)/g |Du| + §/Q|Lo * (f —u) (@) dz, larger textures for = 6. Eventually, foro = 8,
(11) the oscillations of the books and chair go into the
where the smoothing kerndl, will be the same texture part. The function\, (=) used for these
as for the linear and the nonlinear filter pairs, telecompositions is displayed in Fig. 8.
permit fair comparisons. By gradient descemt,  The sharper kernek’, instead ofL, was also

must formally solve tested in the nonlinear filter, as shown in Fig. 7.
5 v K, behaving more like a characteristic function,
8_1; = div<|v—u|) + ALy % Ly * (f —u). the oscillations on the scarf, the chair and the

U

books are slightly better separated than in the re-

This numerical method is actually slower than th&ults from Figure 6 using.. But this comparison

smart methods for minimizing the total variatiorglso shows that the choice of the low-pass filter

mentioned in the introduction, but gives esseris not crucial. A final decomposition experiment

tially the same results. is displayed in Figure 9. This figure corroborates
Figure 3 compares cartoon and texture conihe efficiency of the separation of texture from the

ponents for the linear filter, th&V-Hilbert for- BV part. Notice how the contours of columns and

mulation, and the proposed non-linear filter paircades remain sharp in ti¢}" parts. However,

Clearly the edges are better preserved in tHge thin columns seen at a distance pass into

cartoon part with the proposed non-linear filtetexture foro = 4.

and much less apparent in the texture part. The

H'— H~! Meyer linear filter pair gives strikingly

good results, but blurs slightly out edges in the

cartoon part, as expected. As a conseguence,

ghosts of the edges appear in the textural part.

A careful comparison off! — H~! with TV-

Hilbert confirms the slight improvement of the

nonlinear variational model on the linear one.

Figure 4 displays the plots of,(x) for several

pixels in the Barbara image and different This

figure illustrates how\, (x) increases withr for

high frequency textural patterns and gets quickly

close to one. On contours and flat zonegx)

increases very slowly tending to values much

lower than0.5, thus explaining the chosen values

of a; andas in equation (10).



Fig. 2. Test images Barbara and patio. We will also use the
gray level version of Barbara image.
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