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Abstract

The study of 2D shapes is a central problem in the field of cderpasion. In 2D shape analysis, classification
and recognition of objects from their observed silhoueteeextremely crucial and yet difficult. It usually involves
an efficient representation of 2D shape space with natur#éfianso that its mathematical structure can be used
for further analysis. Although significant progress hasnbemde for the study of 2D simply-connected shapes,
very few works have been done on the study of 2D objects witltrary topologies. In this work, we proposed a
representation of general 2D domains with arbitrary tog@s using conformal geometry. A natural metric can be
defined on the proposed representation space, which givestra o measure dissimilarities between objects. The
main idea is to map the exterior and interior of the domainfaonally to unit disks and punctual disks (circle
domains), using holomorphic 1-forms. A set of diffeomogwhs from the unit circl&® to itself can be obtained,
which together with the conformal modules are used to defieeshape signature. We prove mathematically that
our proposed signature uniquely represents shapes wittraaybtopologies. We also introduce a reconstruction
algorithm to obtain shapes from their signatures. This detep our framework and allows us to go back and forth
between shapes and signatures. Experimental results shewfficacy of our proposed algorithm as a stable shape
representation scheme.

Index Terms

Shape analysis; conformal geometry; holomorphic 1-foramfarmal modules; shape signature.

I. INTRODUCTION

Shape analysis of planar objects from their observed sétteus important for many computer vision
applications, such as classification, recognition and eniagrieval. In order to perform shape analysis
effectively, it is necessary to have an efficient represemteof shapes and a robust metric measuring
their dissimilarity.

Recently, many different representations for 2D shapesvanidus measures of dissimilarity between
them have been proposed. For example, Zhu et al. [1] proptbeetepresentation of shapes using their
medial axis and compare their skeletal graphs through ahrand bound strategy. Liu et al. [2] use shape
axis trees to represent shapes, which are defined by the édamsdpoints of optimally corresponding
boundary points. Belongie et al. [3] proposed to represadtrmatch 2D shapes for object recognition,
based on the shape context and the Hungarian method. M@h{d} introduced a multi-scale, curvature-
based shape representation technique for planar curvash wghespecially suitable for recognition of a
noisy curve. Besides, various statistical models for shrapeesentation were also proposed by different
research groups [5], [6], [7]. These approaches providenglsi way to represent shapes with finite
dimensional spaces, although they cannot capture all thabiity of shapes. Yang et al. [8] proposed



a signal representation approach called the Schwarz eget®n and applied it to shape matching
problems. Lee et al. [9] proposed to represent curves basetieir complete silhouettes, through the
use of harmonic embedding. Mumford et al. [10] proposed dararal approach to model simple closed
curves which captured subtle variability of shapes up tdirsgand translation. They also introduced a
natural metric, called the Weil-Petersson metric, on thappsed representation space.

Most of the above methods work only on simple closed curvesggmerally cannot deal with multiply-
connected objects. In real world applications, objectasftbeir observed silhouette are usually multiply-
connected domains (i.e. domains with holes in the interiéoy example, the silhouette of a human face
with the mouth and eyes is a multiply-connected shape. A fatmages from the real world consists
of multiple objects, which are essentially multiply-cootesl. In order to analyze shapes or images with
arbitrary topologies effectively, it is necessary to depehn algorithm which can deal with multiply-
connected domains. This motivates us to look for a good septation, which is equipped with a natural
metric, to model planar objects of arbitrary topologies.

In this paper, we extended Mumford’s conformal approach, [Mhich models 2D simply-connected
domains, to represent multiply-connected shapes. Mursfaagproach provides an effective way to
represent 2D simple curves and capture their subtle diftee We believe an extension of this approach
to multiply-connected shapes is helpful for the purposelasification and image understanding. The
key idea of our method is to map the exterior and interior @ domain conformally to unit disks and
punctual disks, using holomorphic 1-forms. A set of diffarphisms from the unit circl&! to itself can
be obtained, which together with the conformal modules aeduo define the shape signature. It can
be proven that our proposed signature uniquely represbafses with arbitrary topologies up to scaling
and translation. We also introduce a reconstruction algorito obtain shapes from their signatures, by
solving the Beltrami equation. This completes our framdéwand allows us to move back and forth
between shapes and signatures. The proposed represerdp#ioe inherits a natural metric that can be
used to measure dissimilarity between shapes.

[I. THEORETICALLY BACKGROUND

In this section, we briefly introduce the theoretical founmtas necessary for the current work. For
more details, we refer readers to the classical books [12], [13], [14].

A. Beltrami Equation

Consider a complex valued functiah: C — C maps the z-plane to the w-plane, where-= = + iy,
w = u + 1. The complex partial derivatives defined as:
0 1,0 0,0 1,0 0
5 5(%—1@)75 = 5(%+Za—y) (1)
The Beltrami equatiorfor ¢ is defined by:
o9 0p

Frie M(Z)g (2)



wherey is called theBeltrami coefficient

If 1 is zero, thenp is called aholomorphic or conformal mappingtherwise, if|| ||« < 1, then¢ is
called aquasiconformal mappingn terms of the metric tensor, consider the effect of thébgaak under
¢ of the usual Euclidean metriés%; the resulting metric is given by:

0
8*(ds%) = |52\ d= + (=)l ©

which, relative to the background Euclidean metticanddz, has eigenvalue(51+|u|)2% and(1—|u|)2%.
1 is called theBeltrami coefficientwhich is a measure of non-conformality. In particular, thap ¢ is
conformal around a small neighborhoodofvhen .(p) = 0. Infinitesimally, around a poing, ¢ may be

expressed with respect to its local parameter as follows:

f(z)=fp)+ f:(p)z + fz(p)Z
= f(p) + f:(p) (= + p(p)z).

Obviously, f is not conformal if and only ifu(p) # 0. Inside the local parameter domaifi,may be
considered as a map composed of a translatiofi(tg together with a stretch maf(z) = z + u(p)z,
which is postcomposed by a multiplication §f(p), which is conformal. All the conformal distortion of
S(z) is caused byi(p). S(z) is the map that causgsto map a small circle to a small ellipse. Fronp),
we can determine the angles of the directions of maximal nfiagtion and shrinking and the amount
of them as well. Specifically, the angle of maximal magnifaats arg(u(p))/2 with magnifying factor
1+ |u(p)|; The angle of maximal shrinking is the orthogonal angleg(..(p)) — m)/2 with shrinking
factor 1 — |u(p)|. The distortion or dilation is given by:

K= (14 [u@))/( = |u@))- (5)

Thus, the Beltrami coefficient. gives us important information about the properties of thepniSee
Figure 1).

(4)
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Fig. 1. lllustration of how the Beltrami coefficiemt measures the distortion of a quasi-conformal mapping tregisma small circle to an
ellipse with dilation K.



Given a compact simply-connected dom&irin C and a Beltrami coefficient with ||u|. < 1. There
is always a quasiconformal mapping framto the unit diskD which satisfies the Beltrami equation in
the distribution sense [11]. More precisely,

Theorem 2.1 (Measurable Riemann Mapping TheorerBupposef? is a simply connected domain
in C that is not equal tdC, and suppose that: 2 — C is Lebesgue measurable and satisfige$.. < 1,
then there is a quasiconformal hoemorphignfrom 2 to the unit disk, which is in the Sobolev space
W2(Q) and satisied the Beltrami equation 2 in the distributionssen

This theorem plays a fundamental role in this work. Suppoge C — C are with Beltrami coefficients
Iy, 11g TESpectively. Then the Beltrami ceofficient for the componsig; o ¢; is given by

_ byt (pgo f)T
4o = iy o ©

wherer = jf—

B. Conformal Module

Suppose(); and 2, are planar domains. We sdy; and €2, are conformally equivalenif there is
a biholomorphic diffeomorphism between them. All planama&ins can be classified by the conformal
equivalence relation. Each conformal equivalence claageshithe sameonformal invariantsthe so-called
conformal moduleThe conformal module is one of the key component for us tandefie unique shape
signature.

Suppos€ is a compact domain on the complex plaelf 2 has a single boundary component, the
it is called asimply connected domaifkvery simply connected domain can be mapped to the unit disk
conformally and all such kind of mappings differ byMibbius transformationz — e”"%.

Supposé? has multiple boundary componerdt® = v, —v1 — 72 - - - 7, Where~y, represent the exterior
boundary component, thefa is called amultiply-connected planar domaim\ circle domainis a unit
disk with circular holes. Two circle domains are conformaljuivalent, if and only if they differ by a
Mobius transformation. It turns out every multiply-corted domain can be conformally mapped to a
circle domain, as described in the following theorem.

Theorem 2.2 (Riemann Mapping for Multiply Connected Domaiti):(2 is a multiply-connected do-
main, then there exists a conformal mapping 2 — D, where D is a circle domain. Such kind of
mappings differ by Mobius transformations.

Therefore, each multiply connected domain is conformatdjyiealent to a circle domain. The confor-
mal module for a circle domain is represented as the centedsradii of inner boundary circles. All
simply-connected domains are conformally equivalent. ipwlogical annulus requires parameter to
represent the conformal module. In general case, becaase déinen > 1 inner circles, and the Mobius
transformation group i8 dimensional, therefore the conformal module requides- 3 parameters. We
denote the conformal module 6f as Mod(2).



Fix n, all conformal equivalence classes forn3a— 3 Riemannian manifold, th@eichnilller space
The conformal module can be treated as the Teichmullerdboates. The Weil-Peterson metric [10] is
a Riemannian metric for Teichmuller space, which inducegative sectional curvature, therefore, the
geodesic between arbitrary two points is unique.

C. Holomorphic Differentials

In order to compute the conformal modules, one needs to fiachthomorphic differential forms on
the multiply connected domain. differential 1-formon a planar domaiw is defined as

7= f(z,y)dz + g(z,y)dy,
where f, g are smooth functions. Aarmonic 1-formis curl free and divergence free
Vxr=0,V-7=0,

where the differential operatov = (8%, a%)- If 7 is the gradient of another function defined @nthen
it is called anexact 1-form
The Hodge staroperator acting on a differential 1-form gives tbenjugate differential 1-form

T =—g(z,y)dr + f(z,y)dy,

intuitively, the conjugate 1-form 7 is obtained by rotating by a right angle everywhere. #fis harmonic,
So is its conjugatex 7.
A holomorphic 1-formconsists of a pair of conjugate harmonic 1-forms

w="T+1"T=¢(2)dz,

where ¢(z) is a holomorphic function. We further requires that eitheor * is orthogonal to all the
boundaries. All the holomorphic 1-forms consist a grouptifweal coefficients), denoted &8(€2). A
basis ofH(2) is given by

{(.Ul,bdz, e 7wn}7

such thatfv, w; = 53 Whereéf is the Kronecker symbol. By using the holomorphic 1-formse @an
J
construct the followingcircular slit map

Theorem 2.3 (Circular Slit Map): Suppose a multiply connected domé&invith more than one bound-
ary components, then there exists a conformal mappingQ2 — C, such thaty,,~y, are mapped to
concentric circles;y,’s are mapped to concentric circular slits. All such kind c@ppings differs by a
rotation.



D. Conformal Welding

This work is built onconformal weldingwhich is constructed as follows. Suppdse- {yo, 71, ,Vx}
are non-intersecting smooth closed curves on the compémedl segments the plane to a set of connected
componentg €, Q- - ,Q,}, each segmer?; is a multiply-connected domain. We assufagcontains
the infinity point, p ¢ ,. By using a Mobius transformation(z) = Z%p p IS mapped tooo, Q is
mapped to a compact domain. Repldgeby ¢(Q)). Constructyy, : 2, — Dy to map each segmefi,
to a circle domairD,, 0 < k < s. Assumey; € I' = Q, N Q, then¢,(v;) is a circular boundary on the
circle domainD;, ¢(7;) is a another circle o). Let f; = ¢; o ¢,;1 : St — S' be the diffeomorphism
from the circle to itself, which is called th&gnature of-;.

Definition 2.4 (Signature of a family of loops)fhe signature of a family non-intersecting closed
planar curved’ = {7y, 7, -,V } IS defined as

S(T) == {fo, f1,- -, fr } U{Mod(Dy), Mod(Dy), - - - , Mod(Ds)}.

The following main theorem plays the fundamental role far turrent work.

Theorem 2.5 (Main Theorem):The family of smooth planar closed curvésis determined by its
signatureS(I'), unique up to a Mobius transformation of the Riemann spliete{co}.

Note that if a circle domaiiD, is disk, its conformal module can be omitted from the sigreathe
Mdbius transformation of the Riemann sphere is givefida-b) / (cz+d), wheread—bec = 1,a,b,¢,d € C.
The proof of Theorem 2.5 can be found in the Appendix.

The theorem states that the proposed signature determapesiup to a Mobius transformation. We
can further do a normalization that fixes to oo and that the differential carries the real positive axis
at oo to the real positive axis ato, as in Mumford’s paper [10]. The signature can then deteentire
shapes uniquely up to translation and scaling.

The shape signaturg(I") gives us a complete representation for the space of shapeisetits a natural
metric. Given two shapds, andls. Let S(T;) := {f¢, fi,-- -, fi}U{Mod(D}), Mod(D’), - - - , Mod(D%)}

(@ = 1,2). We can define a metrié(S(I',y), S(I'y)) between the two shape signatures using the natural
metric in the Teichmuller space, such as the Weil-Petergsetnic [10].

[Il. ALGORITHM

In this section, we describe in detail the algorithm to cotepihe signature of a planar domain and
the algorithm to reconstruct the shapes from their sigeatur

Here, we assume a planar doméinis with n inner boundary components, Let the boundary of the
mesh is0Q? = v, — v1--- — 7, represented as a triangular mesh. We usto denote a vertexy;, v;]
denote an edgey;, v;, v;] denote face. We define the angle structure of the mesh as:

Definition 3.1 (Angle Structure)The angle at vertex; in triangle [v;, v;, v;] is denoted aﬁ;lk. The
corner angle of the mesh is defined as the set

A(Q) = {0}, 0" 0 |[vi, vj, 0] € Q}.
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All the following computations completely depend on the langfructure.



A. Discrete Holomorphic 1-Form

In this work, holomorphic 1-forms are used to compute thefmonal parameterizations of the planar
object to circle domains. The conformal parameterizatiompguted is then used to compute the shape
signature of the object. In this subsection, we will explaow the discrete holomorphic 1-form can be
computed.

Discrete Differential OperatorsThe discrete functions defined on vertices, edges and facesbed
discrete O-forms, 1-forms and 2-forms respectively.

The gradient of a O-forny, df is a discrete 1-form, which is given by

df([Ui,Uj]) = f(Uj) — f(vi).
The curl of a discrete 1-formw is given by
curl w(lvi, vj, vi]) = w(Ovi, vj, ve]) = w([vi, v5]) + w([w;, vi]) + w([vg, vil)-

The div of w is given by
div w(v;) = Z wi; w([vi, vg]),
[vi,v;]€Q

wherew;; is theedge weightdefined as the follows:

cot 0} + cot 0%, [v;, v;] & Q2
Wi =
’ cot 0f; [v;,v;] € 09

Whereﬁfj and Qﬁj are the corner angles on the faces adjacent to the feglge|] and against the edge.
Thediscrete wedge operator is defined as following. Givefv;, v;, vy] € Q, 7, 7 are discrete 1-forms,

then

T([vivs])  ([vis vs])

71 A To([vi, v, v]) = T ([v;,ve])  T2([vs, vk])

1
2

Discrete Harmonic Functionstet f be a discrete function. We sdyis a discrete harmonic function,
if it satisfies the following equation:

div df (v;) = 0, Yv; & 0.

We computen harmonic functionsf; : @ — R,k > 0, which satisfies the above equation with the
boundary condition

fk(vz) = 1,VUZ' € Yk fk<vj) = O7vvj S 897 € Vi-

Let 7, = dfy, 1 < k <n, then{r,r, -, 7,} form the basis for all exact harmonic 1-forms n



(a) Exact formr; (b)) Exact 1-formm  (c) Closed formr;

Fig. 2. Harmonic 1-form basis.

Fig. 3. Holomorphic 1-form basi$w: , w2, ws, w4 }.

Discrete Harmonic 1-formsWe compute the shortest cyf from ~,. to v, 1 < k£ < n. Then we
slice Q along 7 to get an(),,, such that the shortest paif becomes;;” andn, . Then we construct a
function y : Q, — R, such that

hi(p) = 1,Vpen; hy(p) =0,Yp € n;;

and h(p) is random for all interior vertices ofY,.. Thendh, is adiscrete exact 1-fornon ). Because
of the consistency along the boundariés;, is also a closed 1-form (but not exact) &n We compute
a functiong, such thatdh, + dg; is a harmonic 1-form by solving the equation,

div(dhy, + dgi)(v;) = 0,Vv; & 0.

Let 74k = dhg + dgi, 1 < k < n, the {7,11, 712, -+, Ton} form the basis for all closed (non-exact)
harmonic 1-form group of (See Figure 2).

Holomorphic Differential: A holomorphic 1-form can be constructed by a harmonic 1-famd its
conjugater;, + i*71, where* is the Hodge star operator. The conjugate form of a harmoificert is still

a harmonic 1-form. Therefore,
2n

3
Tk = E CkiTi,

i=1

wherec;;'s are unknown real numbers. By solving the following linsgistem

2n
/Tj/\*Tk:chi/Tj/\Ti,jzl,Q,"',271,, (7)



we can find all the unknowns and get the conjugate form.detlenoter;, + i*7,, then

{CUl,(.UQ, e ,UJQn}

form a basis for holomorphic 1-form group of the surface.

Thediscrete Hodge Star is defined as follows. Each face is a Euclidean triangle eabgdnR? with
the isometric local coordinatés, y). Suppose is a discrete closed 1-form, then it has local represemtatio
w = cidr + cody, wherecy, co are constants on each face; = c;dy — codz. Let w, 7 be two discrete
harmonic 1-forms, locallyw = c¢idz + cody and T = ddx + d»dy, then locally

c
wA*T = ° dx N dy,

1 2

Then we can treab A *7 as a discrete 2-form, such thatA *7([v;, v, v]) = (c1d2 — cody) A;jix, Where
A, is the area ofv;, v;, v, then the left hand side of Equation 7 is

/2“*7: > wnr([vi v, )

[vi,v5,0K] €L

Figure 3 shows the holomorphic 1-form group basis for theo-Iplanar domain.

B. Shape signatures of planar domains with arbitrary togids

We describe the algorithm to compute the signatur@ @fith n inner boundary components. The inner
boundaries decompose into several sub-domair3,. The algorithm consists of 2 main steps:
Step 1: Compute the conformal maps frofdy, to circle domainsDy;
Step 2: Compute the conformal modules for each sub-dorfgiand the signaturg;; for each boundary.
Step 1: Conformal maps fronf, to circle domainsDy:
The conformal parameterization ©f, can be obtained easily by computing the circular slit map and
performing the Koebe’s iteration. For detail, please rafefl5].
Circular slit:: The circular slit map can be obtained by finding a holomorgdhform w, such that

[mg(/ w) = 27r,[mg(/ w) = —27T,img(/ w)=0,2<k<n-1. 8)
0 m o

To solve Equation 8, we first compute the basis for the hol@mar1-form group.w is then a linear

combination of the basis = )", _, \ywy, the coefficients{\;} can be calculated by solving the linear
system 8. The circular slit map is given byp) = exp(fqp w),Vp € Q, whereq is a base point, and the
integration path is arbitrarily chosen {a Figure 4 shows the circular slit map of a 2-hole planar domai

If 2 is a simply connected domain (topological disk), we comphi conformal mapping to map
it to the unit disk in the following way. First, we punch a sinble in the domain, then treat it as
topological annulus. Then we use circular slit map to mapptineched annulus to the canonical annulus.
By shrinking the size of the punched hole, the circular skipmings converge to the conformal mapping.
Figure 5 shows one such an example.
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(a) Holomorphic 1-form (b) Circular slit map (c) Fill the ianhole (d) Slit Map of (c)

Fig. 4. Circular slit maps.

Yo

(a) Exact form (b) Closed form (c) Holomorphic form (d) Confal mapping

Fig. 5. Conformal mapping for a simply connected domain bggburing a small hole in the center.

Hole Filling:: After computing the circular slit map, the planar domain iapped to the planar
annulus with concentric circular slits, is the unit circle,v; is the inner circley,’s are slits. We use
Delaunay triangulation to generate a diBk bounded byy;, 0D, = v, and gluef2 with D; along~,

O :=QU,, D.

We then use circular slit map again to m@p, such thaty, is opened to a circle. We compute a disk
D, bounded byy,, glue 2, and D, to get(2,. By repeating circular slit map, at the stép~, is opened
to a circle. We compute a circular digR, bounded byy,, and glue€,_; with Dy, Q = Q1 Uy, Dy.

Eventually, we can fill all the holes to gé&x,. All the disks D,, in §2,, are not exact circular.

Koebe’s iteration:: By Koebe’s iteration, all the boundary components becomni@der and rounder.
Basically, each time, we choose a diBk, the complement o), on €2, is a double connected domain.
We map the complement to the canonical planar annulusytheéecomes a circle. We recompute the disk
Dy, bounded by the updateg., glue the annulus with the updatdd.. After this iteration,y, becomes
a circle. Then we choose another diBk, and repeat this process to makea circle. This will destroy
the perfectness of the circular shapeypf But by repeating this process, all thgs become rounder and
rounder, and eventually converge to perfect circles. Thwemence is exponentially fast. Detailed proof
can be found in [12].

Step 2: Computing conformal modules and signaturgs on boundaries: After the conformal
parameterization of, to the circle domain is computed, we can then compute theifocmal modules
and also the signaturg; on each boundary. The conformal modules together yith} give the complete
signatureS(I"). We demonstrate the process for computiid’) with a double fish image as shown in
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{ e = (0,0)
e1 = (=0.775,0.033)
1o = 0.4568

L= 0.1811

foz2

Contour Signature

Original image
Conformal mapping

(A) (B)

Fig. 6. Signature. Each segment is mapped to a circle dorii&i@.conformal module (centers and radii of inner circles}raf circle
domains and the diffeomorphisms of the circles define theasige.

Figure 6. Given the original image, we first perform imagensegtation to get the binary image, then
calculate the contours of the objects in the image. The cortb each fish is shown in the figure. For
simplicity, we treat the outermost boundary of the imagehasunit circle. Then all the contours segment
the image to planar domaing,, €2, 2,. We map each planar segment to a circle dom@jnis mapped to

a disk D, with two circular holes. The centers and raffiy, 7o) and (c;, ) form the conformal module
of 9. Also, ©2; and(2, are mapped to the unit disk3,, D, respectively. We denote the conformal maps
of Q; by @, : Q; — D,. The contour of the small fish are mapped to the boundar0find one inner
boundary ofD,, the signature is given by, := ®, o®;*, which is shown in frame (B) as the blue curve.
Similarly, the signaturefy, of the contour of the shark can also be computed. The signatuboth fish
contours is given bys(I") = {co, ¢1,70, 71, fo1, foz}-

C. Reconstruction of shapes from signatures

The reconstruction of the contours from the signature egttforward. Suppose there atecontours,
then there ares + 1 segments. The signature is given by the conformal modulésd(D;),0 < k < n}
and automorphims of circleg;.

First, we construct circle domairs,’s directly from their modules\/od(Dy)’'s. Each we tessellate the
circular boundaries of each, and use Delaunay triangulation to triangulatg Then, we combinatorially
glue the triangle meskv; and D; by f;;. Suppose the boundary circle € 0D, corresponds to; € D;,
fij - v — ;. For each vertew,; € ~;, we insertf;;(v;) to v;, vice versa, for each vertex; € ~;, we
insertfzgl(vj) to ;. Then we use constrained Delaunay triangulation to refiadrtangulation ofD, and
D;. Therefore the refined triangle meéh and D; can be combinatorially glued through and~,. We
repeat this process for ajfl,’s, to obtain a combinatorial triangle mesh, denoted)as

In the whole algorithm pipeline, all the computations spléépends on the angle structure. We define
the angle structure of D as

A(D) = Up_oA(Dy).
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Then we compute a conformal mappindgrom D to the unit disk using the angle structué D). The
imageo(D) differs from the original image by a Mobius transformatidinis can be further removed by
specifying three vertices on the outer boundary circle.

Suppose in the original image, the positions of three bogndartices{vy, v1,v2} are {wo, wy, ws},
and their positions inp(D) are {zo, z1, 22 }. We need compute a unique Mobius transformafiprsuch
that p(zx) = wy. First, we maps the unit disk to the upper half planenlyy) = ;:’1 Then on the upper
half plane, we magdh(zy), h(z1),h(z2)} to {0,1, 00} by
z— h(z9) h(z1) — h(z2)
2z —h(z2) h(z1) — h(z)’

Similarly, we constructry(z), that maps{h(wy), h(w), h(ws)} to {0,1,00}. The the composition map
o =h"too, oo, oh is the desired Mobius transformation, which is calfeimalization mapTherefore,
7 o ¢ mapsD to the unit disk, which reconstructs the contours from tlymaiure.

o1(z) =

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results whehahstrate the effectiveness of our proposed
shape representation framework for multiply-connectgdaib. The test data used for experiments are real
images obtained from the world wide web. We implement ouorlgm using generic C++ on windows
XP platform, with Intel Duo CPU 2.33 GHz, 3.98 G RAM. The nuical systems are solved using
Matlab C++ library. The contour extraction is obtained byngsthe OpenCV library. The computational
time for our algorithm is as shown in Table II. In general,lbtite signature calculation and reconstruction
take less than 1 minute to compute, even on complicated dhamai

A. Shape representation of multiply-connected domains

We tested our method on different real images to demondtrateffectiveness of our algorithm. Figure
7(A) shows another double fishes image with spatial changései positions of the two fishes, compared
with that in Figure 6. The big shark and small fish interchahtieeir positions. The shape signature of
the image is plotted in (B), which is quite different from thkape signature in Figure 6 (see red and
blue curves). In other words, our shape signature can afdgtcapture spatial changes of objects in the
image, which can be used for the purpose of image undersigindi

Figure 8 shows the shape signatures of 3 different imagds3uitoundaries and 2 levels. (A) shows the
shape signature of the flower image. Note that the fluctugdattern of the outer boundary of the flower
is effectively captured byfy; (the red curve). (B) and (C) shows the shape signatures obriie and
elephant images respectively. The three different image® lvery different shape signatures, meaning
that our shape representation can effectively be used &ssifying shapes.

We also computed the shape signatures on more complicategesnFigure 10 shows a wolf image
with 3 boundaries and 1 level. The exterior and interior @ domain are conformally mapped to the unit
disk and punctual disk. The conformal domains consist of munectual disk with 3 inner disks removed.
So, the conformal modules consists of 3 centers and 3 ralghawn in (B). The diffeomorphisms of
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o = (0.5935,0.0179)
o 1 = (0,0)

ro = 0.2820
o 1 = 0.2429

Contour Original image Signature

(A) (B)

Fig. 7. The shark image with spatial changes in the positadribe two fishes. The shape signature can effectively cagpatial changes
of objects in the image (compared to Figure 6).
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Fig. 8. Shape signatures of different images with 2 bouedaaind 2 levels.

the unit circle on each boundary are also plotted in (B). (@&wss the shape signature of the Mickey
Mouse image with 3 boundaries and 2 levels. The conformaladlmrmonsists of two punctual disks. So,

the conformal modules again consist of 3 centers and ratlie donformal modules together with the

diffeomorphisms of the unit circle are plotted in (D). FigutO shows an image with two cats. It consists
of 6 boundaries with 2 levels. The conformal modules coa®$8 punctual disks with 3 holes removed.

Hence, the conformal modules consists of 6 centers and 6 fdw shape signatures are plotted in (B)
and (C). (B) shows the signature for the outer level wher&sstiows the signature of the inner level.

Experimental results on these complicated images denadedtne efficacy of our shape representation
method.
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Fig. 9. Shape signatures of different images with 3 bouedaand 2 levels.
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Fig. 10. Shape signatures of another image of cats with 6daies and 2 levels.

B. Reconstruction of shapes from their shape sighatures

We also tested our proposed algorithm to reconstruct sHap@stheir signatures. Figure 11 shows the
reconstruction of the shark image from its shape signafure.reconstructed image closely resemble to the
original image, except some very tiny details are missirge Zoomed views show that the reconstructed
ones are smoother, and lose the sharp corners. It showsgaritiain can effectively reconstruct shapes
from their signature.

We also tested our reconstruction algorithm on images wldv@ls. Figure 12 shows the Ameba image
with 2 boundaries and 2 levels. The conformal domains cobo$isvo punctual disks, each has one hole
removed. The conformal modules consist of two centers amdramii. The shape signature is plotted
in (B). We reconstruct the image from its shape signatureQ)y (vhich is very close to the original
image. We also tested the algorithm on a more complicatethgbea Figure 13 shows a cat image with
3 boundaries and 2 levels. As we can see in (A), the originatato of the image is a little bit noisy.
We computed the shape signature of the image, which is shoB)i In (C), we show the reconstructed
image from its shape signature. Again, the reconstructedy@ms very close to the original one, although
the original noisy contours are smoothed out a little bit.

Finally, we studied the numerical error of our reconstirtcheme. Table | shows the distance between
the original and reconstructed contours of the Ameba andmages. It shows a very small numerical
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TABLE |

DISTANCE BETWEEN THE ORIGINAL AND RECONSTRUCTED CONTOURS

Ameba Number of vertex Distance sum Average distance
Contour 1 685 1.669626 0.002437
Contour 2 112 0.238269 0.002127

Cat Number of vertex Distance sum Average distance
Contour 1 96 0.227687 0.002372
Contour 2 92 0.295533 0.003212
Contour 3 363 1.674350 0.004613

RN

(a) Original contour (b) Reconstructed contour  (c) Zoomenvw  (d) Zoomed view

Fig. 11. Comparison between the original contours (a) amdrétonstructed ones (b). The zoomed views (c) and (d) shaivtiie
reconstructed ones are smoother.

i+ o = (0,0)
e = (0,0)
) To = 0.5617
| r1=02175

Original contour ¢ ! ? RS N ° B Reconstructed contour
Signature

(&Y  crendvmn (B) ©)

Fig. 12. Shape representation of the Ameba image and thasuaotion from its shape signature.

error. The average distance is less than 0.005. It meansropoged reconstruction algorithm is very
accurate.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a shape representation of multqpiyected planar domains using conformal
geometry. The main idea is to map the exterior and interichefdomain conformally to unit disks and
punctual disks (circle domains). A set of diffeomorphismmf the unit circleS! to itself can be obtained,
which together with the conformal modules are used to defieeshape sighature. We also introduce a
reconstruction algorithm to obtain shapes from their digres. This completes the framework of our



16

fio =00
1 = (0.6609, —0.0383)

. 5 riginal image i g
Original contour Orig & Signature Reconstructed contour

(A) (B) (©)

Fig. 13. Shape representation of the cat image and its reaotien from the shape signature.

TABLE Il

COMPUTATIONAL TIME

Model # of contours # of vertex # of faces Signature Reconstruction
cat 3 5247 10236 19 Secs 10 Secs
2cats 6 5969 11680 29 Secs 7 Sec
Ameba 2 9094 17930 8 Secs 12 Secs
Fishes 2 5978 11716 23 Secs 8 Secs
New Fishes 2 7519 14780 24 Secs 9 Secs
elephant 2 11968 23678 17 Secs
flower 2 7101 13944 10 Secs
Mickey 3 7557 14854 16 Secs
Brain 2 8211 16164 11 Secs
Wolf 3 8451 16644 47 Secs

s
g : Qg — Dy O
o: for S

@505 — D) P Do

O @)

Fig. 14. Proof for the main theorem, the signature uniquefiednine the family of closed curves unique up to bdilis transformation.

shape representation scheme. In the future, we will applyabgorithm for shape analysis based on
Weil-Peterson metric.

APPENDIX

Theorem 5.1 (Main Theorem):The family of smooth planar closed curvésis determined by its
signatureS(I'), unique up to a Mobius transformation of the Riemann spliete{co}.
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Proof: In this appendix, we give the sketch of the proof for the mdiaotrem 2.5. See figure

14. In the left frame, a family of planar smooth curviés= {v,--- ,vs} divide the plane to segments
{Q0,,--+,Q%}, where, contains theco point. We represent the segments and the curves as a tree
in the second frame, where each node represents a se@inesach link represents a curge If ; is
included by(;, and(2; and(2; shares a curve;, then in the tree, the link; connects?; to ©;, denoted
asqy : ; — Q.

In the third frame, each segmeny is mapped conformally to a circle domain, by ®,. The signature
for each closed curve, is computedf;; = ®; o ®;'|,,, wherey, : Q; — Q; in the tree.

In the last frame, we construct a Riemann sphere by gluingecdomainsD,’s using f;;’s in the
following way. The gluing process is bottom up, we first glle feaf nodes to their fathers. Lef :
D; — D;, D; is a leaf of the tree. For each poiat= re¢ in D;, the extension map

Gij(’l“€i6) = 7“6fij ©) .

We denote the image dP; underG;; asS;. Then we glueS; with D;,. By repeating this gluing procedure
bottom up, we glue all leafs to their fathers. Then we pruhdeales from the tree. Then we glue all
the leaves of the new tree, and prune again. By repeatingtbisedure, eventually, we get a tree with
only the root node, then we get a Riemann sphere, denotéd Bach circle domairD,, is mapped to a
segmentS;, in the last frame, by a sequence of extension maps. Supppss a circle domain, a path
from the rootD, to Dy is {iyp = 0,4y, 42, - - , 4, = k}, then the map frontz, : Dy — Sy is given by

Gk:GioiloGiligo"'oG

in—10n "

Note that,G, is identity. Then the Beltrami coefficient afﬁ,;l : S, — D, can be directly computed,
denoted agi : Sy — C. The compositionb, o G,;l - S — Q) mapsS; to €, becauseb, is conformal,
therefore the Beltrami coefficient d@f,;, o G,;l equals toguy.

We want to find a map from the Riemann sphére the original Riemann sphete ¢ : S — Q. The
Beltrami-coefficientu : S — C is the union ofu,’s each segments:

w(z) = u(2),vz € Sk.

By theorem 2.1, the solution exists and unique up to a Mobssformation. [ ]

Note that, the discrete computational method is more dwatttout explicitly solving the Beltrami
equation. From the Beltrami coefficiept one can deform the conformal structure $f to that of €,
under the conformal structures 9f,, ® : S — ) becomes a conformal mapping. The conformal structure
of ), is equivalent to that ob,, therefore, one can use the conformal structur®pflirectly. In discrete
case, the conformal structure is represented as the anglgwse 3.1. Therefore in our algorithm, we
copy the angle structures @i,’s to S, and compute the conformal mapdirectly.
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