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Abstract. Tomographic reconstruction from undersampled and noisy projections is often desirable 

in transmission CT modalities for purposes of low dose tomography and fast acquisition imaging. 

However under such conditions, due to the violation of the Nyquist sampling criteria and the 

presence of noise, reconstructions with acceptable accuracy may not be possible. Recent 

experiments in transmission electron tomography have shown that the technique of Equally-Sloped 

Tomography (EST), an exact tomographic method utilizing an oversampling iterative Fourier based 

reconstruction, provides more accurate image reconstructions when the number of projections is 

significantly undersampled relative to Filtered Back Projection (FBP) and algebraic iterative 

methods. Here we extend this technique by developing new reconstruction algorithms which allow 

for the incorporation of advanced mathematical regularization constraints, such as the Nonlocal 

Means Total Variational model, in a manner that is consistent with experimental projections. We 

then evaluate the resulting image quality of the developed algorithm through simulations and 

experiments at the European Synchrotron Facility on image quality phantoms using the x-ray 

absorption and phase contrast CT modalities. Both our simulation and experimental results have 

indicated that the method can reduce the number of projections by 60-75% while achieving 

comparable or better image quality than the conventional reconstructions. As large-scale and 

compact synchrotron radiation facilities are currently under rapid development worldwide, the 

implementation of low dose x-ray absorption and phase-contrast CT could find broad applications 

in biology and medicine using these advanced x-ray sources. 

Index Terms — Equally-Sloped Tomography, Computed Tomography, Iterative Tomographic 

Image Reconstruction, Total-Variation Nonlocal Means Optimization, X-Ray Phase Contrast CT, 

CT, Radiation Dose Reduction. 
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1. Introduction 
 

Tomographic implementation of emerging transmission imaging modalities, such as synchrotron x-ray 

absorption and phase contrast imaging, present important applications to biology and medicine (Cloetens 

et al., 1999; Langer et al., 2008; Momose et al., 1996; Nugent et al., 1996; Bech et al., 2009; Weitkamp et 

al., 2008; Connor et al., 2009).  For instance, synchrotron absorption imaging allows for tunable elemental 

mapping of specimens, while phase contrast imaging offers 100-1000 times increased sensitivities in the 

hard x-ray region relative to absorption imaging (Cloetens et al., 1999).  However, due to the time 

intensive line scanning of parallel projections and concerns about radiation damage to biomedical 

specimens, tomographic implementation of these techniques for applications beyond that of material 

science is problematic.  For instance, in the common in-line holography implementation of phase contrast 

CT, multiple detections (often 3 or 4) at different sample to detector distance are required to recover the 

phase data for each projection (Langer et al., 2008); this, coupled with the tomographic requirement of 

multiple projections from many directions, yields the acquisition time impractical for in vivo imaging.  

Moreover, as both modalities utilize the transmission of ionizing radiation, the tomographic requirement 

of multiple projections gives rise to significant concerns about the radiation dose in potential biomedical 

applications.  Consequently, techniques for both fast acquisition and low dose tomography are necessary.   

One method to simultaneously achieve both the objectives of reduction of acquisition time and 

radiation is to under-sample the number of tomographic projections.  However, under this condition, 

conventional reconstruction algorithms do not yield adequate results due to the violation of Nyquist 

sampling criteria.  Mathematically, the tomographic reconstruction then represents an ill-imposed problem 

due to the presence of missing information, i.e. missing projections, and inconsistencies generated from 

the presence of noise.  In other fields, such as coherent diffraction microscopy where somewhat an 

analogous missing information problem is encountered due to missing phase data of the diffraction 

recordings, iterative oversampling Fourier methods have proven to be a powerful technique for solving for 

missing information under noisy conditions for noncrystaline and nanocrystal samples (Miao et al., 1999; 

Pfeifer et al., 2006; Abbey et al., 2008; Raines et al., 2010).  Since the Fourier slice theorem provides a 

Fourier relation for tomographic imaging, such methods to aid the recovery missing information in 

tomographic reconstruction can be exploited.  In particular, previously an exact Fourier based 

oversampling method for tomographic reconstruction, termed Equally-Sloped Tomography (EST), has 

been introduced (Miao et al., 2005). Both numerical simulations and experimental results from X-ray 

diffraction and electron microscopy have shown that EST enables more accurate image reconstructions 

even when the number of projections is significantly undersampled relative to Filtered Back Projection 

(FBP) and algebraic iterative methods (Miao et al., 2006; Lee and Fahimian et al., 2008; Mao et al., 

2009).   

The purpose of this work is twofold.  First, to further extend the capability of EST in dealing with 

the problem missing data under noisy conditions, we develop and test a new tomographic reconstruction 

structure that allow for the flexible incorporation of regularization schemes. In particular, an iterative 

Fourier-based tomographic reconstruction algorithm is introduced which incorporates the advanced model 

of Nonlocal Means Total Variational (NL-means) regularization, in a manner that is strictly consistent 

with experimentally measured projections (Buades et al., 2005, 2006).  Second, we implement the method 

on the absorption and phase contrast x-ray CT modalities, and through a series of experiments and 

simulations quantify the resulting image quality. We then explore the feasibility of radiation dose and 

acquisition time reduction through reducing the number of projections by determining the factor by which 

the number of projections can be undersampled while still producing reconstructions of equivalent or 

better quality relative to conventional full-dose FBP reconstructions, as measured by such metrics as 

resolution, signal to noise ratio, and contrast to noise ratio. 
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2.  Theory 

 

2.1 Fourier Formulation 

 

The Fourier slice theorem, which equates the 1D Fourier transform of the projection data at a given angle 

to a slice of the 2D Fourier transform of the reconstructed image at the same angle, forms the foundation 

of tomographic reconstruction (Kak and Slaney, 2001; Natterer, 2001). Although the theorem provides an 

elegant conceptual method for the reconstruction of tomographic data, the theorem’s direct computerized 

application has thus far been problematic due to the fact that interpolations must be implemented in 

Fourier space since equally-angled acquisitions result in a polar distribution of points in Fourier space, 

while conventional FFT algorithms utilize a Cartesian point set (Kak and Slaney, 2001; Natterer, 2001). 

Since it is believed that no direct accurate and fast polar to Cartesian discrete Fourier transform can be 

constructed in a manner analogous to the continuum polar Fourier transform (Briggs and Henson, 1995), a 

variety of interpolative methods have been proposed, the most sophisticated of such methods include the 

utilization of the non-uniform FFT (NUFFT) (Delaney and Bresler, 1996; Matej et al., 2004; Zhang-

O'Connor and Fessler, 2006). However, all such methods must utilize some degree of Fourier space 

interpolation; for example, in NUFFT techniques, the degree of interpolations is prescribed by necessary 

accuracy parameter that in turn controls the complexity of interpolations (Ware, 1998; Greengard and Lee, 

2004).  

 Recently, the existence of a direct exact fast Fourier transform algorithm and its inverse between a 

related pseudopolar grid and the Cartesian grid, called the pseudopolar fast Fourier transform (PPFFT), 

has been proven (Averbuch et al., 2008a; Averbuch et al., 2008b).  In contrast to other techniques, the 

PPFFT consists of 1D operations with a complexity of 2( log )O N N  comparable to the standard Cartesian 

FFT, and requires no accuracy parameters or interpolations, resulting in machine accuracy. As shown in 

Figure 1(a), for a ×N N Cartesian grid, the corresponding pseudopolar grid is defined by a set of 

2N lines, with each line consisting of 2 1N + grid points mapped out symmetrically on N concentric 

squares. The 2N lines are subdivided into a basically horizontal (BH) group defined by =y sx , 

where | | 1≤s , and a basically vertical (BV) group defined by =x sy , where 1s ≤ ; the BV and BH groups 

are symmetric under the interchange of x  and y . The pseudopolar lines are termed “equally-sloped” 

since the slope, s , of each successive line as defined above changes by an equal slope increment of 

2 /∆ =s N  as opposed to the polar grid lines which change by equal-angled increments. The fact that, in 

contrast to the polar grid, the vertical and horizontal displacements in each group are uniform when the 

grid is transversed horizontally or vertically, is one reason for the existence of a direct fast Fourier 

transform between the pseudopolar and Cartesian grids.  More importantly, it has been shown that an 

exact and faithful notion of the Radon transform can uniquely constructed along the lines of the 

pseudopolar grid. It is important to note that the history of such a grid dates back to 1974 to the work of 

Mersereau and Oppenheim who proposed a non-Cartesian “concentric square grid” in Fourier space for 

image reconstruction (Mersereau and Oppenheim, 1974). In the 1980’s, such a grid was again utilized by 

Lawton et al. for tomographic reconstruction (Lawton, 1988 ; Edholm and Herman, 1987; Edholm et al., 

1988). However it was not until the recent work of Averbuch et al. that the mathematically faithful and 

algebraically exact PPFFT and its inverse was developed between the pseudopolar and Cartesian grids 

(Averbuch et al., 2008a; Averbuch et al., 2008b). 
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 In contrast to the polar grid, the distance between sampling points along the lines of the 

pseudopolar grid varies from line to line. Subsequently, in order to map an equispaced object space input 

data onto a specific line on the pseudopolar grid, the fractional Fourier transform can be utilized to vary 

the output sampling distance of the Fourier transform. The 1D fractional Fourier transform (FrFT) is 

equivalent to the standard discrete Fourier transform with the exception of a factor of α  (see Eq. 1), 

controlling the output spacing, in the exponent (the fractional Fourier transform reduces to the forward 

Fourier transform when 1α =  and to the inverse Fourier transform when 1α = − ) (Bailey and 

Swarztrauber, 1991).  Due to its similarity to FFT, the FrFT can be computed quickly using on order of 

log( )N N operations [17]. By choosing an appropriate value forα , the projection data can be mapped to 

the grid points of any line on the pseudopolar grid as shown in the next section. For the purpose of 

tomography, the FrFT of a projection can be related to the PPFFT of  an object through an analog of the 

Fourier slice theorem which states that the 1D FrFT of a projection at an angle θ  is equivalent to a slice of 

the 2D PPFFT of the image at the same angle θ  in Fourier space (Averbuch et al., 2008a; Averbuch et al., 

2008b). 

 

2.2 Iterative Reconstruction Technique 

 

While the PPFFT and its inverse provide an accurate method for the direct Fourier implementation of the 

Fourier slice theorem, experimentally an iterative algorithm is necessary to solve for the missing data and 

minimize the noise in order to properly address the limitations in the number of projections and source 

flux.  Previously, an un-regularized iterative Fourier space algorithm, utilizing the pseudopolar transforms, 

was developed and experimentally implemented on the electron tomography modality (Miao et al., 2005; 

Lee and Fahimian et al., 2008); we build upon this method as follows.  

As shown Figure 1(b), the method developed here is structured to reach a compromise between 

the constraints and experimental projections by iterating back and forth between object and Fourier space, 

enforcing constraints in object space and strict conformity with experimental projections in Fourier space. 

The algorithm utilizes oversampling, i.e. sampling the Fourier domain more finely than the Nyquist 

frequency, similar to the methodology used to solve the phase problem in lens-less diffraction microscopy 

(Miao et al., 1999; Raines et al., 2010). The effect of oversampling is to surround the object in real space 

by mathematical zeros, in a region called the support S, which the iterative algorithm can utilize as 

constraints. We note that the methodology can be experimentally implemented in two different ways. 

First, the projection data can be acquired at angles corresponding to the equally-sloped lines of the 

pseudopolar grid as first suggested in (Miao et al., 2005) and as experimentally implemented in (Lee and 

Fahimian et al., 2008); if so, the projections can be mapped onto the pseudopolar grid in Fourier space 

with machine accuracy using the FrFT, thereby eliminating all typical interpolations found in 

reconstruction algorithms. Second, as the PPFFT and inverse were first developed to provide an accurate 

substitute for the polar transform, conventional equally angled data can be mapped on to the pseudopolar 

grid accurately, as quantified by (Averbuch et al., 2006), by rounding or interpolating to the nearest 

pseudopolar line. Furthermore, as inherently there exist a degree of inaccuracy in the alignment of 

projections at each angle experimentally, the said interpolation is justifiable. To emphasize this and the 

generality of the method, the experimental reconstructions presented here utilize conventional equally 

angled acquisitions.  

The algorithm is initiated by first padding the projections with zeros and calculating the 

oversampled Fourier slices using the FrFT in a manner such that the output spacing matches the spacing of 

the pseudopolar grid at the corresponding pseudopolar line; mathematically this is given by 
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( ) | ( )exp( 2 / 2 )
L

k R

r

F k p r i rk Nθ θ π α≤

=

= −∑   (1) 

where ( ) |k RF kθ ≤  are the Fourier transform of the given projection ( )p rθ within the resolution circle, θ  is 

the angle the projection makes with the isocenter, R is the radius of the resolution circle (as depicted in 

Figure 1(a)), α is equal to 1 / cos( )θ  for BH lines and 1/ sin( )θ  for BV lines, and L is an integer less than 

2N. The resolution circle exits because points beyond it cannot be represented by the Fourier transform of 

the experimental data and must be solved for by the iterative algorithm (Miao et al., 2005).  

The jth iteration of the iterative algorithm can be broken down into the following steps: (i) 

Application of the inverse PPFFT to the Fourier space data ( )j
Fϕ k to obtain an object space image ( )j

f r ; 

if this is the initiating iteration, the Fourier data is the aggregation of the transformed experimental 

projections with the regions corresponding to the missing projections set to 0 or random numbers; (ii) 

Derivation of a new object through the regularization ( )j
f r  over a domain Ω . This step provides a 

flexible structure that can incorporate any regularization constraints such as existing variational methods 

which have been widely studied for the purpose of denoising. These methods treat image as a function in 

certain function space and evolve the image under nonlinear partial differential equations or the 

corresponding minimization problems. Most notably, total variation based optimization have garnered 

attention for edge preserving regularization (Rudin et al., 1992) as well as in the realm of compressed 

sensing (Candes et al., 2006).  However, the use of pure total variation models for realistic images have 

been shown to produce artificial patches; this is due to the choice of the bounded-variation space and the 

corresponding total variation norm.  More recently, the nonlocal means regularization model has been 

introduced which denoise a pixel by averaging the nearby pixel values with similar patterns. The basic 

assumption behind is that a natural image contains repeating structures instead of repeating pixels. This 

method has been proved to be successful to remove artifacts while keeping the regular pattern and texture 

containing in the image and has been extended to include variational method using functionals with 

nonlocal regularization (Gilboa and Osher, 2008), and proven superior to many other image regularization 

methods as it  considers the large-scale structure of the image beside the local differences between pixels, 

which makes it capable of preserving important detailed features in an image while removing artifacts 

effectively (Buades et al., 2005). For these reasons, in this paper we present the first incorporation of total 

variational implementation of the nonlocal means (NL-means) algorithm for regularized tomographic 

reconstruction.  The NL-means algorithm is operated on ( )j
f r

 
to yield ( )j

f r , which is defined as the 

solution of the following optimization problem and can be obtained by steepest descent method or other 

recent advanced method: 
2

arg min ( )  
2

j j

w
u

f J u u f
λ

= + − (2) 

where 

    

2( ) ( ( ) ( )) ( , )  wJ u u x u y w x y dydx
Ω Ω

= −∫ ∫ (3) 

is the nonlocal total variation with respect to the weight function  describing the similarity between the 

patches around different pixels. Given reference image u  and a filter parameter h , ,u hw
 
is a function on 

Ω ×Ω , defined as 
2

, 2

( ( ) ( ) )(0)
( , ) exp

2
u h

G u x u y
w x y

h

 ∗ + ⋅ − + ⋅ 
= − 

  

(4) 

where 
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2

2 2

( ( ) ( ) )(0) ( ) ( ) ( )G u x u y G t u x t u y t dt∗ + ⋅ − + ⋅ = + − +∫
�

 (5) 

and G
 
is the Gaussian kernel. 

 (iii) Application of a positivity constraint by setting 

' ( )         if  and ( ) 0
( )       

0                if   or  ( ) 0

j j

j

j

f S f
f

S f

 ∉ ≥
=  ∈ <

r r r
r

r r
(6) 

where S represents the support region due to the oversampling that is expected to contain zeros; (iv) 

Calculation of the new Fourier space data ' ( )j
F ϕ k  through the application of the PPFFT to ' ( )

j
f r ; (v) 

Updating the corresponding experimentally measured Fourier slices, ( ) |
R

Fθ ≤k
k , and retaining the Fourier 

slices outside the resolution circle, 
' ( ) |j

R
Fθ >k

k  and the missing Fourier slices, ' ( )j
Fφ k  by 

' '( ) ( ) | ( ) | ( )j j j

R R
F F F F

θ φϕ θ ≤ >
= ∪ ∪

k k
k k k k     (7) 

where ϕ = θ ∪ φ is the complete set of angles for the pseudopolar grid, θ is the set of angles of the 

measured projections, and φ is the set of angles of the missing projections. In contrast to the 3D algorithm 

presented in (Miao et al., 2005), this algorithm does not contain a FFT across 2D slices in step (iv) nor it’s 

inverse FFT in step (i); as a result, this 2D form allows the algorithm to be readily parallelized by sending 

each 2D slice to a different CPU for 3D reconstructions. During each iteration, an error function defined 

by 

,

,

( ) | ( ) |

( ) | ( ) |

j

R R

j

R R

F F

Error
F F

θ θ
θ

θ θ
θ

≤ ≤

≤ ≤

−

=
+

∑

∑

k k

k

k k

k

k k

k k
  (8) 

is calculated. The iterations are automatically terminated when the error does not fall by certain percentage 

from previous iterations. In all simulations performed here, the algorithm was stopped when the error did 

not decrease by more than 1% from the tenth previous iteration. In order to be completely consistent with 

the experimental data, the output of the algorithm is always the image resulting from the inversion of the 

Fourier data once the data has been updated with the experimental Fourier slices; no constraints or 

processing is applied after this point. The computation time of each iteration is on the order of a single 

FBP reconstruction; with respect to this, recently we have developed a gradient descent version of the EST 

algorithm which reduces the computation time for each iteration by up to 70% (Mao et al., 2009); this 

algorithm is beyond the scope of this paper, but it will be explored in subsequent papers. 

 

3. Methods 

 
3.1 Experimental and Simulation Methods 

 

To quantify the performance of the algorithm and evaluate its utility for limited angle tomography, 

tomographic reconstructions were performed as function of the number of projections using both 

simulated and experimental data in the x-ray absorption and phase contrast CT modalities.  The interaction 

of x-rays for these modalities can be quantified by the complex refractive index 

1    (9)n iδ β= − −   

where the projection data in phase-contrast imaging is given by the phase change after transmittance of x-

rays of wavelength λ through a distance of s  
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2
( )    (10)s ds

π
δ

λ
Φ = ∫  

while the projection data for absorption imaging is given by 

0

4
log ( )    (11)

I
s ds

I

π
β

λ


− =

 
∫  

where 0I  and I are the un-attenuated and attenuated intensities, respectively. 

Simulations were used to model the possible application of tunable monochromatic compact 

synchrotron x-ray absorption CT for biomedical applications.  For this purpose, a segmented 

anthropomorphic phantom based upon the scans of a human by Zubal, et al., was constructed at a 

resolution of 3.24 mm (Zubal et al., 1994). A monochromatic source with energy of 50 KeV was used, as 

this would be the approximate dosimetric optimal energy based on Kerma considerations for a biomedical 

sample containing bone (Lewis, 2004); using mass attenuation coefficients and densities from the NIST 

and ICRU data sets, corresponding linear attenuation coefficients were assigned to the segmented tissues 

(ICRU, 1989).  To more rigorously quantify the image quality, three sets of resolution markers of varying 

contrast were added to interior of skull as shown in Figure 1(c); these consisted of squares of 1x1 pixel 

separated by 1 pixel, squares of 2x2 pixels separated by 2 pixels, and squares 3x3 pixels separated by 3 

pixels; since the resolution may have dependencies on contrast,  3 sets of materials was used for each 

marker set, consisting of high contrast bone, medium-low contrast tissue with linear attenuation coefficient 

30% above surrounding brain mater, and air were assigned to the arrays (linear attenuation coefficients of 

81.4 m
-1

, 40.7 m
-1

, and 0.0 m
-1 

, respectively).  As with most synchrotron sources, the simulated source to 

detector geometry was parallel.  The number of simulated detector elements at each angle was 256 for 

which tomographic projections of the phantoms were calculated using an accurate Radon transform, based 

on trigonometric interpolation, along a set of equally-angled and equally-sloped lines for the conventional 

and EST reconstructions, respectively. The projections at each detector element position were 

exponentiated and weighted by an un-attenuated flux, 0I , to give the noiseless intensity at detector. 

Poisson noise, as approximated by the Gaussian distribution with a standard deviation of for counts greater 

than 30, was added to the intensities; the noisy intensities were subsequently inverted to arrive at the noisy 

projections. Based on the signal to noise ratio of experimental projection data of current implementation of 

x-ray absorption CT was estimated, the un-attenuated flux 0I  was approximated to 
5 -25.0 10  m× for the 

simulations. 

 Experimentally, an image quality phantom consisting of three material inserts, a high intensity 

filament, and a micro beads resolution insert, was scanned at ESRF to acquire both x-ray absorption and 

phase contrast projections. Specifically, the body of the phantom consisted of a 7.5 mm 

polymethylmethacrylate (PMMA) cylinder, and the three material inserts consisted of de-mineralized 

water, 99.6% ethanol, a lipid, the 0.125 mm filament consisted of 99.99% pure aluminum; the beads in the 

resolution insert consisted of a mixture of 0.1 mm and 0.2 mm monosized polymers. The x-ray source was 

produced at the 150 m imaging beamline at the ID19 experimental station at ESRF. For the x-ray 

absorption experiment, the beam energy was 15 keV, the source to phantom distance was 32 mm, and the 

effective detector size after binning to 512 detector elements was 29.8 µm. A very fast acquisition method 

was employed to acquire the absorption data for which 200 projections were acquired uniformly in 3.6 s 

(1.8 ms/projection) by rotating the phantom. For the phase contrast experiments, a beam energy of 24 keV 

was used, and the phase data was attained using the in-line acquisition method coupled by the mixed phase 

retrieval algorithm presented in (Langer et al., 2008); the phantom to detector distance for the in-line 

method were 0.012, 0.1, 0.3, and 0.99 m, for which 1200 radiographs uniformly about 180° were detected 

at each distance; the detector was a FReLon camera with an effective element size of 30 µm after binning. 
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 For reference, all data was also reconstructed using FBP reconstructions, for which the projections 

were padded with zeros, and the un-cropped Ram-Lak (i.e. ramp filter) in conjunction with shape-

preserving piecewise cubic interpolation for the backprojection process was utilized (Kak and Slaney, 

2001); since it was shown that the previous EST algorithm resulted in higher resolution images than FBP 

(Miao et al., 2005; Lee and Fahimian et al., 2008), the un-cropped Ram-Lak filter was specifically 

selected in order to avoid degradation of resolution due the suppression high frequency data which may 

result through the use of other filters (Comtat et al., 1998; Kak and Slaney, 2001; Natterer, 2001). The 

equally-sloped projection data of the simulations was reconstructed using the algorithm developed in 

section 2.2. As mentioned, the pseudopolar transform also provides an accurate approximation to the polar 

Fourier transform, and consequently, conventional data sets acquired at equal angle intervals can also be 

utilized by the algorithm developed here. To demonstrate this, and as well as to isolate the effect of the 

developed algorithm from the problem of interpolation, experimentally the same equally angled 

projections were utilized for both the EST and FBP reconstructions; although this removes the 

interpolation accuracy advantage of equal slope projections, it serves to quantify the effect of the 

algorithm, which is the subject of this work. Subsequently, for the EST reconstructions, the polar 

projections were interpolated to the nearest pseudopolar line as detailed in section 2.2.  

 

3.2 Methods for Quantification of Image Quality  

 

As no one metric can adequately quantify the image quality of a reconstruction, an aggregate of metrics 

are calculated in this paper as follows. For simulations, where the original phantom is known, correlation 

to the original can be used as one measure of the accuracy of the reconstructions. A rigorous method to 

measure the correlation of complex images is by comparing Fourier coefficients as a function of spatial 

frequency through the Fourier Ring Correlation (FRC) (van Heel M and M, 2005; Frank, 2006).  The FRC 

is capable of quantifying the resolving power as it provides a generalization of the MTF (Nickoloff, 1988; 

Nickoloff and Riley, 1985) for complex objects, and reduces to the MTF when the comparison and 

reconstructed image are an impulse and point spread function. The FRC across ‘rings’ in Fourier space is 

defined as  

*

,
2 2

[ , )

( ) ( )
( , )

( ) ( )

phantrec

rec phant

rec rec
k k k

F F
FRC k k

F F
∈ +∆

∆ =
∑

∑ ∑
k

k k k

k k

k k

 

(12) 

where k represents the radial parameter in the Fourier space, k∆ represents the frequency interval size of 

the rings such that [ , )k k k k∈ + ∆ , and the subscripts rec and phant refer to the reconstructed image and 

the original phantom, respectively. A FRC value of 1 represents 100% correlation while a value of 0 

represents 0% correlation; the spatial frequency defined by the 0.5 value of the FRC curve, representing 

50% correlation between reconstructed image and the original phantom, is commonly taken as a numerical 

value of the resolution.  

 In order to quantify the resolution, and its dependency on contrast, a series of resolution markers 

have been added to the interior of the anthropomorphic phantom. Experimentally, one insert of the PMMA 

phantom includes aggregates of small polymer beads, for which the separating space between the beads 

can be used to evaluate the resolution. To measure the noise response of the two different techniques, the 

SNR, defined by the mean intensity of a region divided by the standard deviation, was measured for each 

segmented tissue region of the Zubal phantom and regions of interest in the experimental data. 

Additionally, the CNR, defined here as the absolute value of the means of two segment regions divided by 

the mean of the standard deviations of the two regions, was used to quantify the contrast between tissues 
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of interest and experimental material inserts.  

 

4. Results 

 

4.1 Simulations 
 

Simulations on slice 82 of the modified Zubal anthropomorphic head phantom (Figure 1(c)-(d)) were 

carried out to quantify the image quality of the method as a function of the number of projections and its 

performance relative to standard equally-angled FBP. Poisson noise was added to the projections 

corresponding to a fluence of 5 -25.0 10  m× . As the head is located within the central 160 160×  pixel 

portion of the field of view, according to the Nyquist radial sampling criteria, the number projections 

required to avoid streaking artifacts for a pixel phantom is approximately 160 2( / 2) ~ 360π  projections 

(Kak and Slaney, 2001). Subsequently, a series of simulations were performed by starting at a maximum 

of 360 projections and then systematically reducing the number of projections. For the FBP 

reconstructions, all projections were calculated at equal-angle increments uniformly distributed across 

180°, while for EST reconstructions, the projections were calculated along equally-sloped lines of the 

pseudopolar grid distributed across 180° at constant slope increments. The results for reconstructions with 

under-sampled number of projections of 60, 90 projections, as well as the Nyquist sampled 360 

projections are shown in Figure 3. For the EST reconstructions, the algorithm was terminated 

automatically when the previously mentioned error condition was reached, resulting in  65, 45, and 19 

iterations for the reconstructions of 60, 90, and 360 projections respectively. Figure 3 quantifies the 

resolution and quality of the reconstructed images via the FRC with the original phantom, while Tables 1 

and 2 quantify the image quality via measurements of the SNR and the CNR for tissues of interest.  

 For the same number of projections, the FRC curves for the EST reconstructions are significantly 

higher than the corresponding FBP reconstructions among all spatial frequencies indicating higher 

resolution and correlation for the EST reconstructions; the results indicate that the EST reconstructions 

with a reduced number of projections of 90 have higher correlation with the original phantom across all 

spatial frequencies than the fully sampled FBP with 360 projections. The visual comparison with the 

original phantom in Figure 1(c)-(d) with reconstructions in Figure 3 indicate sharper boundaries and visual 

correlation for the EST reconstructions. Alternative to the FRC, the resolution is visually quantified by 

resolution markers; it is noted that medium contrast resolution markers are not well delineated in the FBP 

reconstruction. The results in Table 1 and 2 demonstrate that, for the same flux, the EST reconstructions 

results in an average SNR that is 3.2 to 3.7 greater than the corresponding FBP reconstructions, and in an 

average CNR that is 2.6 to 4.2 greater than the FBP reconstructions, for the same number of projections; 

also it is noted that for nearly all tissues, the EST reconstruction with a reduced number of projection 

result in a higher SNR and CNR than the FBP reconstruction at the full Nyquist sampling. The SNR and 

CNR results are visually confirmed in the greater recovery of low contrast objects (such as in the mid-

brain region), elimination of streaking artifacts, and reduction of overall statistical noise.    

 

4.2 Experimental Results 

 

4.2.1 X-ray Absorption Microtomography 

 

The experimental results for the x-ray absorption modality are displayed in Figure 4; from left to right, the 

first column are the various regions of interest for the full dose FBP reconstruction with 200 projections, 

the 60% dose reduced FBP reconstruction with 80 projections, and the 60% dose reduced EST 

reconstruction with 80 projections, respectively; from top to bottom, whole phantom view, medium 
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contrast region, low contrast region, and high contrast resolution region. Visually, it is observed that the 

dose reduced FBP reconstruction in the second column is degraded by streaking artifacts and noise caused 

by the under-sampling of the projections while the dose reduced EST reconstruction has recovered the 

missing data.  To quantify reconstruction results, SNR and CNR were calculated for regions of interest; 

the SNR was defined as the mean pixel intensity of a region divided by the standard deviation of the 

intensities; the CNR between two regions of interest was defined as the absolute value of the difference of 

the mean of the first region and the second region divided by the mean of the standard deviations of the 

first region and the second region. 

 The results indicate that there is a significant deterioration in both SNR and CNR going from 200 

projections to 80 projections for the FBP reconstructions; on average, both the SNR and CNR are 

approximately 50% lower for the FBP reconstruction with 80 projections than the FBP projection with 200 

projections.  On the other hand, the dose reduced EST reconstruction with 80 projections outperforms the 

dose reduced FBP reconstruction, but also outperforms the full dose FBP reconstruction among all 

measured metrics of SNR and CNR.  On average, relative to the FBP reconstruction with the same number 

of projections, the SNR for the EST reconstruction was 3.5 times greater, and the CNR is 3.4 times 

greater; relative to the full dose FBP reconstruction, the SNR for the 60% dose reduced EST 

reconstruction is 1.8 times greater, and the CNR is 1.7 times greater.  Visual comparison of the beads and 

the visibility of small void regions in between them of the high contrast resolution region suggest that the 

EST reconstruction has equal or better resolution than both FBP reconstructions.  

 

4.2.2 X-ray Phase Contrast CT 

 

Experimental results for the x-ray phase contrast CT modality are shown in Figure 4. As with x-ray 

absorption experiments, the same equally angled data was utilized for the FBP and EST reconstructions. 

The first column represents FBP with 200 projections which is below the Nyquist requirement, but 

represents an image quality that is acceptable for conventional reconstructions.  The second and third 

columns represent the FBP and EST reconstructions with 60 projections, respectively. From top to bottom, 

comparison of the full field of view, contrast insert, resolution insert, and zoomed area of resolution insert.  

In general, it is noted that streaking artifacts are degrade the under-sampled FBP reconstruction while the 

EST reconstructions are void of such artifacts.  To quantify the image quality, the SNR and CNR of the 

material insert shown was calculated relative to the PMMA background.  The SNR was measured to be 

32.1, 10.6, and 71.6 for the 200 projection FBP, 60 projection FBP, and 60 projection EST reconstruction 

respectively.  The CNR was measured to be 9.7, 3.4, and 19.9 for the 200 projection FBP, 60 projection 

FBP, and 60 projection EST reconstruction respectively.  The results are consistent with the visual 

appearance of second row which suggests that the 60 projections EST reconstruction is smoother than that 

of both the 60 and 200 projections FBP reconstruction.  The resolution is visually assessed in the third and 

fourth row.  The 60 projection FBP has visibly noticeable lower resolution as determined by the separation 

of the beads when compared to the 200 projection FBP, while the 60 EST reconstruction presents with 

comparable separation of fine features to the 200 projection FBP. 

 

5. Conclusion 

 

Tomographic reconstruction from a limited number of projections provides a method to simultaneously 

reducing the radiation dose, and in many cases the acquisition time. We have developed a method of 

tomographic acquisition and regularized iterative Fourier-based reconstruction, termed Equally-Sloped 

Tomography (EST), which through the use of mathematical and physical constraints, provides a 

methodology for tomographic reconstruction using only a fraction of the number of projections as 
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conventionally required in tomographic application.  Simulation and experimental results in both the x-ray 

absorption and phase contrast CT modalities have indicated feasibility of reducing the number of 

projections by a factor or 60-75% while still achieving equal or better image quality relative to 

conventional reconstructions.  The combination of the developed methodology and synchrotron x-ray 

sources hence allows for low dose x-ray absorption and phase-contrast CT applications in biology and 

medicine. Finally, as methodology pertains to general tomographic reconstruction, it can also be applied to 

medical x-ray CT scanners for low-dose image reconstructions, which will be presented in subsequent 

papers. 

 

Acknowledgments 

 

We thank Dr. E. K. Lee, Prof. A. F. Chatziioannou, Prof. M. F. McNitt-Gray, Prof. J. J. DeMarco, 

Prof. O. Levi and Prof. S. J. Osher for stimulating discussions.  This work was supported in part by UC 

Discovery / TomoSoft Technologies Grant # IT107-10166.  



 

 12 

 

 

FIGURE CAPTIONS 

Figure 1 Methodology: (a) Graphical relationship between the oversampled pseudopolar grid and the 

corresponding Cartesian grid, where N = 8. The black and white points delineate the Basically Horizontal 

(BH) and Basically Vertical (BV) groups, respectively, and the dashed circle represents the resolution 

circle. (b) The j
th
 iteration of the iterative algorithm as described in section 2.2; dashed line indicates that 

the step occurs outside the loop in the initiating or terminating step. (c) Slice 82 of the Zubal head 

phantom with assigned linear attenuation coefficients (Zubal et al., 1994). (d) Zoomed view of critical 

structures for comparisons with results of Figure 3. 

Figure 2 FBP and EST reconstructions of the Zubal head phantom. FBP reconstructions with 60, 90, and 

360 projections are presented in (a), (c), (e), respectively, with the corresponding EST reconstructions 

presented in (b), (d), (f). 

Figure 3 Fourier ring correlation of the reconstructed images with the original phantom for results 

presented in Figure 2. 

Figure 4 Experimental results for the x-ray absorption CT modality. From left to right, the columns 

represent FBP with 200 projections, FBP with 80 projections, and EST with 80 projections. From top to 

bottom, comparison of the full field of view, medium contrast insert, low contrast insert, and resolution 

insert. 

Figure 5 Experimental results for the x-ray phase contrast CT modality. From left to right, the columns 

represent FBP with 200 projections, FBP with 60 projections, and EST with 60 projections. From top to 

bottom, comparison of the full field of view, contrast insert, resolution insert, and zoomed area of 

resolution insert. 
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Table 1: Comparison of Signal to Noise Ratio for Tissues of Interest 

Projections 

Flux=5x10
5
 m

-2
 

Method Bone Cartilage Brain Muscle Fat Cerebral 

Fluid 

Eye 

Ext. 

Eye 

Int. 

Skin Mean of  

EST/FBP 

60 FBP 8.5 3.9 4.3 3.6 3.1 2.4 3.7 2.6 1.6  

60 EST 17.7 9.2 21.7 10.5 11.6 6.5 14.3 13.2 3.2 3.2 

90 FBP 10.1 5.7 6.2 4.6 4.1 3.1 6.2 4.9 2.3  

90 EST 29.9 15.5 27.5 16.6 14.7 8.8 18.1 14.6 4.0 3.2 

360 FBP 11.2 8.8 9.8 5.6 5.5 3.7 12.8 11.0 4.1  

360 EST 64.6 36.2 32.2 27.5 26.4 16.1 32.1 24.0 10.7 3.7 

 

 

 

Table 2: Comparison of Contrast to Noise Ratio for Tissues of Interest 
Projections  Brain to Muscle to Bone to Bone to Eye Ext. to Skin to Skin to Mean of 

Flux=5x10
5
 m

-2
 Method C. Fluid Fat Muscle Cartilage Eye Int. Fat Air EST/FBP 

60 FBP 1.1 0.6 6.8 6.9 1.3 1.7 1.6  

60 EST 3.1 1.8 16.4 16.1 4.3 4.4 4.8 2.6 

90 FBP 1.5 0.8 8.2 8.9 2.3 2.4 2.4  

90 EST 4.8 2.5 27.5 26.4 5.7 5.5 6.1 3.0 

360 FBP 2.0 1.0 9.4 11.0 4.8 3.7 5.9  

360 EST 9.6 4.4 54.0 56.1 11.9 12.5 14.6 4.3 
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