
EdgeCS: Edge Guided Compressive Sensing Reconstruction

Weihong Guoa and Wotao Yinb

aCase Western Reserve University, Dept. of Mathematics, Cleveland, OH, USA.
bRice University, Dept. of Computational and Applied Mathematics, Houston, TX, USA.

ABSTRACT

Compressive sensing (CS) reconstructs images from a small number of projections. We propose EdgeCS - edge
guided CS reconstruction - to recover images of higher qualities from fewer measurements than the current
state-of-the-art methods.

Accurate edge information can significantly improve image recovery quality and speed, but such information
is encoded in the CS measurements of an image. To take advantage of edge information in CS recovery, EdgeCS
alternatively performs CS reconstruction and edge detection in a way that each benefits from the latest solution
of the other. EdgeCS is fast and returns high-quality images. It exactly recovers the 256 × 256 Shepp-Logan
phantom from merely 7 radial lines (or 3.03% k-space), which is impossible for most existing algorithms. It
accurately reconstructs a 512× 512 magnetic resonance image from 21% noisy samples. Moreover, it is also able
to reconstruct complex-valued images. Each took about 30 seconds on an ordinary laptop. The algorithm can
be easily ported to GPUs for a speedup of more than 10 folds.

Keywords: Compressive sensing, edge detection, total variation, discrete Fourier transform, magnetic reso-
nance imaging

1. INTRODUCTION

1.1 Background

Compressive sensing1, 2 (CS) exploits the sparsity of an unknown signal to recover the signal from much fewer
linear measurements than required by the Nyquist-Shannon sampling.3 The fact that CS requires very few
measurements makes it very useful to reduce sensing cost in a variety of applications.

Let ū be the underlying signal of interest and Ψ ∈ ℂm×n with m < n (sometimes m ≪ n) be a sensing
(sampling) matrix. The “encoding” process employs a certain physical or digital means to collect data b ∈ ℂm

that is either Ψu or Ψu + r where r is noise. The “decoding” process is to reconstruct the image u from b. To
reconstruct a sparse ū, it is natural to solve the ℓ0 problem when there is no noise:

ℓ0 : min
u
{∥Φu∥0 : Ψu = b}. (1)

The ℓ0 problem is combinatorially expensive.4 It is more tractable to solve the following ℓ1 optimization problem
(basis pursuit):

ℓ1 : min
u
{∥Φu∥1 : Ψu = b} (2)

ℓ1 minimization yields sparse solutions under certain conditions (see5–7 for explanations) and also have effi-
cient algorithms such as.8–15 For (2), the minimum number of measurements for successful reconstruction is
m = O(k log(n/k)) and O(k log(n)4) when Ψ is a Gaussian random matrix and partial Fourier ensemble,1, 16

respectively. These numbers are smaller than n in order of magnitude. Comparing with (1), (2) is much easier
to solve but requires significantly more measurements. Other CS decoders include those based on ℓp(p < 1),17–23

homotopic ℓ0 approximation,24 and others.

Send correspondence to the first author at wxg49@case.edu.

1.2 Contributions

In this paper, we present an edge guided CS (shortened as EdgeCS) reconstruction scheme to significantly reduce
the measurement requirement and to improve recovery quality. Given undersampled and/or noisy data, EdgeCS
reconstructs images with less error or artifact than the state-of-the-art method. EdgeCS was implemented based
on RecPF,25 a very fast CS reconstruction code based on TV and ℓ1 regularization, and compares favorably with
RecPF on image recovery from incomplete Fourier samples at very low sampling rates and with varying amounts
of noise.

2. PROPOSED METHODS

Edge detection is a process to capture the significant properties of objects in the image. There are different
types of edges, including step edge (discontinuity in intensity), line edge(local extrema), and junction (where
at least two edges meet). In this paper, we focus on step edges which are the most common type of edge
encountered, and apply edge detection to enhance CS reconstruction for one and two dimensional signals∗.
A one-dimensional demonstration is shown in the next subsection, in which connection with previous work
that explains the theoretical foundations is laid out. Subsection 2.2 below focuses on two-dimensional image
reconstruction.

2.1 One-dimensional EdgeCS

We begin our exposition with a simple demo of reconstructing a piece-wise constant signal from its random
measurements. The signal ū has n = 200 entries and 25 randomly located jumps. The jump sizes are sampled
from the identically independently distributed (iid) Gaussian distribution. Let Ψ be a 60×200 Gaussian random
matrix and b := Ψū. The problem is to recover ū.

Define TV (u) =
∑n−1

i=1 ∣ui+1 − ui∣. We compare the solutions of total variation (TV) minimization,

min {TV (u) : Ψu = b} ,

and weighted TV minimization,

min

{

n−1
∑

i=1

gi∣ui+1 − ui∣ : Ψu = b

}

,

where weights gi are updated by jump detection. u and g are iteratively updated in the following algorithm:

1D EdgeCS: Jump Guided TV Minimization for 1D signals

Input: Ψ, b, n.
1. Set the iteration number k ← 1 and initialize gi = 1, ∀i;
2. While the stopping condition is not met, do

(a) Subproblem: u(k) ← solve weighted TV minimization with weights gi;
(b) Jump detection: I(k) ←

{

i : ∣ui+1 − ui∣ > 2−k max{∣uj+1 − uj ∣, j = 1, . . . , n}
}

;

(c) Weight update: gi ← 0, ∀i ∈ I(k); gj ← 1, ∀j ∕∈ I(k);
(d) k ← k + 1.

In our test, the above algorithm returned the true signal ū in merely six iterations, but TV minimization failed
to return ū. Since gi ≡ 1 initially, the first iteration of EdgeCS is TV minimization. The solution of TV
minimization and those at the end of 2nd, 4th, and 6th iterations are depicted in Figure 1. Subfigures (b), (c),
and (d) highlight the detected jumps including both the true and false ones. Relative errors are computed as
∥u(k)− ū∥2/∥ū∥2. The quality of these jumps are given in quadruplets “(total,dtct,good,bad)”, which are defined
as follows:

∙ total: the total number of jumps in current u(k).
∙ dtct: the number of detected jumps, equal to ∣I(k)∣.
∙ good: the number of true jumps.
∙ bad: the number of false jumps.

∗Extensions to three and higher dimensional signals are straightforward.

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

3

4

5

6
TV−min: jumps=60, RelErr=5.48e−002

true signal
recovered signal

(a) TV Reconstruction

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

3

4

5

6
Edge−TV−min: Itr=2, Jumps(total,dtct,good,bad)=(60,10,10,0), RelErr=5.48e−002

true signal
recovered signal
detected true jump

(b) 2nd Iteration of EdgeCS

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

3

4

5

6
Edge−TV−min: Itr=4, Jumps(total,dtct,good,bad)=(59,21,18,3), RelErr=3.79e−002

true signal
recovered signal
detected true jump
detected false jump

(c) 4th Iteration of EdgeCS

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

3

4

5

6
Edge−TV−min: Itr=6, Jumps(total,dtct,good,bad)=(25,25,25,0), RelErr=1.51e−002

true signal
recovered signal
detected true jump

(d) 6th Iteration of EdgeCS

Itr k
Jumps

Relative Error ∥x(k)−x̄∥2

∥x̄∥2Total Detected Good Bad
TV 1 60 6 6 0 5.48e-2

2 60 10 10 0 4.71e-2
3 59 14 14 0 3.79e-2
4 59 21 18 3 2.86e-2
5 59 23 31 2 1.51e-2
6 25 25 25 0 1.82e-15

Figure 1. Comparison of TV reconstruction and EdgeCS (jump guided) reconstruction

The TV solution (1st iteration) roughly matches the true signal but misses many small jumps. It contains false
jumps and artifacts that are relatively small in size, but most of its large jumps are preserved at their exact
locations. Hence, thresholding at 2−1 max{∣uj+1−uj∣} identifies six of them (shown for k = 1 in the table) with
no false detections. By setting the corresponding gi to 0 for the second iteration, a smaller reconstruction error
is obtained. The improved solution of iteration 2 is then used for detecting more jumps. As EdgeCS iterates, the
solutions improve and the thresholds reduce, so more jumps are detected. Note that at iteration 4, the detection
includes 3 false jumps; however, since it also introduces 4 true jumps, iteration 5 yields a reduced reconstruction
error. Generally, as long as false detections are relative few, more detections lead to lower reconstruction errors.
The detection at iteration 5, though including false jumps, has included enough true jumps to allow an exact
reconstruction at iteration 6. The solution of iteration 6 exactly recovers all jumps and has a tiny error. All
subproblems were solved with MATLAB’s linear programming solver “linprog” with the default parameters.

2.1.1 Theoretical justification

In this section, we discuss some theoretical results from our previous work26 to justify our approach. For
simplicity, we assume that the unknown signal has sparse spikes, rather than sparse jumps. Consequently, we
discuss the results in terms of weighted ℓ1-minimization rather than weighted TV minimization. The results
for the latter are analogous. Let I ⊆ {1, . . . , n} be an index subset, and T := IC . The underlying model for
recovering a sparse vector ū is

Truncated ℓ1 minimization: min {∥uT∥1 : Ψu = b} . (3)

Similar to the algorithm of EdgeCS for 1D signals, I consists of detected nonzeros and is initially set to ∅. At each
iteration k, (3) is first solved for T := IC , and the solution u(k) is used for support detection to generate a new I.
Below we summarize the results in the following aspects: (i) an exact recovery condition, (ii) support detection
performance and practical detection methods, and (iii) solution quality measurement and algorithm stopping,
and (iv) performance in terms of reconstruction errors for compressible signals and noisy measurements.

For exact reconstruction, one needs the t-NSP (truncated null space property)26 of the sensing matrix Ψ.
Given T , the property essentially says that no � ∈ N (Ψ), the null space of Ψ, has a mass concentrating over
any L components within T ; in other words, � has to be spread in T . The spreading is measured by . For
simplicity, we use t-NSP(t, L, ̄) to denote the t-NSP of order L for ̄ and t. The t-NSP(∣T ∣, L, ̄) of Ψ with
̄ < 1 is sufficient for (3) to recover any sparse signal ū with ∥ūT∥0 ≤ L.

At the beginning, T = {1, . . . , n} and L = ∥ū∥0. If Ψ satisfies t-NSP(∣T ∣, L, ̄) for ̄ < 1, (3) returns the true
signal ū. Otherwise, its solution is subject to support detection. Let the numbers of correct and wrong detections
be denoted by dc and dw, respectively. Let t

′ = n− dc− dw and L′ = ∥ū∥0− dc. If (L−L′) > ̄(t− t′− (L−L′))
or equivalently dc > ̄dw, then the new ̄′ is smaller than ̄. If ̄′ < 1, then (3) in the next iteration returns ū.
Otherwise, the algorithm continues. Here, dc > ̄dw means that the number of correct detections is at least ̄
times larger than that of the false detections This result means that the iterative support detection approach is
robust to a small number of wrong detections as long as the number of correct detections is larger by a certain
amount. This explains why in the demo in Figure 1, exact recovery is achieved through iterative jump detections
that include false detections.

false nonzero
true nonzero
adopted threshold vaue
reference threshold value

Figure 2. An example of the sorted
components of a solution of (3). The
dashed line marks the largest magni-
tude among all false nonzero. Thresh-
olding at the first significant jump,
marked by the solid line, reliably de-
tects most true nonzeros.

For some common types of signals such as sparse Gaussian and power–
law decaying signals, it is easy to detect true nonzero entries and keep
false detections low by two methods based26 on thresholding. The first

is as simple as letting the detection set I ← {i : ∣u
(k)
i ∣ > ∥u

(k)∥∞/�k},
where � > 1 is a constant. The second method, looking for a so-called first

significant jump, is more robust. It sorts ∣u
(k)
i ∣, i = 1, 2, . . . , n increasingly

into ∣u(i)∣’s and looks for the smallest index (i) such that ∣u(i+1)∣− ∣u(i)∣ >

�, where � can be set as, for example, ∥u(k)∥∞/k. The detection set I is
set corresponding to {(i+1), . . . , (n)}. A typical plot of sorted components
are given in Figure 2, in which the smaller components are clustered and
increase slowly and the larger ones are spread and increase sharply. Hence,
a gap (first significant jump) right below the solid line naturally forms.

It is reliable to stop the iterations by checking the tail size of u(k),

defined as the fraction
∑

i∈T ∣u
(k)
i ∣/

∑

j ∕∈T ∣u
(k)
j ∣, i.e., the thought–zero di-

vided by the thought–nonzero. It can be shown that if u(k) = ū, the
fraction is zero; if ū is not sparse but compressible and T contains the
smaller components, the fraction depends on the decay rate and will be
small when the tail of ū is small. The tail size measures how well u(k) and
T matches the measurements and expected sparseness/compressibility. Typically, no more than ten iterations
are needed before stopping.

Most practical signals are not exactly sparse but compressible (i.e., the nonzeros follow a fast decaying
distribution). Based on the best L–term approximation error: �L(y)1 := inf{∥y − u∥1 : ∥u∥0 ≤ L, u ∈ ℝ

dim(y)},
it can be shown that if the decay of ū is faster and/or T contains more components of ū that are relatively
smaller, then the solution of (3) has smaller errors.

2.2 Two-dimensional EdgeCS

The 2D EdgeCS algorithm is the same as the 1D version except that model (4) below is solved in Step 2(a) to
return an image u(k), which is subject to edge detection in Step 2(b). Let u = (ui,j) ∈ ℝm×n denote a grey-scale
image. We use the weighted TV model

(i− 2, j − 1) (i− 2, j + 1)

(i− 1, j − 2) (i− 1, j − 1) (i− 1, j) (i− 1, j + 1) (i− 1, j + 2)

(i, j − 1) (i, j)4

4

4

4

8

8

8

8

16

16

16

16

16

16

16

16

(i, j + 1)

(i+ 1, j − 2) (i+ 1, j − 1) (i+ 1, j) (i+ 1, j + 1) (i+ 1, j + 2)

(i+ 2, j − 1) (i+ 2, j + 1)

Figure 3. A graph representing the 4, 8, and 16-neighborhoods of (i, j) for anisotropic discretizations of TV. These
neighborhoods consist of those nodes connected to (i, j) by the solid, dashed, and dotted arcs, respectively.

min
u

�WTV (u) + �∥Φu∥1 +
1

2
∥Ψu− b∥22, (4)

where WTV (u) stands for a certain discretization of TV with weights (see below for details) and �∥Φu∥1 is an
optional regularization term if u is sparse under the orthonormal basis Φ. Below, we explain how to formulate
weighted TV with isotropic and anisotropic discretizations and use edges to determine the weights.

The isotropic discretization of TV is

TV iso(u) =
∑

i,j

gi,j∥Di,ju∥2 :=
∑

i,j

gi,j

√

∣ui+1,j − ui,j ∣2 + ∣ui,j+1 − ui,j ∣,

where gi,j ’s are weights. In the unweighted version, gi,j ’s are set to a constant such as 1. Anisotropic discretiza-
tions of TV have different forms according to the number of neighbors each pixel (i, j) is taken finite differences
with. 4/8/16-neighborhoods are depicted in Figure 3. A standard anisotropic discretization of TV has the form

TV aniso(u) =
∑

�

g�∣D�u∣ :=
∑

g(i,j)∼(k,l)∣ui,j − uk,l∣

where the sum is taken over all pairs � of neighbors (i, j) and (k, l), and g(i,j)∼(k,l) is set to proper values†. In
our algorithm EdgeCS, each weight gi,j or g� has two possible values: it original value or 0.

The weights gi,j in the isotropic TV are defined on pixels (i, j). We let gi,j ← 0 if (i, j) is on an edge;
otherwise, gi,j keeps its original value. In an anisotropic discretization of TV, g� is defined for �, a pair of pixels,
so we let g� ← 0 if the pair of pixels are on opposite sides of an edge; otherwise, g� keeps its original value.
Anisotropic TV needs sub-pixel (i.e., between-pixel) edge detection.

With the original and sub-pixel (see next paragraph) versions of Canny edge detector, we found that a
weighted anisotropic TV, even the simplest 4-neighbor version, performs much better than weighted isotropic
TV for two simple reasons as follows. First, there are more weight parameters g� in anisotropic TV than gi,j
in isotropic TV, so the former has more degrees of freedom to adapt to given edges. Second, each isotropic TV
weight gi,j serves the two pairs of pixels under the corresponding square root, so it is not clear how to set gi,j
when exactly one of the pairs is cut by an edge, for example, ui,j = ui+1,j > 0 and ui,j+1 = 0.

Of course, another way to assign weights for isotropic TV is to give a weight for each pair of pixels in the
form of

√

ga ⋅ a2 + gb ⋅ b2. However, this may lead to complications that require further investigation. Assume

ga = 1. If gb = 0, then
√

ga ⋅ a2 + gb ⋅ b2 = ∣a∣ so the regularization on ∣a∣ is first-order. If gb = 1, then

†For a cut metric:27 for the 4-neighbor, all weights equal �/4; for the 8-neighbor type, nearest 4 neighbors have weights
�/8 and next 4 neighbors have

√
2�/16; for the 16-neighbor type, nearest 4 neighbors have weights 1

2
tan−1(1

2
), next 4

neighbors have
√

2

4
(�
4
− tan−1(1

2
)), and last 8 neighbors have

√
5

80
�.

the order of regularization on ∣a∣ depends on ∣b∣. If ∣b∣ > 0, the regularization is less than first-order (as

∣a∣/
√

ga ⋅ a2 + gb ⋅ b2 < 1). If ∣b∣ ≫ ∣a∣, there is little regularization on ∣a∣. Therefore, whether ga (or gb) equals
0 not only determines the regularization on ∣a∣ (or ∣b∣) but also affects the regularization on ∣b∣ (or ∣a∣).

We modified the classical Canny edge detector28 to give sub-pixel edges. The classical Canny method obtains
edges through hysteresis thresholding on gradient magnitude ∥Diju∥2. Our modification performs hysteresis
thresholding on directional gradients D�u, e.g., ∣u(i, j)− u(i+ 1, j)∣ and ∣u(i, j)− u(i, j + 1)∣ separately.

3. ALGORITHM

For notational simplicity, we have assumed that the underlying signal is a real, grey-scale, 2D image. Generaliza-
tions to complex, higher-dimensional, multi-channel signals are straightforward. Moreover, the computation fits
for anisotropic TV of an arbitrary order. As in the previous section,

∑

� g�∣D�u∣ denotes weighted anisotropic
TV. Our algorithm is applied to the reconstruction model

min
u

�
∑

�

g�∣D�u∣+ �∥Φu∥1 +
1

2
∥Fpu− b∥22, (5)

where we have set the sensing matrix Ψ = Fp := PF , a Fourier transform F subsampled by P . The algorithm is a
combination of iterative edge detection with the recent solver RecPF,25 which skillfully applies variable splitting
(introducing w� = D�u and z = Φu) and the well-known alternating direction method of multipliers29 (ADM) for
solving (5). It minimizes with respect to (w, z) and then u and updates the multipliers, all done in a cyclic way.
Since all subproblems can be analytically solved, the algorithm is ultimately fast. The u-subproblem that involves
both Fp and the D�’s can be quickly solved by FFTs. The remaining w and z subproblems are component-wise
separable and easy. Such variable splitting for TV regularization was perhaps first discovered in30 for image
denoising and deblurring, and was recently generalized with improvements to multi-channel problems,31 the
TV-L1 model,32 and TV-based CS recovery in RecPF25 and Split Bregman.33 We apply simple modifications
to RecPF to deal with the above weighted, anisotropic discretization of TV. The EdgeCS algorithm framework
is given in Algorithm 3. Smoothing parameters are tuned for the edge detector (Step 4) in a way that as k
increases, smaller and smoother edges are detected.

EdgeCS: Given b, Φ, Fp, �, �

1. Set k← 1.
2. Do
3. Call modified RecPF to solve (5); obtain solution u(k);
4. Perform sub-pixel edge detection on u(k); g� ← 0 over detected edges; otherwise set g� to its original

value;
5. If there is (nearly) no change in g, STOP; otherwise, k ← k + 1 and continue.

4. EXPERIMENTAL RESULTS

As the first algorithm that learns edges from CS reconstruction, it has no similar algorithms to compare with. We
note a related paper,34 which compares three methods for edge detection from incomplete Fourier measurements.
However, none of them produces images. Therefore, we compared EdgeCS with RecPF,25 a fast state-of-the-art
reconstruction algorithm on recovering 2D images from incomplete Fourier samples. RecPF (6) returns an image
as the solution of the following minimization problem:

min
u

�TV (u) + �∥Φu∥+
1

2
∥Fpu− b∥22, (6)

where TV (u) can be the isotropic or any anisotropic discretizations of TV. We used the isotropic TV for RecPF
and 4-neighborhood anisotropic TV for EdgeCS for their best performance. EdgeCS and RecPF were compared
on tests with very few samples, as well as those with highly noisy samples.

The parameters � and � control the overall performance of RecPF and EdgeCS. We fixed � to 0 in all tests
in order to focus on where the two models are different. Upon being called, both algorithms scale the input data

RecPF:
Error: .11%, SNR: 58.16 Error: 37.17%, SNR: 7.4 Error: 51.65%, SNR: 4.5

EdgeCS:
Error: .0058%, SNR: 64.10 Error: .086%, SNR: 60.10 Error: 1.09%, SNR: 38.00

Figure 4. RecPF (top row) versus EdgeCS (bottom row) on partial Fourier samples in varying sizes. Left, middle, right
columns are recovered images from noiseless samples taken on 15, 8, 7 radial lines (6.44%, 3.98%, 3.03% of k-space samples)
respectively. � = 10−10 was used.

�2 = 0, � = 10−10 �2 = .01, � = 5× 10−5 �2 = .05, � = 10−4

RecPF:
Error: .11%, SNR: 58.16 Error: 8.31%, SNR: 20.37 Error: 18.15%, SNR: 13.6

EdgeCS:
Error: .0058%, SNR: 64.10 Error: 2.33%, SNR: 31.60 Error: .56%, SNR: 43.8

Figure 5. RecPF (top row) versus EdgeCS (bottom row) on partial Fourier samples with varying noise levels. Left, middle,
right columns are images recovered from samples taken on 15 radial lines plus Gaussian noise with variances 0 (no noise),
.01 , and .05, respectively.

and parameter � in the same way to normalize the effects due to varying image sizes, pixel intensity ranges, and
sample sizes. Specifically, � is multiplied by the sample size and divided by the square root of image size, and b
is divided by the intensity range. The returned images are denormalized by multiplying with the intensity range.
All RecPF results were obtained with tight parameters to avoid loss of quality due to early stopping. All tests
were run under Windows Vista and MATLAB v7.6 (R2008a) on a laptop with an Intel Core 2 Duo CPU at 2.0
GHz and 3 GB of memory.

Figure 6. Back projection and EdgeCS recovery of a 512 × 512 brain MR image sampled over 100 radial lines (20.87%
of k-space) with varying noise levels. Top row from left to right: sampling mask in white, back projection results from
samples with noise of variances 0, .05, .1; bottom row from left to right: the ground truth, EdgeCS results from samples
with noise of variances 0, .05, .1, which have relative errors 9.55%, 14.3%, 18.78% and SNR 18.0, 14.5, 12.1 to the ground
truth, respectively.

Given sufficient samples, both EdgeCS and RecPF are able to exactly recover images. However, from the
same set of samples that are less than enough for RecPF to exactly recover the images, EdgeCS returned much
better images than RecPF. Figure 4 depicts the images of EdgeCS and RecPF recovered from the same three
sets of samples that are 6.44%, 3.98%, 3.03% of k-space (or 15, 8, 7 radial lines) of the 256 × 256 Shepp-Logan
phantom. The images of EdgeCS and RecPF from the 15-line samples are visually comparable. In terms of error
and SNR, however, EdgeCS’s image is slightly better. From the 8-line samples, RecPF returned an image with
a relative error of 37.15%, and EdgeCS returned a much better images in 30 seconds. From the 7-line samples,
EdgeCS still achieved an almost exact recovery while RecPF returned an image with huge errors and lots of
artifacts.

EdgeCS also returned better images than RecPF from noise-contaminated samples. Figure 5 depicts the
images recovered from samples that are 6.44% of k-space (or 15, 8, 7 radial lines) added with Gaussian noise
of varying variances �2 = 0, .01, .05 (the phantom has intensity values between 0 and 1). Corresponding to
�2 = 0 (or no noise), RecPF and EdgeCS returned comparable images. Corresponding to �2 = .01 (or a low
level of noise), EdgeCS produced an image with sharper edges (observable in the boxed areas). Corresponding
to �2 = .05, EdgeCS returned a much better image than RecPF, which failed to recover the small shapes.

We also tested EdgeCS for recovering a 512× 512 MR image from 20.87% k-space samples (100 radial lines)
added with Gaussian noise of variances �2 = 0, .05, .1. Respectively, we used � = 10−4, 3× 10−4, 10−3. Figure 6
depicts the results of back projections and EdgeCS.

Furthermore, EdgeCS is able to deal with complex-valued images and samples. This is demonstrated in
Figure 7, which shows a complex-valued MR image recovered by EdgeCS. It remains easy to set the parameter
�, which varies with the noise level but is independent of the sample size.

5. CONCLUSION AND DISCUSSION

We propose an edge guided CS reconstruction method to recover images of higher qualities from fewer mea-
surements than the current state-of-the-art methods. Edge information is useful for image recovery, but this
information is embedded in CS measurements. To extract edge information for CS recovery, we alternatively
perform CS reconstruction and edge detection in a way that each benefits from the latest solution of the other.
Anisotropic TV and sub-pixel edge detection are used in EdgeCS, which is fast and returns high-quality images.
As an example, it is able to exact reconstruct the 512× 512 Shepp-Logan phantom from only 3.03% samples in
30 seconds on an ordinary laptop. This is impossible for most of the existing methods.

Figure 7. Test on a complex-valued brain MR image (only magnitude images are shown). The image size is 512 × 500.
The samples are 200 radial lines (or 39.06% of k-space). From left to right: the ground truth, back projection result, and
EdgeCS result (relative error 21.65%, SNR 10.5). EdgeCS used � = 10−6.

The idea of using edge detection for CS recovery can be applied to reconstruct images from various sam-
ples/observations and used with various regularization methods/algorithms, for example ℓq, 0 < q < 1, homotopic
ℓ0, TV with varying orders, nonlocal TV, etc. More accurate edge detection will further improve the perfor-
mance of EdgeCS. In particular, it would be interesting to incorporate edge detection methods34, 35 in EdgeCS
and evaluate the performance.

ACKNOWLEDGMENTS

The work of W. Guo was supported in part by Case Western Reserve University startup funds. The work of
W. Yin was supported in part by NSF CAREER Award DMS-07-48839, ONR Grant N00014-08-1-1101, and an
Alfred P. Sloan Research Fellowship.

REFERENCES

1. E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strate-
gies,” IEEE Transactions on Information Theory 52(1), pp. 5406–5425, 2006.

2. D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory 52, pp. 1289–1306, 2006.

3. C. Shannon, “Communication in the presence of noise,” Proc. Institute of Radio Engineers 37(1), pp. 10–21,
1949.

4. B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM Journal on Computing 24,
pp. 227–234, 1995.

5. D. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries vis ℓ1
minimization,” Proceedings of the National Academy of Sciences 100, pp. 2197–2202, 2003.

6. D. Donoho and X. Huo, “Uncertainty principles and ideal atomic decompositions,” IEEE Transactions on

Information Theory 47, pp. 2845–2862, 2001.

7. J. Fuchs, “On sparse representations in arbitrary redundant bases,” IEEE Transactions on Information

Theory 50(1341–1344), 2004.

8. J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two step iterative shrinkage/thresholding algorithms
for image restoration,” IEEE Transactions on Image Processing 16(12), pp. 2992–3004, 2007.

9. S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale l1-regularized least
squares,” IEEE Journal on Selected Topics in Signal Processing 1(4), pp. 606–617, 2007.

10. E. T. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for ℓ1-minimization,” Submitted to SIAM

Journal on Optimization , 2007.

11. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal

Processing 1(4), pp. 586–597, 2007.

12. D. L. Donoho and Y. Tsaig, “Fast solution of ℓ1 -norm minimization problems when the solution may be
sparse,” Information Theory, IEEE Transactions on 54, pp. 4789–4812, Nov. 2008.

13. Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, “A fast algorithm for sparse reconstruction based on shrinkage,
subspace optimization and continuation.” Submitted, 2009.

14. Y. Zhang, “YALL1: Your algorithms for L1.” http://www.caam.rice.edu/ optimization/L1/YALL1/.

15. W. Yin, “Analysis and generalizations of the linearized bregman method,” technique report 09-02, Depart-
ment of Computational and Applied Mathematics, Rice University, 2009.

16. M. Rudelson and R. Vershynin, “Geometric approach to error correcting codes and reconstruction of signals,”
International Mathematical Research Notices 64, pp. 4019–4041, 2005.

17. E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted ℓ1 minimization,” Preprint , 2007.

18. R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,” IEEE Signal Processing

Letters 14, pp. 707–710, 2007.

19. E. Sidky, R. Chartrand, and X. Pan, “Image reconstruction from few views by non-convex optimization,”
IEEE Nuclear Science Symposium Conference Record 5, pp. 3526–3530, 2007.

20. R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” ICASSP’08 , 2008.

21. E. Y. Sidkya, I. Reisera, R. M. Nishikawaa, X. Pan, R. Chartrand, D. B. Kopansc, and R. H. Moorec,
“Practical iterative image reconstruction in digital breast tomosynthesis by non-convex tpv optimization,”
SPIE Medical Imaging , 2008.

22. S. Foucart and M.-J. Lai, “Sparsest solutions of underdetermined linear systems via ℓq-minimization for
0 < q ≤ 1,” Applied and Computational Harmonic Analysis 26(3).

23. R. Chartrand, “Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few
data,” Int. Symp. Biomedical Imaing , 2009.

24. J. Trzasko and A. Manduca, “Highly undersmpled magnetic resonance image reconstruction via homotopic
ℓ0-minimization,” IEEE Transactions on Medical Imaging , 2009, to appear.

25. J. Yang, Y. Zhang, and W. Yin, “A fast TVL1-L2 algorithm for image reconstruction from partial fourier
data,” Submitted to IEEE Journal of Selected Topics in Signal Processing Special Issue on Compressed

Sensing. Rice University CAAM Technical Report TR08-27 , 2008.

26. Y. Wang and W. Yin, “Compressed sensing via iterative support detection,” Rice University CAAM

Technical Report TR09-30, http:// www. caam.rice. edu/˜ wy1/ paperfiles/Rice_CAAM_ TR09-30.pdf

, 2009.

27. Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal surfaces via graph cuts,” IEEE Inter-

national Conference on Computer Vision 1, pp. 26–33, 2003.

28. J. F. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6),
pp. 679–698, 1986.

29. R. Glowinski, J. L. Lions, and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland,
Amsterdam, New York, 1981.

30. Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation
image reconstruction,” SIAM Journal on Imaging Sciences 1(3), pp. 248–272, 2008.

31. J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-preserving variational multichannel
image restoration,” SIAM Journal on Imaging Sciences 2(2), pp. 569–592, 2008.

32. J. Yang, Y. Zhang, and W. Yin, “An efficient TVL1 algorithm for deblurring multichannel images corrupted
by impulsive noise,” Rice University CAAM Technical Report TR08-12 , 2008.

33. T. Goldstein and S. Osher, “The split Bregman algorithm for L1 regularized problems,” UCLA CAM Report

08-29 , 2008.

34. E. Tadmor and J. Zou, “Three novel edge detection methods for incomplete and noisy spectral data,” J.

Fourier Anal Appl 14(5-6), pp. 744–763, 2008.

35. W. Guo and F. Huang, “Adaptive total variation based filtering for mri images with spatially inhomogeneous
noise and artifacts,” Int. Sym. Biomedical Imaging , pp. 101–104, 2009.

http://www.caam.rice.edu/~wy1/paperfiles/Rice_CAAM_TR09-30.pdf

	Introduction
	Background
	Contributions

	Proposed Methods
	One-dimensional EdgeCS
	Theoretical justification

	Two-dimensional EdgeCS

	Algorithm
	Experimental results
	Conclusion and discussion

