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Abstract

The study of 2D shapes is a central problem in the field of computer vision. In 2D shape analysis, classification

and recognition of objects from their observed silhouette are extremely crucial and yet difficult. It usually involves

an efficient representation of 2D shape space with natural metric, so that its mathematical structure can be used

for further analysis. Although significant progress has been made for the study of 2D simply-connected shapes,

very few works have been done on the study of 2D objects with arbitrary topologies. In this work, we proposed a

representation of general 2D domains with arbitrary topologies using conformal geometry. A natural metric can be

defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The

main idea is to map the exterior and interior of the domain conformally to unit disks and punctual disks (circle

domains), using holomorphic 1-forms. A set of diffeomorphisms from the unit circleS1 to itself can be obtained,

which together with the conformal modules are used to define the shape signature. We prove mathematically that

our proposed signature uniquely represents shapes with arbitrary topologies. We also introduce a reconstruction

algorithm to obtain shapes from their signatures. This completes our framework and allows us to go back and forth

between shapes and signatures. Experimental results showsthe efficacy of our proposed algorithm as a stable shape

representation scheme.

Index Terms

Shape analysis; conformal geometry; holomorphic 1-form; conformal modules; shape signature.

I. INTRODUCTION

Shape analysis of planar objects from their observed silhouette is important for many computer vision

applications, such as classification, recognition and image retrieval. In order to perform shape analysis

effectively, it is necessary to have an efficient representation of shapes and a robust metric measuring

their dissimilarity.

Recently, many different representations for 2D shapes andvarious measures of dissimilarity between

them have been proposed. For example, Zhu et al. [1] proposedthe representation of shapes using their

medial axis and compare their skeletal graphs through a branch and bound strategy. Liu et al. [2] use shape

axis trees to represent shapes, which are defined by the locusof midpoints of optimally corresponding

boundary points. Belongie et al. [3] proposed to represent and match 2D shapes for object recognition,

based on the shape context and the Hungarian method. Mokhtarian [4] introduced a multi-scale, curvature-

based shape representation technique for planar curves, which is especially suitable for recognition of a

noisy curve. Besides, various statistical models for shaperepresentation were also proposed by different

research groups [5], [6], [7]. These approaches provide a simple way to represent shapes with finite

dimensional spaces, although they cannot capture all the variability of shapes. Yang et al. [8] proposed
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a signal representation approach called the Schwarz representation and applied it to shape matching

problems. Lee et al. [9] proposed to represent curves based on their complete silhouettes, through the

use of harmonic embedding. Mumford et al. [10] proposed a conformal approach to model simple closed

curves which captured subtle variability of shapes up to scaling and translation. They also introduced a

natural metric, called the Weil-Petersson metric, on the proposed representation space.

Most of the above methods work only on simple closed curves and generally cannot deal with multiply-

connected objects. In real world applications, objects from their observed silhouette are usually multiply-

connected domains (i.e. domains with holes in the interior). For example, the silhouette of a human face

with the mouth and eyes is a multiply-connected shape. A lot of images from the real world consists

of multiple objects, which are essentially multiply-connected. In order to analyze shapes or images with

arbitrary topologies effectively, it is necessary to develop an algorithm which can deal with multiply-

connected domains. This motivates us to look for a good representation, which is equipped with a natural

metric, to model planar objects of arbitrary topologies.

In this paper, we extended Mumford’s conformal approach [10], which models 2D simply-connected

domains, to represent multiply-connected shapes. Mumford’s approach provides an effective way to

represent 2D simple curves and capture their subtle differences. We believe an extension of this approach

to multiply-connected shapes is helpful for the purpose of classification and image understanding. The

key idea of our method is to map the exterior and interior of the domain conformally to unit disks and

punctual disks, using holomorphic 1-forms. A set of diffeomorphisms from the unit circleS1 to itself can

be obtained, which together with the conformal modules are used to define the shape signature. It can

be proven that our proposed signature uniquely represents shapes with arbitrary topologies up to scaling

and translation. We also introduce a reconstruction algorithm to obtain shapes from their signatures, by

solving the Beltrami equation. This completes our framework and allows us to move back and forth

between shapes and signatures. The proposed representation space inherits a natural metric that can be

used to measure dissimilarity between shapes.

II. THEORETICALLY BACKGROUND

In this section, we briefly introduce the theoretical foundations necessary for the current work. For

more details, we refer readers to the classical books [11], [12], [13], [14].

A. Beltrami Equation

Consider a complex valued functionφ : C → C maps the z-plane to the w-plane, wherez = x + iy,

w = u+ iv. The complex partial derivativeis defined as:

∂

∂z
:=

1

2
(
∂

∂x
− i

∂

∂y
),

∂

∂z̄
=

1

2
(
∂

∂x
+ i

∂

∂y
) (1)

The Beltrami equationfor φ is defined by:

∂φ

∂z̄
= µ(z)

∂φ

∂z
(2)
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whereµ is called theBeltrami coefficient.

If µ is zero, thenφ is called aholomorphic or conformal mapping. Otherwise, if‖µ‖∞ < 1, thenφ is

called aquasiconformal mapping. In terms of the metric tensor, consider the effect of the pullback under

φ of the usual Euclidean metricds2E; the resulting metric is given by:

φ∗(ds2E) = |
∂φ

∂z
|2|dz + µ(z)dz|2. (3)

which, relative to the background Euclidean metricdz anddz, has eigenvalues(1+|µ|)2 ∂f
∂z

and(1−|µ|)2 ∂f

∂z
.

µ is called theBeltrami coefficient, which is a measure of non-conformality. In particular, themapφ is

conformal around a small neighborhood ofp whenµ(p) = 0. Infinitesimally, around a pointp, φ may be

expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(4)

Obviously, f is not conformal if and only ifµ(p) 6= 0. Inside the local parameter domain,f may be

considered as a map composed of a translation tof(p) together with a stretch mapS(z) = z + µ(p)z,

which is postcomposed by a multiplication offz(p), which is conformal. All the conformal distortion of

S(z) is caused byµ(p). S(z) is the map that causesf to map a small circle to a small ellipse. Fromµ(p),

we can determine the angles of the directions of maximal magnification and shrinking and the amount

of them as well. Specifically, the angle of maximal magnification is arg(µ(p))/2 with magnifying factor

1 + |µ(p)|; The angle of maximal shrinking is the orthogonal angle(arg(µ(p)) − π)/2 with shrinking

factor 1− |µ(p)|. The distortion or dilation is given by:

K = (1 + |µ(p)|)/(1− |µ(p)|). (5)

Thus, the Beltrami coefficientµ gives us important information about the properties of the map (See

Figure 1).

Fig. 1. Illustration of how the Beltrami coefficientµ measures the distortion of a quasi-conformal mapping that maps a small circle to an

ellipse with dilationK.
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Given a compact simply-connected domainΩ in C and a Beltrami coefficientµ with ‖µ‖∞ < 1. There

is always a quasiconformal mapping fromΩ to the unit diskD which satisfies the Beltrami equation in

the distribution sense [11]. More precisely,

Theorem 2.1 (Measurable Riemann Mapping Theorem):SupposeΩ is a simply connected domain

in C that is not equal toC, and suppose thatµ : Ω → C is Lebesgue measurable and satisfies‖µ‖∞ < 1,

then there is a quasiconformal hoemorphismφ from Ω to the unit disk, which is in the Sobolev space

W 1,2(Ω) and satisied the Beltrami equation 2 in the distribution sense.

This theorem plays a fundamental role in this work. Supposef, g : C → C are with Beltrami coefficients

µf , µg respectively. Then the Beltrami ceofficient for the composition φ2 ◦ φ1 is given by

µg◦f =
µf + (µg ◦ f)τ

1 + µ̄f(µg ◦ f)τ
(6)

whereτ = f̄z
fz

.

B. Conformal Module

SupposeΩ1 and Ω2 are planar domains. We sayΩ1 and Ω2 are conformally equivalentif there is

a biholomorphic diffeomorphism between them. All planar domains can be classified by the conformal

equivalence relation. Each conformal equivalence class shares the sameconformal invariants, the so-called

conformal module. The conformal module is one of the key component for us to define the unique shape

signature.

SupposeΩ is a compact domain on the complex planeC. If Ω has a single boundary component, the

it is called asimply connected domain. Every simply connected domain can be mapped to the unit disk

conformally and all such kind of mappings differ by aMöbius transformation: z → eiθ z−z0
1−z̄0z

.

SupposeΩ has multiple boundary components∂Ω = γ0−γ1−γ2 · · · γn, whereγ0 represent the exterior

boundary component, thenΩ is called amultiply-connected planar domain. A circle domain is a unit

disk with circular holes. Two circle domains are conformally equivalent, if and only if they differ by a

Möbius transformation. It turns out every multiply-connected domain can be conformally mapped to a

circle domain, as described in the following theorem.

Theorem 2.2 (Riemann Mapping for Multiply Connected Domain):If Ω is a multiply-connected do-

main, then there exists a conformal mappingφ : Ω → D, whereD is a circle domain. Such kind of

mappings differ by Möbius transformations.

Therefore, each multiply connected domain is conformally equivalent to a circle domain. The confor-

mal module for a circle domain is represented as the centers and radii of inner boundary circles. All

simply-connected domains are conformally equivalent. Thetopological annulus requires1 parameter to

represent the conformal module. In general case, because there aren > 1 inner circles, and the Mobius

transformation group is3 dimensional, therefore the conformal module requires3n − 3 parameters. We

denote the conformal module ofΩ asMod(Ω).
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Fix n, all conformal equivalence classes form a3n − 3 Riemannian manifold, theTeichm̈uller space.

The conformal module can be treated as the Teichmüller coordinates. The Weil-Peterson metric [10] is

a Riemannian metric for Teichmüller space, which induces negative sectional curvature, therefore, the

geodesic between arbitrary two points is unique.

C. Holomorphic Differentials

In order to compute the conformal modules, one needs to find the holomorphic differential forms on

the multiply connected domain. Adifferential 1-formon a planar domainω is defined as

τ = f(x, y)dx+ g(x, y)dy,

wheref, g are smooth functions. Aharmonic 1-formis curl free and divergence free

∇× τ = 0,∇ · τ = 0,

where the differential operator∇ = ( ∂
∂x
, ∂
∂y
). If τ is the gradient of another function defined onΩ, then

it is called anexact 1-form.

The Hodge staroperator acting on a differential 1-form gives theconjugate differential 1-form

∗τ = −g(x, y)dx+ f(x, y)dy,

intuitively, the conjugate 1-form∗τ is obtained by rotatingτ by a right angle everywhere. Ifτ is harmonic,

so is its conjugate∗ τ .

A holomorphic 1-formconsists of a pair of conjugate harmonic 1-forms

ω = τ + i ∗τ = φ(z)dz,

whereφ(z) is a holomorphic function. We further requires that eitherτ or ∗τ is orthogonal to all the

boundaries. All the holomorphic 1-forms consist a group (with real coefficients), denoted asH(Ω). A

basis ofH(Ω) is given by

{ω1, ω2, · · · , ωn},

such that
∫

γj
ωi = δji , whereδji is the Kronecker symbol. By using the holomorphic 1-forms, one can

construct the followingcircular slit map.

Theorem 2.3 (Circular Slit Map): Suppose a multiply connected domainΩ with more than one bound-

ary components, then there exists a conformal mappingφ : Ω → C, such thatγ0, γ1 are mapped to

concentric circles,γk’s are mapped to concentric circular slits. All such kind of mappings differs by a

rotation.
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D. Conformal Welding

This work is built onconformal welding, which is constructed as follows. SupposeΓ = {γ0, γ1, · · · , γk}

are non-intersecting smooth closed curves on the complex plane.Γ segments the plane to a set of connected

components{Ω0,Ω1, · · · ,Ωs}, each segmentΩi is a multiply-connected domain. We assumeΩ0 contains

the infinity point, p 6∈ Ω0. By using a Möbius transformationφ(z) = 1
z−p

, p is mapped to∞, Ω0 is

mapped to a compact domain. ReplaceΩ0 by φ(Ω0). Constructφk : Ωk → Dk to map each segmentΩk

to a circle domainDk, 0 ≤ k ≤ s. Assumeγi ∈ Γ = Ωj ∩ Ωk, thenφj(γi) is a circular boundary on the

circle domainDj, φk(γi) is a another circle onDk. Let fi = φj ◦ φ
−1
k : S1 → S1 be the diffeomorphism

from the circle to itself, which is called thesignature ofγi.

Definition 2.4 (Signature of a family of loops):The signature of a family non-intersecting closed

planar curvesΓ = {γ0, γ1, · · · , γk} is defined as

S(Γ) := {f0, f1, · · · , fk} ∪ {Mod(D0),Mod(D1), · · · ,Mod(Ds)}.

The following main theorem plays the fundamental role for the current work.

Theorem 2.5 (Main Theorem):The family of smooth planar closed curvesΓ is determined by its

signatureS(Γ), unique up to a Möbius transformation of the Riemann sphereC ∪ {∞}.

Note that if a circle domainDk is disk, its conformal module can be omitted from the signature. The

Möbius transformation of the Riemann sphere is given by(az+b)/(cz+d), wheread−bc = 1, a, b, c, d ∈ C.

The proof of Theorem 2.5 can be found in the Appendix.

The theorem states that the proposed signature determine shapes up to a Möbius transformation. We

can further do a normalization that fixes∞ to ∞ and that the differential carries the real positive axis

at ∞ to the real positive axis at∞, as in Mumford’s paper [10]. The signature can then determine the

shapes uniquely up to translation and scaling.

The shape signatureS(Γ) gives us a complete representation for the space of shapes. It inherits a natural

metric. Given two shapesΓ1 andΓ2. LetS(Γi) := {f i
0, f

i
1, · · · , f

i
k}∪{Mod(Di

0),Mod(Di
1), · · · ,Mod(Di

s)}

(i = 1, 2). We can define a metricd(S(Γ1), S(Γ2)) between the two shape signatures using the natural

metric in the Teichmuller space, such as the Weil-Peterssonmetric [10].

III. A LGORITHM

In this section, we describe in detail the algorithm to compute the signature of a planar domain and

the algorithm to reconstruct the shapes from their signatures.

Here, we assume a planar domainΩ is with n inner boundary components, Let the boundary of the

mesh is∂Ω = γ0 − γ1 · · · − γn, represented as a triangular mesh. We usevi to denote a vertex,[vi, vj ]

denote an edge,[vi, vj, vk] denote face. We define the angle structure of the mesh as:

Definition 3.1 (Angle Structure):The angle at vertexvi in triangle [vi, vj , vk] is denoted asθijk. The

corner angle of the mesh is defined as the set

A(Ω) := {θijk, θ
k
ij, θ

j
ki|[vi, vj , vk] ∈ Ω}.

All the following computations completely depend on the angle structure.
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A. Discrete Holomorphic 1-Form

In this work, holomorphic 1-forms are used to compute the conformal parameterizations of the planar

object to circle domains. The conformal parameterization computed is then used to compute the shape

signature of the object. In this subsection, we will explainhow the discrete holomorphic 1-form can be

computed.

Discrete Differential Operators:The discrete functions defined on vertices, edges and faces are called

discrete 0-forms, 1-forms and 2-forms respectively.

The gradient of a 0-formf , df is a discrete 1-form, which is given by

df([vi, vj ]) = f(vj)− f(vi).

The curl of a discrete 1-formω is given by

curl ω([vi, vj, vk]) = ω(∂[vi, vj, vk]) = ω([vi, vj ]) + ω([vj, vk]) + ω([vk, vi]).

The div of ω is given by

div ω(vi) =
∑

[vi,vj ]∈Ω

wij ω([vi, vj]),

wherewij is theedge weight, defined as the follows:

wij :=

{

cot θkij + cot θlji [vi, vj] 6∈ ∂Ω

cot θkij [vi, vj] ∈ ∂Ω

whereθkij andθlij are the corner angles on the faces adjacent to the edge[vi, vj ] and against the edge.

Thediscrete wedge operator∧ is defined as following. Given[vi, vj , vk] ∈ Ω, τ1, τ2 are discrete 1-forms,

then

τ1 ∧ τ2([vi, vj, vk]) =
1

2

∣

∣

∣

∣

∣

τ1([vi, vj]) τ2([vi, vj])

τ1([vj , vk]) τ2([vj , vk])

∣

∣

∣

∣

∣

.

Discrete Harmonic Functions:Let f be a discrete function. We sayf is a discrete harmonic function,

if it satisfies the following equation:

div df(vi) = 0, ∀vi 6∈ ∂Ω.

We computen harmonic functions,fk : Ω → R, k > 0, which satisfies the above equation with the

boundary condition

fk(vi) = 1, ∀vi ∈ γk, fk(vj) = 0, ∀vj ∈ ∂Ω, 6∈ γk.

Let τk = dfk, 1 ≤ k ≤ n, then{τ1, τ2, · · · , τn} form the basis for all exact harmonic 1-forms onΩ.
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(a) Exact formτ1 (b) Exact 1-formτ2 (c) Closed formτ3 (d) Closed formτ4

Fig. 2. Harmonic 1-form basis.

Fig. 3. Holomorphic 1-form basis{ω1, ω2, ω3, ω4}.

Discrete Harmonic 1-forms:We compute the shortest cutηk from γk to γ0, 1 ≤ k ≤ n. Then we

slice Ω along ηk to get anΩ̃k, such that the shortest pathηk becomesη+k and η−k . Then we construct a

function hk : Ω̃k → R, such that

hk(p) = 1, ∀p ∈ η+k ; hk(p) = 0, ∀p ∈ η−k ;

andhk(p) is random for all interior vertices oñΩk. Thendhk is a discrete exact 1-formon Ω̃k. Because

of the consistency along the boundaries,dhk is also a closed 1-form (but not exact) onΩ. We compute

a functiongk such thatdhk + dgk is a harmonic 1-form by solving the equation,

div(dhk + dgk)(vi) = 0, ∀vi 6∈ ∂Ω.

Let τn+k := dhk + dgk, 1 ≤ k ≤ n, the {τn+1, τn+2, · · · , τ2n} form the basis for all closed (non-exact)

harmonic 1-form group onΩ (See Figure 2).

Holomorphic Differential: A holomorphic 1-form can be constructed by a harmonic 1-formand its

conjugateτk + i∗τk, where∗ is the Hodge star operator. The conjugate form of a harmonic 1-form is still

a harmonic 1-form. Therefore,

∗τk =

2n
∑

i=1

ckiτi,

wherecki’s are unknown real numbers. By solving the following linearsystem
∫

Ω

τj ∧
∗τk =

2n
∑

i=1

cki

∫

Ω

τj ∧ τi, j = 1, 2, · · · , 2n, (7)
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we can find all the unknowns and get the conjugate form. Letωk denoteτk + i∗τk, then

{ω1, ω2, · · · , ω2n}

form a basis for holomorphic 1-form group of the surface.

Thediscrete Hodge Star∗ is defined as follows. Each face is a Euclidean triangle embedded onR2 with

the isometric local coordinates(x, y). Supposeτ is a discrete closed 1-form, then it has local representation

ω = c1dx + c2dy, wherec1, c2 are constants on each face,∗ω = c1dy − c2dx. Let ω, τ be two discrete

harmonic 1-forms, locallyω = c1dx+ c2dy andτ = d1dx+ d2dy, then locally

ω ∧ ∗τ =

∣

∣

∣

∣

∣

c1 c2

d1 d2

∣

∣

∣

∣

∣

dx ∧ dy,

Then we can treatω ∧ ∗τ as a discrete 2-form, such thatω ∧ ∗τ([vi, vj , vk]) = (c1d2 − c2d1)Aijk, where

Aijk is the area of[vi, vj, vk], then the left hand side of Equation 7 is
∫

Σ

ω ∧ ∗τ =
∑

[vi,vj ,vk]∈Σ

ω ∧ ∗τ([vi, vj , vk]).

Figure 3 shows the holomorphic 1-form group basis for the 2-hole planar domain.

B. Shape signatures of planar domains with arbitrary topologies

We describe the algorithm to compute the signature ofΩ with n inner boundary components. The inner

boundaries decomposeΩ into several sub-domainsΩk. The algorithm consists of 2 main steps:

Step 1: Compute the conformal maps fromΩk to circle domainsDk;

Step 2: Compute the conformal modules for each sub-domainΩk and the signaturefij for each boundary.

Step 1: Conformal maps fromΩk to circle domainsDk:

The conformal parameterization ofΩk can be obtained easily by computing the circular slit map and

performing the Koebe’s iteration. For detail, please referto [15].

Circular slit:: The circular slit map can be obtained by finding a holomorphic1-form ω, such that

Img(

∫

γ0

ω) = 2π, Img(

∫

γ1

ω) = −2π, img(

∫

γk

ω) = 0, 2 ≤ k ≤ n− 1. (8)

To solve Equation 8, we first compute the basis for the holomorphic 1-form group.ω is then a linear

combination of the basisω =
∑n

k=1 λkωk, the coefficients{λk} can be calculated by solving the linear

system 8. The circular slit map is given byφ(p) = exp(
∫ p

q
ω), ∀p ∈ Ω, whereq is a base point, and the

integration path is arbitrarily chosen inΩ. Figure 4 shows the circular slit map of a 2-hole planar domain.

If Ω is a simply connected domain (topological disk), we computethe conformal mapping to map

it to the unit disk in the following way. First, we punch a small hole in the domain, then treat it as

topological annulus. Then we use circular slit map to map thepunched annulus to the canonical annulus.

By shrinking the size of the punched hole, the circular slit mappings converge to the conformal mapping.

Figure 5 shows one such an example.
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(a) Holomorphic 1-form (b) Circular slit map (c) Fill the inner hole (d) Slit Map of (c)

Fig. 4. Circular slit maps.

(a) Exact form (b) Closed form (c) Holomorphic form (d) Conformal mapping

Fig. 5. Conformal mapping for a simply connected domain by puncturing a small hole in the center.

Hole Filling:: After computing the circular slit map, the planar domain is mapped to the planar

annulus with concentric circular slits.γ0 is the unit circle,γ1 is the inner circle,γk’s are slits. We use

Delaunay triangulation to generate a diskD1 bounded byγ1, ∂D1 = γ1, and glueΩ with D1 alongγ1,

Ω1 := Ω ∪γ1 D1.

We then use circular slit map again to mapΩ1, such thatγ2 is opened to a circle. We compute a disk

D2 bounded byγ2, glueΩ1 andD2 to getΩ2. By repeating circular slit map, at the stepk, γk is opened

to a circle. We compute a circular diskDk bounded byγk, and glueΩk−1 with Dk, Ωk = Ωk−1 ∪γk Dk.

Eventually, we can fill all the holes to getΩn. All the disksDk in Ωn are not exact circular.

Koebe’s iteration::By Koebe’s iteration, all the boundary components become rounder and rounder.

Basically, each time, we choose a diskDk, the complement ofDk on Ωn is a double connected domain.

We map the complement to the canonical planar annulus, thenγk becomes a circle. We recompute the disk

Dk bounded by the updatedγk, glue the annulus with the updatedDk. After this iteration,γk becomes

a circle. Then we choose another diskDj, and repeat this process to makeγj a circle. This will destroy

the perfectness of the circular shape ofγk. But by repeating this process, all theγk’s become rounder and

rounder, and eventually converge to perfect circles. The convergence is exponentially fast. Detailed proof

can be found in [12].

Step 2: Computing conformal modules and signaturesfij on boundaries: After the conformal

parameterization ofΩk to the circle domain is computed, we can then compute their conformal modules

and also the signaturefij on each boundary. The conformal modules together with{fij} give the complete

signatureS(Γ). We demonstrate the process for computingS(Γ) with a double fish image as shown in



11

Fig. 6. Signature. Each segment is mapped to a circle domain.The conformal module (centers and radii of inner circles) ofthe circle

domains and the diffeomorphisms of the circles define the signature.

Figure 6. Given the original image, we first perform image segmentation to get the binary image, then

calculate the contours of the objects in the image. The contour of each fish is shown in the figure. For

simplicity, we treat the outermost boundary of the image as the unit circle. Then all the contours segment

the image to planar domainsΩ0,Ω1,Ω2. We map each planar segment to a circle domain.Ω0 is mapped to

a diskD0 with two circular holes. The centers and radii(c0, r0) and (c1, r1) form the conformal module

of Ω0. Also, Ω1 andΩ2 are mapped to the unit disksD1, D2 respectively. We denote the conformal maps

of Ωi by Φi : Ωi → Di. The contour of the small fish are mapped to the boundary ofD1 and one inner

boundary ofD0, the signature is given byf01 := Φ1 ◦Φ
−1
0 , which is shown in frame (B) as the blue curve.

Similarly, the signaturef02 of the contour of the shark can also be computed. The signature of both fish

contours is given byS(Γ) = {c0, c1, r0, r1, f01, f02}.

C. Reconstruction of shapes from signatures

The reconstruction of the contours from the signature is straightforward. Suppose there aren contours,

then there aren+ 1 segments. The signature is given by the conformal modules{Mod(Dk), 0 ≤ k ≤ n}

and automorphims of circlesfij .

First, we construct circle domainsDk’s directly from their modulesMod(Dk)’s. Each we tessellate the

circular boundaries of eachDk and use Delaunay triangulation to triangulateDk. Then, we combinatorially

glue the triangle meshDi andDj by fij . Suppose the boundary circleγi ∈ ∂Di corresponds toγj ∈ Dj,

fij : γi → γj. For each vertexvi ∈ γi, we insertfij(vi) to γj, vice versa, for each vertexvj ∈ γj, we

insertf−1
ij (vj) to γi. Then we use constrained Delaunay triangulation to refine the triangulation ofDi and

Dj . Therefore the refined triangle meshDi andDj can be combinatorially glued throughγi andγj. We

repeat this process for allfij ’s, to obtain a combinatorial triangle mesh, denoted asD.

In the whole algorithm pipeline, all the computations solely depends on the angle structure. We define

the angle structure of D as

A(D) = ∪n
k=0A(Dk).
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Then we compute a conformal mappingφ from D to the unit disk using the angle structureA(D). The

imageφ(D) differs from the original image by a Möbius transformation. This can be further removed by

specifying three vertices on the outer boundary circle.

Suppose in the original image, the positions of three boundary vertices{v0, v1, v2} are {w0, w1, w2},

and their positions inφ(D) are {z0, z1, z2}. We need compute a unique Möbius transformationρ, such

that ρ(zk) = wk. First, we maps the unit disk to the upper half plane byh(z) = z−i
iz−1

. Then on the upper

half plane, we map{h(z0), h(z1), h(z2)} to {0, 1,∞} by

σ1(z) =
z − h(z0)

z − h(z2)

h(z1)− h(z2)

h(z1)− h(z0)
.

Similarly, we constructσ2(z), that maps{h(w0), h(w1), h(w2)} to {0, 1,∞}. The the composition map

σ = h−1◦σ−1
2 ◦σ1 ◦h is the desired Möbius transformation, which is callednormalization map. Therefore,

τ ◦ φ mapsD to the unit disk, which reconstructs the contours from the signature.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results which demonstrate the effectiveness of our proposed

shape representation framework for multiply-connected objects. The test data used for experiments are real

images obtained from the world wide web. We implement our algorithm using generic C++ on windows

XP platform, with Intel Duo CPU 2.33 GHz, 3.98 G RAM. The numerical systems are solved using

Matlab C++ library. The contour extraction is obtained by using the OpenCV library. The computational

time for our algorithm is as shown in Table II. In general, both the signature calculation and reconstruction

take less than 1 minute to compute, even on complicated domains.

A. Shape representation of multiply-connected domains

We tested our method on different real images to demonstratethe effectiveness of our algorithm. Figure

7(A) shows another double fishes image with spatial changes in the positions of the two fishes, compared

with that in Figure 6. The big shark and small fish interchanged their positions. The shape signature of

the image is plotted in (B), which is quite different from theshape signature in Figure 6 (see red and

blue curves). In other words, our shape signature can effectively capture spatial changes of objects in the

image, which can be used for the purpose of image understanding.

Figure 8 shows the shape signatures of 3 different images with 3 boundaries and 2 levels. (A) shows the

shape signature of the flower image. Note that the fluctuatingpattern of the outer boundary of the flower

is effectively captured byf01 (the red curve). (B) and (C) shows the shape signatures of thebrain and

elephant images respectively. The three different images have very different shape signatures, meaning

that our shape representation can effectively be used for classifying shapes.

We also computed the shape signatures on more complicated images. Figure 10 shows a wolf image

with 3 boundaries and 1 level. The exterior and interior of the domain are conformally mapped to the unit

disk and punctual disk. The conformal domains consist of onepunctual disk with 3 inner disks removed.

So, the conformal modules consists of 3 centers and 3 radii, as shown in (B). The diffeomorphisms of



13

Fig. 7. The shark image with spatial changes in the positionsof the two fishes. The shape signature can effectively capture spatial changes

of objects in the image (compared to Figure 6).

Fig. 8. Shape signatures of different images with 2 boundaries and 2 levels.

the unit circle on each boundary are also plotted in (B). (C) shows the shape signature of the Mickey

Mouse image with 3 boundaries and 2 levels. The conformal domain consists of two punctual disks. So,

the conformal modules again consist of 3 centers and radii. The conformal modules together with the

diffeomorphisms of the unit circle are plotted in (D). Figure 10 shows an image with two cats. It consists

of 6 boundaries with 2 levels. The conformal modules consists of 3 punctual disks with 3 holes removed.

Hence, the conformal modules consists of 6 centers and 6 radii. The shape signatures are plotted in (B)

and (C). (B) shows the signature for the outer level whereas (C) shows the signature of the inner level.

Experimental results on these complicated images demonstrate the efficacy of our shape representation

method.
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Fig. 9. Shape signatures of different images with 3 boundaries and 2 levels.

Fig. 10. Shape signatures of another image of cats with 6 boundaries and 2 levels.

B. Reconstruction of shapes from their shape signatures

We also tested our proposed algorithm to reconstruct shapesfrom their signatures. Figure 11 shows the

reconstruction of the shark image from its shape signature.The reconstructed image closely resemble to the

original image, except some very tiny details are missing. The zoomed views show that the reconstructed

ones are smoother, and lose the sharp corners. It shows our algorithm can effectively reconstruct shapes

from their signature.

We also tested our reconstruction algorithm on images with 2levels. Figure 12 shows the Ameba image

with 2 boundaries and 2 levels. The conformal domains consist of two punctual disks, each has one hole

removed. The conformal modules consist of two centers and two radii. The shape signature is plotted

in (B). We reconstruct the image from its shape signature in (C), which is very close to the original

image. We also tested the algorithm on a more complicated example. Figure 13 shows a cat image with

3 boundaries and 2 levels. As we can see in (A), the original contour of the image is a little bit noisy.

We computed the shape signature of the image, which is shown in (B). In (C), we show the reconstructed

image from its shape signature. Again, the reconstructed image is very close to the original one, although

the original noisy contours are smoothed out a little bit.

Finally, we studied the numerical error of our reconstruction scheme. Table I shows the distance between

the original and reconstructed contours of the Ameba and catimages. It shows a very small numerical
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TABLE I

DISTANCE BETWEEN THE ORIGINAL AND RECONSTRUCTED CONTOURS

Ameba Number of vertex Distance sum Average distance

Contour 1 685 1.669626 0.002437

Contour 2 112 0.238269 0.002127

Cat Number of vertex Distance sum Average distance

Contour 1 96 0.227687 0.002372

Contour 2 92 0.295533 0.003212

Contour 3 363 1.674350 0.004613

(a) Original contour (b) Reconstructed contour (c) Zoomed view (d) Zoomed view

Fig. 11. Comparison between the original contours (a) and the reconstructed ones (b). The zoomed views (c) and (d) show that the

reconstructed ones are smoother.

Fig. 12. Shape representation of the Ameba image and the reconstruction from its shape signature.

error. The average distance is less than 0.005. It means our proposed reconstruction algorithm is very

accurate.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a shape representation of multiply-connected planar domains using conformal

geometry. The main idea is to map the exterior and interior ofthe domain conformally to unit disks and

punctual disks (circle domains). A set of diffeomorphisms from the unit circleS1 to itself can be obtained,

which together with the conformal modules are used to define the shape signature. We also introduce a

reconstruction algorithm to obtain shapes from their signatures. This completes the framework of our
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Fig. 13. Shape representation of the cat image and its reconstruction from the shape signature.

TABLE II

COMPUTATIONAL TIME

Model # of contours # of vertex # of faces Signature Reconstruction

cat 3 5247 10236 19 Secs 10 Secs

2cats 6 5969 11680 29 Secs 7 Sec

Ameba 2 9094 17930 8 Secs 12 Secs

Fishes 2 5978 11716 23 Secs 8 Secs

New Fishes 2 7519 14780 24 Secs 9 Secs

elephant 2 11968 23678 17 Secs

flower 2 7101 13944 10 Secs

Mickey 3 7557 14854 16 Secs

Brain 2 8211 16164 11 Secs

Wolf 3 8451 16644 47 Secs
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S3

S4 S5
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S

Fig. 14. Proof for the main theorem, the signature uniquely determine the family of closed curves unique up to a Mb̈oius transformation.

shape representation scheme. In the future, we will apply our algorithm for shape analysis based on

Weil-Peterson metric.

APPENDIX

Theorem 5.1 (Main Theorem):The family of smooth planar closed curvesΓ is determined by its

signatureS(Γ), unique up to a Möbius transformation of the Riemann sphereC ∪ {∞}.
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Proof: In this appendix, we give the sketch of the proof for the main theorem 2.5. See figure

14. In the left frame, a family of planar smooth curvesΓ = {γ0, · · · , γ5} divide the plane to segments

{Ω0,Ω1, · · · ,Ω6}, whereΩ0 contains the∞ point. We represent the segments and the curves as a tree

in the second frame, where each node represents a segmentΩk, each link represents a curveγi. If Ωj is

included byΩi, andΩi andΩj shares a curveγk, then in the tree, the linkγk connectsΩj to Ωi, denoted

asγk : Ωi → Ωj .

In the third frame, each segmentΩk is mapped conformally to a circle domainDk by Φk. The signature

for each closed curveγk is computedfij = Φi ◦ Φ
−1
j |γk , whereγk : Ωi → Ωj in the tree.

In the last frame, we construct a Riemann sphere by gluing circle domainsDk’s using fij ’s in the

following way. The gluing process is bottom up, we first glue the leaf nodes to their fathers. Letγk :

Di → Dj , Dj is a leaf of the tree. For each pointz = reiθ in Dj , the extension map

Gij(re
iθ) = refij(θ).

We denote the image ofDj underGij asSj . Then we glueSj with Di. By repeating this gluing procedure

bottom up, we glue all leafs to their fathers. Then we prune all leaves from the tree. Then we glue all

the leaves of the new tree, and prune again. By repeating thisprocedure, eventually, we get a tree with

only the root node, then we get a Riemann sphere, denoted asS. Each circle domainDk is mapped to a

segmentSk in the last frame, by a sequence of extension maps. SupposeDk is a circle domain, a path

from the rootD0 to Dk is {i0 = 0, i1, i2, · · · , in = k}, then the map fromGk : Dk → Sk is given by

Gk = Gi0i1 ◦Gi1i2 ◦ · · · ◦Gin−1in .

Note that,G0 is identity. Then the Beltrami coefficient ofG−1
k : Sk → Dk can be directly computed,

denoted asµk : Sk → C. The compositionΦk ◦G
−1
k : Sk → Ωk mapsSk to Ωk, becauseΦk is conformal,

therefore the Beltrami coefficient ofΦk ◦G
−1
k equals toµk.

We want to find a map from the Riemann sphereS to the original Riemann sphereΩ, Φ : S → Ω. The

Beltrami-coefficientµ : S → C is the union ofµk’s each segments:

µ(z) = µk(z), ∀z ∈ Sk.

By theorem 2.1, the solution exists and unique up to a Möbiustransformation.

Note that, the discrete computational method is more directwithout explicitly solving the Beltrami

equation. From the Beltrami coefficientµ, one can deform the conformal structure ofSk to that ofΩk,

under the conformal structures ofΩk, Φ : S → Ω becomes a conformal mapping. The conformal structure

of Ωk is equivalent to that ofDk, therefore, one can use the conformal structure ofDk directly. In discrete

case, the conformal structure is represented as the angle structure 3.1. Therefore in our algorithm, we

copy the angle structures ofDk’s to S, and compute the conformal mapΦ directly.
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