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Computing Quasiconformal Maps on Riemann
surfaces using Discrete Curvature Flow

W. Zeng , L.M. Lui , F. Luo, T.F. Chan, S.T. Yau, X.F. Gu

Abstract

Surface mapping plays an important role in geometric processing. They induce both area and angular distortions.
If the angular distortion is bounded, the mapping is called a quasi-conformal map. Many surface maps in our
physical world are quasi-conformal. The angular distortion of a quasi-conformal map can be represented by Beltrami
differentials. According to quasi-conformal Teichmüller theory, there is an 1-1 correspondence between the set of
Beltrami differentials and the set of quasi-conformal surface maps. Therefore, every quasi-conformal surface map
can be fully determined by the Beltrami differential and can be reconstructed by solving the so-called Beltrami
equation.

In this work, we propose an effective method to solve the Beltrami equation on general Riemann surfaces.
The solution is a quasi-conformal map associated with the prescribed Beltrami differential. We firstly formulate a
discrete analog of quasi-conformal maps on triangular meshes. Then, we propose an algorithm to compute discrete
quasi-conformal maps. The main strategy is to define a discrete auxiliary metric of the source surface, such that
the original quasi-conformal map becomes conformal under the newly defined discrete metric. The associated map
can then be obtained by using the discrete Yamabe flow method. Numerically, the discrete quasi-conformal map
converges to the continuous real solution as the mesh size approaches to 0. We tested our algorithm on surfaces
scanned from real life with different topologies. Experimental results demonstrate the generality and accuracy of
our auxiliary metric method.

Index Terms

quasi-conformal map, curvature flow, Beltrami differentials, Beltrami equation, Yamabe flow, quasi-conformal
Teichml̈ler theory

I. INTRODUCTION

Mapping between surfaces plays a fundamental role in digital geometric processing. In general, surface
mappings introduce distortions, which can be classified as area distortion and angular distortion. Map-
pings without angular distortions are called conformal mappings. Last several years, there has been fast
development of various techniques for computing conformal mappings and their applications in geometric
processing. However, conformal mappings are not common in practice. Many mappings in our physical
world are quasi-conformal, which introduce bounded angular distortion. For example, deformations of
elastic shapes are quasi-conformal, such as human expression change, deformations of human organs, etc.
In order to model surface mappings in the real world more effectively, it is crucial to study quasi-conformal
mappings which allow for a much wider domain of applications.

The theory of quasi-conformal mappings is nearly 80 years old and has been firstly studied by Ahlfors
[1], Grotzch [2], Morrey [3] and Lavrentjev [4]. Quasi-conformal mappings can be viewed as a gen-
eralization of conformal mappings. Figure 1 illustrates the difference between a conformal map and a
quasi-conformal map. Angular distortion can be characterized in the following intuitive way. Geometrically,
a conformal mapping maps an infinitesimal circle on the source surface to a circle on the target surface,
as shown in the first row. A quasi-conformal mapping maps an infinitesimal circle to an ellipse, as shown
in frame (E) and (F). The eccentricity and the orientation of the ellipse can be represented by a complex
valued function, the so-called Beltrami coefficient µ. Specifically, the ratio between the two axes of the
ellipse is given by 1+|µ(z)|

1−|µ(z)| , and the orientation of the axis is related to argµ(z) (see figure 2).
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Fig. 1. Conformal and Quasi-conformal maps for a topological disk. (A) is the original face. (B) is the conformal mapping of (A). (C)
is the circle packing induced by (B). (D) is the checkerboard texture induced by (B). (E) is the quasi-conformal mapping. (F) is the circle
packing induced by (E).
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Fig. 2. Illustration of how the Beltrami coefficient µ measures the distortion by a quasi-conformal mapping that maps a small circle to an
ellipse with dilation K.

Beltrami coefficient is defined on a local chart. Globally, Beltrami coefficient is represented by the
Beltrami differential, which is independent of the choice of local parameters. According to quasi-conformal
Teichmüller theory, for general surfaces, there is an one to one correspondence between the set of quasi-
conformal maps and the set of Beltrami differentials. In other words, every quasi-conformal map can be
fully determined by the Beltrami differentials and is unique up to a finite dimensional group. Conversely,
given a particular Beltrami differential µ(z)dz

dz
, we can reconstruct the quasi-conformal maps associated

to µ(z)dz
dz

. The Beltrami differential captures the most essential information of the surface mappings.
Therefore, by adjusting µ(z)dz

dz
, we can reconstruct a surface mapping with desired properties.

Quasi-conformal mappings have been studied extensively in complex analysis [1], [2], [5], [6]. Ap-
plications can be found in different areas such as differential equations, topology, Riemann mappings,
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complex dynamics, grid generation and so on [7], [8], [9], [10], [11], [12], [13], [14]. Despite the
rapid development in the theory of quasi-conformal geometry, the progress on computing quasi-conformal
mappings numerically has been very slow. In fact, developing an effective numerical algorithm to compute
quasi-conformal mapping remains a challenging problem.

Recently, there has been a few work on numerical quasi-conformal mapping techniques on the complex
plane based on solving differential equations with finite difference or finite element methods. Most of
these methods deal with simple domains in the complex plane and cannot be applied on arbitrary regions.
Furthermore, to the best of our knowledge, no work has been done on solving the Betrami equation on
general Riemann surfaces. In this work, we are interested in developing an effective numerical algorithm
to compute the quasi-conformal mapping on general Riemann surfaces of any genus. Of course, the
developed algorithm could be easily applied to any arbitrary regions in the complex plane C, since any
regions in C are Riemann surfaces.

The fundamental problem in this paper is to find the quasi-conformal map ϕ, associated to a given
Beltrami differential. This can be done by solving the Beltrami equation using the proposed auxiliary
metric method. We firstly formulate a discrete analog of the quasi-conformal map on triangular meshes.
Then, we propose an algorithm to compute the discrete quasi-conformal map. The basic idea is to construct
a discrete auxiliary metric based on the given Beltrami differential, such that ϕ becomes a conformal map
under the auxiliary metric. We then use the Yamabe flow method to compute the conformal map under
the new discrete metric. The resulting map is the desired quasi-conformal map. Numerically, the discrete
quasi-conformal map converges to the continuous real solution as mesh size tends to 0.

The paper is laid out in the following way: Section II briefly review the most related works in the
field; Section III introduces the theoretical background; Section IV describes the discrete Euclidean and
hyperbolic Yamabe flow method; Section V explains how the Beltrami equations can be solved on general
Riemann surfaces using the auxiliary metric. Section VI focuses on the computational methodologies;
Section VII reports the experimental results; the paper is concluded in Section VIII.

II. PREVIOUS WORK

Conformal mapping has been broadly applied to surface parameterizations in digital geometry process-
ing. Here we only review the most related works. We refer readers to the thorough surveys of [15], [16],
[17] for various kinds of mesh parameterization techniques.

Lévy et al. in [18] applied the Cauchy-Riemann equation for mesh parameterization and provided
successful results on the constrained 2D parameterizations with free boundaries. Desbrun et al. in [19]
minimized the Dirichlet energy defined on triangular meshes for computing conformal parameterization.
Angle based flattening method (ABF) was introduced in [20], [21]. Linearized version of ABF is introduced
in [22]. Gu and Yau in [23] computed the conformal structure using Hodge theory. Gortler et al. in [24]
used discrete 1-forms for mesh parameterization with several holes. Ray et al. in [25] used the holomorphic
1-form to follow the principle curvatures for the quad remeshing purpose. Kälberer et al. [26] use branched
covering to convert a given frame field on the surface to a vector field on the covering space. Spherical
parameterizations are introduced in [27], [28]. High genus surface parameterization is pioneered by Grimm
and Hughes in [29]. Recently, hyperbolic parameterization is introduced in [30].

Circle pattern was proposed by Bowers and Hurdal [31], and has been proven to be a minimizer of
a convex energy by Bobenko and Springborn [32]. An efficient circle pattern algorithm was developed
by Kharevych et al. [33]. Discrete Ricci flow was introduced by Chow and Luo in [34] and applied to
graphics in [30]. Ben-Chen et al. introduce an efficient method for scaling metrics to prescribed curvatures
in [35].

The theory for combinatorial Euclidean Yamabe flow was introduced by Luo in [36]. The theory for
hyperbolic curvature flow was introduced in [37]. Springborn et al. [38] identifies the Yamabe energy with
the Milnor-Lobachevsky function and the heat equation for the curvature evolution with the cotangent
Laplace equation.



PREPRINT 4

Recently, there has been various work on numerical quasi-conformal mapping techniques based on
solving elliptic equations in the real plane with finite difference or finite element methods. Using finite
difference methods to compute quasi-conformal maps on complex plane were proposed by Belinskii et al.
[9] and Mastin and Thompson [14]. These methods are difficult to implement for arbitrary regions. A finite
difference scheme for constructing quasi-conformal mappings for arbitrary simply and doubly-connected
region of the plane onto a rectangle was developed by Mastin and Thompson [39]. Vlasynk [40] applied
similiar techniques for mappings of doubly connected and triply connected domains onto a parametric
rectangle. A finite element based method was implemented by Weisel [41]. In [42] Daripa proposed a
numerical construction of quasi-conformal mappings in the plane using the Beltrami equation. The author
presented an algorithm for the evaluation of one of the singular operators that arise in solving the Beltrami
equation. The author subsequently applied the same method for numerical quasi-conformal mappings of
exterior of simply connected domains onto the interior of a unit disk using the Beltrami equation [13]. This
method was further extended to the quasi-conformal mapping of an arbitrary doubly connected domain
with smooth boundaries onto an annulus ΩR = {σ : R < σ < 1} [43]. All of these methods deal with
simple domains in the complex plane and cannot be applied on arbitrary regions. Furthermore, as far as
we know, no work has been done on solving the Betrami equation on general Riemann surfaces. In this
work, we are interested in developing an effective numerical algorithm to compute the quasi-conformal
mapping on general Riemann surfaces of any genus.

III. THEORETICAL BACKGROUND

In this section, we briefly introduce the major concepts in differential geometry and Riemann surface
theory, which are necessary to explain the quasi-conformal maps. We refer readers to [44], [45] for detailed
information.

A. Beltrami Equations and quasi-conformal maps
Let f : C → C be a complex function. The following differential operators are more convenient for

discussion
∂

∂z
:=

1

2
(
∂

∂x
− i ∂

∂y
),
∂

∂z̄
:=

1

2
(
∂

∂x
+ i

∂

∂y
).

f is said to be quasi-conformal associated to µ if it is orientation-preserving and satisfies the following
Beltrami equation:

∂f

∂z̄
= µ(z)

∂f

∂z
(1)

where µ(z) is some complex-valued Lebesgue measurable function satisfying sup |µ| < 1. µ is called the
Beltrami coefficient of f . The Beltrami coefficient µ gives us all the information about the conformaity
of f (See Figure 2).

If µ(z) = 0 everywhere, f is called holomorphic. A holomorphic function satisfies the well-known
Cauchy-Riemann equation

∂f

∂z̄
= 0.

Suppose S is a surface embedded in R3, with the induced Euclidean metric g. Let Uα ⊂ S be an open
set on S, with local parameterization is ϕα : Uα → C, such that the metric has local representation

g = e2λ(c)dzdz̄,

then (Uα, ϕα) is called an isothermal coordinate chart. We can cover the whole surface by a collection of
isothermal coordinate charts. All isothermal coordinate charts form a conformal structure of the surface.
The surface with a conformal structure is called a Riemann surface.
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Fig. 3. The figure illustrates the definition of quasi-conformal maps between Riemann surfaces

Suppose S1 and S2 are two Riemann surfaces. (Uα, ϕα) is a local chart of S1, (Vβ, ψβ) is a local chart
of S2. f : S1 → S2 is a conformal map if and only if

ψβ ◦ f ◦ ϕ−1
α : ϕα(Uα)→ ψβ(Vβ)

is bi-holomorphic for all ϕα and ψβ . For simplicity, we still use f to denote its local representation. Then
a conformal map f satisfies ∂ϕ

∂z̄
= 0.

The definition of quasi-conformal maps of plane domains can be extended to Riemann surfaces. Instead
of using the Beltrami coefficient, a global quantity called Beltrami differential is used, which is independent
of the choice of local parameters.

Definition 3.1 (Beltrami Differentials): A Beltrami differential µ(z)dz
dz

on a Riemann surface R is an
assignment to each chart zα on Uα an L∞ complex-valued function µα defined on zα(Uα) such that:

µα(zα) = µβ(zβ)(
dzβ
dzα

)/(
dzβ
dzα

) (2)

on the region which is also covered by another chart zβ .

Now, a quasi-conformal map between Riemann surfaces can be defined as follow (see Figure 3 for the
geometric illustration):

Definition 3.2 (quasi-conformal maps between Riemann surfaces): An orientation-preserving home-
omorphism f : S1 → S2 is called quasi-conformal associated to µ(z)dz

dz
if for any chart zα on S1 and any

chart wβ on S2, the map fαβ := wβ ◦ f ◦ z−1
α is quasi-conformal associated with µα(zα)

Note that the above definition is well defined. On a region of S1 covered by two different charts zα
and zα′ , we have

µα′
=
∂fα′β

∂z′α
/
∂fα′β

∂z′α
= (

∂fαβ

∂zα

dzα
dzα′

)/(
∂fαβ

∂zα

dzα
dzα′

) = µα(zα′)(
dzα
dzα′

)/(
dzα
dzα′

)

This is guaranteed by Equation 2. Also, the definition does not depend on the chart wβ used in the range
of f . Let wβ and wβ′ be two different charts on the range of f . We have

µ′
β(zα) =

∂fαβ′

∂zα
/
∂fαβ′

∂zα
= (

∂wβ′

∂wβ

∂fαβ

∂zα
+
∂wβ′

∂wβ

∂fαβ

∂zα
)/(

∂wβ′

∂wβ

∂fαβ

∂zα
+
∂wβ′

∂wβ

∂fαβ

∂zα
)

=
∂fαβ

∂zα
/
∂fαβ

∂zα
= µβ(zα)
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since wβ′ is holomorphic and so ∂wβ′

∂wβ
= 0.

In this paper, our goal is to compute numerically the quasi-conformal map associated to a given Beltrami
differential, which satisfies Definition 3.2.

B. Yamabe Flow on smooth Riemann surfaces
Let S be a surface embedded in R3 with the induced Euclidean metric g. We say another Riemannian

metric ḡ is conformal to g, if there is a scalar function u : S → R, such that ḡ = e2ug.
The Gaussian curvature induced by ḡ is

K̄ = e−2u(−∆gu+K),

where ∆g is the Laplace-Beltrami operator under the original metric g. The above equation is called
the Yamabe equation. By solving the Yamabe equation, one can design a conformal metric e2ug by a
prescribed curvature K̄.

Yamabe equation can be solved using Ricci flow method. The Ricci flow deforms the metric g(t)
according to the Gaussian curvature K(t) (induced by itself), where t is the time parameter

dgij(t)

dt
= 2(K̄ −K(t))gij(t).

The uniformization theorem for surfaces says that any metric surface admits a conformal metric, which
induces constant Gaussian curvature. The constant is one of {−1, 0,+1}, determined by the topology of
the surface. Such metric is called the uniformization metric. Ricci flow converges to the uniformization
metric. Detailed proofs can be found in [46] and [47].

IV. QUASICONFORMAL MAP AND ITS AUXILIARY METRIC

In this section, we prove the main theorem of this paper, which allows us to define an auxiliary metric
to solve the Beltrami equation on the Riemann surface.

Theorem 4.1 (Auxiliary Metric associated to a Beltrami differential): Suppose (S1,g1) and (S2,g2)
are two metric surfaces, ϕ : S1 → S2 is a quasi-conformal map, the Beltrami differential is µdz

dz
. Let z

and w be the local isothermal coordinates of S1 and S2 respectively, then g1 is e2λ1(z)dzdz and g2 is
e2λ2(w)dwdw. Define an auxiliary Riemannian metric on S1,

g̃1 = e2λ1(z)|dz + µdz|2. (3)

The auxiliary metric g̃1 is well-defined and the map ϕ : (S1, g̃1)→ (S2,g2) is a conformal map.

Proof: We first prove the auxiliary metric g̃1 is well-defined. Consider the region which is covered by
two different charts zα and zβ . Suppose the local representations of g1 under zα and zβ are e2λα(z)dzαdzα

and e2λβ(z)dzβdzβ respectively.
Since dzα

dzβ
= 0, we have

dzα =
dzα

dzβ
dzβ +

dzα

dzβ
dzβ =

dzα

dzβ
dzβ

Also,

e2λα(z)dzαdzα = e2λα(z)|dzα|2 = e2λα(z)|dz
α

dzβ
|2|dzβ|2 = e2λβ(z)|dzβ|2

This gives, e2λβ(z) = e2λα(z)|dzα
dzβ
|2.
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Thus,

e2λα(zα)|dzα + µαdzα|2 = e2λα(zα)|dz
α

dzβ
dzβ + µαdz

α

dzβ
dzα|2

= e2λα(zα)|dz
α

dzβ
|2|dzβ + µα(

dzα

dzβ
/
dzα

dzβ
)dzα|2

= e2λβ(z
β)|dzβ + µβdzβ|2

To see the map ϕ : (S1, g̃1)→ (S2,g2) is a conformal map, let ϕ∗g2 denote the pull back metric,

ϕ∗g2 = e2λ2(ϕ(z))|dϕ(z)|2

Under the pull back metric, the map ϕ : (S1, ϕ
∗g2)→ (S2,g2) is isometric.

dϕ(z) = ∂ϕ(z)
∂z

dz + ∂ϕ(z)
∂z

dz,

= ∂ϕ(z)
∂z

(dz + µdz).

Therefore,

ϕ∗g2 = e2λ2(ϕ(z))|∂ϕ(z)
∂z
|2|dz + µdz|2

According to the definition of g̃1 in Equation 3, ϕ∗g2 = e2λ2(ϕ(z))−2λ1(z)|∂ϕ(z)
∂z
|2g̃1. ϕ∗g2 is conformal to

g̃1. Because ϕ : (S1, ϕ
∗g2)→ (S2,g2) is isometric, therefore ϕ : (S1, g̃1)→ (S2,g2) is conformal.

This theorem tells us to solve the Beltrami equation on the Riemann surface, we simply need to define a
new auxiliary metric associated with the prescribed Beltrami differential. We can then solve the Beltrami
equation by computing a conformal map under the newly defined metric. In other words, the quasi-
conformal map is equivalent to a conformal map under a suitable metric. This observation is important
for us to develop the numerical algorithm to compute quasi-conformal maps (See Section VI).

V. DISCRETE QUASI-CONFORMAL GEOMETRY

In Section III and IV, we briefly discuss the theory of quasi-conformal geometry and describe the
auxiliary metric on smooth Riemann surfaces. In practice, most surfaces are approximated by simplicial
complexes, namely triangular meshes. It is therefore necessary to have a discrete analog of quasi-conformal
geometry on discrete meshes. In this section, we will formulate the definitions of discrete quasi-conformal
maps and their associated discrete beltrami differentials.

Suppose M is trianglar mesh, V,E, F are vertex, edge and face set respectively. We use vi to denote
the ith vertex; [vi, vj] the edge from vi to vj; [vi, vj, vk] as the face, where the vertices are sorted counter-
clock-wisely. On triangular meshes, we can derive a discrete version of Ricci flow, called the discrete
Yamabe flow, which is analogous to the curvature flow on smooth surfaces. In this section, we describe in
detail the discrete Euclidean and hyperbolic curvature flow that converge to the Euclidean and hyperbolic
uniformization metric respectively.

On the discrete mesh, we can define the discrete metric, which is similar to the Riemannian metric.
Basically, the discrete metric gives the length of each edge.

Definition 5.1 (Discrete Metric): A discrete metric on a mesh M is a function l : E → R+, such
that on each triangle [vi, vj, vk], the triangle inequality holds,

li + lj > lk.

Discrete metric represents a configuration of edge lengths. As shown in figure 4(A), different background
geometries can be assigned to a mesh.
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Fig. 4. (A) shows the Euclidean and Hyperbolic triangle. (B) shows the discrete surface Yamabe flow

Definition 5.2 (Background Geometry): Suppose M is a mesh with a discrete metric. If all faces
are Spherical (or Euclidean, or Hyperbolic triangle), then the mesh is with Spherical (or Euclidean, or
Hyperbolic) background geometry, denoted as S2 (or E2, or H2).

Discrete metric determines the corner angles on each face by the cosine law,

θi =

{
cos−1 l2j+l2k−l2i

2lj lk
E2

cos−1 cosh lj cosh lk−cosh li
2 sinh lj sinh lk

H2
(4)

Definition 5.3 (Discrete conformal deformation): Let K be a triangulation mesh. Suppose l and L
are two different discrete metrics on K. We say L is a discrete conformal deformation of l if there exists
a function u : V → R, where V is the set of all vertices of K, such that for all edges [vi, vj] on K1:

L([f(vi), f(vj)]) =

{
eu(vi)l([vi, vj])e

u(vj) E2

2 sinh−1 eu(vi sinh(
l([vi,vj ])

2
)eu(vj H2 (5)

where [vi, vj] is an edge on K. (4(B))

Note that the definition of discrete hyperbolic conformality was due to Springborn et al. [37]. u : V → R
is called the discrete conformal factor. The discrete conformal factor is a function defined on every vertices
of K.
Definition 5.4 (Discrete Local Charts): Let K be a triangular mesh. A mesh Kα is called a submesh

of K if every vertices, edges and faces of Kα belong to K. A discrete local chart zα : Kα → zα(Kα) ⊂ C
is a discrete conformal map from Kα to a mesh zα(Kα) embedded in the complex plane (See Figure 5).

Since the triangular meshes we consider are discrete approximations of smooth surfaces, we can assume
that the triangular meshes are covered by a collection of discrete local charts.

Definition 5.5 (Discrete Beltrami Differential): A discrete Beltrami differential µdz
dz

is an assignment
to each discrete local chart zα on Kα an L∞ complex-valued function µα defined on zα(Kα) such that:

(
µα(vi) + µα(vj)

2
)
zα(vj)− zα(vi)
zα(vj)− zα(vi)

= (
µβ(vi) + µβ(vj)

2
)
zβ(vj)− zβ(vi)
zβ(vj)− zβ(vi)

(6)

where [vi, vj] is any edge in the region which is also covered by another chart zβ (See Figure 5).

By letting µα
ij =

µα(vi)+µα(vj)

2
, µβ

ij =
µβ(vi)+µβ(vj)

2
, dzαij = zα(vj) − zα(vi) and dzβij = zβ(vj) − zβ(vi),

Equation 6 can be simplified as:
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Fig. 5. The figure illustrates the idea of discrete local chart and discrete Beltrami differential.

µα
ij

dzαij
dzαij

= µβ
ij

dzβij

dzβij

which is an analog of Equation 2.

Definition 5.6 (Discrete quasi-conformal Map): Let µdz
dz

be a given discrete Beltrami differential. A
map ϕ : (K1, l)→ (K2, L) between meshes K1 and K2 is called discrete quasi-conformal if: with respect
to a new metric l̃ on K1, the map ϕ : (K1, l̃)→ (K2, L) is discrete conformal where:
l̃([vi, vj]) := l([vi, vj])

|dzij+µijdzij |
|dzij | ; dzij = z(vj)− z(vi); µij =

µi+µj

2
for any local isothermal coordinates

z of K1.

l̃ is called the discrete auxiliary metric associated with µdz
dz

. Note that the definition is well-defined.
Suppose an edge [vi, vj] is covered by both charts zα and zβ , we have

l([vi, vj])
|dzαij + µα

ijdz
α
ij|

|dzαij|
= l([vi, vj])|1 + µα

ij

dzαij
dzαij
|

= l([vi, vj])|1 + µβ
ij

dzβij

dzβij
|

= l([vi, vj])
|dzβij + µβ

ijdz
β
ij|

|dzβij|

The following analogous theorem of Theorem 4.1 is observed immediately from the above definitions
of discrete quasi-conformal maps and discrete auxiliary metric.

Theorem 5.7: Suppose (K1, l) and (K2, L) are two metric triangular meshes, ϕ : K1 → K2 is a
quasi-conformal map, its Beltrami differential is µdz

dz
. Under the auxiliary metric l̃ associated with µdz

dz
,

the map ϕ : (K1, l̃)→ (S2, L) is discrete conformal.

Theorem 5.7 will be used for the computation of discrete quasi-conformal maps (Section VI).
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VI. COMPUTATION OF DISCRETE QUASI-CONFORMAL MAPS

In this section, we describe in detail the numerical algorithm to compute the discrete quasi-conformal
map associated to a given beltrami differential. Based on Theorem 5.7, the algorithm consists of two
main steps: 1. Compute the discrete auxiliary metric associated to the prescribed beltrami differential; 2.
Under the discrete auxiliary metric, compute the conformal parameterization using the discrete Yamabe
flow method. We call this algorithm to compute discrete quasi-conformal map the discrete Quasi-Yamabe
flow.

• Auxiliary metric computation: The first step of our algorithm is to compute the auxiliary metric
associated to a given Beltrami differential. The formula for computing the auxiliary metric is given in
Definition 5.5. The detail computational algorithm can be summarized as follows:

Algorithm 1 : Auxiliary Metric

Input : Conformal parameterization z : V → C, discrete Beltrami differential µ : V → C.
Output : Discrete auxiliary metric l.

1) For each edge [vi, vj], compute the edge length lij using the Euclidean metric
For all : Edge [vi, vj] do

2) dz ← z(vj)− z(vi)
3) µ← 1

2
(µ(vi) + µ(vj))

4) λ← |dz+µdz|
|dz|

5) lij ← λlij
end for

• Conformal parameterization under the auxiliary metric: After the discrete auxiliary metric is
computed, we can then compute the discrete quasi-conformal map simply by computing the discrete
conformal map under the new metric. We will use the discrete Yamabe flow method to compute the
conformal map. The discrete Yamabe flow iteratively deform the metric conformally on the source surface
to a uniformization metric, which induces constant Gaussian curvature.

On a triangular mesh M , the discrete Gaussian curvature is defined as angle deficient. Suppose [vi, vj, vk]
is a face in M , θjki represent the corner angle at vi on the face. The discrete Gaussian curvature of vi is
defined as

Ki =

{
2π −

∑
jk θ

jk
i vi ̸∈ ∂M

π −
∑

jk θ
jk
i vi ∈ ∂M

(7)

Now, suppose the discrete conformal deformation under the discrete Yamabe flow is given by the
discrete conformal factor u : V → R (See Definition 5.5). Let Ki denote the target curvature at vi. The
discrete Yamabe flow has the following formula:

dui
dt

= Ki −Ki. (8)

The discrete Yamabe flow is the negative gradient flow of the Yamabe energy. Let u = (u1, u2, ..., un)
and u0 = (0, 0, ..., 0). The discrete Yamabe energy has the form:

E(u) =

∫ u

u0

n∑
i=1

(Ki −Ki)dui. (9)

The Hessian matrix (hij) of E can be computed explicitly. Let [vi, vj] be an edge, connecting two faces
[vi, vj, vk] and [vj, vi, vl], then Hessian matrix (hij) satisfies

hij =
∂θjki
∂uj

+
∂θlji
∂uj

and hii =
∑
j,k

∂θjki
∂ui

(10)
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where the summation goes through all faces surrounding vi, [vi, vj, vk]. Here,

∂θi
∂ui

=

{
− cot θj − cot θk E2

−2cicjck−c2j−c2k+cicj+cick−cj−ck

A(cj+1)(ck+1)
H2 (11)

∂θi
∂uj

=

{
cot θk E2

ci+cj−ck−1

A(ck+1)
H2 (12)

where in H2 case, ck is cosh(yk) and A is sin(θk) sinh(yi) sinh(yj).
Algorithm 2 describes the details for the discrete Yamabe flow.

Algorithm 2 : Discrete Yamabe Flow

Require : A triangular mesh M , the target curvature K.
1) Initialize ui to zero for each vertex vi.
2) Repeat
3) For each edge, compute the edge length using formula 5.
4) For each face [vi, vj, vk] compute the corner angles θi, θj and θk.
5) For each face [vi, vj, vk], compute ∂θi

∂uj
,
∂θj
∂uk

, and ∂θk
∂ui

using formula 12.

6) For each face [vi, vj, vk], compute ∂θi
∂ui
,
∂θj
∂uj

and ∂θk
∂uk

using formula 11.
7) Construct the Hessian matrix H using formula 10 and ??.
8) Solve linear system Hδu = K −K.
9) Update discrete conformal factor u← u+ δu.

10) For each vertex vi, compute the Gaussian curvature Ki.
11) until maxvi∈M |Ki −Ki| < ϵ

After computing the discrete metric of the mesh, we can embed the mesh onto R2 or H2. Here, we
discuss the hyperbolic case. Euclidean case is very similar.

Basically, we can isometrically flatten triangle by triangle using the hyperbolic cosine law, as described
in algorithm 3.

Algorithm 3 : Embed on H2

Input : A triangular mesh M , a set of fundamental group generators intersecting only at the base point
p, using the algorithm in [30]

1) Slice M along the base loops to form a fundamental domain M .
2) Embed the first triangle [v0, v1, v2] ∈M ,

τ(v0) = (0, 0), τ(v1) = tanh
l01
2
, τ(v2) = tanh

l02
2
eiθ

12
0 .

3) Put all the neighboring faces of the first face to a face queue.

While : the face queue is not empty
4) Pop the first face from the queue [vi, vj, vk]
5) Suppose vi and vj has been embedded, compute the intersection of two hyperbolic circles

(τ(vi), lik) ∩ (τ(vj), ljk)

by converting them to Euclidean circles,
6) τ(vk) is chosen the keep the orientation of the face upward.
7) Put the neighboring faces, which haven’t accessed, to the queue.
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VII. NUMERICAL CONVERGENCY OF DISCRETE QUASI-YAMABE FLOW

We now study the numerical convergency of our proposed discrete Quasi-Yamabe flow method.

Firstly, the convexity of the Yamabe energy can be obtained by carefully examining the positive
definiteness of the Hessian.

Theorem 7.1: The discrete Yamabe energy is convex on the space of
∑

i ui = 0 in the Euclidean
case. The discrete Yamabe energy is convex in the hyperbolic case.

Proof: The local convexity of the Euclidean Yamabe energy is due to the fact that the Hessian of
E(u) is the matrix (hij) which is semi-positive definite. Clearly, the summation of each row is zero and
only the diagonal elements are positive. Furthermore, since the matrix is positive definite on the linear
space

∑
i ui = 0, it follows that H is locally strictly convex on the planes. For detail, please see [36].

We now prove the convexity of the hyperbolic Yamabe energy. This fact was also known to Springborn
et al. ahead of us. We prove the Hessian matrix of the hyperbolic Yamabe energy is positive definite. Let
a1, a2, a3 be the lengths of a hyperbolic triangle. Make conformal change to produce a new hyperbolic
triangle of lengths y1, y2, y3 so that sinh(yi/2) = sinh(ai/2)e

uj+uk , {i, j, k} = {1, 2, 3}. θi represents the
corner angle at the vertex vi. Let H = [ ∂θi

∂uj
] be the matrix.

Fact 1 : det(H) ̸= 0 for all u’s. Indeed, the map from (u1, u2, u3)→ (θ1, θ2, θ3) is a diffeomorphism.

Fact 2 : For any (a1, a2, a3)m the set of all u = (u1, u2, u3) such that yi/2 = 2 sinh−1(sinh(ai/2)e
uj+uk)

satisfies triangular inequalities: y1+y2 > y3, y1+y3 > y2 and y2+y3 > y1 form a connected set Ω in R3.

Fact 3 : Since Ω is connected and H is symmetric in Ω so that det(H) ̸= 0, the signature of H is a
constant.

Fact 4 : Choose those u1, u2, u3 so that y1 = y2 = y3, we see easily by computation that the Hessian H
is positive definite.

Thus, H is positive definite over all Ω.

Now to prove Fact 2 :, introduce a new variable ti = euj+uk . The map u 7→ t is a diffeomorphism.
Thus, it suffices to prove that the set Ω1 = {(t1, t2, t3) ∈ R3

>0|yi = 2 sinh−1(ti sinh(
ai
2
)) satisfies triangular

inequalities } is connected. Fix t2, t3, we will show that the set of all t such that

| sinh−1(t2 sinh(
a2
2
))− sinh−1(t3 sinh(

a3
2
))| < sinh−1(t2 sinh(

a2
2
)) + sinh−1(t3 sinh(

a3
2
))

is connected. This is obvious since f(t) = sinh−1 is a strictly increasing function in t.

The discrete Yamabe energy can be optimized using Newton’s method directly. Given the mesh M , a
conformal factor vector u is admissible, if the deformed metric satisfies the triangle inequality on each
face. The space of all admissible conformal factors is not convex in either Euclidean or Hyperbolic case.
In practice, the step length in Newton’s method needs to be adjusted. Once triangle inequality doesn’t
hold on a face, edge swap needs to be performed. After finitely many such surgery operations on the
triangulation mesh, there will be no singularity developed in the normalized discrete Yamabe flow. We
can then prove that the discrete Quasi-Yamabe flow converges exponentially fast to the discrete auxiliary
metric with constant curvature. Specifically, we have
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Theorem 7.2: If no singularity develops in the discrete Quasi-Yamabe flow after finitely many of
surgery operations, the discrete auxiliary metric converges exponentially fast to a discrete uniformization
metric with constant curvature as time approaches infinity. In other words,

|Ki(t)−Ki| ≤ c1e
−c2t

for some constants c1 and c2 and Ki(t) is the discrete curvature at vertex vi at time t.

Proof: The solution u(t) = (u1(t), ..., uN(t)) of the discrete Yamabe flow exists for all time so
that there are no singularities forming at time equal to infinity. This means that ui(t)’s are in some
compact interval in R>0 and also all inner angles θiji (t) are in some compact interval inside the interval
(0, π). The matrix (cij) = ( ∂θi

∂uj
) has properties that the sum of entries in every row is zero and the

diagonal entries are negative. (cij) is symmetric and semi-negative definite. This implies that there is a
positive constant λ so that the eigenvalues of (cij) considered as a bilinear form restricted to the subspace
{w ∈ RN |w1 + ...+ wN = 0} is always bounded by −λ for all time t ∈ [0,∞), i.e.,∑

i,j

cijwiwj ≤ −λ
∑
i

w2
i

when
∑N

i=1wi = 0.
Note that

dKi(t)

dt
=

d

dt
(2π −

∑
j,k

θjki ) = −
∑
j,k

dθjki
dt

= −
∑
j

∂θi
∂uj

duj
dt

=
∑
j

∂θi
∂uj

(Kj −Kj)

Now, consider G(t) =
∑N

i=1(Ki(t)−Ki)
2. Its derivative can be calculated as

G′(t) = 2
∑
i,j

cij(Ki −Ki)(Ki −Ki)

We have, G′(t) ≤ −λG(t). Thus, G(t) ≤ Ce−λt and so

|Ki(t)−Ki| ≤ c1e
−c2t

Figure 6 shows the exponential convergence of the discrete Yamabe flow method. The Yamabe energy
at each iteration of two different real human faces are plotted on the left and right respectively.

Theorem 7.3: Let f be a quasi-conformal map with Beltrami differential µdz
dz

. Suppose f̃h is a discrete
quasi-conformal map associated to µdz

dz
on a triangulation mesh with mesh size h, which approximates f .

Then f̃h → f as h→ 0.
Proof: See Appendix.

VIII. EXPERIMENTAL RESULTS

We implement our algorithm using generic C++ on Windows platform. The linear systems are solved
using conjugate gradient method. The experiments are carried out on a laptop with 2.0 GHZ CPU, 3.00 G
RAM. The human face surfaces are captured using phase shifting structured light method. Computational
time is reported in Table I.
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Fig. 6. The figure shows the exponential convergence of the discrete Yamabe flow method. The Yamabe energy at each iteration of two
different real human faces are plotted on the left and right respectively.

A. Quasi-conformal Map for Genus Zero Surfaces
Figure 7 shows the experimental results for quasi-conformal maps of the human face surface. The

original face is shown in the top left corner. Four corner vertices are selected on the boundary, shown
as p0, p1, p2, p3. We set the target curvature to be π

2
for those corner vertices, and zero for all vertices

everywhere else. The Yamabe flow conformally maps the surface onto a planar rectangle. The corner
vertices are mapped to the rectangle corners. We set the left lower corner to be the origin, the edges to be
parallel to the axes, the width to be 1. Then the height h gives us the conformal module of the original
face surface with four fixed corners (topological quadrilateral). This provides us the conformal parameter
z of the surface.

In the second and the third row, we set different Beltrami coefficients. The image of the quasi-conformal
map is shown on the left, the circle packing texture mapping is shown on the right. The Beltrami coefficient
is set to be µ = z−z0

2
√
1+h2 , with different values of z0 for different cases. It is obvious that, the conformal

module of the surface changes with different Beltrami coefficients.
Figure 8 and 9 show the quasi-conformal maps for genus zero surfaces with multiply holes. In Figure

8, the human face surface is sliced open along the lip of the mouth which results in a doubly-connected
open surface. Again, we set different Beltrami coefficients and compute the associated discrete auxiliary
metrics. Using the discrete Yamabe flow, we conformally map the surface onto the annulus with respect
to different auxiliary metrics. The target curvature is set to be zero in the interior and constant along the
boundaries. The radius of the inner circles are different with different Beltrami coefficients, indicating a
change in the conformal module. Figure 9 shows the similar results for the genus zero human face surface
with three slices (topological disk with 3 holes).

B. Composition of Quasi-conformal Maps
In the following experiment, we test the accuracy of our algorithm by computing the composed quasi-

conformal maps using different approaches, and comparing their difference. If our method is accurate,
the difference between the results obtained from the two approaches should be small.

Let f : S → D1 be a quasi-conformal map with Beltrami coefficient µf , g : D1 → D2 with Beltrami
coefficient µg. Then the composed map g ◦ f : S → D2 should have the Beltrami coefficient

µg◦f =
µf + (µg ◦ f)τ
1 + µf (µg ◦ f)τ

, (13)

where τ = fz
fz

.
As shown in figure 10, in our experiment, the original surface is a human face surface with four corner

points (a topological quadrilateral), as shown in (a). We compute its conformal parameter domain, as
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Fig. 7. Conformal and Quasi-conformal maps for a face surface. The conformal parameter domain is a rectangle with unit width and h
height on the 1st row. For all other rows µ = z−z0

2
√

1+h2
with different z0’s.

shown in (b), (c) and (d). Then we set the Beltrami coefficient µf to be 0.15+ i0.15, and use our method
to compute a quasi-conformal map f : S → D1. The mapping result of f is shown in (e) and (f). We set
µg = 0.15 + i0.15, and compute the quasi-conformal map g : D1 → D2, as shown in (g) and (h).

We use the formula in Equation 13 to compute the Beltrami coefficient for the composed map µg◦f =
0.34+ i0.12. We then solve the Beltrami equation hz = µg◦fhz to get a quasi-conformal map h : S → D2.
In theory, h should coincide with g ◦ f . Our experimental result shows that h is consistent with g ◦ f . By
comparing the result in (g) and (i), we can see the results of g ◦ f and h are almost identical. We further
measure the deviation between them numerically, using the following formula,

d(f, g) =
1

diag(S)A

∫
S

|f(p)− g(p)|dp,

where A is the area of S, diag(S) is the diagonal of the bounding box of S. The distance is the L1 norm
between f and g, normalized by the diagonal of surface. In our experiment, the distance is 0.000044,
which is very small. This shows that our quasi-conformal map method is accurate. Figure 11 shows the
histogram of the real part, imaginary part and argument of µf , µg and µf◦g. (A), (B) and (C) shows the
histograms of the real part, imaginary part and argument of the Beltrami coefficient µf of f computed
by our method. The histograms show that Real(µf ) = 0.15, Imag(µf ) = 0.15 and arg(µf ) = 0.7854
on almost all vertices, which agree with the exact solution. (D), (E) and (F) shows the histograms of
the Beltrami coefficient µg of g. (G), (H) and (I) shows the histogram of the real part, imaginary part
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Fig. 8. Conformal and Quasi-conformal maps for a topological annulus.

and argument of the Beltrami coefficient µf◦g of the composition map f ◦ g. The histograms show that
Real(µf◦g) = 0.35, Imag(µf ) = 0.12 and arg(µf ) = 0.34 on almost all vertices, which agree with the
exact solution.

C. Quasi-conformal Maps for Genus One Closed Surface
We test our algorithm for genus one closed surface as shown in Figure 12. We first set µ to be zero, and

compute a conformal flat metric using the curvature flow. Then we compute a homology basis, {a, b} as
shown in the leftmost frame of the top row. We then embed a finite portion of the universal covering space
of the Kitten surface using the flat metric, shown in the right frame of the first row. The red rectangle
shows the fundamental polygon, which is a parallelogram, with two adjacent edges za and zb. The lattice
Γ is formed by the translations generated by za and zb,

Γ = {mza + nzb|m,n ∈ Z}.

The Kitten surface can be represented as the quotient space M = R2

Γ
. This gives the conformal parameter

domain of the surface. The rightmost frame of the first row illustrates the circle packing texture mapping
induced by the conformal parameterization. In the second and the third row, we set different Beltrami
coefficients. µ(z) are constants for the second row.

For the last row, the Beltrami coefficient is defined in a more complicated way. Because µ is defined
on the Kitten surface, then it must satisfy the following consistency condition µ(z) = µ(z +mza + nzb).
Given a point z ∈ C, we can find a pair of real numbers α, β ∈ [0, 1), such that z ≡ αza + βzb(modΓ).
Then µ is defined as µ(z) = 1

4
(cos 2πα + i cos 2πβ), which satisfies the above consistency condition.

D. Quasi-conformal Maps for Genus Two Surfaces
Our method can compute quasi-conformal maps for high genus surfaces, as shown in Figure 13. We

use hyperbolic Yamabe flow to compute the hyperbolic metric of the surface, then the homology basis
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Fig. 9. Conformal and Quasi-conformal maps for a multiply connected domain.

{a1, b1, a2, b2}. We flatten a fundamental domain, compute the Fuchsian group generators, and flatten a
finite portion of the universal covering space of the surface. Details can be found in [29], [30]. This gives a
conformal atlas of the surface. Because of the difference between hyperbolic metric and Euclidean metric,
the texture mappings have seams in Figure 13 along the homology basis. Suppose z and w are two local
parameters, differ by a Möbius transformation, then µ should satisfy the following consistency relation
(See Definition 5.5):

µ(w)
wz

wz

= µ(z).

For example, let p ∈ S is a point on ak p ∈ ak, it has two parameters zp ∈ a+k and wp ∈ a−k , wp = αk(zp).
Then µ(zp) and µ(wp) should satisfy the above consistent constraint. In our experiments, we find a n-ring
neighbor (n = 4) of ak, bk, denoted as R, then define µ(vi) = z0 for all vertices vi not in R, µ(vi) = 0,
for vi in ak or bk. µ is extended to other vertices as a complex valued harmonic function, ∆µ(vi) = 0,
vi ̸∈ R ∪ ak ∪ bk, where ∆ is the Laplace-Beltrami operator of the original surface. This will ensure
the consistency relation holds for µ. In Figure 13, z0 is 0.2 + i0.2 for the left frame of second row, 0.3
for the right frame of the second row, and z0 = z for the last row. From the figure, we can see the
deformation of the conformal structure of the surface (shape of the fundamental domain)with different
Beltrami coefficients. The results show that our method can be applied effectively on general Riemann
surfaces of high genus.
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Fig. 10. Composed quasi-conformal maps for a topological quadrilateral.

TABLE I

COMPUTATIONAL TIME.

Figure #vertices #faces time(s)
7 20184 39984 99
10 25220 49982 131
1 20184 39984 101
8 15306 29990 87
9 13515 26304 108
12 10000 20000 25
13 2057 4118 31

IX. CONCLUSION

Many surface mappings are quasi-conformal in the real world. According to quasi-conformal Te-
ichmüller theory, in general, there exists an one-to-one map between the quasi-conformal maps and the
Beltrami coefficients. This work introduces a method to compute quasi-conformal map from Beltrami dif-
ferentials using auxiliary metric method. The auxiliary metric is constructed from the Beltrami differential,
such that the desired quasi-conformal map becomes a conformal one under the auxiliary metric. Theoretic
proof shows the rigor of the method, experimental results demonstrate the generality and accuracy of
the algorithm. Auxiliary metric method can also be applied to most existing conformal parameterization
methods.
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Fig. 11. Histogram of the real part, imaginary part and argument of the Beltrami coefficients.
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