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Abstract

Medical image segmentation is an important but difficult problem that at-
tracts tremendous attentions of researchers from various fields. In this paper,
we propose a frame based model, as well as a fast implementation, for gen-
eral medical image segmentation problems. Our model combines ideas of
the frame based image restoration model of [1] with ideas of the total vari-
ation based segmentation model of [2, 3]. Numerical experiments show that
the proposed frame based model outperforms total variation based model in
terms of capturing key features of biological structures. Successful segmenta-
tions of blood vessels and aneurysms in 3D CT angiography images are also
presented.

Keywords: Image segmentation, level set method, sparse approximation,
tight frames.

1. Introduction

Segmenting biological structures, e.g. cortical or subcortical structures,
blood vessels, tumors etc., from various types of medical images is very impor-
tant for detecting abnormalities, studying and tracking progress of diseases,
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and surgery planning. Medical image segmentation is a difficult problem
due to the fact that medical images commonly have poor contrasts, differ-
ent types of noise, and missing or diffuse boundaries. There are numerous
algorithms developed in the literature targeting on either general segmen-
tation problems or the segmentation of specific biological structures (see
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and the references therein). In this pa-
per, we propose a novel segmentation model that is based on tight frames
and the fact that they provide a sparse approximation to piecewise smooth
functions like images.

The theory of frames, especially tight frames and framelets (wavelet tight
frames), were extensively studied in the past twenty years (see e.g. [14, 15,
16, 17, 18]), including the conditions on which a system of functions forms
a tight frame, and the constructions of framelets. Examples of tight frames
are translation invariant wavelets [19], curvelets [20], and framelets [15]. In
contrast to orthogonal bases, tight frames give redundant representations to
signals and images. The redundancy of tight frames usually leads to sparse
approximation of images, which is known to be a desirable property for image
restoration problems, like denoising, inpainting, deblurring, etc. [19, 20, 1,
21, 22, 23, 24, 25]. There are also some research on texture classification and
segmentation using wavelets or wavelet frames [26, 27]. However, to our best
knowledge, utilizing the property of sparse approximation of tight frames for
image segmentation problems has not been considered in the literature.

The rest of the paper is organized as follows. In Section 2, we will first
briefly review the concept of frames and framelets, and then introduce our
frame based segmentation model together with its fast implementation. Nu-
merical comparisons and results will be given in Section 3, and concluding
remarks will be given in the last section.

2. Frame Based Segmentation Model

2.1. Frames and Framelets

In this subsection, we will briefly introduce the concept of tight frames
and framelets. Interesting readers should consult [14, 15, 16] for theories of
frames and framelets, [17] for a short survey on theory and applications of
frames, and [18] for a more detailed survey.

A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑

h∈X

〈f, h〉h ∀f ∈ L2(R), (2.1)
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where 〈·, ·〉 is the inner product of L2(R). For given Ψ := {ψ1, . . . , ψr} ⊂
L2(R), the affine (or wavelet) system is defined by the collection of the dila-
tions and the shifts of Ψ as

X(Ψ) := {ψ`,j,k : 1 ≤ ` ≤ r; j, k ∈ Z} with ψ`,j,k := 2
j/2

ψ`(2
j · −k).

(2.2)
When X(Ψ) forms a tight frame of L2(R), it is called a tight wavelet frame,
and ψ`, ` = 1, . . . , r, are called the (tight) framelets.

To construct a set of framelets, usually, one starts from a compactly
supported refinable function φ ∈ L2(R) (a scaling function) with a refinement
mask h0 satisfying

φ̂(2·) = ĥ0φ̂.

Here φ̂ is the Fourier transform of φ, and ĥ0 is the Fourier series of h0 with
ĥ0(0) = 1, which means that a refinement mask of a refinable function must
be a lowpass filter. For a given compactly supported refinable function, the
construction of a tight framelet system is to find a finite set Ψ that can be
represented in the Fourier domain as

ψ̂`(2·) = ĥ`φ̂

for some 2π-periodic ĥ`. The unitary extension principle (UEP) of [15] says
that X(Ψ) in (2.2) generated by Ψ forms a tight frame in L2(R) provided

that the masks ĥ` for ` = 0, 1, . . . , r satisfy

r∑

`=0

ĥ`(ξ)ĥ`(ξ + γπ) = δγ,0, γ = 0, 1, (2.3)

for almost all ξ in R. While h0 corresponds to a lowpass filter, {h`; ` =
1, 2, . . . , r} must correspond to highpass filters by the UEP. The sequences of
Fourier coefficients of {h`; ` = 1, 2, . . . , r} are called framelet masks. In our
implementation, we adopt the piecewise linear B-spline framelet constructed
in [15]. The refinement mask is ĥ0(ξ) = cos2( ξ

2
), whose corresponding lowpass

filter is h0 = 1
4
[1, 2, 1]. Two framelets are ĥ1 = −

√
2i
2

sin(ξ) and ĥ2 = sin2( ξ
2
),

whose corresponding highpass filters are

h1 =

√
2

4
[1, 0,−1], h2 =

1

4
[−1, 2,−1].

The associated refinable function and framelets are given in Figure 1.
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Figure 1: Piecewise linear refinable spline and framelets.
φ ψ
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With a one-dimensional framelet system for L2(R), the s-dimensional
framelet system for L2(Rs) can be easily constructed by tensor products of
one-dimensional framelets (see e.g. [14, 18]). If we have one scaling function
and r tight framelets in 1D, then after tensor product, we obtain a tight
frame system generated by one scaling function and rs − 1 tight framelets.
For a given function f ∈ L2(Rs), the L-level framelet decomposition of f is
the combination of the coefficients {〈f, 2−L/2φ(2−L · −j)〉} at the prescribed
coarsest level L, and the framelet coefficients

{〈f, 2−l/2ψi(2
−l · −j)〉, 1 ≤ i ≤ rs − 1}

for 0 ≤ l ≤ L.
In the discrete setting, a discrete image f is considered as the coeffi-

cients {fi = 〈f, φ(· − i)〉} up to a dilation, where φ is the refinable func-
tion associated with the framelet system, and 〈·, ·〉 is the inner product in
L2(R2). The L-level discrete framelet decomposition of f is then the co-
efficients {〈f, 2−L/2φ(2−L · −j)〉} at a prescribed coarsest level L, and the
framelet coefficients are

{〈f, 2−l/2ψi(2
−l · −j)〉, 1 ≤ i ≤ r2 − 1}

for 0 ≤ l ≤ L.
In the discrete setting, an s-dimensional image, which is an s-dimensional

array, can be understood as a vector living in Rn, with n the total number
of pixels in the image. For simplicity of notations, we represent the framelet
decomposition and reconstruction as matrix multiplications Wu and W>v
respectively. Here W ∈ Rk×n satisfies W>W = I, i.e. u = W>Wu, ∀u ∈ Rn,
by the unitary extension principle [15]. In our numerical implementation,
however, we use the fast tensor product tight wavelet frame decomposition
and reconstruction algorithms of [18, 25].
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We now introduce some additional notations that we will use throughout
this paper. Let W0 be the submatrix of W that corresponds to the decompo-
sition with respect to the refinable function; and denote Wl,i with 1 ≤ l ≤ L
and 1 ≤ i ≤ rs − 1, the submatrix of W that corresponds to the decomposi-
tion at the l-th level with respect to the i-th framelet. Under this notation,
W can be written as

W =

(
W0

(Wl,i)

)
=




W0

W1,1

W1,2
...

WL,rs−1




.

In this paper we shall use the tight framelet transforms without downsam-
pling [25]. In this case, all Wl,i and W0 have the same number of rows, and
we denote that number as m. Furthermore, all vectors in Rn are taken to
be column vectors by convention. For any two vectors v and w in Rn, we
denote v>w the inner product of v and w, and denote vw the component-wise
multiplication of v and w, i.e. (vw)(j) = v(j)w(j), ∀j = 1, . . . , n.

2.2. Segmentation Model

Our frame based segmentation model (2.4) is motivated by the total vari-
ation based (TV-based) segmentation model of [2, 3]. Interesting readers
should consult [2, 3] for more details.

For a given image f ∈ Rn, we consider the following optimization problem

min
0≤u≤1,c1,c2

‖gW ·Wu‖1 + µr(c1, c2)
>u, (2.4)

where ‖ · ‖1 denotes the `1-norm and r(c1, c2) = (c1 − f)2 − (c2 − f)2 where
c1 and c2 are constant vectors.

Here gW is a diagonal matrix defined as

gW = diag{0>, v>1,1, v
>
1,2, . . . , v

>
1,rs−1, . . . , v

>
L,rs−1},

where vl,i ∈ Rm and 0 ∈ Rm. Then gW ·Wu can be written as

gW ·Wu =
∑

l,i

vl,i(Wl,iu).
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There are multiple ways to choose the weight function vl,i. In this paper we
choose vl,i = v for all l and i, where

v(j) =
1

1 + σ
∑rs−1

i=1 |(W1,if)(j)|2 for j = 1, 2, . . . , m.

Notice that gW can be regarded as the edge indicator function under the
framelet transform W .

To solve (2.4), one can alternatively optimize variables u and ci, i =
1, 2. Since when u is fixed, the optimal values ci can be easily determined.
Therefore, the key step is to optimize (2.4) with ci fixed. Here we adopt
the idea of [28] by using split Bregman iteration [29] to solve the TV-based
segmentation model [2, 3]. Following a similar derivation and using the fact
that W>W = I, we obtain the following algorithm for (2.4):

uk+ 1
2 = W>(dk − bk)− µ

λ
r(ck

1, c
k
2)

uk+1 = max{min{uk+ 1
2 , 1}, 0}

dk+1 = TgW /λ

(
Wuk+1 + bk

)

bk+1 = bk +
(
Wuk+1 − dk+1

)

ck+1
1 = M(f, Ωk+1), ck+1

2 = M(f, (Ωk+1)c), Ωk+1 = {uk+1 > α}.

(2.5)

In the above algorithm, µ is the parameter as in (2.4), λ is another parameter
that comes from Bregman iteration, α ∈ [0, 1], Tδ is the soft-thresholding
operator defined as

(
Tδ(x)

)
(j) :=





x(j)− δ(j), if x(j) > δ(j)

0, if − δ(j) ≤ x(j) ≤ δ(j)

x(j) + δ(j), if x(j) < −δ(j),

and M(f, Ω) returns the mean value of f within domain Ω. After we obtain a
solution u∗ from the algorithm (2.5), the segmentation of image f is given by
the α level set of u∗. It is proven for TV-based model that any α level set of
u∗, for almost all α ∈ [0, 1], gives a meaningful segmentation of image f (see
[2, 3] for details). Although we do not have a similar theory for the frame
based model (2.4) yet, our numerical results support a similar conclusion. In
our experiments, α is taken to be 0.5.

Note that (2.5) is a very efficient algorithm. For each iteration k, the
most time consuming operation is performing fast framelet decomposition
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and reconstruction as suggested by [16], i.e. W and W>, which are of the
same complexity as fast Fourier transform (FFT). Furthermore, our numer-
ical experiments show that usually we only need a few hundred iterations
until the algorithm converges. We leave the details to the next section.

Remark 2.1. The crucial difference between our model (2.4) from the TV-
based model [2, 3] is that we are penalizing the `1-norm of the framelet coef-
ficients Wu instead of |∇u|. The advantages of using tight frames over TV
are as follows:

1. Functions that are sparse under operator ∇ are piecewise constant
functions. Since in general a level set function (the variable u in
(2.4)) can be any piecewise smooth function, and piecewise smooth func-
tions have sparser representations under tight frame systems, penaliz-
ing `1-norm of Wu generally should generates better results than pe-
nalizing |∇u| as confirmed by researches in image restoration problems
[1, 20, 21, 22, 23, 24].

2. On the other hand, ‖Wu‖1 contains more geometric information of
the level sets of u than ‖|∇u|‖1. In particular for the case s = 2,
when piecewise linear tight frames are used, we have not only a first
order difference operator in the system, but also 2nd-4th order difference
operators, that provides rich geometric information of the level sets of
u.

3. Numerical Results

In this section, we will first compare the frame based segmentation model
(2.4) with the TV-based segmentation model [2, 3]. Then we show some
segmentation results for 3D CT angiography (CTA) images using (2.4).

In our implementation, we adopt the stopping criteria: ‖bk+1‖ < 10−3.
Based on this stopping criteria, the number of iterations for 2D and 3D cases
varies from 100 to 500. Within each iteration, the comparably expensive
operation is the framelet decomposition and reconstruction, i.e. W and W>.
Although the complexity of applying W and W> is of the same order as
FFT by applying the fast algorithm of [16], in practice the constant matters.
We note, however, that this constant is not big, and hence the framelet de-
composition and reconstruction can be done rather efficiently. For example,
for a 3D image of size 50× 50× 50, the computational time for one level of
framelet decomposition and reconstruction is approximately 5–6 times of the
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computational time of forward and inverse FFT. This comparison is done us-
ing Matlab2007. Throughout this section, the parameter α in (2.5) is chosen
to be 0.5, and the level of framelet decomposition L is chosen to be 2.

3.1. Comparison of Frame Based Model with TV-based Model

We shall use the fast algorithm proposed by [28] to solve the TV-based
model [2, 3]. The algorithm of [28] is based on the split Bregman algorithm
[29] which is a rather efficient algorithm in solving `1 regularization problems.
Here we shall skip the details and refer the interesting readers to [28, 29].

Basically if one replace the update for uk+ 1
2 in the first line of (2.5) by

∆uk+ 1
2 = ∇ · (dk − bk)− µ

λ
r(ck

1, c
k
2),

replace all W by ∇ and gW by g, then we obtain the algorithm proposed
by [28]. Note that the Laplace equation above is solved by FFT, instead of
Gauss-Seidel relaxation as proposed in [28].

In order to truly show the improvement of using tight frame systems, we
pick the same set of parameters (µ, λ) and use the same gW for both models.
As one can see from both Fig. 2 and Fig. 3 that using tight frame systems we
can capture more features from the images and obtain better segmentations.
Note that in the experiments, the ratio µ/λ is fixed due to the way that uk+ 1

2

is updated.

Figure 2: Comparisons of TV-based segmentation model (blue) with our frame based
segmentation model (2.4) (red). The parameters (µ, λ) we used from column 1-3 are
(20, 2),(30, 3) and (40, 4) respectively.
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Figure 3: Comparisons of TV-based segmentation model (row one) with our frame based
segmentation model (2.4) (row two). Row three shows one axial view of the results of
TV-based (blue) and frame based (red) segmentation model. The parameters (µ, λ) we
used from column 1-3 are (35, 1.75),(50, 2.5) and (80, 4).

3.2. 3D Segmentation Results

In this section we present the segmentation results for several 3D CTA
images of brain blood vessels with aneurysms. Blood vessel segmentation
and visualization is important for clinical tasks such as diagnosis of vascular
diseases and blood flow simulation [30]. There are numerous methods devel-
oped for vessel segmentation in the literature (see e.g. [11, 12, 13] and the
references therein). We note, however, that our model is entirely general and
can be applied to any other type of medical images, e.g. MR images, with
different biological structures.

Fig. 4 presents the segmented surfaces together with their corresponding
axial, sagittal and coronal views. For all of the different subjects, we used
the same set of parameters, i.e. (µ, λ) = (200, 10). The number of iterations
for the four objects are 120, 163, 195 and 169 respectively. As one can see
from Fig. 4 that crucial structures of the blood vessels and the aneurysms
are well captured. It is also worth noticing that our model seems to be rather
robust in terms of choice of parameters and changes of image contrasts.

4. Conclusion

In this paper we proposed a novel frame based segmentation model. Our
numerical results showed the advantage of employing tight frame transforms
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Figure 4: Row 1-4 shows segmentation results for the four different subjects. Column
2-4 present the axial, sagittal and coronal slices of the 3D image superimposed with the
segmentation results.

in the energy functional over the traditional total variation. This is essentially
because tight frames can provide sparser approximation to piecewise smooth
functions and grant richer geometric information than total variation. Our
results have shown that the frame based segmentation method can capture
detailed structure of the vessels and aneurysms, and may be useful to assist
medical evaluation.

References

[1] J. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based
image restoration,” Multiscale Modeling and Simulation: A SIAM In-
terdisciplinary Journal, vol. 8, no. 2, pp. 337–369, 2009.

[2] T. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for finding global
minimizers of image segmentation and denoising models,” ALGO-
RITHMS, vol. 66, no. 5, pp. 1632–1648.

[3] X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran, and S. Osher,
“Fast global minimization of the active contour/snake model,” Journal
of Mathematical Imaging and Vision, vol. 28, no. 2, pp. 151–167, 2007.

10



[4] M. Leventon, W. Grimson, and O. Faugeras, “Statistical shape influence
in geodesic active contours,” vol. 1, 2000.

[5] Z. Tu, K. Narr, P. Dollar, I. Dinov, P. Thompson, and A. Toga, “Brain
anatomical structure segmentation by hybrid discriminative/generative
models,” IEEE Transactions on Medical Imaging, vol. 27, no. 4, pp. 495–
508, 2008.

[6] J. Yang, L. Staib, and J. Duncan, “Neighbor-constrained segmentation
with 3d deformable models,” LECTURE NOTES IN COMPUTER SCI-
ENCE, pp. 198–209, 2003.

[7] C. Li, C. Kao, J. Gore, and Z. Ding, “Minimization of region-scalable
fitting energy for image segmentation,” IEEE Transactions on Image
Processing, vol. 17, no. 10, pp. 1940–1949, 2008.

[8] L. Vese and T. Chan, “A multiphase level set framework for image seg-
mentation using the Mumford and Shah model,” International Journal
of Computer Vision, vol. 50, no. 3, pp. 271–293, 2002.

[9] S. Pizer, P. Fletcher, S. Joshi, A. Thall, J. Chen, Y. Fridman, D. Fritsch,
A. Gash, J. Glotzer, M. Jiroutek, et al., “Deformable m-reps for 3d med-
ical image segmentation,” International Journal of Computer Vision,
vol. 55, no. 2, pp. 85–106, 2003.

[10] A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W. Grim-
son, and A. Willsky, “A shape-based approach to the segmentation of
medical imagery using level sets,” IEEE Transactions on Medical Imag-
ing, vol. 22, no. 2, pp. 137–154, 2003.

[11] N. Flasque, M. Desvignes, J. Constans, and M. Revenu, “Acquisition,
segmentation and tracking of the cerebral vascular tree on 3D magnetic
resonance angiography images,” Medical Image Analysis, vol. 5, no. 3,
pp. 173–183, 2001.

[12] D. Nain, A. Yezzi, and G. Turk, “Vessel segmentation using a shape
driven flow,” Lecture Notes in Computer Science, pp. 51–59, 2004.

[13] C. Kirbas and F. Quek, “A review of vessel extraction techniques and
algorithms,” ACM Computing Surveys, vol. 36, no. 2, pp. 81–121, 2004.

11



[14] I. Daubechies, “Ten lectures on wavelets,” vol. CBMS-NSF Lecture
Notes, SIAM, nr. 61, 1992.

[15] A. Ron and Z. Shen, “Affine Systems in L2(Rd): The Analysis of the
Analysis Operator,” Journal of Functional Analysis, vol. 148, no. 2,
pp. 408–447, 1997.

[16] I. Daubechies, B. Han, A. Ron, and Z. Shen, “Framelets: MRA-based
constructions of wavelet frames,” Applied and Computational Harmonic
Analysis, vol. 14, pp. 1–46, Jan 2003.

[17] Z. Shen, “Wavelet frames and image restorations,” Proceedings of the
International Congress of Mathematicians, Hyderabad, India, 2010.

[18] B. Dong and Z. Shen, “MRA based wavelet frames and applications,”
IAS Lecture Notes Series, Summer Program on “The Mathematics of
Image Processing”, Park City Mathematics Institute, 2010.

[19] R. Coifman and D. Donoho, “Translation-invariant de-noising,” Lecture
Notes in Statistics-New York-Springer Verlag, pp. 125–125, 1995.

[20] E. Candes and D. Donoho, “New tight frames of curvelets and optimal
representations of objects with C2 singularities,” Comm. Pure Appl.
Math, vol. 56, pp. 219–266, 2004.

[21] C. Chaux, P. Combettes, J. Pesquet, and V. Wajs, “A variational for-
mulation for frame-based inverse problems,” Inverse Problems, vol. 23,
pp. 1495–1518, 2007.

[22] I. Daubechies, G. Teschke, and L. Vese, “Iteratively solving linear in-
verse problems under general convex constraints,” Inverse Problems and
Imaging, vol. 1, no. 1, p. 29, 2007.

[23] M. Elad, J. Starck, P. Querre, and D. Donoho, “Simultaneous cartoon
and texture image inpainting using morphological component analysis
(MCA),” Applied and Computational Harmonic Analysis, vol. 19, no. 3,
pp. 340–358, 2005.

[24] M. Fadili, J. Starck, and F. Murtagh, “Inpainting and zooming using
sparse representations,” The Computer Journal, vol. 52, no. 1, p. 64,
2009.

12



[25] A. Chai and Z. Shen, “Deconvolution: A wavelet frame approach,” Nu-
merische Mathematik, vol. 106, no. 4, pp. 529–587, 2007.

[26] M. Unser, “Texture classification and segmentation using wavelet
frames,” IEEE Transactions on image processing, vol. 4, no. 11,
pp. 1549–1560, 1995.

[27] S. Arivazhagan and L. Ganesan, “Texture segmentation using wavelet
transform,” Pattern Recognition Letters, vol. 24, no. 16, pp. 3197–3203,
2003.

[28] T. Goldstein, X. Bresson, and S. Osher, “Geometric Applications of
the Split Bregman Method: Segmentation and Surface Reconstruction,”
UCLA CAM Report, pp. 09–06, 2009.

[29] T. Goldstein and S. Osher, “The split Bregman algorithm for L1 reg-
ularized problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2,
pp. 323–343, 2009.

[30] A. Chien, M. Castro, S. Tateshima, J. Sayre, J. Cebral, and F. Vinuela,
“Quantitative Hemodynamic Analysis of Brain Aneurysms at Different
Locations,” American Journal of Neuroradiology, vol. 30, no. 8, p. 1507,
2009.

13


