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Abstract
Musical noise often arises in the outputs of time-frequency bi-
nary mask based blind source separation approaches. Post-
processing is desired to enhance the separation quality. An ef-
ficient musical noise reduction method by time-domain sparse
filters is presented using convex optimization. The sparse filters
are sought by l1 regularization and the split Bregman method.
The proposed musical noise reduction method is evaluated by
both synthetic and room recorded speech and music data, and
found to outperform existing musical noise reduction methods
in terms of the objective and subjective measures.
Index Terms: Musical noise, time-frequency mask, time-
domain sparse filters, split Bregman method.

1. Introduction
Blind source separation (BSS) is a major area of research in
speech and music signal processing for recovering source sig-
nals from their mixtures without detailed knowledge of the mix-
ing process. The time-frequency (TF) binary mask approaches
to the BSS were widely studied ([1, 2] among others), which
have the advantage in fast computation speed and handling the
underdetermined problems where sources outnumber the mi-
crophones. The TF binary mask approaches rely on the sparse-
ness of signals in the TF domain. It is assumed that speech
signals are sufficiently sparse, and therefore at most one source
signal is dominant at each TF point of their mixtures, i.e. the
sources rarely overlap. These approaches extract source signals
by applying binary masks to the observed mixtures. However,
the nonlinear distortion (musical noise) exists in the outputs due
to the winner-take-all property of the binary mask. It may cause
too many discontinuous zero-paddings in the extracted signals,
which often suffer from the musical noise. This is even worse
for BSS of music sources and large number of sources since the
assumption of sparseness is not quite satisfied.

In order to suppress the musical noise, a few methods were
proposed recently [3, 4]. The main ingredients of these methods
are: (1) employing the overlap-add method for reconstructing
the waveform outputs from estimated spectrograms of source
signals; (2) using a finer shift of Hanning window while taking
short time Fourier transform (STFT); (3) adopting non-binary
masks either based on a sigmoid function, where the mask
of k-th source at TF point (f, τ) is defined by Mk(f, τ) =
1/[1 + exp(g(dk(f, τ) − θk))] (θk and g are parameters de-
ciding the shape of the sigmoid function, dk(f, τ) is the dis-

The authors M. Yu and W. Ma contributed equally to this work.
M. Yu and J. Xin were partially supported by NSF DMS-0911277 and
DMS-0712881; W. Ma and S. Osher were partially supported by NSF
DMS-0914561, NIH G54RR021813 and the Department of Defense.

tance between cluster members and their centroids), or based
on Bayesian inference byMk(f, τ) = P (Ck|X(f, τ)) where
Ck is the k-th cluster and X(f, τ) are the spectrograms of mix-
tures. In brief, the noise reduction methods above were ap-
proached from either a gradual change of the spectrogram or
non-binary masks.

In this paper, we propose a fast and efficient time domain
method to suppress the musical noise in the output of TF mask
based BSS. A convex optimization problem is formulated for
seeking sparse filters to re-estimate the source signals in the
time domain. The sparse filters are computed by l1 norm reg-
ularization and the split Bregman method for which fast con-
vergence was recently studied [6]. The paper is organized as
follows. In section 2, we review the TF binary mask based BSS
[1] and propose a way to adapt mask generation and minimize
fuzzy points in the feature space for extending another TF bi-
nary mask based BSS [2] in the case that the microphone spac-
ing exceeds the effective range [1, 2]. In section 3, an efficient
musical noise suppression model is introduced based on a con-
vex optimization problem with l1 norm regularization. In sec-
tion 4, computational framework by the split Bregman method
is shown. In section 5, evaluations of the proposed method
demonstrate its merits in comparison with existing methods.
Even in the case of large and unknown microphone spacing,
the proposed masking and musical noise reduction method en-
hances the recovered speech and music signals significantly.
The concluding remarks are in section 6.

2. Initial Source Estimation
We briefly review the TF binary mask method DUET [1] which
will be used as the initial separation. The standard mix-
ing model for two receivers and multiple sources is xj(t) =PN
k=1 hjk ∗ sk, where j = 1, 2, ∗ is the convolution and hjk

represents the impulse response from source sk to sensor j.
The time-domain signals xj(t), j = 1, 2, sampled at frequency
fs are first converted into frequency-domain time-series signals
Xj(f, τ) with STFT.

To group TF points into N clusters such that the points
within each cluster are dominated by a single source signal, the
feature parameters associated with each TF point are defined as
a(f, τ) = |R(f, τ)| and δ(f, τ) = −1

f
∠R(f, τ), where the

ratio R(f, τ) = X2(f,τ)
X1(f,τ)

, | · | denotes the magnitude and ∠·
denotes the phase angle of a complex number. Sufficient val-
ues of a(f, τ) and δ(f, τ) generate a smooth two dimensional
histogram. The K-means clustering algorithm finds the N most
prominent peaks in the histogram. Each peak corresponds to
one source in the mixture and the value for a(f, τ) and δ(f, τ)
at that peak are the feature parameters for that source. Once the



feature parameters for each source have been estimated, DUET
assigns the energy in each TF point to the source whose peak
lies closest to that point in the feature space of a and δ. The indi-
vidual separated signal spectrogram Yk(f, τ) is estimated based
on the clustering result. TF binary mask for the k-th source sig-
nal is:

Mk(f, τ) =

(
1 (f, τ) ∈ cluster Ck
0 otherwise

(1)

Then Yk(f, τ) =Mk(f, τ)XJ(f, τ), where k = 1, ..., N and
J is a selected sensor index. Finally, inverse STFT (iSTFT) is
applied to Yk(f, τ) with overlap-add method [4] to recover the
waveform yk(t).

Accurate estimation of the feature parameters is critical to a
successful source separation. Single source dominance at each
TF point may not be valid with the increase of source number
N and reverberation time (convolution length). In order to alle-
viate clustering error, a stricter criterion is introduced below. At
each TF point (f, τ), the confidence coefficient of (f, τ) ∈ Ck
is defined by CC(f, τ) = dk

minj 6=k dj
, where dj is the distance

between the value of a and δ at (f, τ) and that at j-th peak. The
mask is redefined for some ρ > 0 as

Mk(f, τ) =

(
1 (f, τ) ∈ Ck & CC(f, τ) ≤ ρ
0 otherwise

(2)

The motivation for the refined mask is to eliminate the fuzzy
feature points which have nearly equal distances to at least two
cluster centers. The refined mask also applies to the situation
where an unknown receiver spacing is not small enough and
phase aliasing errors appear [1, 2]. In this case, based on an-
other TF binary mask BSS method [2], we modify the feature
Θ(f, τ) (defined in [2]) by dropping the directions of arrival
(DOA) part yet keeping the distance part so that Θ(f, τ) =h
|X1(f,τ)|
|X(f,τ)| , ...,

|XM (f,τ)|
|X(f,τ)|

i
, where |X(f, τ)| is a normalization

and M is the number of receivers (sensors). This feature theo-
retically works for clustering if the number of sources N is not
large and the ratio of source to microphones’ distances varies
from one source to another. However, the quality of recovered
signals may not be good because in practice the distance fea-
ture does not distinguish the sources well [2]. Then the mask
(2) helps to improve the separation quality and set a better stage
for the subsequent time-domain noise reduction and quality en-
hancement of recovered source signals.

3. Time Domain Noise Reduction
Let us first consider the determined case of mixing model with
2 sensors and 2 sources. The output of the TF domain mask
based BSS are yk(t), k = 1, 2. We seek a pair of filters ujk,
j = 1, 2, for each source k such that

u1k ∗ x1 − u2k ∗ x2 ≈ yk, k = 1, 2. (3)

In general, BSS output yk’s may differ from sk’s by a convolu-
tion [7]. Cross multiplication and subtraction of the two equa-
tions in the mixing model implies a family of solutions to (3) of
the form: u1k = gk ∗h2qk and u2k = gk ∗h1qk, where gk is an
un-determined filter, and qk denotes complementary index of k,
e.g. if k = 1, qk = 2. The solutions ujk may differ from the
room impulse responses (RIRs) or the h1qk and h2qk, by a con-
volution gk. The optimal choice of gk is the de-reverberation
filter which minimizes the length (support) of gk ∗ h1qk and

gk ∗ h2qk. Without knowledge of RIRs however, we shall use
l1 norm regularization of u1k and u2k to achieve this goal indi-
rectly as follows.

Let us consider a duration D of yk(t), and seek a pair of
sparse filters ujk, j = 1, 2 to minimize the energy (l2 norm) of
u1k ∗x1−u2k ∗x2−yk subject to l1-norm regularization. The
resulting convex optimization problem for t ∈ D is:

(u∗1k, u
∗
2k) = arg min

(u1k,u2k)

1

2
||u1k ∗ x1 − u2k ∗ x2 − yk||22

+ µ(||u1k||1 + ||u2k||1). (4)

Denote the length of signal in D as LD and the length of so-
lution as L. In practice, D can be as short as several sec-
onds, which makes the proposed method efficient on data usage.
Since ujk’s are l1-regularized, we essentially recover minimal-
length solutions of (4). In matrix form, the convex objective (4)
becomes:

u∗k = arg min
uk

1

2
||Auk − yk||22 + µ||uk||1 (5)

where uk is formed by stacking up u1k and u2k, and LD × 2L
matrix A is (T is transpose):

A =

0BBBBBBBB@

x1(1) x1(2) ... ... x1(LD−1) x1(LD)
x1(1) ... ... x1(LD−2) x1(LD−1)

. . .
...

x1(1) ... x1(LD−L+1)
−x2(1) −x2(2) ... ... −x2(LD−1) −x2(LD)

−x2(1) ... ... −x2(LD−2) −x2(LD−1)

. . .
...

−x2(1) ... −x2(LD−L+1)

1CCCCCCCCA

T

Once u1k and u2k are found, the cross multiplication and sub-
traction u∗1k ∗ x1 − u∗2k ∗ x2 is a better approximation of sk for
human ear with muscial noise reduced. If the acoustic environ-
ment does not change much, the estimation during t ∈ D still
applies when t 6∈ D. Otherwise, an adaptive estimation can be
repeated at a suitable time interval later. The objective (4) takes
the same form as that in image denoising [6].

The above derivation generalizes to M sensors and N
sources (M ≥ 3 and N = M ) case. When t ∈ D, then for
proper value of µ > 0, we minimize:

1

2
||
MX
j=1

ujk ∗ xj − yk||22 + µ

MX
j=1

||ujk||1,

and estimate sk by ŝk =
MP
j=1

ujk ∗ xj . Though 2 sensors are

enough for DUET, the remaining M − 2 sensors are also used
here for reducing the musical noise.

4. Split Bregman Method
The split Bregman method was introduced and analyzed in [6]
as an efficient tool for solving optimization problems arising
from l1 regularization based models. It aims to solve the un-
constrained problem: minu J(Φu) +H(u), where J is convex
but not necessarily differentiable such as the l1 norm, H is con-
vex and differentiable, and Φ is linear operator. The key idea of
the split Bregman method is to introduce an auxiliary variable
d = Φu, and try to solve the constrained problem:

min
d,u

J(d) +H(u), s.t. d = Φu



In [5, 6], it is proved that this kind problem can be solved by the
following iterations:

(un+1, dn+1) = arg min
u,d

J(d) +H(u)− 〈pnd , d− dn〉

− 〈pnu, u− un〉+
λ

2
||d− Φu||22

pn+1
d =pnd − λ(dn+1 − Φun+1)

pn+1
u =pnu − λΦT (Φun+1 − dn+1)

where 〈·, ·〉 is the inner product. For simplicity, we introduce
a new variable bn = pnd/λ, and notice that pnd = λbn and
pnu = −λΦT bn. The iterates dn+1 and un+1 can be updated
alternatively. The general split Bregman iteration scheme is:

dn+1 = arg min
d

1

λ
J(d)− 〈bn, d− dn〉+

1

2
||d− Φun||22

un+1 = arg min
u

1

λ
H(u) + 〈bn,Φ(u− un)〉

+
1

2
||dn+1 − Φu||22

bn+1 =bn − (dn+1 − Φun+1)

In the case of (5), J(uk) = µ||uk||1, Φ = I , and H(uk) =
1
2
||Auk − yk||22. Then the iterations are:

dn+1 = arg min
d

µ

λ
||d||1 − 〈bn, d− dn〉+

1

2
||d− unk ||22 (6)

un+1
k = arg min

uk

1

2λ
||Auk − yk||22 + 〈bn, uk − unk 〉

+
1

2
||dn+1 − uk||22 (7)

bn+1 =bn − (dn+1 − un+1
k ) (8)

Explicitly solving (6) and (7) gives the simple algorithm

Initialize u0
k = d0 = b0 = 0

While ||un+1
k − unk ||2/||un+1

k ||2 > ε

(i) dn+1 = shrink(unk + bn,
µ

λ
)

(ii) un+1
k = (λI +ATA)−1(AT yk + λ(dn+1 − bn))

(iii) bn+1 = bn − dn+1 + un+1
k

end While

Here shrink is the soft threshold function defined by
shrink(v, t) = (τt(v1), τt(v2), · · · , τt(vNL)) with
τt(x) = sign(x) max{|x| − t, 0}. Noting that the ma-
trix A is fixed, we can precalculate (λI + ATA)−1, then the
iterations only involve matrix multiplication and are fast as
a result. Since the size of matrix λI + ATA is NL × NL,
where N is the number of sources, the computational cost
for matrix inverse is not high. The above algorithm runs fast
for the purpose of the proposed musical noise suppression
model, averagely within 5 seconds’ processing for each source
channel. The entire algorithm is:

Input: Acoustic mixing signals, xj , j = 1, ...,M ≥ 2
Output: Estimated sources with musical noise

suppressed, ŝk, k = 1, ..., N (N = M )
Initial separation: Extract signals yk, k = 1, ..., N by
TF mask approaches with a proper ρ
Fitler estimation: Apply the split Bregman method to
obtain the filters ujk, j = 1, ...,M for each source k

Musical Noise Suppression: ŝk =
MP
j=1

ujk ∗ xj
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Figure 1: Upper panel: average signal to distortion (SDR) ra-
tios of input and output signals in synthetic test. Lower panel:
signal to interference ratio (SIR) vs. unmasked percentage (per-
centage of 1’s) in the mask. The data points in the upper panel
have the same unmasked percentage as those in the lower panel.

5. Evaluation and Comparison
The parameters for the proposed method are chosen as µ =
ε = 10−3, η = 1, λ = 2µ, D contains 4 seconds’ duration, and
L = 1000 taps. As suggested in [4], the STFT frame size is
512 and frame shift is 512/8. For simplicity, we denote DUET
[1] by BM1 and the extension of binary mask BSS [2] with
redefined feature Θ(f, τ) in section 2 by BM2.

To test the musical noise reduction portion of our method,
synthetic mixture data are used to recover a spectrogram-
masked source signal where energy loss due to binary mask
is simulated. The masked signal plays the role of BSS output
yk in section 3. Measured binaural RIRs (hjk, j, k = 1, 2)
are used to generate mixtures x1 and x2. For the spectrogram
S11 = STFT (h11 ∗ s1) of h11 ∗ s1, a maskM of the same
size as S11 is defined to contain a certain percentage of en-
tries equal to 1 and the rest equal to 0. The mask is entry-
wise multiplied to S11 to produce a distorted waveform signal
sd = iSTFT (S11 ◦ M). We recover h11 ∗ s1 from the two
mixture signals x1, x2 and sd (in place of y1) with the Bregman
iterations in section 4. The test is repeated under different re-
verberation times (anechoic, 150 ms, 580 ms). Though a little
interference from s2 is introduced, i.e. a little decrease of signal
to interference ratio (SIR), the gain in signal to distortion ratio
(SDR) is found to be significant in low input SDR regime (Fig.
1). This phenomenon is observed in processing room recorded
data as well.

Comparison of several musical noise suppression methods
is carried out on room recorded data. The set-up is shown in Fig.
2. In case of 2 sources, their locations are at S1 and S2 in Fig.
2, and the sensors Mic1 and Mic2 provide data for separation
and noise suppression. In case of 4 sources, all the loudspeakers
and microphones contribute to the musical noise reduction but
only Mic2 and Mic3 are used for separation. Table 1 lists re-
sults of different musical noise suppression methods discussed
in section 1. Compared with BM1, sigmoid mask and Bayesian
mask methods, our method leads in the overall quality PESQ
[8], and with a significant margin in SDR [dB] and SAR [dB]
(signal to artifact ratio). The SIR improvement is however not
uniformly better. In case of 4 sources, SIR improvement lags
the other methods. When the number of sources increases, ρ in
the mask (2) should increase accordingly to control the growth
of zero-paddings.
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Figure 2: Configuration and parameters of the room recording.

Next we remove Mic1 and Mic4 from the set-up of Fig.
2, so only 2 microphones Mic2 and Mic3 are active. The un-
known microphone spacing is in [15, 20] cm outside the effec-
tive range of binary mask BSS methods [1, 2]. Two sources
(one speech and one music, 8000Hz and 5s’ duration) are with
azimuth 0◦ and 60◦. We use BM2 and the refined mask (2) with
a nearly optimal value of ρ = 0.5 as the initial separation for our
method. Discussed in section 2, since BM2 may not work well,
eliminating the fuzzy feature points by a proper value of ρ helps
to gain a good SIR but sacrifice the signal quality. However, as
seen in Table 2, the overall quality is improved significantly by
both Bayesian mask and our method without losing SIR.

Furthermore, we conduct a subjective test on five listeners
with normal hearing to evaluate the reduction of musical noise.
The paired comparison test requires each listener to rank the
four methods according to the performance of musical noise re-
duction in the experiments conducted in Tables 1 and 2. The
percentage of our method’s superiority over other three meth-
ods in musical noise reduction is shown in Table 3. Since the
initial estimated music sources contain more musical noise, the
contrasts between these methods on the music channel are more
pronounced.

Table 1: Comparison of musical noise reduction methods on
room recorded speech data. Average evaluation results are
shown as 2 sources/4 sources. BM1 with conventional mask (1);
SM (Sigmoid mask); BYM (Bayesian mask). The initial separa-
tion for our method employs BM1 with refined mask (2), where
ρ = 0.50, 0.25, 0.10, 0.05

Method PESQ SIR SDR SAR

Input 1.37/1.10 0.04/-4.49 0.02/-4.51 46.48/26.54

BM1[1] 2.24/1.89 13.24/9.39 6.44/3.79 9.37/6.57
SM[3] 2.17/1.71 11.38/8.22 6.52/2.21 9.14/5.40
BYM[3] 2.33/1.83 13.30/8.21 7.20/3.34 10.20/6.65
Our-0.50 2.18/1.90 9.47/6.30 8.58/5.85 17.74/19.06
Our-0.25 2.21/1.91 10.07/6.35 9.26/5.89 17.97/18.93
Our-0.10 2.22/1.84 10.18/5.63 9.51/5.23 18.94/18.76
Our-0.05 2.40/1.75 13.41/5.36 12.18/4.79 19.05/16.86

6. Conclusions
We proposed and evaluated an efficient time domain method
for reducing musical noise in the output of TF mask based BSS
methods. By a more selective TF mask, we reduced percentage
of fuzzy points on TF domain to improve separation quality.
We employed fast Bregman iterations to compute sparse time-
domain filters while minimizing a convex l1 norm regularized

Table 2: Comparison of musical noise reduction methods on
speech/music mixtures with unknown large microphone spac-
ing. Refined mask (2) with ρ = 0.5 is employed.

Method PESQ SIR SDR SAR

Input 1.50 1.90 1.85 33.16

BM2 1.63 16.87 3.58 4.01
Sigmoid mask [3] 2.07 22.10 8.86 9.10
Bayesian mask[3] 2.52 16.54 11.66 14.50
Ours 2.45 16.52 12.81 16.32

Table 3: Subjective evaluation on musical noise reduction. >
(<) means the output of our method is perceived with less
(more) musical noise, while≈means ”hard to distinguish”. Bi-
nary Mask is BM1 (BM2) for Table 1 (2).

Method Test Category > ≈ <

Ours vs
Binary
mask

Table 1 2 sources 80% 20% -
4 sources 75% 5% 20%

Table 2 Speech 98% 2% -
Music 99% - 1%

Ours vs
Sigmoid
mask[3]

Table 1 2 sources 70% 20% 10%
4 sources 70% 15% 15%

Table 2 Speech 33% 57% 10%
Music 94% - 6%

Ours vs
Bayesian
mask[3]

Table 1 2 sources 50% 20% 30%
4 sources 55% 30% 15%

Table 2 Speech 15% 50% 35%
Music 89% - 11%

objective. Both synthetic and recorded data showed that the
filters reduced musical noise and enhanced the overall quality
in music and speech sources effectively in terms of objective
and subjective measures.
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