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Geodesic Active Fields—A Geometric
Framework for Image Registration
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Abstract—In this paper we present a novel geometric frame-
work called geodesic active fields for general image registration. In
image registration, one looks for the underlying deformation field
that best maps one image onto another. This is a classic ill-posed
inverse problem, which is usually solved by adding a regulariza-
tion term. Here, we propose a multiplicative coupling between
the registration term and the regularization term, which turns
out to be equivalent to embed the deformation field in a weighted
minimal surface problem. Then, the deformation field is driven
by a minimization flow toward a harmonic map corresponding to
the solution of the registration problem. This proposed approach
for registration shares close similarities with the well-known
geodesic active contours model in image segmentation, where the
segmentation term (the edge detector function) is coupled with
the regularization term (the length functional) via multiplication
as well. As a matter of fact, our proposed geometric model is
actually the exact mathematical generalization to vector fields of
the weighted length problem for curves and surfaces introduced
by Caselles-Kimmel-Sapiro [1]. The energy of the deformation
field is measured with the Polyakov energy weighted by a suitable
image distance, borrowed from standard registration models. We
investigate three different weighting functions, the squared error
and the approximated absolute error for monomodal images, and
the local joint entropy for multimodal images. As compared to
specialized state-of-the-art methods tailored for specific applica-
tions, our geometric framework involves important contributions.
Firstly, our general formulation for registration works on any
parametrizable, smooth and differentiable surface, including non-
flat and multiscale images. In the latter case, multiscale images are
registered at all scales simultaneously, and the relations between
space and scale are intrinsically being accounted for. Second, this
method is, to the best of our knowledge, the first reparametriza-
tion invariant registration method introduced in the literature.
Thirdly, the multiplicative coupling between the registration term,
i.e. local image discrepancy, and the regularization term naturally
results in a data-dependent tuning of the regularization strength.
Finally, by choosing the metric on the deformation field one can
freely interpolate between classic Gaussian and more interesting
anisotropic, TV-like regularization.

Index Terms—Biomedical image processing, computational ge-
ometry, differential geometry, diffusion equations, image registra-
tion, scale-spaces, surfaces.
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I. INTRODUCTION

I MAGE registration is the concept of mapping homologous
points of different images, representing a same object. Ho-

mology, in turn, is defined as the relation between “organs de-
riving from the same embryonic blanks”.1 This fundamental
concept is illustrated in Fig. 1.

In practice, however, it is highly difficult to establish ho-
mology in images strictly based upon this definition. For auto-
matic image registration, it is, therefore, commonplace to substi-
tute homology by a measurable criterion of image dissimilarity,
which is to be minimized. Depending upon the nature of the im-
ages to be registered, different metrics are used to assess image
distances. But also the deformation model and constraints that
are applied on that deformation field can vary, as well as the
optimization technique that is used to solve the minimization
[3]–[6].

Let a deformation field
describe the spatial displacement along

dimensions of an -dimensional image of support
. The determination of this underlying deformation field

between two images is an ill-posed inverse problem, requiring
additional prior knowledge to make it well-posed. On one
hand, parametric deformation models, including rigid and
affine transformations, which are defined globally for the whole
image space, restrict the degrees of freedom to a small number
of parameters. On the other hand, freeform deformations allow
for an individual local displacement of each point in the image
domain. To restrict such deformation fields to what is believed
to be “physically meaningful” deformations, constraints on
the field regularity are introduced. Typical regularization con-
straints reduce the variations of the deformation field by
defining an additional penalty, e.g., the vectorial total variation
functional [7]

(1)

Thus, image distance metric and regularization penalty are com-
monly incorporated into a single energy minimization model,
a.k.a. variational model, e.g., [8]. The energy functionals are
commonly of the general form

(2)

As a typical instance consider an energy functional consisting of
the -norm of the difference between the fixed and the moving

1Homologue: “sont homologues les organes dérivant des mêmesébauches
embryonnaires”. Le trésor de la langue française informatisé.
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Fig. 1. Skull of a human is registered to chimpanzee and baboon by finding the
deformation fields���� and� ���, such that human features, e.g., the mandible
(shaded), at � match those of chimpanzee and baboon at � � ���� and � �
� ���. Skull sketches reproduced from [2].

image, , regularized by the aforementioned vec-
torial total variation

(3)

The balancing parameter can have a severe impact on the reg-
istration result. Its choice is arbitrary and the optimal depends
upon several conditions.

In their seminal work [9], Sochen, Kimmel, and Malladi
introduced the powerful Beltrami framework for image de-
noising and enhancement. This model is based upon the
Polyakov model [10] introduced in string theory for physics.
The Polyakov model represents strings as harmonic maps in
high-dimensional and curved spaces defined by Riemannian
manifolds. Adopting this pure geometric point of view amounts
to seeing objects such as images, shapes, or vector fields as
geodesics or harmonic maps. Recently, a new regularization
criterion derived from the Beltrami framework was introduced
in stereo vision and optical flow modeling [11]–[13]. There,
the authors embed the disparity map or the optical flow field,
respectively, as harmonic map, and propose to use the Polyakov
energy as the regularization term, while keeping the classical
additive data terms.

In some registration problems, separate objects (Gestalts) in
the images are displaced and deformed independently. This is
illustrated by a study on the individual movements of separate
parts between slices of histological samples, where regulariza-
tion has been delimited by explicitly modeled boundaries [14].
Other examples can be found in computer vision, where the
optical flow often exhibits piece-wise constant or piece-wise
smooth regions, with distinct boundaries [15]. Geometric regu-
larization offers some nice advantages in this respect. The first,
flow-driven, TV-like regularizer of [13] intrinsically allows for
sharper transitions and isolated regions. Further, there are cases
where boundaries in images—in terms of intensities or even

texture—are good predictors of deformation field boundaries
[16]. In [13], the authors present a second, combined flow-in-
tensity driven regularizer, where image intensity is embedded
in the manifold along with the deformation field. Hence, this
additional cue increases the geodesic distance between indepen-
dent homogeneous Gestalts and helps defining sharp deforma-
tion field boundaries between them.

Data-dependent regularization has also become important
when dealing with outlier pixels. In rigid registration, the
influence of mismatching regions can be drastically reduced by
cropping the image distance function, e.g., by using Tukey’s
biweight instead of squared error as an instance of robust
statistics [17]. In nonrigid registration, one can estimate a local
measure of image data reliability to spatially adapt the strength
of regularization [18], while in atlas-based registration this
information can equally be derived from atlas statistics.

The goal of this work is to define a novel image registra-
tion scheme using a geometric approach. We couple the regis-
tration term and the regularization term locally, by multiplica-
tion. Hence, we embed the deformation field in a higher dimen-
sional space and define a variational model using the weighted
Polyakov energy. While the Polyakov energy itself only pro-
vides a regularity constraint—harmonic map—, the weighting
allows driving the deformation field toward low image dissim-
ilarity. This is in close analogy to geodesic active contours in
segmentation [1], where the segmentation term, i.e., the edge
detector function, is coupled with the regularizing length func-
tion through multiplication as well. Because our model actually
represents a mathematical generalization to vector fields of the
weighted length problem for curves and surfaces, we call this
model geodesic active fields (GAF) for image registration.

As will become clearer in the next sections, the GAF frame-
work has several appealing properties. The proposed approach
directly generalizes to non-Euclidean images and, thus, auto-
matically allows working, e.g., with nonflat or multiscale im-
ages. In particular, we will instantiate a model for the simul-
taneous registration of multiscale images at all scales, where
the metric on the deformation field automatically takes care of
the specific relations between space and scale. Also, we will
show that the geometric GAF energy formulation has the ad-
vantage of being invariant with respect to the parametrization
of the image domain. To the best of our knowledge, this is the
first registration method invariant by reparametrization. Further,
thanks to the Beltrami-like embedding of the deformation field
we can benefit of all advantages of geometric regularization, in-
cluding the freedom to choose the desired degree of anisotropy.
Last but not least, the multiplicative link between data and regu-
larization term represents an automatic data-dependent modula-
tion of the local regularization strength by the current alignment
quality. The weighting function increases regularization in re-
gions where low matching quality indicates missing confidence,
e.g., due to a higher level of noise, whereas lower regularity is
required in regions where a good fit can be provided.

The structure of this paper is as follows. The next section
will introduce the mathematical tools that build the foundation
of the GAF framework. We will recall the Polyakov energy
employed in the Beltrami framework and its weighted version
used in GAF, as well as the corresponding minimizing flows.
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In Section III, we show how the weighted Polyakov frame-
work can be used to define an abstract geometric image registra-
tion model. We then derive from this general image registration
model several instances for stereo vision as well as flat and non-
flat 2-D image registration in Section IV. Then, in Section V, we
instantiate an extension of the framework to multiscale image
registration. Section VI studies different weighting functions.
Finally, we show some illustrative, preliminary results obtained
with our GAF framework in Section VII and we discuss our
model in Section VIII.

II. WEIGHTED POLYAKOV ENERGY

Sochen, Kimmel, and Malladi introduced in [19] and [9] a
general geometrical framework for low-level vision, based upon
an energy functional defined by Polyakov in [10]. In this frame-
work, which is widely used for image restoration, anisotropic
smoothing and scale-spaces, images are seen as surfaces or hy-
persurfaces embedded in higher dimensional spaces.

A. Beltrami Framework

An -dimensional manifold with coordinates is
embedded in an -dimensional manifold with coordinates

, with . The embedding map
is given by functions of variables. For example, a 2-D
gray-level image can be seen as a surface embedded in 3-D:

, where corresponds to the
gray-level intensities of the image. A Riemannian structure can
be introduced: the metric locally measures the distances on

, whereas on distances are measured using .
To measure the weight of the mapping , Sochen

et al. [9] use the Polyakov energy, known from high energy
physics [10], as a natural generalization of the -norm on the
embedded image to manifolds

(4)

where the Einstein summation convention is used, is the deter-
minant of the image metric tensor, and is its inverse, such
that ( is the Kronecker delta). Naturally, the
metric is chosen as the induced metric, obtained by the pull-
back-relation: . Under such a metric, the
Polyakov energy shortens to

(5)

and represents the area of the embedded image surface. Using
the Euler-Lagrange equation technique from calculus of varia-
tions, the following minimizing flow is obtained:

(6)

where the Levi-Civita connection , also called the
Christoffel symbol, is defined as

(7)

Assuming the embedding is in a Euclidean space with Cartesian
coordinates, the Christoffel symbols are all equal to zero, and
the corresponding gradient descent equation is

(8)

known as the Beltrami flow, where denotes the th compo-
nent of the mean curvature vector of the manifold.

A remarkable property of the Beltrami framework is the
freedom to choose the metric of the embedding space. For
example, let us embed a 2-D gray-level image in 3-D, using the
following metric tensor:

(9)

where is a constant. This allows to set the scale of the
feature dimension independently of the spatial dimensions. The
pullback relation yields the metric tensor

(10)

Its determinant is given by . Thus, the Polyakov
energy of the embedding reads

(11)

If , the 1 in this energy becomes negligible, and the en-
ergy approaches the TV-norm, well-known in image denoising
[20], [21]. If, however, , then the minimizing flow ap-
proaches the isotropic heat diffusion [9]. The impact of on the
apparent feature amplitudes of an embedded scalar field is illus-
trated in Fig. 2(a).

Moreover, the features being considered within the Beltrami
framework are not restricted to scalar values only, but gener-
alize directly to any vector value. For explicit applications of
the framework to denoising of color images and textures, we
refer the reader to [22]. For a review of the framework over a
variety of manifolds and data structures, see [23].

B. Weighted Polyakov Energy

Here, we present a weighted version of the Polyakov energy
which will be used to define our registration model. In [24], the
Polyakov energy was tuned by a weighting function

(12)

where . In [24], the weighting function rep-
resents an edge-detector, that attracts an evolving contour to the
edges in an image so as to segment it. In the GAF framework,
the weighting function is an image discrepancy measure, that at-
tracts the deformation field toward well aligned configurations,
as will be seen shortly.

Still assuming the embedding is in a Euclidean space with
Cartesian coordinates, i.e., is diagonal and constant, the cor-
responding gradient descent equation is

(13)
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Fig. 2. (a) Beltrami framework: a gray-level image is embedded in 3-D ac-
cording to � � ��� �� � ��� �� ��. The apparent effect of the aspect ratio �

is illustrated as a relative scaling of the surface variations with respect to the
spatial dimensions � and �. Minimizing the Polyakov energy smoothens the
image, where � interpolates between total variation and Gaussian smoothing.
(b) GAF framework: the scalar deformation field (lateral shift � along �) of a
planar image is embedded in . Formally, the embedding writes� � ��� ���
��� �� ��. The arrows illustrate the corresponding deformation field in the image
plane. The Polyakov energy measures the area of the embedded surface, and is
a measure of regularity of the deformation field. Weighting of the energy allows
driving the minimization toward the optimal registration result.

where corresponds to a weighted mean curvature flow on
manifolds.

III. GAF

In this section, we define the general evolution equation for
the GAF for image registration. In contrast to the Beltrami
framework for image denoising, we do not embed images, but
the deformation field that relates the image pair to be registered.
The deformation field is embedded as a mapping between the

-dimensional image domain and an -dimensional space,
where . This is achieved by letting the components
of the deformation field become additional dimensions of the
embedding space. A very simple such embedding is illustrated
in Fig. 2(b). We will then define metric tensors on the deforma-
tion field and the corresponding GAF energy to be minimized.
The embedded deformation field manifold then evolves toward
a weighted minimal surface, where the weighting function

attracts it to a deformation field that brings the two images into
registration.

In the most general form, we register a pair of -dimensional
images defined on a Riemannian domain with coordinates

. The deformation field acts along
dimensions, i.e., .

The embedding and the metric tensors and on the
deformation field are chosen as follows:

is arbitrary (14)

where denote the spatial components of the image
and are the components of the dense deformation
field. These equations are introduced in the weighted Polyakov
functional (12) and its minimization flow (13), leading to the
following general registration energy functional and the mini-
mizing evolution flow of the GAF:

(15)

where the weighting function is arbitrary for now,
and will be defined in more detail in Section VI.

The main contributions of this framework are listed in the
following.

1) The freedom to register images on any Riemannian man-
ifold, i.e., on any smooth and parametrized surface. This
will be developed further in Sections IV and V.

2) The invariance under reparametrization of the proposed
energy, like the GAC energy [1] for the segmentation
problem.

3) The freedom to choose the metric in the embedding
space to obtain different regularizing behavior, as known
from the versatility of the Beltrami framework.

4) The intrinsic data-dependent modulation of the local regu-
larization strength thanks to the multiplicative weighting.

In image registration, the property of parametrization invari-
ance is a very rare, but actually highly desirable property. In-
deed, there is no reason why the chosen parametrization of the
image domain should influence the outcome of the registra-
tion process. And yet, many currently used image registration
methods lack this important invariance property.

The relevance of the contributions one and two can be
clarified with the example of catadioptric images illustrated
in Fig. 3. Such images are widely used in omnidirectional
vision and robot navigation, for example, where ego-motion
and position can be derived from a sequence of images, e.g.,
[25]–[27]. Because standard image registration methods ignore
the paraboloid geometry of the actual image, they agnostically
work on either one of the flat parametrized image versions.
As can be clearly seen, there are important distortions be-
tween the raw, disc representation on the one hand, and the
polar panorama view on the other hand, in Fig. 3(a) and (b),
respectively. Obviously, a simple energy like mean squared
error, employed in many standard methods, such as the popular
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Fig. 3. Omnidirectional bunny image obtained from a catadioptric system [29].
(a) Flat 2-D raw image obtained from the camera, in Cartesian parametriza-
tion. (b) Panoramic representation, obtained by polar reparametrization
of the raw disc. (c) Mapping of the bunny on the parabolic manifold,
� � �� ����� � ����� � �, corresponding to the focal projection of the
catadioptric system. Classical registration of images of this type with standard
methods will produce different results for the disc and panorama parametriza-
tions. The GAF energy uses a metric corresponding to the actual image
geometry and is, therefore, invariant to the chosen parametrization.

Demons algorithm [28], fails to be reparametrization invariant
on those images

(16)

and the registration result depends upon the selected
parametrization. In contrast, with the GAF energy, a metric
tensor is derived from the actual image geometry, like the
paraboloid in Fig. 3(c), and the registration result becomes
independent of the chosen image representation.

IV. STEREO VISION AND IMAGE REGISTRATION

In the previous section, we have defined the general, abstract
energy of GAF and its corresponding gradient descent flow. In
the following paragraphs, we instantiate this general concept for
specific applications, namely stereo vision and 2-D image reg-
istration in the Euclidean case, as well as image registration on
nonflat manifolds. In other words, we will define specific image
geometries and deformation field embeddings, derive the corre-
sponding metric tensors and, thus, concretize the GAF energy
and its flow. The weighting function , however, remains un-
specified and will be described in detail only later, in Section VI.

A. General Euclidean Case

Let us first consider the case of -dimensional images de-
fined on well-known Euclidean domains with Cartesian co-
ordinates . We look for a deformation field
acting along dimensions.

The embedding of the deformation field, and the corre-
sponding metric tensors and are chosen as follows:

(17)

where is the scaling factor applied to the deformation field
components to get the desired aspect ratio. In analogy to the Bel-
trami framework, this parameter interpolates between isotropic

Gaussian, and anisotropic TV-like smoothing of the deforma-
tion field. Now, the general Euclidean registration energy func-
tional and the minimizing evolution flow, obtained by plugging
the previous choice into (15), take the following form:

(18)

B. Stereo Vision

Simply put, in stereo vision the depth information corre-
sponding to a location is encoded as the lateral shift between
its representation in two adjacent image acquisitions [30]. The
recovered depth information is used in, e.g., satellite imaging or
robot vision to reconstruct the observed scene. The lateral shift
can be determined by registration of the two images, where only
lateral deformation is allowed. That is, the deformation field
has only one component, along the -dimension. We choose
the following embedding and metric tensors, corresponding to
the illustration in Fig. 2(b)

(19)
Introducing those equations into (15), we get the following en-
ergy functional and evolution equation

(20)

where is simply the 3rd component of the mean curvature
vector

(21)

C. 2-D Image Registration

In the case of registration, involving deformations along all
image dimensions, one has and . Here, as an
example without loss of generality, we consider the registration
of 2-D images. The deformation field is described by and ,
resp. along and

(22)

We choose the following embedding and metric tensors:

(23)

where is defined as the magnitude
of the cross product of the gradient vectors and . The
expression of the determinant has become quite cumbersome.
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The term measures the misalignment of the gradi-
ents between different deformation field components [22]. All
these settings put into the general equations produce the fol-
lowing energy functional and minimizing flow:

(24)

D. Registration on Nonflat Manifolds

One of the main contributions of the proposed framework
is that the image domain does not necessarily have to be Eu-
clidean. Indeed, images to be registered can be defined on any
Riemannian manifold, i.e., on any smooth and parametrized sur-
face. In the Euclidean case, the spatial coordinates were directly
given by the image domain parameters. In the non-Euclidean
case, the spatial coordinates of the image are more complicated
functions of the domain parameters instead.

To give a basic example, that will be illustrated in Section VII,
consider a spherical patch described by two angles, and ,
on which the images are defined

(25)

The induced metric on is naturally given by
. Further, let the deformation field

act on the two angles describing the patch.
This suggests the following embedding:

(26)
where the metric tensor has been set by taking the induced
metric of the patch parametrization into account. The pull-
back relation yields the following metric tensor in parameter
space

(27)

Given this metric tensor , the embedding space is not Eu-
clidean anymore, and the computation of the mean curvature
vector involves the Levi-Civita connection as in (6), to account
for the Riemannian part.

For the spherical patch, only two relevant Christoffel symbols
computed by (7) differ from zero

otherwise
(28)

and , where, with some abuse of notation,
denotes the one corresponding to the parameter , and con-

sequently . This gives the following evolution
equations for the deformation field:

(29)
where , and .

V. MULTISCALE IMAGE REGISTRATION

A. Motivation

It is today commonly accepted, that the scale at which one
measures a certain property becomes an additional dimension
of the imaging space. Images are naturally composed of ob-
jects which are meaningful only at certain scales of observation
[31], [32]. This has given rise to Witkin’s patented notion of a
scale-space [33]. Witkin introduced the concept of artificially
generating larger (coarser) scales of an image through low-pass
filtering.

Scale-spaces have particular importance in the context of
image registration. As an example, let us consider the human
brain. It exhibits a highly convoluted and irregular structure,
with high complexity and variability. For example, sulci and
gyri vary a lot between subjects. On the other hand, high
level structures of the brain—the “big picture”—are highly
conserved, such as the two hemispheres, the lobes and main
folds. Hence, a hierarchical representation of these structures
is important in the context of intersubject registration: consid-
ering the complexity of the cortical surface, directly involving
local small-scale features would mislead the registration to be
trapped in bad local minima. A robust method needs to rely
on large-scale features, describing the main landmarks of the
cortex, such as the main gyri or sulci, while small-scale features
drive the registration more locally to reach the desired precision
[34].

The most intuitive and commonly used approach to multi-
scale image registration consists of repeated, hierarchical regis-
tration at single scales—from coarse to fine. The result of one
stage is used as initialization for the next finer scale. This pyra-
midal approach has reasonable computational load, but the link
between scales is relatively weak, however, and unidirectional:
information is only relayed from coarse to fine. Here, we pro-
pose a method of registering pairs of entire scale-spaces. All
scales are registered simultaneously, thus, allowing for bidirec-
tional communication between scales.

The geometry of a large class of scale-spaces can be defined
by a general metric tensor [35]

(30)

where the first elements of the diagonal correspond to the spa-
tial dimensions , and the last element refers to the
scale . and are two functions that represent the conduc-
tance and the density in the general model of heat transfer. The
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Fig. 4. (a), (b) Linear and Beltrami scale-spaces of the Von Koch snowflake.
The scale � increases linearly from bottom to top of the image stack, thus,
constituting an additional image dimension. (c), (d) Multiscale representation
of a T1-weighted magnetic resonance image of a human brain, in a linear and
Beltrami scale-space.

spatial derivative within such a scale-space is now obtained as
, whereas the scale derivative is given by . The natural

heat equation, that defines the scale-space, is

(31)

Different choices for and yield different well-known scale-
spaces. The linear scale-space, e.g., corresponds to and

: . The Perona-Malik scale-space is repro-
duced with and , [36].
The Beltrami flow of Sochen-Kimmel-Malladi requires

[9], [19]. The linear and the Beltrami
scale-space are illustrated at the example of the fractal image of
a Von Koch snowflake, and a single slice of a T1-weighted brain
MR image in Fig. 4.

B. Multiscale Active Deformation Fields

Multiscale images have an additional image dimension: the
scale . Along this scale-dimension, no deformation takes place.
The multiscale deformation field is embedded as follows:

(32)

where the structure of the metric tensor is arbitrary, and in-
spired by (30).

Considering a linear scale-space, i.e., and , the
embedding, thus, looks like

(33)
Again, as for nonflat image domains, the multiscale embed-

ding is not Euclidean, and the Levi-Civita connection (7) is
required to compute the complete mean curvature vector ac-
cording to (6).

Note, that the deformation field evolves at all
scales simultaneously. At each scale, the deformation field is

attracted by the corresponding data term, while coherence be-
tween scales is obtained thanks to the regularizing power of har-
monic maps.

C. Multiscale 2-D Image Registration

In the case of 2-D images to be registered, the only relevant
nonzero Christoffel symbols computed as (7) are

. The evolution equations for both com-
ponents of the deformation field along are

(34)

where, with some abuse of notation, denotes the column
of the inverse of the metric tensor corresponding to the scale

.

VI. WHAT CHOICE OF WEIGHTING FUNCTION FOR THE

REGISTRATION PROBLEM?

The purpose of the weighting function is to drive the de-
formation field toward minimal surfaces that bring the two im-
ages into registration. As such, the flow should stop when the
deformed image perfectly matches the target image. Hence, the
weighting function is naturally chosen to be an image distance
metric, which approaches zero when the two images match.

A. Deformation Model

The weighting function is the place, where the deformation
field actually gets to act on the images. Therefore, it is crucial to
define the particular deformation model we want to use. First,
we work with Euler coordinates. That is, for any pixel in the
fixed imaged, the corresponding pixel is looked up in the moving
image using a coordinate mapping. The corresponding location
in the moving image will almost never fall on an exact pixel
location and interpolation will be required.

Here, we use a very simple scheme, where the look-up is
based upon a shift by addition. The transform operator is,
thus, defined as

(35)

where addition is implicitly understood only along the
dimensions of the image that are deformed. Also, for simplicity
we shall ignore any boundary issues and finite support.

This very basic deformation model embodies only a restricted
set of properties. By definition, the displacement needs to be at
least twice differentiable, otherwise the Riemannian manifold
cannot be constructed and mean curvature cannot be computed.
Other than that, no further guarantees exist: the deformation is
not necessarily invertible as nothing explicitly prevents the Ja-
cobian to become negative. Further, it is not enforced to be sur-
jective (onto), and homeomorphism or even diffeomorphism are
not guaranteed properties. It is important to realize, however,
that this is a restriction of the employed deformation model and
not of the GAF framework as a whole. More sophisticated de-
formation models can be used to obtain these properties.
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Very recently, Vercauteren et al. introduced exponential map
diffeomorphisms in the Demons framework [37]. There, at each
iteration one looks for an infinitesimally small update to

, that is applied through composition of its exponential map
with the existing diffeomorphic deformation.

We have integrated this more complicated deformation field
model into our GAF framework as well. However, diffeomor-
phisms are beyond the scope of this article and the details of
this specific GAF version will be published separately. In the
mean time, the reader may refer to [38].

Once the deformation model has been defined, corre-
sponding fixed an moving image locations can be mapped, and
the matching quality can be quantified using one of several
distance metrics, of which we present some in the following
paragraphs.

B. Squared Error

If the images have been acquired using similar sensors, one
can generally assume that the same entities are pictured at the
same feature intensity in both images. An intuitive and simple
choice for monomodal image registration subject to additive
Gaussian noise is the squared error metric [39]

(36)
where and refer to the fix and moving images, respectively.
The evolution equation (15) includes the partial derivatives of
the weighting function with respect to all components of the
embedding. For the function given in (36), these are obtained as
follows:

(37)
where and refer to the gradients of the fix and moving
images, respectively, and where denotes the transpose of the
Jacobian of the deformed field

(38)

C. Local Joint Entropy

If images of different modality are to be registered, the pre-
vious squared error metric is not a suitable distance metric any-
more. Instead, mutual information is a commonly accepted sim-
ilarity criterion in this case [40]–[42].

Mutual information is a global measure on the joint
and marginal ( and ) histograms of the fixed and moving
images

(39)
where etc. Let us assume, that the mar-
ginal entropies remain constant throughout the whole registra-
tion process, as they only depend upon the fix and moving image

separately. Maximizing mutual information is, thus, equal to
minimizing the joint entropy.

The same joint entropy, i.e., the expectation of the negative
logarithm of the joint probability, can also be computed in
the image domain, instead of using the previously shown
histograms [43]

(40)

where . The negative logarithm
denotes the local joint entropy. This local joint entropy has a
minimum value of 0 (if the joint probability matches 1), and
is unbound positive. This provides us with a local measure
that corresponds well to the weighting function criteria stated
previously.

Consequently, we define the following information theory
based weighting function for multimodal image registration

(41)

Using this weighting function, the goodness of a local alignment
is measured by the frequency of similar intensity pairs in the rest
of the image.

The partial derivatives along spatial components are
easily estimated numerically. The partial derivatives along
deformation field components are obtained using the chain rule

(42)

where is the partial derivative of the histogram along
the dimension corresponding to the moving image.

D. Absolute Error

For nonsmooth deformation fields, e.g., observed in optical
flow-based image registration, the -norm may perform better
as data term [44]. The -norm measures the absolute error be-
tween the two images

(43)

and it can be approximated by a differentiable function

(44)

where . The partial derivatives of the approximated
function are obtained easily

(45)

E. Data Term and Regularization Balancing

In practice, we found useful to extend the weighting function
by a positive constant, to convey a minimal weight to regular-
ization. This is required in two cases: first, a pixel pair might
accidentally fit well and locally produce zero discrepancy. As
a consequence without a minimal weight, regularization would
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not be able to release the trapped pixels from their local minima.
On the other hand, minimal regularization weight is required
by the aperture problem, otherwise displacement would not get
propagated into matched, homogeneous regions [45], [46]. The
general form of the weighting function is, thus

(46)

where is one of the image distance metrics specified pre-
viously, and is the balancing parameter, that scales the image
discrepancy w.r.t. the constant minimal weight. This form rep-
resents a Polyakov energy functional, where the image distance
metric corresponds to an additional penalty weighting. A big

will favor high data-fidelity, whereas a small value limits
the modulating impact of the image discrepancy and increases
overall regularization. Note that choosing 1 as the minimum
weight renders the weighting function in some way symmetric
to the square root of the metric tensor determinant, which shares
the same lower bound.

VII. RESULTS

We have implemented the GAF and ran it on several test prob-
lems. Here, the results are presented in order of task complexity.
As for all forward schemes, the step length and, thus, the speed
of the registration, is heavily limited by the stability of the inte-
gration. The implementation was done using Matlab (R2009a)
on a standard 2.4 GHz Intel Core 2 Duo desktop machine, run-
ning a 64 bit Fedora Core 11.

A. Mean Curvature Estimation

In (8), mean curvature is expressed as the anisotropic diver-
gence of the coordinate gradient. Except for the simple stereo
case, where an analytical expression of mean curvature was
given, explicit expressions are cumbersome. Instead, we pro-
pose to estimate the mean curvature vector numerically, by using
central differences twice.

In the 2-D case of flat and nonflat images, this amounts to the
same scheme as was already proposed by [13] and of which nu-
merical properties have been studied and discussed in [47]. The
numeric scheme for the mean curvature vector in the multiscale
case is obtained in the same manner.

B. A Few Words on and Regularization

It might be useful to illustrate the influence of the scaling
factor on the deformation field smoothness. The analysis is
easiest in the stereo case. For higher codimensions the analysis
becomes more tedious and is beyond the scope of the present
paper. We refer the reader to similar studies in the field of color
and vector image denoising [22], and optical flow regularization
[13]. To begin with, a pair of images is registered, where the
one-directional deformation field is initialized with a single
local impulse. To study the impulse response of the regulariza-
tion only, we wish being constant, and set . The
so clutched GAF energy now corresponds exactly to the Bel-
trami framework for image denoising. Without surprise, after a
few iterations, the deformation field has diffused, as illustrated
in Fig. 5(a). Next, the deformation field is initialized with a unit

Fig. 5. (a) Mid-time response, i.e. after some 100 iterations, to a single impulse
in the deformation field under constant data term � � �. (b) Initial unit-step
deformation field with uniform additive noise, and (c)–(f) its smoothing by the
regularizer at different �. (c) � � ��. (d) � � ��. (e) � � ��. (f) � � ���.

step, disturbed by uniformly distributed, additive random noise,
as shown in Fig. 5(b). In Fig. 5(c)–(e), the role of the parameter
becomes clear: The regularizer changes from Gaussian filtering
for low , to highly anisotropic, feature preserving TV-norm-
like filtering at higher values. The actual choice of the param-
eter value depends upon the available a priori knowledge on
the deformation field regularity for a specific registration task.
For computer vision applications such as motion detection and
stereo vision, where entire image regions move as individual
blocks (Gestalts), a higher is preferable to allow for sharp de-
formation boundaries. Also think of the skulls in Fig. 1, where
the rigid skull and mandible may be in a different relative pose in
the image pair, whereas other applications would require more
smooth transitions, thus, motivating small .

C. Application to Stereo Vision

An example of stereo vision depth recovery was performed
as shown in Fig. 6. The image pair tsukuba is a well known
test image, taken from the middlebury benchmark set for stereo
vision. The registration was set up according to the embedding
and evolution equation described in Section IV-B and using the
absolute error weighting function (44). In our current implemen-
tation of which the goal is to illustrate the concept, the depth
recovery result is fair, but does not yet achieve the quality of
specifically tailored state-of-the-art stereo vision tools.

D. Application to Medical Imaging

The third case deals with registration of a highly misaligned
monomodal medical image pair. Two roughly corresponding
axial slices through the T1-weighted MRI volume of different
subjects are to be registered. The images have a resolution of
256 256 pixels. Registration is set up with the squared error
weighting function. The slices are well aligned by registration,
as illustrated in Fig. 7. Note, that the subtle differences in
the folding pattern cannot effectively be compensated by the
dense deformation field, i.e., the global outline of the skull and
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Fig. 6. (a), (b) Tsukuba test image for stereo vision and the image pair dif-
ference. (c) Recovered disparity map. (d) Ground truth.

Fig. 7. (a), (b) Fix and moving image. (c) Moving image warped by the recov-
ered deformation field. (d) Estimated deformation field. (e), (f) Intensity differ-
ences before and after registration.

brain structures are aligned, but gyri and sulci remain largely
individual.

Another case aims at registering a pair of multimodal med-
ical images at resolution 317 317. The first image is the same
T1 brain slice as shown previously. The second image now
is a deformed slice in T2 weighting. For multimodal registra-
tion, we use the information theory based joint local entropy as
weighting function (41). At the fine resolution, the resampling
of an entire image takes considerable time, as well as the com-
putation of the joint histogram. Accordingly, the whole registra-
tion process takes around three minutes. Registration is widely
successful, as is indicated by the before and after overlay im-
ages provided in Fig. 8. Compared to the robust squared error
weighting function, the local joint entropy is much more deli-
cate with respect to the initial condition, but allows to register
images of different modalities.

E. Registration on Nonflat Manifolds

To illustrate the model on a nonflat manifold, we have imple-
mented the spherical patch described in (29). First, the purpose

Fig. 8. (a) Fix T1 image. (b) Artificially deformed T2 weighted image.
(c), (d) Red-green overlay of T1 and T2 images prior to and after registration.
(e), (f) Joint intensity histograms prior to and after registration. While initially,
the histogram is widely spread, registration results in important histogram
focalization.

Fig. 9. (a) Diffusion takes place in parameter domain ��� ��, governed by the
metric tensor � . At low �, diffusion is highly anisotropic. (b) Diffusion as
seen on the embedded spherical patch. Both impulse responses look the same
and are isotropic. This is obtained through the pullback relation that links the
respective metrics � on the patch and � in the parameter space.

of the pullback relation is nicely illustrated in Fig. 9. We pic-
ture the impulse response that corresponds to the diffusion of a
local nonzero spot in the deformation field without data term,
i.e., is simply set to 0, thus, . On the spherical patch, the
impulse response is isotropic and equal both close to the North
pole and close to the equator. Isotropy on the spherical manifold
requires a high degree of anisotropy in the rectangular param-
eter domain, as low- regions map denser on the sphere. This
required anisotropy is directly obtained thanks to the pullback
relation between the metrics on the patch and in the pa-
rameter space. Further, the registration has been tested on an
artificially deformed pair of topological maps of the Earth, see
Fig. 10. The patch spans a good part of the northern hemisphere
and some of the southern hemisphere of a globe, hence, cov-
ering parts of both Americas, entire Europe, Africa, the Atlantic
Ocean and of western Asia. Thus, the registration framework is
shown to work on nonflat manifolds, such as the sphere.

F. Multiscale Image Registration

Finally, the multiscale registration case is tested on a pair of
artificially deformed T1 brain images. Images are repeatedly
lowpass filtered with a Gaussian to generate a linear diffusion
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Fig. 10. (a) Fixed map with its approximate coastlines highlighted as white
contours. (b) Moving image, with the coastlines of the fixed image superim-
posed. (c) Warped moving image after registration. The map fits well with the
superimposed fixed coastlines, except at a few locations where small misreg-
istration is observed (e.g., Red Sea). The colormap indicates height in meters
above (below) sea level. (d) Fixed image in rectangular, flat parameter domain.
(e), (f) Intensity differences before and after registration.

Fig. 11. (a) Multiscale stack of the fixed image of a T1 brain slice. (b) Moving
image of a T1 brain slice, obtained by synthetic deformation of the fixed image.
(c) Intensity difference illustrates the misalignment at all scales. (d) Registered
moving image. (e) Residue after registration is significantly reduced. Some mis-
registration is observed at the frontal parts of the skull.

scale-space. The multiscale image stacks prior to and after reg-
istration are shown in Fig. 11, as well as the corresponding in-
tensity residues. Registration succeeds quite well, as illustrated
by the almost entirely removed intensity errors.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have presented a novel, purely geometric
method, called GAF, to register images. The fundamental idea is
to embed deformation fields in a weighted minimal surface en-
ergy and evolve the deformation field toward minimal surfaces,
while being attracted by configurations that bring the images
into registration. The process amounts to looking for an optimal
hyper-contour in the space of all possible deformations in terms
of image mismatch and deformation field regularity. This point
of view reveals the close analogy to geodesic active contours
in image segmentation [1], that can be derived from a weighted
Polyakov energy as well [24], hence, the name GAF.

In contrast to classic approaches in variational methods,
which make use of purely additive competition between data
and regularization term, our method combines the two energy
contributions in a multiplicative way. In fact, the data term is

represented by a local image distance function, that acts as
multiplicative weighting on the geometric regularization term,
resulting in a weighted surface energy. We recall the main
contributions of the proposed framework.

1) Registration of nonflat and multiscale images. We have
derived the minimizing flow of this weighted minimal
surface for different image registration configurations.
First, the framework applies to standard Euclidean images,
defined on Cartesian planes and volumes. Further, our
proposed method also directly generalizes to images on
Riemannian manifolds, such as nonflat image domains
and various scale-spaces, and ultimately the combination
of both. In true multiscale registration and in contrast to
hierarchic multiresolution approaches, image pairs are
registered at all scales simultaneously. Communication
between different scales is bidirectionally achieved by
the regularization term, smoothing the deformation field
across scales. In this context, we contribute a framework
which has the advantage over classical approaches of
automatically taking the relation between space and scale
into account. Useful applications of nonflat image registra-
tion can easily be found in computer vision, e.g., motion
detection or scene reconstruction from omnidirectional
images.

2) Parametrization invariance. The second contribution of
the proposed framework is the invariance of the registra-
tion result with respect to the parametrization chosen to
describe the image domain. This result is also very intu-
itive, as by construction the employed energy measures
the weighted hyperarea of the embedded deformation field,
which is inherently independent of the parametrization that
is used to describe this manifold.

3) Data-dependent, spatially-adaptive regularization. The
multiplicative coupling of data-term and regularization
intrinsically produces a data-dependent local modulation
of the regularization strength. Naturally, one selects the
one image discrepancy measure to be minimized that is
the best estimate of alignment quality one can get. It is,
thus, intuitive to let this same reliability estimate tune the
local amount of regularization required. In practice, this
might be particularly useful in medical image pairs that
violate the premier assumption of actual existence of a
one-to-one mapping between them, like a pair of images
with and without lesions. In these instances, the adaptive
regularization might help filling-in “the blanks” with a
more regular deformation field than in the surrounding
tissues that can be well aligned. It is also useful in images
with regions of different noise levels. We, thus, require
a smaller amount of global regularization, compared to
classical additive schemes, where the nonadaptive reg-
ularization force always causes a bias off the optimal
data position in the end result. Also, thanks to the mul-
tiplicative coupling, data-term and regularity compete
very locally, in contrast to additive methods, where image
distance metric and deformation field regularity compete
as global measures on the whole image domain. Note, that
the data-dependency of the regularization in GAF, based
upon the current local alignment of images, is different
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from [18], where regularization strength depends upon
individual image (gradient) intensities.

4) Geometric regularization. In a similar context, the geo-
metric nature of the regularization, in particular its freedom
to choose the amount of anisotropy through the parameter

, can allow for sharper deformation field transitions than
classical Gaussian regularization. This is needed in cases,
where individual objects move or deform independently,
and where deformation cues from separate objects should
not overly interact. Also, TV-like regularization reduces
the impact of deformation field outliers, as diffusion of the
error is limited. Such outliers can occur at locations of ac-
tual image dissent, which can be observed for example with
occlusions in stereo vision.

We would like to end this paper with some concluding
remarks.

1) Weighting functions. We have provided three instances of
weighting function, namely squared error (36), absolute
error (44) and local joint entropy (41). On the one hand, the
absolute and squared error weighting functions minimize
the global and -norm between the two images, and
are suitable for monomodal image registration. The local
joint entropy, on the other hand, maximizes the mutual in-
formation between images, and lends itself to multimodal
image registration.

2) The parameters and . It is important to emphasize the
role of the parameters and . First, tunes the aspect
ratio between the deformation field dimensions and the
spatial dimensions in the embedding. In the simplest case
of stereo matching, it has been shown that this allows in-
terpolating between and -norm minimization of the
deformation field gradient magnitudes, whereas interpreta-
tion is more difficult in the general case. Second, note that

only changes the nature of the regularization, but not its
relative weight with respect to the data term, which is pre-
cisely the role of the balancing parameter .

3) Preliminary results, limitations and future work. In this
paper, we have only shown preliminary results, based upon
very simple discretized forward Euler schemes. These are
results for illustrative purposes only, that cannot compete
with tightly tailored, and specifically tuned state-of-the-art
solutions to practical applications. As we focus on the the-
oretical and methodological aspects of our image regis-
tration framework, we did not develop efficient and accu-
rate numerical schemes to challenge established state-of-
the-art methods. Consequently we do not compare quanti-
tatively with other registration methods.

The most stringent limitations of the current GAF implemen-
tations are numerical stability (mean curvature estimation) and
computational complexity (small time steps). Consequently, our
next efforts will, therefore, focus on bringing the GAF energy
in a suitable form for more efficient numerical implementations,
both in terms of speed, accuracy, and stability. On another note,
we continue working on the integration of more sophisticated,
diffeomorphic deformation models, that have become very pop-
ular in medical image registration.

As mentioned, the embedding we propose for GAF corre-
sponds to the flow-driven geometric regularizer proposed in

[13]. The second, combined flow-intensity driven regularizer of
that article is not exploited in the proposed GAF formulation,
but inclusion is straightforward. We propose to go even one
step further by embedding textural features rather than intensi-
ties, to address cases where Gestalts are defined by regions of
homogeneous texture rather than flat intensity.
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