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Abstract

A feature of the human visual system (HVS) is color constancy, namely, the ability to
determine the color under varying illumination conditions. Retinex theory, formulated
by Edwin H. Land, aimed to simulate and explain how the HVS perceives color. In
this paper, we establish a total variation (TV) and nonlocal TV regularized model of
Retinex theory that can be solved by a fast computational approach based on Bregman
iteration. We demonstrate the performance of our method by numerical results.

1 Introduction

The image obtained by a digital camera is different from the one perceived by the human
visual system (HVS). Digital images record information based on the light reflected by
objects while human being can automatically discount the variation of the illumination. This
feature is called color constancy which ensures that the perceived color remains constant
under varying illumination conditions.

Edwin H. Land’s Retinex theory [13, 14, 15, 16] is the first computational model that
aims to simulate the HVS. The word ”Retinex” is a portmanteau of retina and cortex because
the eye and the brain are involved in the system. The basic assumption of Retinex theory
can be summarized as follows:

(1) The HVS performs the same computation in each of three independent color channels
(RGB).

(2) In each color channel, the image intensity I is propotional to the reflectance R and
the ilumination E:

I ∼ RE

(3) The reflectance R can be perceived by the HVS while the illumination E is automati-
cally discounted by the HVS.

In practice, in each color channel, we suppose that the image intensity at pixel x is the
product of the reflectance and the illumination.

I(x) = R(x)E(x).

To simulate the HVS, we need to recover the reflectance R from a given image I.
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For example, in Figure-1, the image is called ”Adelson’s checker shadow illusion”. Area
A seems darker than area B for most people, but actually they are the same as shown in
the right image, i.e., I(A) = I(B). We notice that area B is in the shadow of the cylinder,
so the illumination of area A is larger than that of area B, i.e., E(A) > E(B). By Retinex
theory, the reflectance of area A is smaller than that of area B, i.e., R(A) < R(B). For
human being, the illumination is discounted by the HVS. So area A seems darker than area
B.

Figure 1: Adelson’s checker shadow illusion.

The recovering of reflectance is a mathematically ill-posed problem and there are many
formulations for Retinex theory. In this paper, we introduce the total variation (TV) and
nonlocal TV regularizers which make the original problem well-posed. These problems can
be solved by an efficient approach based on the Bregman iteration.

This paper is organized as follows: In section 2, we briefly review several different imple-
mentations of Retinex theory. In section 3 we present the TV and nonlocal TV regularized
model and computational algorithms based on the Bregman iteration. In section 4, numer-
ical results are shown to demonstrate the algorithm’s performance. In section 5, we discuss
the future work for the proposed model.

2 Previous works

Retinex algorithms are basically categorized [17, 12, 19] as path-based algorithms, recursive
algorithms, center/surround algorithms, PDE-based algorithms, and variational algorithms.
We will briefly review these algorithms in this section.

2.1 Path-based algorithms

Land’s original works [13, 15] consider the reflectance at each pixel depending on the multi-
plication of the ratios along random walks. Brainard et al. [2] described the path algorithm
with stochastic theory. These kinds of methods need a large number of parameters and have
high computation complexity.
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2.2 Recursive algorithm

Frankle and McCann [5, 6] replaced the path computation by a recursive matrix calculation.
It highly improved the computational efficiency. But the number of iterations is not clearly
defined and can strongly influence the final result.

2.3 Center/Surround alogrithms

The center/surround approach was proposed by Land, et al. [13] and later improved by
Jobson, et al. [11]. Jobson et al. then proposed the SSR (single scale Retinex) and the MSR
(multi-scale Retinex). The idea is that the output reflectance values can be computed by
substracting a blurred version of the input image. This algorithm is easy to implement but
needs many parameters.

2.4 PDE formulation

In PDE-based formulations, people usually take a logarithm for the original formulation
to get i = r + e where i = log(I), r = log(R), and e = log(E). A basic motivation is
that the reflectance corresponds to the sharp details in the image (i.e. edges) whereas the
illumination is spatially smooth. Horn [10] applied the Laplacian to get ∆i = ∆r +∆e and
then use a threshold function to clip the peaks to get a Poisson equation ∆r̂ = τ(∆i). The
threshold function is defined by

τ(x) =

{

x if |x| > t
0 otherwise

Blake’s [1] and Morel’s [18, 19] formulation are similar to Horn’s.

For example, Morel took a gradient first to get ∇i = ∇r +∇e. By the assumption that ∇e
is relatively small, he applied the threshold function componentwise to ∇e and then took
the divergence to get Poisson equations.

∆r̂ =
∂

∂x
τ(

∂e

∂x
) +

∂

∂y
τ(

∂e

∂y
)

or

(−ǫ+∆)r̂ =
∂

∂x
τ(

∂e

∂x
) +

∂

∂y
τ(

∂e

∂y
)

where ǫ depends on the size of the image.

The Poisson equation can be solved by fast algorithms such as by an FFT, and there is
only one parameter t in the threshold function τ .

2.5 Variational formulation

By the same assumption in PDE formulations, Kimmel et al. [12] present a variational
Retinex formulation.

r = argmin
u

∫

Ω

|∇u|2 + α|u− i|2 + β|∇(u − i)|2

subject to: u ≥ i and 〈∇u,−→n 〉 = 0 on ∂Ω. This is a quadratic programming problem
that can be solved by many methods such project normalized steepest descent method as in
Kimmel’s paper. However, this regularizer is not as effective as total variation in the image
restoration problems.
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3 Proposed algorithm

In this section, we present a total variation regularized formulation and an effective com-
putational algorithm based on the split Bregman method. We discuss the connection of
our formulation with the previous PDE formulations. We also introduce a nonlocal TV
regularized formulation.

3.1 A TV regularized model

The total variation regularizer introduced by Rudin, Osher, and Fatemi [22] is very effective
in recovering edges of images. This coincides with the basic motivation as in PDE-based
algorithms: the reflectance corresponds to the sharp details in the image (i.e. edges) and
the illumination is spatially smooth. So we can formulate the problem as a TV regularized
minimization problem.

Our formulation can be written in the following form:

r = argmin
u

{t

∫

Ω

|∇u|+
1

2
||∇(u − i)||22}

The first term is the TV regularizer term that ensure us to find the sharp details. The
second term is the L2 term of the gradient of the illumination. The motivation of this term
is the smoothness of the illumination. The parameter t balances the two terms.

We can adapt this model to gamma-corrected images. The gamma-correction applies a
concave function to the raw images, in practice a logarithm or a sγ power with 0 < γ < 1.
Assuming that the gamma-correction is logarithmic (sγ has a similar shape as logarithm),
we can replace i = log(I) by I and have the gamma-correction model

R = argmin
u

{t

∫

Ω

|∇u|+
1

2
||∇(u − I)||22}

3.2 Bregman iteration

Bregman methods [3] are effective for solving sparse reconstruction problems in image pro-
cessing [20]. Bregman iteration is based on the definition of Bregman distance. The Bregman
distance for a convex function J is given as:

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉

where p ∈ ∂J is a subgradient of J at the point v. Consider a general constrained minimiza-
tion problem:

min
u

J(u) s.t. H(u) = 0

where J is convex but not necessarily differentiable, such as the L1 norm, and H is convex
and differentiable with zero as its minimum value. This problem can be solved by Bregman
iterations:

uk+1 = argmin
u

Dpk

J (u, uk) +H(u) (3.1)

pk+1 = pk −∇H(uk+1) (3.2)

For example, if J(u) = µ||u||1 and H = 1
2 ||Au− f ||22, the iteration is equivalent to
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uk+1 = argmin
u

µ||u||1 +
1

2
||Au− fk|| (3.3)

fk+1 = fk + f −Auk+1 (3.4)

Equation (3.4) is usually referred as ”adding back noise”. The advantage of Bregman itera-
tion is to transform a constrained problem into a series of unconstrained subproblems. And
the unconstrained subproblems (3.3) can be solved by the split Bregman method.

The split Bregman was introduced by Goldstein and Osher [8] for solving L1, TV, and
related regularized problems and applied to various imaging problems [9, 23]. The split
Bregman method aims to solve the unconstrained problem:

min
u

J(Φu) +H(u),

where J and H are as before, and Φ is linear operator. For instance, in (3.3), J(u) = µ||u||1,
H(u) = 1

2 ||Au− fk||, and Φ = I.

The key idea of the split Bregman method is to introduce an auxiliary variable d = Φu,
and try to solve the constrained problem

min
d,u

J(d) +H(u), s.t. d = Φu

or

min
d,u

J(d) +H(u), s.t.
λ

2
||d− Φu||22 = 0

where λ is a positive constant. Then we can Bregmanize the problem as in (3.1). We replace
the J(d)+H(u) by its associated Bregman distance and update the subgradients pkd and pku
respectively. Then we have the iterations:

(uk+1, dk+1) = argmin
u,d

J(d) +H(u)− 〈pkd, d− dk〉 − 〈pku, u− uk〉+
λ

2
||d− Φu||22

pk+1
d = pkd − λ(dk+1 − Φuk+1)

pk+1
u = pku − λΦT (Φuk+1 − dk+1)

For simplicity, we introduce a new variable bk = pkd/λ. We notice that pkd = λbk and
pku = −λΦT bk, and thus the iterations become:

(uk+1, dk+1) = argmin
u,d

J(d) +H(u)− λ〈bk, d− dk〉+ λ〈bk,Φ(u − uk)〉+
λ

2
||d− Φu||22

bk+1 = bk − dk+1 +Φuk+1

dk+1 and uk+1 can be updated alternatively. We first fix uk to update dk+1 and then fix
dk+1 to update uk+1. Then we get the general split Bregman iterations.

dk+1 = argmin
d

1

λ
J(d)− 〈bk, d− dk〉+

1

2
||d− Φuk||22 (3.5)

uk+1 = argmin
u

1

λ
H(u) + 〈bk,Φ(u− uk)〉+

1

2
||dk+1 − Φu||22 (3.6)

bk+1 = bk − (dk+1 − Φuk+1) (3.7)
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3.3 The TV Bregman iterative algorithm

We can apply the split Bregman method to our variational problem by setting Φu = ∇u,
J(Φu) = t

∫

Ω

|∇u|, and H(u) = 1
2 ||∇(u− i)||22. By the split Bregman technique, we introduce

auxiliary variable d = (dx, dy) such that dx = ∇xu and dy = ∇yu and get the constrained
problem:

r = argmin
u

t

∫

Ω

√

d2x + d2y +
1

2
||d−∇i||22 s.t. d = ∇u

By the general split Bregman method (3.5, 3.6, 3.7), we have

dk+1 = argmin
d

t

λ

∫

Ω

√

d2x + d2y +
1

2λ
||d−∇i||22 − 〈bk, d− dk〉+

1

2
||d−∇uk||22 (3.8)

uk+1 = argmin
u

〈bk,∇(u − uk)〉+
1

2
||dk+1 −∇u||22 (3.9)

bk+1 = bk − (dk+1 −∇uk+1) (3.10)

The subproblems (3.8) and (3.9) can be explicitly solved [8]. We summarize them in the
following algorithm.

Initialize u0 = i, d0 = b0 = 0

While ||uk+1 − uk||2/||u
k+1||2 > ǫ

(1)dk+1 =
1

1 + λ
shrinkt(∇i+ λ∇uk + λbk)

(2)uk+1 = solution of ∆u = (div(dk+1 − bk))

(3)bk+1 = bk − (dk+1 −∇uk+1)

end While

The isotropic shrinkage function is defined by

shrinkt(x) =

{

0 if ||x||2 ≤ t
x− x t

||x||2
if ||x||2 > t

In iteration (2), we update uk+1 by solving a Poisson equation associated with the zero
Neumann boundary condition. The solution of this equation is not unique. But the difference
of any two solutions is a constant. By fixing the value of one pixel, we can get a unique
solution. In practice, the equation is solved by a discrete cosine transformation.

3.4 Connection to PDE-based algorithms

In the first iteration, we can solve for d1 = shrinkt(∇i). We need to find u1 by solving the
Poisson equation.

∆u = divd1 = div shrinkt(∇i)

This is very similar to the PDE-based algorithms mentioned above. The only difference is
the threshold function. In previous formulations, the threshold function clips the peaks and
thus produces some jumps. Here we shrink the peaks so that the result is still continuous.
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3.5 A nonlocal TV regularized model

Following Buades, Coll, and Morel’s nonlocal mean method [4], Gilboa and Osher introduced
the nonlocal TV regularizer [7]. This is another successful method in image processing,
especially for textured images [23].

For an image u(x) : Ω → R, we can define the nonlocal weight between two pixel x and
y:

wh(x, y) = exp{
−Ga ∗ (u(x) − u(y))2

2h2
}

where Ga is the Gaussian kernel with standard deviation a. With nonlocal weights, we can
define the nonlocal gradient operator as the vector of all partial difference ∇wu(x, ·) at x
such that:

∇wu(x, y) = (u(y)− u(x))
√

w(x, y), ∀y ∈ Ω

And the nonlocal TV regularizer can be defined as

∫

Ω

|∇wu| =

∫

Ω

(

∫

Ω

(u(y)− u(x))2w(x, y)dy)
1

2 dx

So the nonlocal TV regularized model for Retinex theory is as follows:

r = argmin
u

{t

∫

Ω

|∇wu|+
1

2
||∇(u − i)||22}

And the corresponding gamma-correction model is

R = argmin
u

{t

∫

Ω

|∇wu|+
1

2
||∇(u− I)||22}

Similarly, we have a numerical algorithm using the split Bregman method. In the discrete
case, we write images u and i as vectors by connecting the columns from left to right and
suppose the size is n, i.e., u, i ∈ R

n. Then the gradient operator can be represented as a 2n
by n matrix, denoted by

D =

(

Dx

Dy

)

where Dx = ∇x and Dy = ∇y are two n by n matrices. For the nonlocal case, the nonlocal
weights come from the original image i, or I if using gamma-correction model. In practice,
we choose m closest patches for each pixel and set their weights 1 and weights of others 0
(see [7, 23]). Then ∇w can be written as an mn by n matrix:

Dw =







D1

...
Dm







where Di is an n by n matrix with the diagonal elements -1 and one nonzero element 1 in
each row. So d, b are vectors in R

mn

We apply the split Bregman method to the nonlocal TV regularized model by introducing
an auxiliary variable d = ∇wu. In discrete version, d can be written as d = (d1, d2, · · · , dm)
with dj = (dj,1, dj,2, · · · , dj,n) ∈ R

n. And the minimization problem is
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r = argmin
u

t

n
∑

k=1

(

m
∑

j=1

d2j,k)
1

2 +
1

2
||D(u − i)||22 s.t. d = Dwu

When we plug this into the general form of the split Bregman iterations, we have

dk+1 = argmin
d

t

λ

n
∑

k=1

(

m
∑

j=1

d2j,k)
1

2 − 〈bk, d− dk〉+
1

2
||d−Dwu

k||22 (3.11)

uk+1 = argmin
u

1

2λ
||D(u − i)||22 + 〈bk, Dw(u− uk)〉+

1

2
||dk+1 −Dwu||

2
2 (3.12)

bk+1 = bk − (dk+1 −Dwu
k+1) (3.13)

We explicitly solve the equations (3.11) and (3.12) and get the nonlocal TV Bregman iter-
ative algorithm:

Initialize u0 = i, d0 = b0 = 0

While ||uk+1 − uk||2/||u
k+1||2 > ǫ

(1)dk+1 = shrinkt/λ(Dwu
k + bk)

(2)uk+1 = (DTD + λDT
wDw)

−1(λDT
w(d

k+1 − bk) +DTDi)

(3)bk+1 = bk − (dk+1 −Dwu
k+1)

end While

Here shrinkt is the nonlocal isotropic shrinkage function. For v ∈ R
mn, denote v =

(x1, x2, . . . , xm)T and xi = (vin+1, vin+2, . . . , v(i+1)n).

shrinkt(vin+l) =

{

0 if ||xi||2 ≤ t
vin+l −

t
||xi||2

vin+l if ||xi||2 > t

4 Numerical results

In this section, we will show implementation details and some numerical results. Here we
use the gamma-correction model for the following examples. We also implement the gamma-
correction version of Morel’s [19] PDE-based algorithm, i.e., replace i by I, and compare
the results.

Before calculation, we perform color balance by linearly stretching the input image range
to [0,255] for each color channel. The color of resulting images is balanced in the same
way. The threshold parameter t depends on images. In each iteration, we calculate ||uk −
uk+1||/||uk+1|| and stop iteration if it is less than tolerance ǫ = 0.02.

For the nonlocal TV regularized model, we first need to calculate the nonlocal weights
from an image f and the nonlocal TV operator. For each pixel i = (i1, i2), we choose
pixel j = (j1, j2) in a (2w + 1) × (2w + 1) window centered at i and calculate the weight
w(i, j) = e−d(i,j) where d(i, j) is the distance between i and j:

d(i, j) =

p
∑

t1=−p

p
∑

t2=−p

Ga(t1, t2)(f(i1 + t1, i2 + t2)− f(j1 + t1, j2 + t2))
2
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where Ga is the Gaussian with standard deviation a, and p is called the patch size. After
calculation, for each pixel, we choose m largest weights and set them 1 and set the others 0.
Then we can obtain nonlocal TV operator Dw as in the discussion in previous section. In
our implementation, the nonlocal weights come from the input image I and we set w = 10,
a = 3, p = 5, and m = 8. In the following examples, we test different t and choose the best
one for each image and each algorithm.

The first example in Figure-2 is ”Adelson’s checker shadow illusion”. Here we compare
our result with that of Morel’s PDE-based algorithm. In the original image, we observe
that the RGB values of pixel x = (142, 67) in area A and pixel y = (139, 110) in area B
are both (101, 78, 88). In the resulting image of Morel’s PDE-base algorithm, the RGB
value of x is (101, 87, 93) and the RGB value of y is (115, 99, 104). In the resulting image
of the TV regularized model, the RGB value of x is (98, 74, 84) and the RGB value of
y is (121, 103, 107). The contrast of the latter image is stronger than that of the former
one. Since we use gamma-correction model, the difference between the original image and
resulting image is the illumination by the assumption. We find that the difference image
from the TV regularized model is just the shadow of the green cylinder while the difference
image from the PDE-base model carries more information of the object itself.

Figure 2: Adelson’s checker shadow illusion. The two images in the left column are the orig-
inal image (top) and the color balanced image (bottom). The images in the middle column
are the resulting images from the PDE-based algorithm with t = 6 (top) and the TV regu-
larized model (bottom) with t = 4. The images in the right column are the corresponding
difference images I −R+ 128.

In the second example in Figure-3, the image is a piece of text in a shadow of some
object. By the color constancy assumption, we are supposed to get a constant background
after computation. We compare the results of PDE-based model, the TV regularized model,
and the nonlocal TV regularized model. In the resulting image of the PDE-based model,
the shadow is partially removed and the background is not constant. The shadow in the
resulting image of TV regularized model is less obvious and the background is more constant
than that of the PDE-based model. The resulting image of nonlocal TV regularized model
is better than the other two images. We can barely see the shadow and the background is
constant almost everywhere.
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Figure 3: The two images in the left column are the original image (top) and the color
balanced image (middle). The images in the middle column are the resulting images from
the PDE-based algorithm with t = 20 (top), the TV regularized model (middle) with t = 15
and the nonlocal TV regularized model with t = 10 (bottom). The images in the right
column are the corresponding difference images I −R+ 128.

The last example in Figure-4 is a piece of cloth with colorful bands and each band is of
a constant color. In the image, the right part is under a shadow. After the computation,
we are supposed to remove the shadow. In the resulting image of the PDE-based algorithm,
the shadow is partially removed and the contrast of the difference image is not strong. The
shadow in the resulting image of the TV regularized model is weaker than that of the PDE-
based model, but it is not fully removed. If we choose a larger t, the shadow is weaker,
but the difference between similar color is eliminated too. Actually, the difference between
similar color is weakened. The result of the nonlocal TV regularized model has almost no
shadow and each color band is constant. And its difference image has the strongest contrast
among these three.
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Figure 4: The two images in the left column are the original image (top) and the color
balanced image (middle). The images in the middle column are the resulting images from
the PDE-based algorithm with t = 15 (top), the TV regularized model (middle) with t = 10
and the nonlocal TV regularized model with t = 5 (bottom). The images in the right column
are the corresponding difference images I −R+ 128.

5 Future work

The TV and nonlocal TV regularized model can be modified to the problem of image en-
hancement. Our approach can be simply generalized to 3D to process 3D medical image
such as MRI data. We can also apply our model to hyperspectral images.
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