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Abstract. Numerical methods for planar anisotropic mean curvature flow are presented for
smooth and crystalline anisotropies. Early numerical work by J. Taylor was based on directly mini-
mizing the surface free energy using parameterized curves. The level set method approach of Osher
and Sethian can be used in the case of smooth anisotropies but not in the crystalline case, where the
motion is nonlocal. A. Chambolle combined the level set approach in the variational framework of
Almgren, Taylor and Wang, which results in a total variation minimization problem. Our approach
uses the split Bregman method for the total variation minimization. This method has the advantage
of decoupling the anisotropy, resulting in a Laplace solve and an explicit shrinkage operator. In
the crystalline anisotropy case, we derive an explicit formula for the crystalline shrinkage operator.
In the smooth anisotropy case, the explicit shrinkage operator is not available: instead we solve a
system of nonlinear equations, called inverse scale space flow, at each iteration. Numerical results
are presented.
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1. Introduction We study numerical methods for the time evolution of a closed
planar curve C(t) with normal velocity equal to its anisotropic mean curvature. The
motion is the gradient flow of the anisotropic perimeter

Eφ(C) =
∫
C

φ(n̂)ds. (1.1)

Here, n̂ is the unit outer normal to the curve C and ds is the arc-length measure. For
a derivation, we refer to the survey [Tay96] and the references therein. In the case
φ(·) = | · |, the motion is a natural generalization to the well known (isotropic) mean
curvature flow, or the curve-shortening flow, where the curve evolves to minimize its
length.

The direct approach is to solve the gradient flow of the surface free energy for
a given parameterized curve. The formulation is as follows: let η(C) be a small
deformation of a closed curve C. Then, for a ‘time step’ h>0, find the particular
deformation η∗ that minimizes

min
η
Eφ(η(C))−Eφ(C)+

1
2h
〈η,η〉. (1.2)

It can be shown (c.f. [Tay96]) that, η∗(C) is an approximation to the anisotropic
mean curvature evolution of C by time h. This variational approach was studied
in [ATW93, LS95, CN07].

The level set method (see Section 1.2) can also be used to implement isotropic
and smoothly anisotropic motions. It cannot be used in the crystalline case because
the motion is nonlocal. However, it is possible to combine the advantages of the
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2 Anisotropic Mean Curvature Flow

level set approach with the variational formulation. Chambolle [Cha04a] showed that
minimizing (1.2) can be achieved by defining f to be the signed distance function to
the curve C, and performing the minimization

min
u∈L2(Ω)

∫
Ω

φ(∇u)+
1

2h
||u−f ||2L2(Ω) (1.3)

The first term is the anisotropic total variation, see the definition (2.5) below. If u∗

is the minimizer of (1.3), then η∗(C) ={u∗(x) = 0}, the zero level set of u∗.

1.1. Contribution of this work In this article, we consider two different
scenarios of (1.3): one involving a non-smooth φ and the other with smooth but
anisotropic φ. Consequently, we propose and implement two numerical algorithms for
these two scenarios. The first numerical method treats crystalline anisotropies, and
takes advantage of an explicit formula we derive in this case. Crystalline anisotropies
are of interest, for example, in crystal growth, c.f. [Gur93]. The second numerical
method treats the case of smooth anisotropies and yields a theoretically interesting
result relating the level set and variational approaches.

To alleviate the difficulty in solving the nonlinear (and singular in the case of
crystalline curvatures) minimization that arises from (1.3), we propose to deal with it
by extensions of the split Bregman method, which solves (1.3) via a sequence of easier-
to-solve problems. The crystalline anisotropy case is treated by modifying the split
Bregman based algorithm [GO09] applied to isotropic mean curvature flow: in par-
ticular, we characterize the solution of the anisotropic shrinkage (or soft thresholding)
problem: given y∈R2, find

arg min
x∈R2

φ(x)+
1
2
|x−y|2. (1.4)

In Theorem 4.3, we derive a formula for the minimizer of (1.4); embedding this
formula within the split Bregman algorithm gives rise to the corresponding anisotropic
mean curvature flow. The main advantage of this approach is that it circumvents the
difficulty of treating the non-smoothness of φ by confining the anisotropy only within
the subproblem (1.4); this observation was mentioned briefly in [GBO09], but an
explicit characterization is novel. While our solution to (1.4) is simple, an analytically
explicit formula for general (e.g. smooth) φ is unavailable. Due to the convexity of the
problem, one may employ efficient numerical methods to solve (1.4); we will comment
on this later in Section 5.

For the smooth anisotropy case, we propose to solve a system of nonlinear equa-
tions, called an inverse scale space flow. This is inspired by the work of Burger
et al. [BGOX06], where they interpret the iterative refinement of the Rudin-Osher-
Fatemi (ROF) image denoising scheme as a discretization of a continuous evolution
equation. In their context, the evolution initially captures large scale artifacts of a
given noisy image f , then gradually finer scales are captured, eventually converging
to f . For the present mean curvature problem, we apply the same strategy but to
the split Bregman functional (5.5); to our knowledge, this application is new. The
resulting inverse scale space flow share several properties to that of Burger et al. (e.g.
decay of Bregman distance, result 6 of Lemma 5.3), but is distinct in that it evolves
two functions that converge to each other in the limit. It is also of theoretical interest
that the (nonlinear) evolution equations involves the linear term ∆u, rather than the
degenerate elliptic curvature div(∇u/|∇u|), a favorable property inherited from the
split Bregman framework. We also show that the limit of the evolution is in fact
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the update solution to a semi-implicit Euler scheme for the mean curvature PDE, see
remark 5.1. Convergence proofs and numerical results are given.

For a brief outline of the proposed method in the context of the split Bregman
method, see Section 2.2.

1.2. Motion of level sets by mean curvature An alternative method to the
direct minimization of the surface free energy described above is to use the level set ap-
proach due to Osher and Sethian [OS88]. The advantages of the level set approach are
well documented: it handles topology changes and can be implemented on a uniform
grid. Note, however, for non-smooth surface free energies, such as the crystalline case,
the level set method cannot be used, since the motion is nonlocal [ATW93]. (See (1.9),
the term γ(ω)+γ′′(ω) is undefined in the crystalline case).

Represent the curve C(t)⊂R2 as the zero level set of an auxiliary function u(x,t),
x∈R2. Then, the idea is to evolve u by a degenerate elliptic partial differential
equation (PDE)

∂u

∂t
= |∇u|div

∇u
|∇u|

. (1.5)

In fact, all level curves {x∈R2 :u(x,t) = constant} evolve by mean curvature un-
der (1.5). This PDE was analyzed in the viscosity solutions framework in [ES91,
CGG91].

The anisotropic analogue of (1.5) may take various forms. The general form is,

∂u

∂t
=β

(
∇u
|∇u|

)
|∇u|div∇φ(∇u). (1.6)

where β is called the mobility function. It has been shown [GL94, DGM96] that
this PDE produces self-similar solutions in two dimensions for positive, continuous β.
Two special cases have been studied previously: the variational approach of Almgren,
Taylor and Wang [ATW93] solved the case β= 1, while Chambolle [Cha04a] and
Novaga and Paulini [NP07] studied the case β=γ, where γ(x) =φ(x)/|x|. We chose
to describe our methods for the anisotropic form

∂u

∂t
= |∇u|div∇φ(∇u), (1.7)

i.e. the case β= 1, mainly to simplify the implementation, but other choices for the
mobility function can be implemented by the present algorithms similarly, see re-
marks 4.2 and 5.2.

Let us write,

φ(∇u) =γ(ω)|∇u|, ω= tan−1(uy/ux). (1.8)

If γ is smooth, (1.7) can be written as

∂u

∂t
= (γ(ω)+γ′′(ω))|∇u|div

∇u
|∇u|

. (1.9)

The condition γ(ω)+γ′′(ω)>0 to avoid ill-posedness is a standard assumption in
interface motion, c.f. [Gur93, Chapter 9]. The PDE (1.9) for smooth φ is still solvable
numerically, for example, using conventional, explicit finite difference schemes. We
will see in Section 5.3 (Proposition 5.2) that the inverse scale space flow approximates
a discretization of (1.9) in t.
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1.3. Related work In this Section we discuss related work.
Theoretical work on anisotropic mean curvature flow have been studied exten-

sively; we refer the interested reader to the survey article of Bellittini [Bel04] (on
crystalline mean curvature flows), the book by Giga [Gig06] (on various interface
problems, in the context of the level set equations) and the references therein.

Several numerical methods for Chambolle’s approach have been studied. In the
case φ= | · |, (1.3) is the Rudin-Osher-Fatemi (ROF) functional used for image denois-
ing [ROF92]. Numerical methods based in the variational approach to mean curvature
flow has recently gained attention due to the advent of fast ROF (minimization) solvers
combined with efficient methods for computing the distance function. Chambolle and
Darbon [CD09] used a combinatorical ROF solver, referred to as ‘graph-cuts’, to solve
anisotropic mean curvature flow; the algorithm is designed only for crystalline φ with
the singularities aligned along grid directions. Chambolle [Cha04a] also proposed a
ROF solver [Cha04b], a fixed point method of a projection in the dual space, and
solved both isotropic and crystalline anisotropic cases (in the latter case, numerical
results were presented without proof of convergence). For the crystalline case, the
present paper follows [GBO09] where the split Bregman method [GO09] is used to
solve the ROF minimization.

Numerical methods for the direct solution of the level set PDE for mean curvature
flow have also been studied. Monotone, convergent finite difference schemes for the
isotropic mean curvature motion PDE (1.5) were discovered by Catte, et al. [CDK95]
and Oberman [Obe04]. Clarenz, et al. [CHR+05] considered a weak formulation of a
(ε-regularized) level set equation for anisotropic mean curvature motion and solved it
using a finite element scheme; later this technique was generalized to higher orer flows
in [BSV08]. See also the survey article [DDE05] for a semi-implicit Euler scheme of
the level set PDE, implemented using the finite element method.

The Merriman-Bence-Osher scheme [MBO94] is a theoretical method for approx-
imating isotropic motion by mean curvature. It approximates a mean curvature flow
by repeatedly solving the heat equation for a short time and thresholding. Gen-
eralization to anisotropic flow have been studied in [CN06]. In a series of papers,
[ET06, ERT05, ERT08, ERT10], Esedoglu et al. proposed a new class of algorithms
for the computation of geometric motions of interfaces, including isotropic curvature
motions and higher order motions such as motion by surface diffusion. These algo-
rithms can be seen as variants of Merriman, Bence, and Osher’s threshold dynamics,
and consist of two alternating steps: the construction of either a characteristic func-
tion or a signed distance function to the interface, and convolution with a suitable
kernel. In particular, by using signed distance functions, the algorithms proposed in
[ERT10] allow for high accuracy on uniform grids. Furthermore, motion by smooth
anisotropic curvatures can also be computed after a slight modification of the first
step. These algorithms preserve the computational efficiency of the Merriman-Bence-
Osher scheme; in comparison to the conventional level set methods, they avoid the
evaluation of degenerate nonlinear PDEs; in comparison to Chambolle’s algorithm,
they avoid the computation of nontrivial optimization problem. In this regard, the
present article’s contribution lies in alleviating the complexity for solving the non-
trivial optimization problems in the framework on Chambolle. There has been other
generalizations of the MBO scheme, involving the use of characteristic functions, see
e.g. [Ruu98, RM00], and [GH08] for flows involving fourth-order partial derivatives.

Hausser and Voigt [HV06] considered a regularized mean curvature flow by adding
εκ2 (κ is curvature and ε�1) to the interfacial energy (1.1); the evolution of the
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interface in two dimensions was solved via a marker-point type scheme, c.f. [Set99,
II.3.1].

2. Definitions and outline of main algorithms

2.1. Definitions and notations Throughout this article, Ω will be a bounded,
connected, open subset of R2.

We will start by defining φ, the surface free energy function, (using a term from
thermomechanics [Gur93]). Assume

φ is a convex, even, positively 1-homogeneous function
with 0<a(x)≤φ(x)≤A(x)<∞, for all x∈R2.

The unit ball of the surface free energy function is known as the Frank diagram:

Fφ :={y∈R2 |φ(y)≤1}. (2.1)

Also define φ◦, the dual norm (or polar) of φ:

φ◦(x) := sup
φ(y)≤1

x ·y. (2.2)

The Wulff shape of φ is the unit ball of φ◦:

Wφ :=
{
y∈R2 :φ◦(y)≤1

}
, (2.3)

Note that, by the convexity of φ, the Wulff shape Wφ is convex. In addition, the
Wulff shape and Frank diagram are related by duality:

φ(x) = sup
φ◦(y)≤1

y ·x= sup
y∈Wφ

y ·x. (2.4)

Example 2.1. A standard example of a dual pair of crystalline norms is the 1-norm
| · |1 and the max-norm | · |∞. For p>1, the dual norm of a p-norm | · |p is the q-norm
with 1/p+1/q= 1. For a positive definite invertible matrix A, the norm φ(x) = |Ax|
has the dual φ(x) = |A−Tx|. See Appendix A for general formulas of Wulff shapes for
smooth and crystalline φ.

Define the (isotropic) total variation of a function u∈L1
loc(Ω) to be∫

Ω

|∇u| := sup
{∫

Ω

u(x)divψ(x)dx :ψ∈C1
0 (Ω),|ψ(x)|≤1,∀x∈Ω

}
. (2.5)

The space of all functions u∈L1(Ω) such that
∫

Ω
|∇u|<∞ is the set BV (Ω), for which∫

Ω
|∇u| becomes a semi-norm.

Generalizing from the Euclidean norm to the norm given by the surface free energy
function φ, define the anisotropic total variation [EO04] as∫

Ω

φ(∇u) := sup
{∫

Ω

u(x)divψ(x)dx :ψ∈C1
0 (Ω),φ◦(ψ(x))≤1,∀x∈Ω

}
, (2.6)

Write dist(Y ) : Ω→R for the signed distance function to a set Y ⊂Ω, defined by

dist(Y )(x) := inf
y∈Y
|x−y|− inf

y∈Ω\Y
|x−y|. (2.7)



6 Anisotropic Mean Curvature Flow

2.2. Outline of the proposed methods We give a brief outline of the two
proposed methods for solving the discrete time evolution of an anisotropic mean curva-
ture flow. For both cases, we need to solve a minimization problem to evolve the mean
curvature flow by one discrete time step h>0. The minimization problem involves the
ROF functional (1.3). There are various methods for performing this minimization.
We used the split Bregman method which has the advantage that it splits the problem
into two simpler problems. The first step is to solve a linear elliptic PDE. The second
step is pointwise minimization, which, in some cases, has an explicit solution called
shrinkage. The additional advantage is that the anisotropy only appears in the second
step. In that case we are required to solve an anisotropic shrinkage problem, which
we show has an explicit solution in the crystalline case. In the smooth case, no such
explicit solution can be obtained. As a result, the methods used to solve this problem
are very different in the two cases.

We will now give an outline of the overall method, which will be expanded on in
the rest of the article.

The starting point is the isotropic case φ(·) = | · |. The split Bregman method for
the ROF functional is described in detail in Section 3.1. It involves alternatingly
solving an elliptic PDE (for u∗) and a pointwise minimization,

(1/h−µ∆)u∗=f/h−µ∇·(d−b), (2.8)

d∗= argmin
d
||d||L1(Ω) +

µ

2
||d−∇u−b||2L2(Ω). (2.9)

for a parameter µ>0. The minimization (2.9) has an explicit solution

d∗= shrink(∇u+b,1/µ),

called shrinkage, which is defined for all x∈R2, λ>0 by

shrink(x,λ) =

{
max(|x|−λ,0) x

|x| , for x 6= 0,

0 for x= 0.

The application of the method to isotropic mean curvature flow is described in Sec-
tion 3.2.

For a general surface free energy function φ, the elliptic solve (2.8) remains un-
changed, while the pointwise minimization step (2.9) is replaced by

d∗= argmin
d

∫
Ω

φ(d)+
µ

2
||d−∇u−b||2L2(Ω).

The minimization decouples at each point in Ω and thus can be written as

d∗= shrinkφ(∇u+b,1/µ) (2.10)

where

shrinkφ(x,λ) := arg min
y∈R2

φ(y)+
λ

2
|x−y|2. (2.11)

In the case where φ is crystalline, we shall call the right hand side of (2.11) a polyhedral
shrinkage problem. We obtain an explicit formula for the polyhedral shrinkage problem
in Section 4.1.

For the case where φ is smooth, the method we propose is quite different. No ex-
plicit solution for 2.11 is available; instead we consider a system of nonlinear evolution
equations which, in the steady state limit, solves both minimizations (2.8) and (2.9)
simultaneously. The system is presented in Section 5.1, and derived in Section 5.2.



Oberman, Osher, Takei and Tsai 7

3. The split Bregman method We first lay out a known algorithm for
isotropic mean curvature flow based on the split Bregman method [GBO09]. This
will be the prototype for the anisotropic mean curvature flow algorithms described
later.

3.1. Overview of the split Bregman method First, we briefly describe the
split Bregman method applied to the ROF functional. For further details we refer the
reader to [GO09].

Let Ω⊂R2 be a bounded, connected set, f ∈BV (Ω), and λ>0 be a real param-
eter. We seek to minimize the ROF functional∫

Ω

|∇u|+ λ

2
||u−f ||2L2(Ω) (3.1)

over the set of all u∈L2(Ω). The key idea is to consider the following constrained
minimization problem:

min
u,d

J(u,d) = ||d||L1(Ω) +
λ

2
||u−f ||2L2(Ω) such that d=∇u. (3.2)

Then, (3.2) is solved by the Bregman iteration [Brè67, OBG+05]:

(uk+1,dk+1) = argmin
u,d

D
pku,p

k
d

J (u,uk,d,dk)+
µ

2
||d−∇u||2L2(Ω) (3.3)

pku :=∂uJ(uk,dk) =λ(uk−f) (3.4)
pkd :=∂dJ(uk,dk) =∂d||dk||L1(Ω) (3.5)

where ∂uJ(u,k) and ∂dJ(u,k) denote the u and d subgradients of J(u,k), respectively,

and D
pku,p

k
d

J (u,uk,d,dk) is the Bregman distance of J(·,·), defined by

D
pku,p

k
d

J (u,uk,d,dk) :=J(u,d)+J(uk,dk)−
〈
pku,u−uk

〉
−
〈
pkd,d−dk

〉
. (3.6)

The initial condition is set to u0 =f, d0 =p0
u=p0

d= 0. Then under suitable conditions,
uk converges to the minimizer of (3.1), see remark 3.1. It can be shown that the
iterative sequence (3.3), (3.4) and (3.5) can be equivalently written as,

(uk+1,dk+1) = argmin
u,d
||d||L1(Ω) +

λ

2
||u−f ||2L2(Ω) +

µ

2
||d−∇u−bk||2L2(Ω) (3.7)

bk+1 = bk+(∇uk+1−dk+1), (3.8)

where b0 = 0. The iterative method (3.7) and (3.8) is called the split Bregman method
for the ROF functional (3.1). To find the minimizer of (3.7), the authors in [GO09]
use a two-step alternating minimization:

uk+1 = argmin
u

λ

2
||u−f ||2L2(Ω) +

µ

2
||dk−∇u−bk||2L2(Ω) (3.9)

dk+1 = argmin
d
||d||L1(Ω) +

µ

2
||d−∇uk+1−bk||2L2(Ω). (3.10)

The first minimization (3.9) can be solved via direct calculus; the Euler-Lagrange
equation gives a necessary condition on the minimizing function uk+1:

(λ−µ∆)uk+1 =λf−µ∇·(dk−bk) (3.11)
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coupled with the boundary condition (see Appendix B for its derivation)

∇uk+1 ·n= (dk−bk) ·n on ∂Ω (3.12)

where n is the outward normal to ∂Ω.
With respect to the second minimization (3.10), as mentioned in Section 2.2, the

problem decouples for every point in Ω. The minimizer is described by the shrinkage
operator,

dk+1 = shrink(∇uk+1−bk,1/µ)

:= max(|∇uk+1−bk|−1/µ,0)
∇uk+1−bk

|∇uk+1−bk|
,

at each point in Ω.
Remark 3.1. The split Bregman method utilizes previously known technques in op-
timization. Setzer [Set09] proved that the split Bregman method converges to the
minimizer of (3.1) by establishing that (3.7) and (3.8) is the Augmented Lagragian
method (c.f. [NW06, Chaper 17]) and that (3.9) and (3.10) is a special case of the
Douglas-Rachford splitting method [EB92].

3.2. Isotropic mean curvature flow We now apply the split Bregman algo-
rithm to Chambolle’s formulation for isotropic mean curvature flow.

Consider an initial closed curve C0 =∂S0, where S0 is an open subset in Ω. The
goal is to approximate C(t), the mean curvature flow of C(0) =C0, after time t>0.
For a fixed time step h>0, let w∗S0 ∈L2(Ω) be the minimizer of the ROF functional
(3.1) with λ= 1/h and f = dist(S0). Define the operator Th(S0) :={x∈Ω :w∗S0(x)<
0}. Then, for t>0, let

Sh(t) := (Th)[t/h](S0). (3.13)

It can be shown that Ch(t) =∂Sh(t) for t>0 is the discrete time approximation to
the mean curvature flow of the initial contour C0. Furthermore, (3.13) implements
a monotone curve evolution of the flow introduced by Almgren, Taylor and Wang
[ATW93]; that is, S⊂S′ implies Th(S)⊂Th(S′).

For the actual implementation, it is convenient to work with level set functions
rather than sets. Let uj(x) := dist(Th)j(S0)(x), for j= 0,1,2..., the sequence of distance
functions to the sets Sj := (Th)j(S0), for j= 0,1,2.... Note that the zero level sets of
uj(x) form the discrete time approximation of the evolution of C0.

We outline the split Bregman approach to isotropic mean curvature flow in Algo-
rithm 1. The loops in n and m, called the outer loop and the inner loop, respectively.
The inner loop iteratively solves (3.9) and (3.10) to minimize (3.7). The outer loop
iteratively performs (3.7) and (3.8). The constants N and M may be chosen manu-
ally, or alternatively, the outer and inner loops may be carried out until consecutive
iterates are within a given tolerance. The loop in j corresponds to the discrete time
iteration of the approximation C(jh)≈Ch(jh) ={uj(x) = 0}.

4. Crystalline Mean Curvature Flow To incorporate the anisotropy of
φ in the split Bregman formulation of mean curvature flow, one must consider the
anisotropic ROF problem: ∫

Ω

φ(∇u)+
λ

2
||u−f ||2L2(Ω). (4.1)
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Input: u0 = dist(S0), final time T >0, parameter µ>0.
Output: u[T/h] = dist(Sh([T/h])).
foreach j= 0,1,..., [T/h] do

Set f :=uj ;
Initialize u0,0

j :=uj ,b
0 =d0,0 = 0;

(Outer loop) foreach n= 0,1,...,N do
(Inner loop) foreach m= 0,1,...,M do

Solve for un,m+1
j in

(
1
h−µ∆

)
un,m+1
j = 1

hf−µ∇·(d
n,m−bn) with

boundary conditions (3.12);
Set dn,m+1 := shrink(∇un,m+1

j −bn,1/µ) pointwise in discrete space;
end
Set bn+1 := bn+(∇un,Mj −dn,M );
Set un+1,0

j :=un,Mj ;
Set dn+1,0 :=dn,M ;

end
Set uj+1 := dist({uN,Mj ≤0});

end
Algorithm 1: Isotropic mean curvature flow using the split Bregman algorithm.

Following the derivation in Section 3.1, the anisotropy appears only in the point-
wise minimization (3.10). This leads us to consider the anisotropic shrinkage prob-
lem (2.10).

4.1. Polyhedral shrinkage In this section we show that the generalized shrink-
age problem is equivalent to the projection onto the Wulff shape. Subsequently, we
obtain an explicit solution formula for the generalized shrinkage problem for a poly-
hedral norm (see (4.6) for a definition).

We start by writing φ as in (2.4),

φ(x) = sup
z∈Wφ

z ·x, (4.2)

and define πWφ
(z) to be the projection of z onto Wφ,

πWφ
(y) := arg min

x∈Wφ

|x−y|2.

Consider the quadratic plus norm minimization problem

x∗=x∗(y) := arg min
x∈Rn

{
φ(x)+

1
2
|x−y|2

}
. (4.3)

Remark 4.1. Note the relation of x∗(y) to the generalized shrinkage function intro-
duced in Section 2.2:

x∗(y) = shrinkφ(y,1). (4.4)

The anisotropic shrinkage shrinkφ(y,λ) for arbitrary λ>0 is equivalent to x∗(y), if φ
in (4.3) is scaled by 1/λ.
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We claim the following characterization holds.
Lemma 4.1. Denote x∗(y) as the minimizer of (4.3). Then

x∗(y) =y−πWφ
(y). (4.5)

Proof. Rewrite the minimization in (4.3) using (4.2) as

min
x∈Rn

max
z∈Wφ

{
1
2
|x−y|2 +z ·x

}
.

Since the inner function is convex in x and affine in y, we can interchange the order
of min and max to obtain

max
z∈Wφ

min
x∈Rn

{
1
2
|x−y|2 +z ·x

}
.

Evaluate the inner problem to obtain

x∗(y) =y−z,

which results in maxz∈Wφ

{
− 1

2z
2 +z ·y

}
, or equivalently,

min
z∈Wφ

{
1
2
|z−y|2

}
.

The last problem is a projection problem, the minimizer given by

z=πWφ
(y).

The last result, together with x∗(y) =y−z, yields (4.5).
Proposition 4.2. y∈Wφ if and only if x∗(y) = 0.

Proof. This is an immediate consequence of (4.5).
From hereon in this Section, we let φ be a polyhedral norm: given a set of normals

N ={ni}ki=1⊂R2 ordered clockwise (define nk+1 =n1 and n0 =nk), write

φ(x) = max
ni∈N

ni ·x. (4.6)

Partition R2\{0} into the regions:

Ci={x 6= 0 :ni ·x>nj ·x for j= 1,...,k} i= 1,...,k
Ri,i+1 ={x 6= 0 :ni ·x=ni+1 ·x>0} i= 1,...,k

Thus, φ is smooth in Ci and has a kink along the rays Ri,i+1, for each i= 1,. ..,k.
With Proposition 4.2, we are left with characterizing the minimizer for the case y /∈Wφ

(equivalently φ◦(y)>1).
Theorem 4.3 (Polyhedral Shrinkage Formula). Assume that the normals in

(4.6) are ordered clockwise, and that φ◦(y)>1. Define, for each i= 1,. ..,k,

λi=λi(y) :=
(ni−ni+1) ·y+‖ni+1‖2−ni ·ni+1

‖ni−ni+1‖2
. (4.7)

Then, there exists a unique j∈{1,. ..,k} such that either

λj(y)∈ [0,1] (4.8)
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or

λj(y)>1 and λj−1(y)<0. (4.9)

Furthermore, in the former case,

x∗(y) =y−(njλj(y)+nj+1(1−λj(y))), (4.10)

and for the latter case,

x∗(y) =y−nj . (4.11)

Proof. Start by taking the subdifferential of (4.3),

0∈∂φ(x∗)+(x∗−y), x∗=x∗(y). (4.12)

The subdifferential ∂φ can be explicitly solved:

∂φ(x) =
{
nj if x∈Cj for some j∈{1,. ..,k}
conv{nj ,nj+1} if x∈Rj,j+1 for some j∈{1,. ..,k} (4.13)

In light of Proposition 4.2, y /∈Wφ implies that x∗(y) 6= 0. Since {Ci,Ri,i+1}ki=1 par-
titions R2/{0}, it will be sufficient to consider the two cases: either x∗(y)∈Cj or
x∗(y)∈Rj,j+1, for some j∈{1,. ..,k}.

Rearrange (4.12) and consider the case when x∗(y)∈Rj,j+1 for some j∈{1,. ..,k}.
Then we have

y−(njλ+nj+1(1−λ)) =x∗(y) (4.14)

for some unique λ∈ [0,1]. Muliplying (4.14) by nj and nj+1 separately, and noting
that nj ·x∗(y) =nj+1 ·x∗(y), one can solve for λ: the solution is λ=λj(y) as per (4.7).
Setting λ=λj(y) in (4.14) gives (4.10).

For the case x∗(y)∈Cj for some j∈{1,. ..,k}, we have

y−nj =x∗(y). (4.15)

To see that λj(y)>1 and λj−1(y)<0 in this case, note that if x∗(y)∈Cj ,

nj ·x∗(y)>ni ·x∗(y), for all i 6= j. (4.16)

Since y=x∗(y)+nj , formula (4.7) with the former inequalities imply

λj(y) =
(nj−nj+1) ·x∗(y)
‖nj−nj+1‖2

+1>1,

λj−1(y) =
(nj−1−nj) ·x∗(y)
‖nj−nj+1‖2

<0.

The uniqueness of x∗(y) in the case φ◦(y)>1 (by Lemma 4.1) implies the uniqueness
of j such that either (4.8) or (4.9) holds.

Theorem 4.3 can be immediately restated as an algorithm for the polyhedral
shrinkage problem, see Algorithm 2.

We illustrate the result of the Proposition 4.2 in Figure 4.1, by computing shrink-
age for the octagon norm φ8, where the eight normals are

N ={(±1,0),(0,±1),(±1,±1)/
√

2,(±1,∓1)/
√

2}. (4.17)
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Input: Normals N ={ni}ki=1 as per (4.6), y∈R2.
Output: Solution to the shrinkage problem x∗(y) in (4.3).
foreach i= 1,...,k do

Compute λj =λi(y) (see (4.7));
if λi∈ [0,1] then

Set x∗(y) :=y−(niλi+ni+1(1−λi));
Break loop;

end
if λi>1 and λi+1<0 then

Set x∗(y) :=y−ni;
Break loop;

end
end

Algorithm 2: Polyhedral shrinkage algorithm.

F
Φ

−2 −1 0 1 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
sqrt(x1

2 + x2
2)

−2 −1 0 1 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

0

2

−2
−1

0
1

2
−1.5

−1

−0.5

0

0.5

1

1.5

x1(y)

−2

0

2

−2
−1

0
1

2
−1.5

−1

−0.5

0

0.5

1

1.5

x2(y)

Fig. 4.1: Top left: the Frank diagram for the octagon φ8. Top right: contour plot of
|x∗(y)|. The dark contour is the zero level set; note that this is the Wulff shape for
φ8. Bottom left and right: a surface plot of the components of x∗(y) = (x1(y),x2(y)).
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4.2. Algorithm for the crystalline mean curvature flow The polyhedral
shrinkage algorithm (Algorithm 2) provides the key ingredient to modify Algorithm 1
for crystalline φ. We omit presenting the complete algorithm for the crystalline case
since it only differs from Algorithm 1 at a single line; namely, within the inner loop, the
line “Set dn,m+1 := shrink(∇un,m+1

j −bn,1/µ) pointwise in discrete space” should be
replaced by Algorithm 2 with inputs y=∇un,m+1

j −bn and the set of normals {ni}ki=1

corresponding to the Frank diagram, scaled accordingly by 1/µ, see Remark 4.1.
Remark 4.2. As pointed out in [Cha04a], the necessary modification to Algorithm 1
for solving (1.6) with mobility function β(x) =φ(x)/|x| is the last line which should
be replaced by:

Set uj+1 := distφ◦({uN,Mj ≤0}),

where

distφ◦(Y )(x) := inf
y∈Y

φ◦(x−y)− inf
y∈Ω\Y

φ◦(x−y) (4.18)

is the signed distance function to a set in the φ◦ metric.

5. Smooth Anisotropic Mean Curvature Flow We saw in the last section
that an explicit characterization of shrinkage was possible for a crystalline (or poly-
hedral) anisotropy on φ. However, for smooth anisotropic φ, an explicit formula is
not available in general. We give an example to illustrate why this formula is not
available below.

Instead, the shrinkage formula needs to be computed numerically. One option
is to implement an approximation scheme to project onto a smooth unit ball of the
dual norm, say by a Newton’s method approach, or by means of an efficient distance
function solver such as the algorithm proposed in [Tsa02]. Due to the convexity of the
unit ball, Newton’s method is expected to converge quickly and thus provide accurate
and efficient computational solutions to the shrinkage problem. One may also resort
to a general Legendre transform solver [Luc97]. In both of the references cited, the
computed solution is on a uniform mesh, so interpolation or extrapolation is required.

We shall take a different route, which does not involve any explicit optimization
problems. Our approach, motivated by [BGOX06], is to derive an inverse scale space
flow arising from the split Bregman method. This approach is slow: each discrete
time step of the mean curvature flow is slower than simply solving the equation
by the standard level set method, which is the benchmark for speed. While the
implementation is not efficient, it complements the method in the crystalline case.
We formally derive a nonlinear system of PDE’s (5.3) which solves for the minimizer
of anisotropic ROF functional (4.1) in the steady state limit. In Section 5.3, we show
that this nonlinear flow posesses several interesting properties; in particular, it solves
a semi-implicit Euler scheme for the mean curvature flow PDE (1.5).

For an example to illustrate the difficulty of shrinkage for smooth anisotropies,
consider the smooth norm

φ(x) =
√

2x2
1 +x2

2 , x= (x1,x2). (5.1)

Its dual norm φ◦(x) =
√

1
2x

2
1 +x2

2, has a unit ball of an ellipse elongated in the x1

direction. Thus, shrinkage for φ amounts to computing the closest point to this
ellipse. A calculus argument shows that such a task requires one to solve a non-trivial
quartic equation. One may easily see that deriving a shrinkage formula for a more
complicated smooth norm becomes quickly difficult.
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5.1. Presentation of the inverse scale space equations We begin by pre-
senting the system of PDE’s describing the inverse scale space flow in the case of
smooth anisotropy. This system arises from (3.3), (3.4) and (3.5), and will be derived
in Section 5.2. Throughout this section, we shall decompose the norm φ as follows:

φ(x) =γ(ω)‖x‖, ω= tan−1(x2/x1). (5.2)

The function γ of phase is 2π-periodic and 0-homogeneous in x. Furthermore, we
shall assume that φ and γ are smooth functions.

The evolution is in the time parameter s, independent of x, which has the role
of a parameter. We suppress the parameter x in the notation and write u=u(s),
θ=θ(s). The inverse scale space equations consist of two differential equations:

∂θ

∂s
=

p⊥ ·∇u
γ(θ)+γ′′(θ)

, p= (cosθ,sinθ),

∂u

∂s
=h(∆u−∇·d), d= (p ·∇u)p.

(5.3)

The initial conditions are
θ(0) = tan−1(−fx/fy),
u(0) =f.

(5.4)

5.2. Formal derivation of the inverse scale space equations In this sec-
tion, we formally derive the inverse scale space equations (5.3) by taking the Euler-
Lagrange equations of the split Bregman functional (3.3).

Consider the Bregman iterative update formulas (3.3), (3.4) and (3.5) for the split
Bregman minimization problem (3.2). For clarity, we write out the right hand side of
(3.3) completely using the definition of the Bregman distance:

min
d,u

∫
γ(θ)|d|+ 1

2h

∫
|u−f |2−

〈
pku,u−uk

〉
−
〈
pkd,d−dk

〉
+
µ

2

∫
|d−∇u|2, (5.5)

where θ=θ(d) = tan−1(d2/d1), and d= (d1,d2). Recall the subgradients:

pkd =∂dk

∫
γ(θ(dk))|dk|, (5.6)

pku=
1
h

(uk−f), since λ= 1/h. (5.7)

First, taking the Euler-Lagrange derivative of the functional with respect to d gives,

pk+1
d −pkd+µ(dk−∇uk) = 0. (5.8)

Observing (5.8) as a forward Euler update scheme over a time variable s with step
size µ, it approximates the PDE

∂pd
∂s

=∇u−d. (5.9)

For notational simplicity, let us denote d=Rp, for R scalar and p= (cosθ,sinθ) a unit
vector. By the smoothness assumption of γ, for d 6= 0,

pd=∂d

∫
γ(θ)|d|= d

|d|
γ(θ)+ |d|γ′(θ)∇dθ(d)

=
d

|d|
γ(θ)+

d⊥

|d|
γ′(θ) where d⊥= (−d2,d1)

=pγ(θ)+p⊥γ′(θ) where p⊥= (−p2,p1),
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thus,

∂pd
∂s

= (−sinθ,cosθ)
∂θ

∂s
γ(θ)+(cosθ,sinθ)

∂θ

∂s
γ′(θ)

−(cosθ,sinθ)
∂θ

∂s
γ′(θ)+(−sinθ,cosθ)

∂θ

∂s
γ′′(θ)

=p⊥(γ(θ)+γ′′(θ))
∂θ

∂s
.

Substituting the latter result into (5.9),

p⊥(γ(θ)+γ′′(θ))
∂θ

∂s
=∇u−Rp. (5.10)

If we multiply (5.10) by p,

0 =p ·∇u−R|p|2

R=p ·∇u.

If we multiply (5.10) by p⊥,

(γ(θ)+γ′′(θ))
∂θ

∂s
=p⊥ ·∇u−Rp⊥ ·p

∂θ

∂s
=

p⊥ ·∇u
γ(θ)+γ′′(θ)

.

This is the first differential equation in (5.3).
Next taking the derivative of the functional in (5.5) with respect to u,

pk+1
u −pku−µ(∇·dk−∆uk) = 0. (5.11)

Since the u subgradient is explicitly pku= 1
h (uk−f),

1
h

(uk+1−f)− 1
h

(uk−f)−µ(∇·dk−∆uk) = 0. (5.12)

Again taking µ to be the step size of a forward Euler discretization, the PDE for u
becomes

∂u

∂s
=h(∆u−∇·d). (5.13)

This is the second differential equation in (5.3).
Finally, we derive the initial conditions (5.4). Following [BGOX06], the initial

conditions for an inverse scale space flow are d(0) = 0, pd(0) = 0, pu(0) = 0. Immedi-
ately, we have R(0) = |d(0)|= 0. Since 0 =pu(0) = (u(0)−f), we also have u(0) =f .
Consequently, since 0 =R(0) =p(0) ·∇u(0) =p(0) ·∇f holds, p(0) = (−fy,fx)≡∇⊥f ,
and therefore, θ(0) = tan−1(−fx,fy).

5.3. Properties of the inverse scale space flow Next we present analytical
properties of the inverse scale space flow (5.3). For what follows, we use the notation
from Section 5.2:

p= (cosθ,sinθ), (5.14)
R=p ·∇u. (5.15)
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We prove two main results. The first concerns convergence of ∇u to d as s→∞.
It provides a convergence proof provided that R(s) stays positive in the limit. We
have observed that R(s) may be zero for some s>0 in general but seems to stay
positive for all s>0 for sufficiently smooth convex f .
Proposition 5.1. Assume u, d, θ, R, and p are sufficiently smooth solutions of (5.3)
and (5.4). Suppose there exists s∗>0 such that

R(s)≥R0>0, for all s>s∗. (5.16)

Then, ‖∇u(s)−d(s)‖L2(Ω)→0 as s→∞.
The second result establishes a connection between the variational formulation

and the mean curvature PDE (1.9).
Proposition 5.2. Assume the hypotheses of Proposition 5.1. Further assume that u,
d and θ have sufficiently smooth limits as s→∞, namely u∞, d∞, θ∞, respectively,
and |∇u∞| 6= 0. Then

u∞−f
h

= (γ(θ∞)+γ′′(θ∞))∇· ∇u∞
|∇u∞|

|∇f |. (5.17)

Remark 5.1. Proposition 5.2 is a consistency result that recovers the level set PDE
for mean curvature flow (1.9) from the inverse scale space equations (5.3). That is,
solving the inverse scale space equation to steady state is equivalent to a semi-implicit
forward Euler scheme for the time dependent PDE (1.9). While explicit forward Euler
schemes for elliptic PDE’s suffer time step restrictions h=O(dx2) (where dx is the
spacial discretization), the latter property of the inverse scale space flow suggests that
it may be free from such restrictions. Note that (5.17) is different from the semi-
implicit Euler scheme of [DDE05], in that the curvature term is fully implicit.

We begin by proving several immediate consequences of (5.3) and (5.4):
Lemma 5.3. Assume the hypotheses of Proposition 5.1. Then,

1. u(s) =h(γ(θ(s))+γ′′(θ(s)))∇·p(s)+f, for all s≥0,
2. ∂

∂s‖u(s)‖2L2(Ω)≤0 (decrease in L2 energy).
3. If R(s)≥0 then ∂

∂s‖∇u(s)−d(s)‖L2(Ω)≤0.
4. ∂θ

∂s (s)>0 for s≥0 until steady state. (d turns counter-clockwise)
Further assume u, d and θ have sufficiently smooth limits as s→∞, namely u∞, d∞,
θ∞, respectively. Then,

5. ∇u∞=d∞.
6. ∂

∂sD(u∞,u(s),d∞,d(s))≤0. (decay of Bregman distance)
Proof. For simplicity of notation, we suppress the inverse scale space parameter

s in the proofs. 1. One can verify directly: from the derivation in Section 5.2,
∇·pd=∇·(pγ+p⊥γ) = (γ+γ′′)∇·p. By (5.3), the latter result, and interchanging ∇
and ∂/∂s,

∂u

∂s
=h∇·(∇u−d) =h∇· ∂pd

∂s
=h

∂

∂s
(γ+γ′′)∇·p. (5.18)

Integrating over s, coupled by the initial conditions u(0) =f,p(0) =∇⊥f , one arrives
at the desired result.
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2. By direct differentiation,

1
2
∂

∂s
‖u‖2L2(Ω) =

∫
Ω

u
∂u

∂s
dx

=h

∫
Ω

u(∆u−∇·d)

=h

(
−
∫

Ω

|∇u|2 +
∫

Ω

∇u ·d
)

=h
(
−‖∇u‖2L2(Ω) +‖R‖2L2(Ω)

)
≤0.

The last inequality holds since by (5.15), |R|= |p ·∇u|≤ |∇u|.
3. Assume γ+γ′′>0 for well-posedness and R(s)≥0. Then we can define a

seminorm

‖·‖(γ+γ′′)R := 〈(γ(θ)+γ′′(θ))R(s)·, ·〉1/2 , (5.19)

where 〈·, ·〉 is the L2 inner product in Ω. Since,

∂d

∂s
=
∂R

∂s
p+R

∂p

∂s
=
∂R

∂s
p+p⊥

∂θ

∂s
, (5.20)

we have

∂

∂s

1
2
‖∇u−d‖2L2(Ω) =

〈
∇u−d, ∂

∂s
(∇u−d)

〉
=−

〈
∆u−∇·d, ∂u

∂s

〉
−
〈
∇u−d, ∂R

∂s
p+Rp⊥

∂θ

∂s

〉
=− 1

h

∥∥∥∥∂u∂s
∥∥∥∥2

L2(Ω)

−
〈
p ·(∇u−d),

∂R

∂s

〉
−
〈
p⊥ ·(∇u−d),R

∂θ

∂s

〉
=− 1

h

∥∥∥∥∂u∂s
∥∥∥∥2

L2(Ω)

−
〈
R−R, ∂R

∂s

〉
−
〈

(γ(θ)+γ′′(θ))
∂θ

∂s
,R

∂θ

∂ts

〉
=− 1

h

∥∥∥∥∂u∂s
∥∥∥∥2

L2(Ω)

−
∥∥∥∥∂θ∂s

∥∥∥∥2

(γ+γ′′)R

≤0.
(5.21)

4. Clearly, ∂θ
∂s (0) = |∇⊥f |2/(γ(θ(0))+γ′′(θ(0)))>0. Consider the first in-

stance s=T for which ∂θ
∂s (T ) = 0. Then by (5.3), p(T ) ·∇⊥u(T ) = 0, thus p(T ) =

±∇u(T )/|∇u(T )|. Also, by (5.3), R(T ) =±|∇u|. Therefore, d(T ) =∇u(T ), and so
∂u
∂s (T ) =h∇·(d(T )−∇u(T )) = 0, i.e. the flow has reached a steady state at s=T .

5. Suppose ∇u∞−d∞=v, for some constant v∈R2. Based on the notation (5.14)
and (5.15), denote p∞= (cosθ∞,sinθ∞) and R∞=p∞ ·∇u∞. We prove v= 0 by
showing that p∞ ·v=p⊥∞ ·v= 0. First,

p∞ ·v=p∞ ·∇u∞−p∞ ·d∞
=R∞−R∞= 0.
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Next, note that ∂θ∞
∂s = 0 by the definition of steady state limit, so

p⊥∞ ·v=p⊥∞ ·∇u∞−p⊥∞ ·d∞

= (γ(θ∞)+γ′′(θ∞))
∂θ∞
∂s
−p⊥∞ ·R∞p∞

= 0−0 = 0.

Therefore, v= 0.
6. By direct differentiation:

∂

∂s
D(u∞,u,d∞,d) =

〈
pd,

∂d

∂s

〉
+
〈
u−f
h

,
∂u

∂s

〉
−
〈

1
h

∂u

∂s
,u∞−u

〉
−
〈
u−f
h

,
∂u

∂s

〉
−
〈
∂pd
∂s

,d∞−d
〉
−
〈
pd,

∂d

∂s

〉
=−〈∇·(∇u−d),u∞−u〉−〈∇u−d,d∞−d〉
= 〈∇u−d,∇u∞−∇u−(d∞−d)〉
=−‖∇u−d‖2L2(Ω) since ∇u∞=d∞

≤0.

Result 4 of Lemma 5.3 shows that the direction of d(s) turns counter-clockwise
as s increases. Note that initially, d(0) is perpendicular to ∇u(0) =∇f . Thus, d(t)
turns counter-clockwise until it coincides with ∇u, at which point ∂θ

∂s = 0 and steady
state is reached. Note that ∇u may also “turn”, but does so at a much slower rate,
scaled by h.

Result 5 of Lemma 5.3 hinges on the assumption that both u and d converge
to steady state solutions. While Proposition 5.1 gives a convergence proof under
certain conditions, whether such assumption is generally true is still an open question,
although all of our numerical tests confirmed the affirmative.

We close this section by proving the two main propositions.
Proof. [Proof of Proposition 5.1] Again, for simplicity of notation, we suppress

the inverse scale space parameter s. We may assume that there exists B>0 such
that,

B≥γ(θ)+γ′′(θ)>0.

By (5.10), we can write

‖∇u−d‖2L2(Ω) =
∥∥∥∥(γ(θ)+γ′′(θ))

∂θ

∂s

∥∥∥∥2

L2(Ω)

.

From (5.21) (the steps therein), (5.16) and the last equality, for s>s∗,

∂

∂s

1
2
‖∇u−d‖2L2(Ω)≤−

〈
∂θ

∂s
,
∂θ

∂s
(γ(θ)+γ′′(θ))R(s)

〉
≤−R0

B

〈
∂θ

∂s
,
∂θ

∂s
(γ(θ)+γ′′(θ))2

〉
=−R0

B
‖∇u−d‖2L2(Ω).



Oberman, Osher, Takei and Tsai 19

By Gronwall’s inequality, ‖∇u(s)−d(s)‖L2(Ω)≤‖∇u(0)−d(0)‖L2(Ω)e
− 2R0

B s=e−
2R0
B s,

so taking s→∞ we have our result.
Proof. [Proof of Proposition 5.2] Since ∇u∞=d∞ (result 5 of Lemma 5.3) and

p∞ is the unit vector pointing in the direction of d∞, we have

p∞=
∇u∞
|∇u∞|

. (5.22)

Substituting the above into result 1 of Lemma 5.3 and rearranging gives the desired
result. Note that |∇f |= 1, as f is a signed distance function.

5.4. Inverse scale space algorithm for smooth anisotropy Algorithm 3
outlines the algorithm for smooth anisotropic mean curvature flow using the inverse
scale space flow (5.3).
Remark 5.2. The trivial modification to the inverse scale space method for the
evolution PDE (1.6) with the mobility function β=γ is to let the first differential
equation in (5.3) be

∂θ

∂s
=

p⊥ ·∇u
γ(θ)[γ(θ)+γ′′(θ)]

,

and the preceding results holds true.

Input: u0 = dist(S0), final time T >0, time step h>0.
Output: u[T/h] = dist(Sh(T )).
foreach j= 0,1,..., [T/h] do

Set f :=uj ;
Initialize θ(0) := tan−1(−fx/fy), u(0) :=f ;
Solve (5.3) until steady state: u∗ := lims→∞u(s);
Set uj+1 := dist({u∗≤0});

end
Algorithm 3: Anisotropic mean curvature flow using the inverse scale space flow.

6. Numerical Results

6.1. Crystalline mean curvature flow We numerically solved the
anisotropic mean curvature flow using the polyhedral shrinkage algorithm (Algo-
rithm 2) within Algorithm 1. The boundary value problem (3.11), (3.12) for uk+1

was solved using a standard finite difference discretization on a uniform grid. The
distance functions were computed using the fast sweeping method [TCOZ03]; more
accurate computations of the signed distance function along the zero level set can be
computed using numerical PDE techniques, c.f. [CT08].

The norms (4.6) considered were:
• 1-norm: N1 ={±(1,1),±(1,−1)}.
• Octagon norm: N8 ={(±1,0),(0,±1),(±1,±1)/

√
2,(±1,∓1)/

√
2}.

• A skewed hexagon norm: Nskew ={(±1,0),(0,±1),±(1,1))}.
• A triangle ‘norm’: Ntri={(

√
2,
√

2),(−1,0),(0,−1)}.
Figure 6.1 shows the results for these anisotropies on a 100×100 grid with h= 0.015.
The outer and inner iterations were computed until a consecutive approximations
were bounded by 2e-5. Typically, it took less than 20 outer iterations, while the inner
iterations ranged from 2 to 500. Notice the emergence of the Wulff shapes as the
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curves near extinction; see Appendix A for Wulff shapes of anisotropic norms. Note
that Ntri does not induce a norm due to its asymmetry, but the algorithm computes
its flow nonetheless.
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Fig. 6.1: Crystalline mean curvature motion for various anisotropies. Clockwise from
top left: N1, N8, Ntri, and Nskew

6.2. Inverse scale space algorithm We first present a sequence of plots
showing how the inverse scale space flow (5.3) behaves. For the isotropic case (γ= 1)
with time step h= 0.015, Figure 6.2 shows ∇u(s), d(s) and the contour {u= 0} at
various stages in the iterations over s, where ∆s= 0.001. Note how θ(s) (the direction
of the vector d(s)) moves clockwise as per result 4, Lemma 5.3. The stopping condition
was ‖un+1−un‖∞≤ 1e-5, where un is the numerical approximation of u(n∆s), for
which the iteration halted after 3770 iterations. We have observed that the number of
iterations necessary for convergence (for the same stopping condition and time step)
was roughly between 3000 to 4000 for grid sizes 252,502,1002, and 1502 on the square
[−1,1]2. It is reasonable to believe that the number of iterations to convergence should
be independent of the grid size, since convergence is attained for a large enough s,
which is solely dependent on the underlying equation (i.e. choice of γ, f).

Figure 6.4 shows the plot of ‖∇u(s)−d(s)‖L2(Ω) over iterations in s of (5.3), for
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Fig. 6.2: Visualization of ∇u and d in the inverse scale space flow (5.3), with γ0 = 1
(the isotropic case). Thick arrows are ∇u and the thin arrows are d. Top to bottom:
200, 1000, 3000 iterations.

various anisotropies. The anisotropies tested were

γ(ω) =γn(ω) :=
1

n2 +1
(n2 +1−sin(nω)), for n= 0,2,4,8, (6.1)

where γ(ω) is defined in (5.2). Note that n= 0 is the isotropic case; for n= 2,4,8,
the anisotropy has a n-fold rotational symmetry. We have found that, in general,
the isotropic case converges faster to steady state than the anisotropic cases; also, for
all cases tested, ‖∇u−d‖L2(Ω) eventually converges exponentially, corroborating with
the results of Proposition 5.1.
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Results for Algorithm 3 are shown in Figure 6.3 for the anisotropies (6.1).

Fig. 6.3: Mean curvature motion for various smooth anisotropies. Clockwise from top
left: γ0 (isotropic), γ2, γ8, and γ4.

7. Conclusions We have presented new methods of computing crystalline and
smooth anisotropic mean curvature flow. In the crystalline case, we proved a formula
for the anisotropic shrinkage problem, which was embedded in the split Bregman
framework for mean curvature flow. In the smooth anisotropy case, we formally
derived an inverse scale space flow, which, in the steady state limit, solves the semi-
implicit Euler scheme of the mean curvature PDE. Numerical results for both methods
are presented.

Acknowledgement. S. Osher and R. Takei were partially supported by ONR
grants N00014-03-1-007 and N00014-07-0810. R. Tsai was partially supported by NSF
grant DMS-0714612.

Appendix A. Formulae for Wulff shapes. Assume that φ is a convex, posi-
tively 1-homogenous function of R2.

The formulas for the Wulff shapes are defined implicitly through the dual norms.
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Fig. 6.4: Plot of ‖∇u−d‖ in a log-scale over iterations in the inverse scale space
variable s.

However, when we have explicit polyhedral or smooth formulas for the norms, we can
also obtain explicit formulas for the Wulff shapes.
Proposition A.1. Let φ be a polyhedral norm, written explicitly,

φ(x) = max
ni∈N

ni ·x, (A.1)

(N is the set of normals, as in (4.6)), and let φ◦ be its dual norm. The Wulff shape
is the polygon with vertices N ,

Wφ=conv(N ).

Proof. We show that φ◦(x) = 1 on the boundary of the polygon conv(N ). The
result follows since φ◦ is positively 1-homogeneous. From the definition, for some
nj ∈N ,

φ◦(nj) = max{nj ·y : max
ni∈N

{ni ·y}= 1}≤1.

By choosing y=nj/|nj |, we see that φ◦(ni) = 1. Next, for λ∈ (0,1) and two adjacent
normals nj ,nj+1∈N ,

φ◦(njλ+nj+1(1−λ)) = max{nj ·yλ+nj+1 ·y(1−λ) : max
ni∈N

{ni ·y}= 1}.

The maximizing y satisfies nj ·y=nj+1 ·y= 1. Therefore, φ◦(njλ+nj+1(1−λ)) =λ+
(1−λ) = 1.

Next we describe the Wulff shape for smooth norms.
Proposition A.2. Let φ be a smooth norm written explicitly as,

φ(x) =γ(θx)‖x‖, θx= tan−1(x2/x1).
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Then the Wulff shape is given explicitly as

Wφ={x :γ(θx)≥‖x‖} .

Proof. The dual norm of φ is

φ◦(x) = max{x ·y :γ(θy)‖y‖= 1} note: θy = tan−1(y2/y1)
= max{‖x‖‖y‖cos(θx−θy) :γ(θy)‖y‖= 1}

= max
θy

{
‖x‖cos(θx−θy)

γ(θy)

}
.

If we write φ◦(x) =γ◦(θx)‖x‖ for the dual norm, we have

γ◦(θx) = max
θy

{
cos(θx−θy)

γ(θy)

}
. (A.2)

Assuming γ(θy) is smooth, convex and non-vanishing, the maximizer θ∗y can be char-
acterized by calculus:

tan(θx−θ∗y) =
γ′(θ∗y)
γ(θ∗y)

. (A.3)

Furthermore, solving the differential equation for γ(θ∗y) gives

cos(θx−θ∗y)
γ(θ∗y)

=
1

γ(θx)
. (A.4)

Therefore, by (A.3), γ◦(θx) = 1/γ(θx); that is, the dual norm is φ◦=‖x‖/γ(θx). The
formula for the Wulff shape follows.

Appendix B. Boundary conditions for the Euler-Lagrange equation
(3.11). We derive the boundary conditions (3.12), for the minimization

min
u
I(u) :=

λ

2

∫
Ω

(u−f)2 +
µ

2

∫
Ω

|dk−∇u−bk|2, (B.1)

for fixed functions dk,bk,f and constants λ,µ>0. To this end, we follow the standard
arguments for deriving the first variation, c.f. [Eva10, Chapter 8]: assume uk+1 is the
minimizer of I(u) and choose any smooth function v∈C∞(Ω). Set

i(τ) := I(uk+1 +τv), τ ∈R. (B.2)

By the necessary condition of the minimizer,

0 = i′(0) =λ

∫
Ω

(uk+1−f)v+µ

∫
Ω

(dk−∇uk+1−bk)(−∇v). (B.3)

Furthermore, taking integration by parts on the second term,

0 =λ

∫
Ω

(uk+1−f)v+µ

∫
Ω

∇·(dk−∇uk+1−bk)v−µ
∫
∂Ω

(dk−∇uk+1−bk) ·n v (B.4)

where n is the unit outer normal on ∂Ω. The first two terms in (B.4) yields the
Euler-Lagrange equation (3.11), while setting the last term to zero gives the desired
boundary condition (3.12).
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