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Fast cartoon + texture image filters
Antoni Buades, Triet M. Le, Jean-Michel Morel, and LuminitaA. Vese

Abstract—Can images be decomposed into the
sum of a geometric part and a textural part? In
a theoretical breakthrough, Yves Meyer [28] pro-
posed variational models that force the geometric
part into the space of functions with bounded
variation, and the textural part into a space of
oscillatory distributions. Meyer’s models are simple
minimization problems extending the famous total
variation model. However, their numerical solution
has proved challenging. It is the object of a lit-
erature rich in variants and numerical attempts.
This paper starts with the linear model, which
reduces to a low-pass/high-pass filter pair. A simple
conversion of the linear filter pair into a non-
linear filter pair involving the total variation is
introduced. This new-proposed nonlinear filter pair
retains both the essential features of Meyer’s models
and the simplicity and rapidity of the linear model.
It depends on only one transparent parameter: the
texture scale, measured in pixel mesh. Comparative
experiments show a better and faster separation of
cartoon from texture. One application is illustrated:
edge detection.

Index Terms—image decomposition, filter, total
variation, cartoon, texture

I. I NTRODUCTION TO THE CARTOON+
TEXTURE PROBLEM AND PRIOR WORK

A grey level or color image will be denoted
by f : (x, y) ∈ Ω → IR (respectivelyIR3)
where Ω is an open subset ofIR2, typically a
rectangle or a square. An imagef is defined on
a continuous domain by interpolating a digital
image defined on a finite set of pixels. We are
interested in decomposingf into two components
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Leurs Applications,École Normale Supérieure de Cachan,
France. E-mail: morel@cmla.ens-cachan.fr

L. Vese is with the Mathematics Department, University
of California at Los Angeles, Los Angeles, U.S.A. E-mail:
lvese@math.ucla.edu

f = u + v, such thatu represents a cartoon
or geometric (piecewise-smooth) component of
f , while v represents the oscillatory or textured
component off . The oscillatory partv should
contain essentially the noise and the texture.

The general variational framework for decom-
posingf into u + v is given in Meyer’s models
as an energy minimization problem

inf
(u,v)∈X1×X2

{F1(u) + λF2(v) : f = u + v} ,

(1)
where F1, F2 ≥ 0 are functionals andX1, X2

are spaces of functions or distributions such that
F1(u) < ∞ and F2(v) < ∞ if and only if
(u, v) ∈ X1 × X2. The constantλ > 0 is a
tuning parameter. A good model for (1) is given
by a choice ofX1 andX2 so that ifu is cartoon
and if v is texture, thenF1(u) << F2(u) and
F1(v) >> F2(v) (such conditions would insure
a clear cartoon+texture separation; in other words,
if u is only cartoon, without texture, then texture
components must be penalized byF1, but not by
F2, and vice-versa).

The long story of this problem can be summa-
rized in a list of proposed choices for both spaces
X1 and X2, and both functionalsF1(u) and
F2(v). In fact the choice forF1(u) has quickly
converged to the total variation ofu, that excludes
strong oscillations but permits sharp edges. The
main point under discussion has been what space
X2 would model the oscillatory part. Since the
discussion is complex, we refer to Table I and
its legend, which present the main models. This
table extends the model classification outlined in
[11], and adopts the same terminology.

One of the first nonlinear cartoon+texture mod-
els is the Mumford and Shah model [30], [31] for
image segmentation, wheref ∈ L2(Ω) is decom-
posed intou ∈ SBV (Ω) ([12], [2], [29], [3]), a
piecewise-smooth function with its discontinuity
setJu included in a union of curves whose overall
length is finite, andv = f − u ∈ L2(Ω) repre-
sents the noise or the texture. The minimization
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problem is

inf
(u,v)∈SBV (Ω)×L2(Ω)

{

∫

Ω\Ju

|Du|2dx (2)

+H1(Ju) + λ‖v‖2
L2(Ω), f = u + v

}

,

whereH1 denotes the 1-dimensional Hausdorff
measure (the length ifJu is sufficiently smooth),
andλ > 0 is a tuning parameter. With the above
notations,X1 = SBV (Ω) is the De Giorgi space
of special functions with bounded variation.F1

is composed of the first two terms in the energy
from (3), while the third term isF2(v) =

∫

v2,
the quadratic norm. It is difficult to solve this
model in practice, because of its non-convex
nature coming fromF1(u).

An easier decomposition can be obtained by
the Rudin, Osher, and Fatemi (ROF) total vari-
ation (TV) minimization model [37] for image
denoising. Their functional is convex and there-
fore more amenable to efficient minimization.
The variational model is

inf
(u,v)∈BV (Ω)×L2(Ω)

{

∫

Ω

|Du| + λ‖v‖2
L2(Ω), (3)

f = u + v
}

,

where
∫

Ω

|Du| = sup
{

∫

Ω

udiv~φdx, ~φ ∈ C1
0 (Ω, IR2),

‖~φ‖∞ ≤ 1
}

denotes the total variation ofu in Ω, also denoted
by TV (u) or by |u|BV (Ω). The componentu
belongs to the space of functions of bounded
variation BV (Ω) = {u ∈ L1(Ω) :

∫

Ω
|Du| <

∞}. This space penalizes oscillations (such as
noise or texture), but allows for piecewise-smooth
functions, made of homogeneous regions with
sharp boundaries. Since almost all level lines (or
isolines) of aBV function have finite length,
the BV space is considered adequate to model
images containing shapes. These shapes can ac-
tually be extracted by edge detection or by image
binarization and morphology [38]).

The bibliography on algorithms minimizing the
ROF functional and its multi-scale variants [41],
[43] is rich [6], [44], [21], [33]. Convex dual
numerical methods have been tested in [15], [32].
Hybrid models with wavelets are described in
[27], [26]. Models where theL2 norm is replaced
by theL1 norm are now classical [16].

In [17] strong mathematical geometric argu-
ments are put forward in favor of theTV -
L1 model: explicit solutions can be computed
for simple geometric objects. These examples
demonstrate that, based on the perimeter/area
ratio, shapes are unambiguously put either in the
TV part or in theL1 part. This study connects the
TV -L1 model with the classical morphological
granulometry [38]. Accurate regularity results for
the level set boundaries of minimizers of the
TV −L1 model are also given, in any dimension,
in [1]. Probably the most popularTV minimiza-
tion algorithm is Chambolle’s projection algo-
rithm [14]. Recent years have, however, shown a
trend to abandon theBV norm and replace it by
a so-called “non-local” norm [34] inspired from
[13].

Yet, as pointed out in [28],TV −L2 or TV −L1

do not characterize the oscillatory components.
Indeed, these components do not have small
norms in Lp(Ω), p ≥ 1, [4]. To overcome this
drawback, Y. Meyer [28] proposed in his seminal
book weaker norms to replace‖ · ‖2

L2 in the
ROF model, that would better model oscillatory
components with zero mean. The Meyer model is

inf
(u,v)∈(BV (Ω)×G,F,E),f=u+v

{

∫

Ω

|Du|+λ‖v‖∗

}

,

(4)
where‖ · ‖∗ is the norm in one of the following
spaces, denoted byG, F or E (defined below for
Ω = IR2).

Definition 1: A distribution v belongs toG if
and only if v = div(~g) for some~g ∈ (L∞)2 in
the distributional sense. The endowed norm is

‖v‖∗ = ‖v‖G = inf
~g∈L∞,v=div~g

‖~g‖L∞ .

The spaceF is defined asG, but the condition
~g ∈ (L∞)2 is substituted by the weaker condition
~g ∈ BMO2 (thus if ~g = (g1, g2), then gi

are functions with bounded mean oscillation).
Finally, the spaceE is the Besov spaceE =
Ḃ−1

∞,∞, dual to the spacėB1
1,1. We also have that

G = Ẇ−1,∞ andF = ˙BMO
−1

.
The introduction of the spacesG, F and E

is motivated by the fact that highly oscillatory
signals or images have small norms inG, F or
E. For instance,|| cosnx||G = 1

n
. The presence

of a non-BV part in images is corroborated by the
experimental-numerical study [20]. However, the
three norms proposed by Meyer are not expressed
as integrals and are therefore difficult to compute.
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It is also difficult to set up the right value ofλ
for real images. This problem is addressed in [42]
and [10]. The numerical experiments have shown
promising results and justified further inquiries.

There has been an extensive line of papers
(starting with [46]) modifying and interpreting
Meyer’s models, and proposing minimization
schemes: [7], [40], [9], [47], [24], [45], [22].
An extensive mathematical analysis of Meyer’s
model in a bounded domain is performed in [5].
For many formal properties of theG-norm the
reader can refer to [35]. In [36] theG-norm is
replaced by theH−1 norm. This approach using
Sobolev spaces with negative exponents was ex-
tended in [25] and [18]. TheF = div(BMO)
variant was numerically studied in [23] and [18].
There have also been extensions intending to
decomposeu into three components, namely
BV , texture, and a residual (e.g., noise). In the
model [46] (where the spaceG = Ẇ−1,∞ is
approximated byGp = Ẇ−1,p for largep), this
is done by solving

inf

∫

Ω

|Du| + λ||f − u − v||2L2(Ω) + α||v||Gp
.

In [46] the norm||v||G of v = div~g is approxi-
mated by||

√

g2
1 + g2

2||p, p ≥ 1 which is of course
far from the real problem withp = ∞. Aujol et
al. [8] addressed the original Meyer problem and
proposed an alternate method to minimize

inf

∫

Ω

|Du| + λ||f − u − v||2L2(Ω)

subject to the constraint||v||G ≤ µ.
The 2006 paper [11] presents a sort of review

where the above mentioned variants and others
are summarized. Following this paper’s terminol-
ogy, the funding models that inspired this line
of research areTV − L2 (ROF) and the original
Meyer modelsTV −div(L∞), TV −div(BMO)
(numerically tried in [23], [18]), andTV -Besov
(numerically tried in [19], [9]). A simpler variant
is TV −H−1, since also theH−1 norm is small
on oscillatory signals. The hierarchy of the spaces
used for the oscillatory part is complex:div(L∞)
anddiv(BMO) are distributional first derivatives
of vector fields inL∞ and BMO respectively.
The Besov model takes the oscillatory partv
into Ḃ−1

∞,∞ := ∆(Ḃ1
∞,∞) which is a space of

second derivatives of functions satisfying a Zyg-
mund regularity condition. Since this condition
is close to assuming a Lipschitz bound on the

Minimized energy or filters Name Ref.
||Du||2

2
+ H1(Ju) + ||v||2

2
SBV-L2 [30]

R

|Du| +
R

|v|2 TV-L2 [37]
R

|Du| +
R

|v| TV-L1 [16]
R

|Du| + ||v||
Ẇ−1,∞ TV-div(L∞) [28]

R

|Du| + ||v||
Ḣ−1 TV-H−1 [36]

R

|Du| + ||v||
˙BMO

−1 TV- ˙BMO
−1

[28],[23],[18]
R

|Du| + ||v||
Ḃ

−1
∞,∞

TV-Besov [28],[19],[9]
R

|Du| +
R

|K ∗ v|2 TV-Hilbert [11],[19]
R

|Du|2 + ||v||2
H−1

H1-H−1 Here, [39]
u = wLσ ∗ f + (1 − w)f nonlin. filter Here

TABLE I
TABLE OF ALL f = u + v = cartoon + texture

MODELS IN APPROXIMATE CHRONOLOGICAL
ORDER. THESE MODELS ARE DIVIDED INTO FOUR

GROUPS. THE FIRST GROUP CONTAINS THE CLASSIC
BV OR SBV +NOISE MODELS. THE SECOND GROUP

STARTING WITH MEYER’ S MODEL INTRODUCES A
KEY NEW FEATURE: THE NORM OF THE

OSCILLATORY PARTv DECREASES WHENv
OSCILLATES MORE. THIS IS OBTAINED BY PUTTING

A NORM ON v THAT IS ACTUALLY A NORM ON A
PRIMITIVE OF v. THE TV-H−1, TV-DIV (BMO) AND
TV-BESOV MODELS FOLLOW THE SAME PATTERN.
THE THIRD GROUP SIMPLIFIES THE PANORAMA BY
POINTING OUT THAT THE NORM OF A PRIMITIVE OF
v IS MUCH EASIER TO COMPUTE BY CONVOLUTION

WITH A FILTER K (IN FACT THE TV-H−1 MODEL
ALSO BELONGS TO THAT GROUP). BUT HERE, THE
MAIN FACT IS THAT THE SECOND MODEL IN THE
THIRD GROUP, H1

− H−1, BOILS DOWN TO THE
DECOMPOSITION INTO A CLASSIC LOW-PASS AND

HIGH-PASS DECOMPOSITION. AS WILL BE SHOWN IN
SECT. IV SUCH LINEAR DECOMPOSITIONS DO GIVE

COMPETITIVE RESULTS. THE LAST ROW IS THE
PROPOSED NONLINEAR FILTER, WHICH TAKES THE

BEST OF EACH WORLDS BY USINGBV , BUT
RELYING MAINLY ON A PREVIOUS PAIR OF LINEAR

HIGH-PASS AND LOW-PASS FILTERS.

functions, it is fair to say that the Besov model
defines distributions that are second derivatives of
functions that have (almost) bounded gradients.

In conclusion (as also pointed out by Y. Meyer
[28]), the four spacesG = div(L∞), H−1 =
∆(H1), F = div(BMO) and∆(Ḃ1

∞,∞) (Besov)
can be considered as variants of each other, since
they all appear as first derivatives of (bounded-
like) functions. Experimental evidence does not
favor one of them.

GeneralizingTV −H−1, a genericTV -Hilbert
model [11] can be defined using a smoothing
kernelK. The associated Meyer energy is

inf
u∈BV

J (u) =

∫

|Du|+λ‖K ∗ (f −u)‖2
L2. (5)

This model has also been proposed in [19]. The
L2 norm of K ∗ (f − u) can be substituted by
an Lp norm, p ≥ 1. One obtains slightly better
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results withp = 1 [18]. Our numerical trials yield
no significant difference betweenTV -Hilbert and
the other mentionedTV − X models. Because
of its simplicity, we shall retain this version (5)
in the experiments after fixing adequately the
kernelK. This is precisely the object of the next
section. The main goal of the manuscript is to
propose here a simpler and faster model than
the variational model (5), while better separating
cartoon from texture.

We wish to recall here the function spaces
notations used in the next sections.H0 = L2

denotes the space of square-integrable functions.
The Sobolev spaceH1 is defined byH1 = {u ∈
L2, Du ∈ L2 × L2}, or in the Fourier domain
by H1 = {u :

∫

[1 + (2π|ξ|)2]|û(ξ)|2dξ <
∞}. We will also make use of the spaceH−1

(dual to the homogeneous version ofH1), de-
fined in the Fourier domain by the set of func-
tions and distributionsH−1 = {u :

∫

[1 +
(2π|ξ|)2]−1|û(ξ)|2dξ < ∞} (the corresponding
homogeneous versions, used in the next sections,
are obtained by dropping the constant 1).

The rest of the paper is organized as follows:
in Section 2 we formulate the linear cartoon +
textureH1−H−1 model inspired from Y. Meyer
[28], which can be easily and rapidly solved in
the Fourier domain in one step. Since this model
introduces blurring in the cartoon componentu,
we propose in Section 3 a novel nonlinear cartoon
+ texture model that retains the simplicity and
efficiency of the linear one, while the cartoon
componentu is piecewise-smooth and with sharp
edges. Section 4 illustrates numerical compar-
isons between the linear model, the nonlinear
minimization model (5) and the proposed fast
nonlinear model; an application to edge detection
is also shown, together with a discussion on the
local texture scale.

We would like to mention that the algorithm
proposed in this paper is tested on the web site
http://www.ipol.im/pub/algo/blmvnonlinear
cartoon texture decomposition/#index5h1
showing many more experiments. An on line
demo can be found at
http://mw.cmla.ens-cachan.fr/megawave/demo/
cartoon texture/
which allows to test arbitrary images.

II. L INEAR VERSION OFMEYER’ S MODEL

In view of the multiplicity and complexity of
nonlinear models, it seems reasonable to first fix

as a reference the best linear model. Separation
of scales in images is classically obtained by
applying a complementary pair of low-pass and
high-pass filters to the dataf , namely u =
LPF (f), and thenv = f − u = HPF (f). The
TV −H1 model is easily linearized by replacing
the total variation

∫

|Du| by the Dirichlet inte-
gral

∫

|Du|2. Then the most natural variational
linear model associated with Meyer’s ideas is
H1 − H−1. Indeed,H−1 is dual toH1, in the
same way asG is dual toBV . The low pass filter
f → u is obtained by the minimization

min
u

{

σ4

∫

|Du|2 + ||f − u||2H−1

}

. (6)

The meaning ofσ4 will be shortly explained.
This model can be compared with the classical
Tikhonov quadraticH1 − L2 minimization

min
u

{

σ2

∫

|Du|2 +

∫

(f − u)2
}

, (7)

which is equivalent in the Fourier domain to the
low-pass filter û = 1

1+(2πσ|ξ|)2 f̂ . This Wiener
filter is known to remove high-frequency com-
ponents due to the edges off , and not only those
due to oscillations (See Fig. 1).

Using the Fourier transform in (6), theH1

semi-norm ofu is
∫

|Du|2 =
∫

(2π|ξ|)2|û(ξ)|2

and theH−1 semi-norm ofv is
∫ |v̂(ξ)|2

(2π|ξ|)2 . This
implies in particular thatu − f = v has zero
mean, since feasible solutions satisfyv̂(0) = 0.
Minimizing this quadratic functional (6) inu
yields in Fourier the unique solution̂u = L̂σf̂ ,
where

L̂σ(ξ) :=
1

1 + (2πσ|ξ|)4
. (8)

The meaning of the parameterσ is now eas-
ily explained: if the frequencyξ is significantly
smaller than 1

2πσ
, then theξ frequency is kept

in u, while if ξ is significantly larger than 1
2πσ

,
then the frequencyξ is considered a textural
frequency and attributed tov. Thus, the solution
(u, v) = (Lσ ∗ f, (Id−Lσ) ∗ f) is nothing but a
pair of complementary low pass and high pass
filters. Note that asσ → 0, Lσ → Id. We
will also consider the filterKσ, whereK̂σ(ξ) =
e−(2πσ|ξ|)4 , which behaves still more like the
characteristic function of the ball centered at zero
with radius 1

2πσ
.

It is worth mentioning that related linear and
nonlinear three-term decompositionsf = u+v+
w based on theH1−H−1 duality were introduced
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Fig. 1. Fourier transform of the low pass filter obtained with
the H1 − L2 functional (7) (dotted line), the filterLσ (8)
associated with theH1 − H−1 model (6) (dashed line) and
the filter Kσ (solid line) for σ = 1. Among the three filters,
Kσ behaves more like the sharpest possible low-pass filter,
namely the characteristic function of[−2πσ, 2πσ].

in [39]: the linear case is the(H1, H0, H−1) de-
composition, while the nonlinear decomposition
uses piecewise(H1, H0, H−1) (where piecewise
H1 is theSBV space for the cartoon, combined
with piecewiseH−1 for the texture).

III. PROPOSED FAST CARTOON+TEXTURE

NON-LINEAR FILTERS

The observed efficiency of the linear pair
(Lσ, Id − Lσ) (see Figure 3) leads to consider
nonlinear versions that would retain its main
feature, namely the excellent extraction of the
texture by a high pass filterId−Lσ. On the other
hand, the non-oscillatory parts of the initial image
f should be kept unaltered even if they have sharp
edges. This is of course impossible with a linear
filter. Thus, a local indicator must be built to
decide at each pointx whether it belongs to a
textural region or to a cartoon region. The main
characteristics of a cartoon region is that its total
variation does not decrease by low pass filtering.
The main characteristics of a textured region is
its high total variation due to its oscillations.
This total variation decreases very fast under low
pass filtering. Formalizing these remarks leads to
define thelocal total variation (LTV) at x,

LTVσ(f)(x) := Lσ ∗ |Df |(x)

(note thatLσ can be substituted byKσ). The
relative reduction rate of LTVis defined by a

functionx 7→ λσ(x), given by

λσ(x) :=
LTVσ(f)(x) − LTVσ(Lσ ∗ f)(x)

LTVσ(f)(x)

which gives us the local oscillatory behavior of
the functionf . If λσ is close to 0, we have

LTVσ(f) − LTVσ(Lσ ∗ f)

LTVσ(f)
≤ λσ

⇔

LTVσ(Lσ ∗ f) ≥ (1 − λσ)LTVσ(f),

which means that there is little relative reduc-
tion of the local total variation by the low pass
filter. If insteadλσ is close to 1, the reduction
is important, which means that the considered
point belongs to a textured region. Thus, a fast
nonlinear low pass and high pass filter pair can be
computed by weighted averages off andLσ ∗ f
depending on the relative reduction ofLTV . We
can set

u(x) = w(λσ(x))(Lσ ∗ f)(x) (9)

+ (1 − w(λσ(x)))f(x),

v(x) = f(x) − u(x)

where w(x) : [0, 1] → [0, 1] is an increasing
function that is constant and equal to zero near
zero and constant and equal to 1 near 1. In
all experiments the soft threshold functionw is
defined by

w(x) =







0 x ≤ a1

(x − a1)/(a2 − a1) a1 ≤ x ≤ a2

1 x ≥ a2

(10)
where the parametersa1 anda2 have been respec-
tively fixed to 0.25 and 0.5. If λσ(x) is small,
the functionf is non-oscillatory aroundx and
therefore the function isBV (or cartoon) around
x. Thusu(x) = f(x) is the right choice. If instead
λσ(x) is large, the functionf is locally oscillatory
aroundx and locally replaced by(Lσ∗f)(x). The
choice ofλσ = 1

2 as underlying hard threshold is
conservative: it permits to keep all step edges on
the cartoon side, but puts all fine structures on the
texture side, as soon as they oscillate more than
once. Of course changes in the parametersa1 or
a2 would slightly modify the separation results.

Since it is desirable to have a one-parameter
method, it seems advisable to fix the threshold
functionw once and for all, as has been done in
all experiments.In that way the method keeps the
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scaleσ of the texture as the only method param-
eter. That this last parameter cannot be avoided
is obvious: textural details become shapes when
their sizes grow, and therefore should be moved
from the texture to theBV side. This is apparent
in the experiments of Figs. 6 and 7.

IV. COMPARING RESULTS

In this section the results of three main rep-
resentative models will be compared. First, the
simplest linear Meyer model, namely the linear
H1 − H−1 model, second the standardTV −
Hilbert model (5), and finally the fast nonlinear
filter defined in Section III. Implementing the
TV − Hilbert model amounts to minimize the
energy

inf
u∈BV (Ω)

∫

Ω

|Du| +
λ

2

∫

Ω

|Lσ ∗ (f − u)(x)|2dx,

(11)
where the smoothing kernelLσ will be the same
as for the linear and the nonlinear filter pairs, to
permit fair comparisons. By gradient descent,u
must formally solve

∂u

∂t
= div

( ∇u

|∇u|

)

+ λLσ ∗ Lσ ∗ (f − u).

This numerical method is actually slower than the
smart methods for minimizing the total variation
mentioned in the introduction, but gives essen-
tially the same results.

Figure 3 compares cartoon and texture com-
ponents for the linear filter, theTV -Hilbert for-
mulation, and the proposed non-linear filter pair.
Clearly the edges are better preserved in the
cartoon part with the proposed non-linear filter,
and much less apparent in the texture part. The
H1−H−1 Meyer linear filter pair gives strikingly
good results, but blurs slightly out edges in the
cartoon part, as expected. As a consequence,
ghosts of the edges appear in the textural part.
A careful comparison ofH1 − H−1 with TV -
Hilbert confirms the slight improvement of the
nonlinear variational model on the linear one.
Figure 4 displays the plots ofλσ(x) for several
pixels in the Barbara image and differentσ. This
figure illustrates howλσ(x) increases withσ for
high frequency textural patterns and gets quickly
close to one. On contours and flat zonesλσ(x)
increases very slowly tending to values much
lower than0.5, thus explaining the chosen values
of a1 anda2 in equation (10).

Figure 5 illustrates the efficiency of the sepa-
ration of texture from theBV part by applying a
Canny filter to the cartoon partu (right) obtained
by the proposed nonlinear filter. The edges be-
tween textural regions are indeed detected on the
cartoon part. If applied directly on the original
image (left), these edges are mixed up with nu-
merous texture edges.

A serious advantage of the proposed nonlinear
filter is that the Lagrange parameterλ in the
original Meyer model is now interpreted as a scale
σ. Thus, it is easy to fixσ in the low pass filter to
put (or not) this texture in the textural part: it is
enough to evaluate the wave-length (in pixels) of
the texture and to fixσ accordingly. In Fig. 6, the
transparent choice ofσ is shown on the classical
textured image Barbara. The micro-textures are
put in the oscillatory part forσ = 4, and the
larger textures forσ = 6. Eventually, forσ = 8,
the oscillations of the books and chair go into the
texture part. The functionλσ(x) used for these
decompositions is displayed in Fig. 8.

The sharper kernelKσ instead ofLσ was also
tested in the nonlinear filter, as shown in Fig. 7.
Kσ behaving more like a characteristic function,
the oscillations on the scarf, the chair and the
books are slightly better separated than in the re-
sults from Figure 6 usingLσ. But this comparison
also shows that the choice of the low-pass filter
is not crucial. A final decomposition experiment
is displayed in Figure 9. This figure corroborates
the efficiency of the separation of texture from the
BV part. Notice how the contours of columns and
arcades remain sharp in theBV parts. However,
the thin columns seen at a distance pass into
texture forσ = 4.
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Fig. 2. Test images Barbara and patio. We will also use the
gray level version of Barbara image.
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