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Abstract The Beltrami flow is an efficient non-linear
filter, that was shown to be effective for color image

processing. The corresponding anisotropic diffusion op-

erator strongly couples the spectral components. Usu-

ally, this flow is implemented by explicit schemes, that
are stable only for very small time steps and there-

fore require many iterations. In this paper we intro-

duce a semi-implicit Crank-Nicolson scheme based on

locally one-dimensional (LOD)/ additive operator split-

ting (AOS) for implementing the anisotropic Beltrami
operator. The mixed spatial derivatives are treated ex-

plicitly, while the non-mixed derivatives are approxi-

mated in an implicit manner. In case of constant co-

efficients, the LOD splitting scheme is proven to be
unconditionally stable. Numerical experiments indicate

that the proposed scheme is also stable in more gen-

eral settings. Stability, accuracy, and efficiency of the

splitting schemes are tested in applications such as the

Beltrami-based scale-space and Beltrami denoising. In
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order to further accelerate the convergence of the nu-
merical scheme, the reduced rank extrapolation (RRE)

vector extrapolation technique is employed.
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1 Introduction

Nonlinear diffusion filters based on partial differential

equations (PDEs) have been extensively used in the last

decade for different tasks in image processing. Their

efficient implementation requires designing numerical
schemes in which the issues of accuracy, stability, and

computational cost all play important roles.

The Beltrami image flow is an example of a non-

linear filter, that is efficient for color image processing.

It treats the image as a 2-D manifold embedded in a
hybrid spatial-feature space. Minimization of the im-

age area surface yields the Beltrami flow. The corre-

sponding diffusion operator is anisotropic and strongly

couples the spectral components. Due to its anisotropy
and non-separability, so far there is no efficient im-

plicit, nor operator-splitting-based numerical scheme

for the partial differential equation that describes the

Beltrami flow in color. Usual discretizations of this fil-

ter are based on explicit schemes, that limit the time
step and therefore result in a large number of iterations.

In [7] an acceleration technique based on the RRE (re-

duced rank extrapolation) algorithm was proposed in

order to speed-up the slow convergence of the explicit
scheme.

As an alternative to the explicit scheme, an approx-

imation using the short time kernel of the Beltrami op-
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erator was suggested in [26]. Although unconditionally

stable, this method is still computationally demanding,

since computing the kernel involves geodesic distance

computation around each pixel.

The bilateral filter, which can be shown to be an
Euclidean approximation of the Beltrami kernel, was

studied in different contexts (see [22], [3], [27], [23], [10],

[5]), and in [18] signal processing acceleration methods

were proposed for efficient evaluation of this filter. Re-
cently, a related filter, the nonlocal means filter, was

proposed in [1] and shown to be useful in denoising

of gray-scale and color images. Its application to fast

video processing and surface smoothing was shown in

[14], [33].

In this paper we propose to approximate the sys-

tem of nonlinear coupled equations given by the Bel-

trami flow using a semi-implicit finite difference scheme

based on operator splitting. Historically, additive oper-

ator splitting (AOS) schemes were first developed for
(nonlinear elliptic/parabolic) monotone equations and

Navier-Stokes equations [12,13]. In image processing

applications, the AOS scheme was found to be an ef-

ficient way for approximating the Perona-Malik filter
[29], especially if symmetry in scale-space is required.

The AOS scheme is first order in time, semi-implicit,

and unconditionally stable with respect to its time-step

[13,29]. In the early 1950’s (see [19]) the alternating-
direction method (ADI) was introduced, and in [31] the

LOD (locally one-dimensional) splitting method was

proposed. The LOD scheme and other multiplicative

splitting methods were employed in the context of non-

linear diffusion image filtering in [6]. We stress that the
main characteristic of this class of equations, which al-

lows splitting, is local isotropy. However, in the case

of the anisotropic Beltrami operator, the main diffi-

culty in splitting stems from the presence of the mixed
derivatives. To overcome this problem, we suggest to

construct the following semi-implicit scheme; the spa-

tial mixed derivatives are discretized explicitly at the

current time step n∆t, while those that do not contain

mixed derivatives are approximated using an average
of two levels of time steps: n∆t and (n + 1)∆t (Crank-

Nicolson scheme). Preliminary results concerning this

scheme were presented in a previous conference paper

[8]. We now proceed to extend these with both a the-
oretical analysis of the stability and new experimental

results.

Regarding the suggested scheme, as our equations

are nonlinear, a stability proof of the resulting finite dif-

ference equations is a non-trivial task. We propose ac-
cordingly to use the von-Neumann analysis of the sug-

gested scheme under the assumption of constant coeffi-

cients (for both cases of scale space and denoising). This

analysis shows that for this simple case, the LOD split-

ting scheme is unconditionally stable. Furthermore, our

numerical experiments indicate that the LOD and the

AOS splitting schemes for the nonlinear Beltrami color

filter also display a stable behavior. We demonstrate the
efficiency and stability of the splitting in applications

such as: Beltrami-based scale space and Beltrami-based

denoising. In order to further expedite the LOD/AOS

splitting schemes, we show how to speed-up their con-
vergence by using the RRE (reduced rank extrapola-

tion) technique. The RRE method was introduced by

Mes̆ina and Eddy [17,9] to speed-up the convergence of

general sequences of vectors without explicit knowledge

of the sequence generator. This technique was applied
in [7] in order to speed up the slow convergence of the

standard explicit scheme for the Beltrami color flow. In

this paper we show that in applications such as scale-

space and denoising of color images, the semi-implicit
LOD/AOS schemes can also be accelerated using the

RRE technique.

This paper is organized as follows: In Section 2 we

briefly summarize the Beltrami framework. In Section 3

we review general semi-implicit splitting operator schemes
for the linear heat equation. In Section 4 we propose a

semi-implicit splitting scheme for the anisotropic Bel-

trami operator, based on the LOD/AOS schemes. We

provide the von-Neumann stability analysis of the LOD-
based scheme which is valid in the case where the co-

efficients are constants. In Section 5 we demonstrate

the efficiency and stability of the LOD/AOS splitting

schemes for Beltrami-based scale-space and Beltrami-

based denoising. Furthermore, we propose to accelerate
the LOD/AOS schemes using the RRE technique. Sec-

tion 6 concludes the paper.

2 The Beltrami Framework

Let us briefly review the Beltrami framework for non-

linear diffusion in computer vision [11,24,25,32]. We
represent images as embedding maps of a Riemannian

manifold in a higher dimensional space. We denote the

map by U : Σ → M , where Σ is a two-dimensional sur-

face, with (σ1, σ2) denoting coordinates on it. M is the
spatial-feature manifold, embedded in R

d+2, where d is

the number of image channels. For example, a gray-

level image can be represented as a 2D surface em-

bedded in R
3. The map U in this case is U(σ1, σ2) =

(σ1, σ2, I(σ1, σ2)), where I is the image intensity. For
color images, U is given by

U(σ1, σ2) = (σ1, σ2, I1(σ1, σ2), I2(σ1, σ2), I3(σ1, σ2)),

where I1, I2, I3 are the three components of the color

vector.
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Next, we choose a Riemannian metric on this sur-

face, g, with elements denoted by gij . The canonical

choice of coordinates in image processing is Cartesian

(we denote them here by x1 and x2). For such a choice,

which we follow in the rest of the paper, we identify
σ1 = x1 and σ2 = x2. In this case, σ1 and σ2 are

the image coordinates. We denote the elements of the

inverse of the metric by superscripts gij , and the de-

terminant by g = det(gij). Once images are defined as
embedding of Riemannian manifolds, it is natural to

look for a measure on this space of embedding maps.

Denote by (Σ, g) the image manifold and its metric,

and by (M, h) the space-feature manifold and its metric.

Then, the functional S[U ] assigns a real number to a
map U : Σ → M ,

S[U, gij, hab] =

∫

dsσ
√

g||dU ||2g,h, (1)

where s is the dimension of Σ, g is the determinant

of the image metric, and the range of indices is i, j =

1, 2, ... dim(Σ) and a, b = 1, 2, ... dim(M). The integrand

||dU ||2g,h is expressed in a local coordinate system by

||dU ||2g,h = (∂xi
Ua)gij(∂xj

U b)hab. This functional, for

dim(Σ) = 2 and hab = δab, was first proposed by

Polyakov [20] in the context of high energy physics, in

the theory known as string theory. The elements of the
induced metric for color images with Cartesian color

coordinates are

G = (gij) =

(
1 + β2

∑3

a=1
(Ua

x1
)2 β2

∑3

a=1
Ua

x1
Ua

x2

β2
∑3

a=1
Ua

x1
Ua

x2
1 + β2

∑3

a=1
(Ua

x2
)2

)

,

where a subscript of U denotes a partial derivative and

the parameter β > 0 determines the ratio between the

spatial and spectral (color) distances. Using standard
methods in calculus of variations, the Euler-Lagrange

equations with respect to the embedding (assuming Eu-

clidean embedding space) are

0 = − 1√
g
hab δS

δU b
=

1√
g
div (D∇Ua)

︸ ︷︷ ︸

∆gUa

, (2)

where the diffusion matrix is

D =
√

gG−1. (3)

Note that we can write

div(D∇U) =

2∑

q,r=1

∂xq
(dqr∂xr

U). (4)

The operator that acts on U is the natural general-
ization of the Laplacian from flat spaces to manifolds.

It is called the Laplace-Beltrami operator, and denoted

by ∆g.

The parameter β, in the elements of the metric gij ,

determines the nature of the flow. At the limits, where

β → 0 and β → ∞, we obtain respectively a linear diffu-

sion flow and a nonlinear flow, akin to the TV flow [21]

for the case of grey-level images (see [25] for details).

The Beltrami scale-space emerges as a gradient de-

scent minimization process

Ua
t = − 1√

g

δS

δUa
= ∆gU

a, a = 1, 2, 3. (5)

For Euclidean embedding, the functional in Eq. (1) re-

duces to

S(U) =

∫ √
g dx1 dx2

=

∫

√
√
√
√
√
√
√

1 + β2
3∑

a=1

|∇Ua|2+

1

2
β4

3∑

a,b=1

|∇Ua ×∇U b|2
dx1 dx2.

This geometric measure can be used as a regulariza-

tion term for color image processing. In the variational
framework, the reconstructed image is the minimizer of

a cost-functional. This functional can be written in the

following general form,

Ψ(U) = λ
3∑

a=1

||Ua − F a||2 + S(U),

where the parameter λ controls the smoothness of the

solution and F is the given image.

The modified Euler-Lagrange equations as a gradi-

ent descent process are

Ua
t = − 1√

g

δΨ

δUa
= − 2λ√

g
(Ua − F a) + ∆gU

a, (6)

a = 1, 2, 3.

The above equations characterize an adaptive smooth-

ing mechanism. In areas with large gradients (edges),

the fidelity term is suppressed and the regularizing term

becomes dominant. At homogenous regions with low-

gradient magnitude, the fidelity term takes over and
controls the flow.

3 Operator splitting schemes

In this section we review standard first order accurate

splitting schemes for the two-dimensional heat equa-

tion. Splitting techniques are commonly employed in

solving time-dependent partial differential equations.
They are used in order to reduce problems in multi-

ple spatial dimensions to a sequence of problems in one

dimension, which are easier to solve.
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Consider the second order heat equation

ut =
2∑

i=1

∂xi
(∂xi

u), in Ω × [0, T ] (7)

with suitable boundary conditions on ∂Ω×[0, T ], where

Ω is a rectangle in R2, ∂Ω is the boundary of Ω, and

[0, T ] is the time interval 0 ≤ t ≤ T .

We discretize this equation on a rectangular grid of

size N = m × m. The time steps are given by tn =

n∆t, 1 ≤ n ≤ J and J∆t = T . Denote by Un the
approximate N dimensional solution at the time level n.

The semi-implicit approximation scheme can be written

in vector-matrix notation
(

I − ∆t

2∑

l=1

All(U
n)

)

Un+1 = Un,

where the N × N matrix All is the finite difference ap-

proximation of the second order differential operator
corresponds to the derivatives along the l-th coordinate

axis. The main drawback of this implicit scheme is the

high computational cost needed to invert the matrix I−
∆t
∑2

l=1
All(U

n), because unlike the one-dimensional
case, the matrix is not tridiagonal and therefore cannot

be inverted in an efficient manner. In order to overcome

this problem, splitting methods were proposed [19,15].

One of the simplest splitting schemes belonging to the

class of multiplicative operator splitting schemes, is the
locally one-dimensional (LOD) scheme [31]

Un+1 =

2∏

l=1

(I − ∆tAll(U
n))−1Un. (8)

The LOD scheme only needs to invert some three-diagonal

matrices. It is simple to implement, is unconditionally
stable and it is first order accurate. However, the sys-

tem matrix in Eq. (8) is not axis symmetric, a property

that may be important in some cases.

If such a property is required, one could use the ad-

ditive operator splitting (AOS) [13] which was actually

invented for parallel implementation of splitting meth-

ods

Un+1 =
1

2

2∑

l=1

(

I − 2∆tAll(U
n)
)−1

Un. (9)

Note that the two three-diagonal matrices can to

be inverted in parallel. Even for sequential implementa-

tions, the AOS is almost as efficient as the LOD scheme;

instead of multiplying the operators, one computes them
independently and then average the sums of the inverse

of the two matrices. We want to emphasis that the ma-

trices for AOS use 2∆t instead of ∆t.

It is not a trivial matter to apply dimensional split-

ting schemes for Beltrami type of equations. Our goal is

to construct a splitting scheme for the nonlinear anisotropic

Beltrami operator, which would amount to inverting

tridiagonal matrices, be unconditionally stable and pre-
serve the time discretization accuracy that was obtained

before the splitting.

4 The proposed splitting scheme

In this section we propose a first order accurate op-

erator splitting scheme for the Beltrami filter. Before

splitting, we first introduce a semi-implicit approxima-

tion scheme to our equations.
A semi-implicit Crank-Nicolson scheme for an equa-

tion involving mixed derivatives can rely on the fol-

lowing discretization of the spatial derivatives opera-

tors: mixed derivatives are computed at time step n∆t,

while the non-mixed derivatives are computed as the
average of the values at time steps n∆t and (n + 1)∆t.

This approach for handling mixed derivatives in semi-

implicit schemes for approximating linear equations has

been considered in several previous works (see [30,2,16]
for example), including the context of image process-

ing [28], although it was not combined with the Crank-

Nicolson method in the latter case. In [2] a stability

analysis of a splitting scheme approximating a general

class of linear parabolic equations with mixed deriva-
tives was performed. The a priori estimates of the so-

lution were obtained by the method of energy inequal-

ities and by assuming certain bounds of the quadratic

form involved in the parabolic equation. The Crank-
Nicolson based splitting scheme for the linear case pre-

sented in this paper is a particular case of the general

scheme given in [2] (for σ = 0.5). However, the stability

proof we present here is based on a different and sim-

pler method, namely the von-Neumann analysis. We
furthermore accentuate that our proof relies only on

the assumption of parabolicity of the equations and

it does not need any assumptions on the boundedness

of the quadratic form. McKee and Mitchell developed
a slightly different scheme [16]. They utilized a von-

Neumann analysis in their stability proof, in a similar

manner to our own. Their proposed scheme, however,

is different and specifically, it is not symmetric with re-

spect to the non-mixed directional derivative operators.
We now proceed to describe our proposed scheme.

First, let us refine our grid notations. We work on the

rectangle Ω = (0, 1) × (0, 1), which we discretize by a

uniform grid of m×m pixels, such that xi = i∆x, yj =
j∆y, tn = n∆t, where 1 ≤ i ≤ m, 1 ≤ j ≤ m, n =

1, 2, ..., J and J∆t = T . Let the grid size be ∆x =

∆y = h = 1

m−1
.
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For each channel Ua, a = 1, 2, 3 of the color vector,

we define the discrete approximation (Ua)n
ij by

(Ua)(i∆x, j∆y, n∆t) = (Ua)n
ij ≈ Ua(i∆x, j∆y, n∆t).

We impose von-Neumann boundary condition, and ini-

tially set Ua to be our initial data image.

4.1 LOD/AOS scheme for the Beltrami scale-space

We approximate the Beltrami filter given in Eq. (5) by

the following semi-implicit Crank-Nicolson scheme:

(Ua)n+1 − (Ua)n

∆t
=

1√
gn

(1

2

2∑

l=1

An
ll(U

a)n+1 +

1

2

2∑

l=1

An
ll(U

a)n +

2∑

q=1

∑

r 6=q

An
qr(U

a)n
)

,

where Ua is the N -dimensional vector denoting one of

the components of the color vector, and An
qr is a central

difference approximation of the operator ∂xq
(dqr∂xr

) at

time step n.

After rearranging terms, we have

(Ua)n+1 =

(

I − ∆t

2
√

gn

2∑

l=1

An
ll

)−1



I +
∆t√
gn

2∑

q=1

∑

r 6=q

An
qr +

∆t

2
√

gn

2∑

l=1

An
ll



 (Ua)n,

which can also be written as

(Ua)n+1 =

(

I − ∆t

2

2∑

l=1

Ān
ll

)−1



I + ∆t

2∑

q=1

∑

r 6=q

Ān
qr +

∆t

2

2∑

l=1

Ān
ll



 (Ua)n,

where

Ā11 =
1√
g
∂x(A∂x), Ā22 =

1√
g
∂y(C∂y),

Ā12 =
1√
g
∂x(B∂y), Ā21 =

1√
g
∂y(B∂x),

and the functions A, B, C are the corresponding ele-

ments of the diffusion matrix associated with the Bel-

trami flow,

D =
√

gG−1 =

(
A(∇U) B(∇U)
B(∇U) C(∇U)

)

.

Again, this semi-implicit scheme still has a major

drawback. At each iteration one needs to solve a large

linear system whose matrix of coefficients is not tridi-

agonal and thus costly. Instead, we employ the LOD

splitting scheme

(Ua)n+1 =
(

I − ∆t

2
Ā22

)−1(

I − ∆t

2
Ā11

)−1

[
(I + ∆t

2
Ā11)(I + ∆t

2
Ā22)+

∆t
∑2

q=1

∑

r 6=q Ān
qr

]

(Ua)n,

or the AOS scheme, that reads,

(Ua)n+1 =
1

2

[ (
I − ∆tĀ22

)−1
+
(
I − ∆tĀ11

)−1
]

(10)
[

(I + ∆t
2

Ā11)(I + ∆t
2

Ā22)+

∆t
∑2

q=1

∑

r 6=q Ān
qr

]

(Ua)n.

The above splitting schemes are efficient because at

each time step a tridiagonal matrix inversion is per-

formed.

The system of differential equations we deal with is
nonlinear. The question of theoretical stability of the

LOD/AOS based nonlinear finite difference scheme is

a non-trivial challenge, with theory still lagging behind

common practice. Nevertheless, we can provide a von-

Neumann stability analysis to a simplified case where
the coefficients of the equation are set to be constants.

This analysis shows that the LOD splitting scheme, at

least in this over-simplistic form, is unconditionally sta-

ble. Our numerical experiments indicate that the split-
ting is stable in the more general setting, as will be

shown in Section 5.

Below we provide the von-Neumann analysis of the

LOD splitting scheme. Our equations are of the form

Ua
t =

1√
g
div(D∇Ua). (11)

Equation (11) can be written in its general form as

Ut = A√
g
Uxx + 2 B√

g
Uxy + C√

g
Uyy +

(
Ax√

g
+

By√
g

)

Ux +
(

Cy√
g

+ Bx√
g

)

Uy,

In order to apply the von-Neumann analysis, the

coefficients A, B, C in Eq. (12) are set to be constants.

Thereby, the equation is simplified to

Ut = aUxx + 2bUxy + cUyy, (12)

where the coefficients a, b, c are now constants with

a, c > 0 and b2 − ac < 0.

The Crank-Nicholson scheme with LOD splitting for
approximating (11) can be written as

(I − a
∆t

2
∂xx)(I − c

∆t

2
∂yy)Un+1 =

[
(I +

∆t

2
a∂xx)(I +

∆t

2
c∂yy) + 2b∆t∂xy

]
Un, (13)
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where

∂xxUn
ij =

Un
i+1,j − 2Un

i,j + Un
i−1,j

h2
,

∂yyU
n
ij =

Un
i,j+1 − 2Un

i,j + Un
i,j−1

h2
,

∂xyUn
ij =

Un
i+1,j+1 + Un

i−1,j−1

−Un
i−1,j+1 − Un

i+1,j−1

4h2
.

Consider a solution of the difference scheme in the

form
Un

ij = Meαn∆te
√
−1iβhe

√
−1jγh,

where β and γ are constant wave numbers. We have

∂xxUn
ij =

2

h2
(cos(βh) − 1)Un

ij , (14)

∂yyUn
ij =

2

h2
(cos(γh) − 1)Un

ij , (15)

∂xyUn
ij = − 1

h2
sin(γh) sin(βh)Un

ij . (16)

We denote

r =
∆t

h2
.

After substituting the above difference operators in

the scheme (13), we obtain the amplification factor

ξ =

(
−2br sin(γh) sin(βh)+

(1 + ar(cos(βh) − 1))(1 + cr(cos(γh − 1)))

)

(1 − ar(cos(βh) − 1))(1 − cr(cos(γh) − 1))
.

The scheme is stable if the amplification factor ξ

satisfies |ξ| ≤ 1. The term ξ can be written as

ξ =

(
−2br sin(γh) sin(βh)+

(1 − 2ar sin2(βh/2))(1 − 2cr sin2(γh/2))

)

(1 + 2ar sin2(βh/2))(1 + 2cr sin2(γh/2))
. (17)

Next, we prove that |ξ| ≤ 1. First, we need the following

lemma.

Lemma 1 If b2 < ac, then the following inequality

holds

4a sin2(θ/2)+4c sin2(ϕ/2)−2|b sin(θ) sin(ϕ)| ≥ 0, ∀θ, φ.

Proof We have

(
√

a| sin(θ/2)| −
√

c| sin(ϕ/2)|)2 ≥ 0.

Since b2 < ac, one has

a sin2(θ/2) + c sin2(ϕ/2) ≥
2
√

ac| sin(θ/2) sin(ϕ/2)| >

2|b|| sin(θ/2) sin(ϕ/2)| (18)

But

| sin(θ/2)| ≥ 1

2
| sin(θ)| (19)

Thus equations (18) and (19) provide the required in-

equality

4a sin2(θ/2) + 4c sin2(ϕ/2) − 2|b sin(θ) sin(ϕ)| ≥ 0.

We need to show that −1 ≤ ξ ≤ 1. First, we show

that ξ ≤ 1.

ξ − 1 =
(

−2br sin(γh) sin(βh)+

(1 − 2ar sin2(βh/2))(1 − 2cr sin2(γh/2))

)

(1 + 2ar sin2(βh/2))(1 + 2cr sin2(γh/2))
− 1

=

(
−4ar sin2(βh/2) − 4cr sin2(γh/2)−

2br sin(γh) sin(βh)

)

(1 + 2ar sin2(βh/2))(1 + 2cr sin2(γh/2))
.

From the above lemma, we have

−2br sin(γh) sin(βh) ≤ 4ar sin2(βh/2) + 4cr sin2(γh/2)

We then conclude that ξ ≤ 1. Next, we show that

ξ + 1 ≥ 0.

ξ + 1 =

(
−2br sin(γh) sin(βh)+

(1 − 2ar sin2(βh/2))(1 − 2cr sin2(γh/2))

)

(1 + 2ar sin2(βh/2))(1 + 2cr sin2(γh/2))

+
(1 + 2ar sin2(βh/2))(1 + 2cr sin2(γh/2))

(1 + 2ar sin2(βh/2))(1 + 2cr sin2(γh/2))
.

Thus,

ξ + 1 =

(
8acr2 sin2(βh/2) sin2(γh/2)

−2br sin(γh) sin(βh) + 2

)

(1 + 2ar sin2(βh/2))(1 + 2cr sin2(γh/2))
.

In order to get ξ + 1 ≥ 0, we need to show that the

nominator of the above expression is positive, i.e.

8acr2 sin2(βh/2) sin2(γh/2)−2br sin(γh) sin(βh)+2 ≥ 0.

Let us analyze the discriminant of this quadratic
equation:

∆ = r2[b2 sin2(βh) sin2(γh) −
16a2c2 sin2(βh/2) sin2(γh/2)].

Next, we use the relation b2 < ac, and get

∆ < r2(ac)2 sin2(βh)[sin2(γh) − 16 sin2(γh/2)] ≤
16r2(ac)2 sin2(βh/2) sin2(γh/2)
(
cos2(βh/2) cos2(γh/2)− 1

)
≤ 0.

This implies ∆ < 0, i.e. −1 ≤ ξ.
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We obtained that −1 ≤ ξ ≤ 1. Thereby, we showed

that the modulus of the amplification term is bounded

by 1 independently of r. Thus, we conclude that for the

simple case of constant coefficients, the semi-implicit

approximation based on Crank-Nicolson scheme is un-
conditionally stable.

We note that for the AOS scheme, one can find time-

steps and diffusion operators for which the scheme is

unstable in the linear case. The AOS method does re-
main stable for the Beltrami flow in practice, with max-

imally stable time-steps similar to those allowed by the

LOD scheme.

4.2 LOD/AOS scheme for the Beltrami-based

denoising

The splitting scheme in the presence of a fidelity term

requires a slight modification that we detail below. In
this case we solve for each channel the equation

Ua
t = − 2λ√

g
(Ua − F a) + ∆gU

a, (20)

with von-Neumann boundary condition and the initial
condition

Ua(x, 0) = F a(x). (21)

The Crank-Nicolson scheme approximating Eq. (20)

is

(Ua)n+1 =
(

I − ∆t

2

2∑

l=1

Ān
ll + 2∆t

λ√
gn

I
)−1

[( (I + ∆t
2

Ān
11)(I + ∆t

2
Ān

22)+

∆t
∑2

q=1

∑

r 6=q Ān
qr

)

(Ua)n

+2∆tF a λ√
gn

]

.

It is possible to use LOD/AOS approximations for

the inverse of the matrix in the above scheme. However,

we would like to treat the fidelity term in a special way.
When the term λ/

√
gn is large, we find that the scheme

proposed below possesses better stability properties.

We now describe the details for treating the fidelity

term for our Crank-Nicolson scheme. Dividing the nom-
inator and the denominator by the matrix

Sn =

(

1 + 2∆t
λ√
gn

)

I, (22)

and rearranging terms, we get

(Ua)n+1 =
(

I − ∆t

2
(Sn)−1

2∑

l=1

Ān
ll

)−1

[

(Sn)−1

(
(I + ∆t

2
Ān

11)(I + ∆t
2

Ān
22)+

∆t
∑2

q=1

∑

r 6=q Ān
qr

)

(Ua)n

+2(Sn)−1∆tF a λ√
gn

]

.

Approximating the semi-implicit scheme based on

the LOD-splitting, we have

(Ua)n+1 =

(

I − 1

2
∆t(Sn)−1Ān

22

)−1(

I − 1

2
∆t(Sn)−1Ān

11

)−1

[

(Sn)−1

(
(I + ∆t

2
Ān

11)(I + ∆t
2

Ān
22)+

∆t
∑2

q=1

∑

r 6=q Ān
qr

)

(Ua)n

+2(Sn)−1∆tF a λ√
gn

]

.

While using the AOS splitting, the Crank-Nicolson

scheme reads

(Ua)n+1 =

1

2

((
I − ∆t(Sn)−1Ān

11

)−1
+
(
I − ∆t(Sn)−1Ān

22

)−1
)

[

(Sn)−1

(
(I + ∆t

2
Ān

11)(I + ∆t
2

Ān
22)+

∆t
∑2

q=1

∑

r 6=q Ān
qr

)

(Ua)n

+2(Sn)−1∆tF a λ√
gn

]

.

The above schemes are efficient since at each time

step we only need to perform a tridiagonal matrix in-

version.

Below we provide a stability analysis for the linear

case when a fidelity term is present.
The equation we need to discretize is:

Ut = aUxx + 2bUxy + cUyy + 2λ(f − U), (23)

with constants a, b, c satisfying b2 < ac and λ > 0.

Denote Q = 1

1+2λ∆t
.

The Crank-Nicolson scheme with LOD splitting for

approximating (23) can be written as:

Un+1 =

((

I − a
∆t

2
Q∂xx)

)−1(

I − c
∆t

2
Q∂yy

)−1
)

[

Q

(
(I + ∆t

2
a∂xx)(I + ∆t

2
c∂yy)+

2∆tb∂xy

)

Un + 2Q∆tλf
]

.

Consider a solution of the difference scheme in the

form

Un
ij = Meαn∆te

√
−1iβhe

√
−1jγh, (24)

where β and γ are constant wave numbers.

For establishing stability, we use the definition of
stability in the Lax-Richtmeyer sense. Therefore we re-

quire

|eα∆t| ≤ 1 + K∆t, (25)

where K is a constant.

Indeed if (25) is satisfied, it follows that

|U |n ≤ |eαn∆t| ≤ (1 + K∆t)n ≤ eKn∆t = etnK < eTK ,

for all tn < T , which reveals the stability of the solution.
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Lemma 2 The amplification factor for the LOD scheme

satisfies

|eα∆t| ≤ 1 + 2
λ

M
|f |∆t. (26)

Proof The required inequality is clear if |eα∆t| ≤ 1. We

then assume

|eα∆t| > 1. (27)

Replacing the relations (14),(15),(16) into our scheme
leads to

eα∆t = ξ1 + ξ0∆t,

where

ξ1 =

(
Q[−2br sin(γh) sin(βh)+

(1 + ar(cos(βh) − 1))(1 + cr(cos(γh) − 1))]

)

(1 − arQ(cos(βh) − 1)))((1 − crQ(cos(γh) − 1)))
.

and

ξ0 =
1

1 + 2∆t

2λf

(1 − arQ(cos(βh) − 1)))·
((1 − crQ(cos(γh) − 1)))Un

.

We first show that |ξ1| ≤ 1. We have

|ξ1| ≤

∣
∣
∣

(
−2br sin(γh) sin(βh)+

(1 − 2ar sin2(βh
2

))(1 − 2cr sin2(γh
2

))

) ∣
∣
∣

(1 + 2λ∆t + 2ar sin2(βh
2

))·
(1 + 2λ∆t + 2cr sin2(γh

2
))

.

Using the computation of the amplification factor ξ

for the scale space case (see 17), we get

|ξ1| ≤ |ξ| ≤ 1, (28)

for all λ > 0.
Next, we analyze the term ξ0.

|ξ0| =
2Qλ|f |/|Un|

(1 + 2λ∆t + 2ar sin2(βh
2

))·
(1 + 2λ∆t + 2cr sin2(γh

2
))

.

From assumption (27) we get |eαn∆t| > 1 for all n,
which by means of (24), leads to |Un| > M . Moreover

using Q = 1

1+2λ∆t
< 1 we get:

|ξ0| ≤
2

M
λ|f |. (29)

From (28) and (29) we obtain the needed inequality
(26).

We thus conclude that also in the denoising case with
constant coefficients, the semi-implicit LOD approxi-

mation based on the Crank-Nicolson scheme is uncon-

ditionally stable.

5 Experimental results

We proceed to demonstrate experimentally the stabil-

ity, accuracy, and efficiency of the LOD and AOS split-

ting schemes for the Beltrami color flow. In Figures 1–3

we show the results of the Beltrami flow, implemented
by employing the LOD splitting scheme for approxi-

mating Eq. (5). This is performed both for denoising

purposes and for scale-space analysis.

Next we illustrate the use of the splitting schemes in

the case where the functional involves a fidelity term.

A noisy image as well as the reference denoising result,

based on the explicit scheme, are shown in Figure 4. In

Figure 5 we show the result of the AOS and LOD split-
ting schemes. Note that the visual results obtained by

the two schemes are similar to the reference image. The

effectiveness of the denoising effect is particularly pro-

nounced where the noisy image deviates strongly from
what is expected by the Lambertian image formation

model.

This can be seen, for example, on decorrelated salt

and pepper noise, as demonstrated in Figure 6. For the
purpose of Figure 6, a robust fidelity term was added,

along the lines suggested in [4]. Specifically, the descent

equation was

Ua
t = − λ√

g

(Ua − F a)
√

(Ua − F a)2 + ǫ
+ ∆gU

a, (30)

where λ controls the regularization as before, and ǫ

is a small constant, taken to be 10−3 in our case.

5.1 RRE extrapolation technique for acceleration of

the LOD splitting scheme

In [7] vector extrapolation was applied in order to speed

up the slow convergence of the explicit schemes for
the Beltrami color flow. In the experiments below we

demonstrate how the RRE extrapolation technique can

also be used to accelerate the convergence of implicit

schemes. Figure 7(a) shows that the RRE method ac-
celerates the LOD scheme. A comparison is also given

to the convergence rate achieved by the method of [7].

In Figure 7(b) the accuracy of the LOD based scheme,

as well as the LOD based scheme combined with RRE
is considered with respect to different time steps, in or-

der to observe the rate of acceleration of the RRE ex-

trapolation scheme. The reference image for the com-

putation of the MSE error of the schemes is the im-
age obtained by the explicit scheme with a small time-

step. Figure 7(a) indicates how the RRE extrapolation

scheme leads to a better acceleration rate when using a
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Fig. 1 Top row, left: The original image which contains JPEG artifacts. Right: Results of the LOD splitting scheme with ∆t = 1,
after 1 iteration. Middle row, left and right: Results of the LOD splitting scheme with ∆t = 1, after 2 and 4 iterations, respectively
(β =

√
103, λ = 0). Bottom row, left: a close-up of the original image. Right: a close-up of the resulting image after 4 iterations.
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Fig. 2 The different image channels of an image patch taken from the images in Figure 1. Left to right, top to bottom: An image
patch before denoising, its different color channels, the denoised image, and the denoised color channels. The color arrows indicate the
direction of the gradient in the various color channels.

relative small time step. The time-steps used are con-

siderably larger than the time steps needed for main-
taining the stability of the explicit scheme (the largest

possible time step preserving numerical stability for this

example was ∆t = 0.2). Even for these relatively large

time steps, however, the RRE method results in a sig-

nificant speedup without compromising the accuracy of

the scheme.
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Fig. 3 Beltrami scale-space computed using the LOD splitting scheme. Top left : The original image. Top right: Results of the LOD
splitting scheme with ∆t = 10−1, after 20 iterations. Bottom left: Results after 40 iterations. Bottom right: Results after 80 iterations
(β =

√
103, λ = 0).

Fig. 4 Left: An image with artifacts resulting from lossy compression. Right: The reference image. Beltrami- based denoising by
explicit scheme, run with 4000 explicit iterations, ∆t = 0.0005, λ = 1, β =

√
5 × 104.

Fig. 5 Comparison of the images obtained using LOD and AOS schemes. Left: Denoising by LOD. Right: Denoising by AOS. (λ = 1,
∆t = 0.02, β =

√
5 × 104).

6 Conclusions

Due to its anisotropy and non-separability, no implicit

scheme, nor operator splitting based scheme was so far

introduced for the partial differential equations that de-
scribe the Beltrami color flow. In this paper we propose

a semi-implicit splitting scheme based on LOD/AOS for

the anisotropic Beltrami operator. The spatial mixed

derivatives are discretized explicitly at time step n∆t ,

while the non-mixed derivatives are approximated using
the average of the two time levels n∆t and (n + 1)∆t.

We provide a von-Neumann stability analysis of the

LOD-based scheme, which is valid in the simple case
where the coefficients of the equation are constants. In

the more general nonlinear case, the stability of the

splitting is empirically tested in applications such as
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Beltrami-based scale-space and Beltrami-based denois-

ing, which display a stable behavior. In order to further

accelerate the convergence of the splitting schemes, the

RRE vector extrapolation technique is employed.
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Fig. 6 Left: An image after the introduction of channel-wise salt and pepper noise. Right: The image after Beltrami- based denoising,
using 100 LOD iterations, ∆t = 0.5, λ = 10−2, β =

√
2 × 104.

(a) (b)

Fig. 7 Left: Graph of the residuals (explicit, LOD, explicit+RRE and LOD+RRE) versus CPU times. Parameters: ∆t = 0.2 for the
explicit scheme, ∆t = 3 for LOD, λ = 0.5, β =

√
3 × 103. Right: Comparison of CPU times for LOD and accelerated LOD (for the

denoising case). CPU time versus error norm. Time steps: ∆t = 0.34, 0.42, 0.52, 0.66, 0.82, 1.02, 1.28, 1.6., λ = 0.1, β =
√

3 × 103.


