
Fast Singular Value Thresholding without Singular Value

Decomposition

Jian-Feng Cai ∗ Stanley Osher ∗

May 2010

Abstract

We are interested in solving the following minimization problem

𝒟𝜏 (𝒀) := arg min
𝑿∈ℝ𝑚×𝑛

1

2
∥𝒀 −𝑿∥2𝐹 + 𝜏∥𝑿∥∗,

where 𝒀 ∈ ℝ𝑚×𝑛 is a given matrix, and ∥ ⋅ ∥𝐹 is the Frobenius norm and ∥ ⋅ ∥∗ the nuclear norm. This
problem serves as a basic subroutine in many popular numerical schemes for nuclear norm minimization
problems, which arise from low rank matrix recovery such as matrix completion. As 𝒟𝜏 (𝒀) has an
explicit expression which shrinks the singular values of 𝒀 and keeps the singular vectors, 𝒟𝜏 is referred
to singular value thresholding (SVT) operator in the literature. Conventional approaches for 𝒟𝜏 (𝒀)
first find the singular value decomposition (SVD) of 𝒀 and then shrink the singular values. However,
such approaches are time consuming under some circumstances, especially when the rank of 𝒟𝜏 (𝒀) is
not low compared to the matrix dimension or is completely unpredictable. In this paper, we propose a
fast algorithm for directly computing 𝒟𝜏 (𝒀) without using SVDs. Numerical experiments show that the
proposed algorithm is much more efficient than the approach using the full SVD.

1 Introduction

We are interested in solving the following minimization problem

𝒟𝜏 (𝒀) := arg min
𝑿∈ℝ𝑚×𝑛

1

2
∥𝒀 −𝑿∥2𝐹 + 𝜏∥𝑿∥∗, (1)

where 𝒀 ∈ ℝ𝑚×𝑛 is a given matrix and 𝜏 ∈ ℝ+ is a fixed parameter. Here and throughout the paper, we
use ∥ ⋅ ∥𝐹 to denote the matrix Frobenius norm or the square root of the summation of squares of all entries,
and ∥ ⋅ ∥∗ stands for the nuclear norm or the summation of all singular values. Therefore, in (1), we want
to find a matrix 𝒟𝜏 (𝒀) which is in the vicinity of 𝒀 and has an as small as possible nuclear norm. Since
𝒟𝜏 (𝒀) is equivalent to shrink the singular values of 𝒀 by a soft-thresholding [14] and keep the singular
vectors, 𝒟𝜏 (𝒀) is called the singular value thresholding (SVT) following from [2]. The SVT serves as a basic
subroutine in many popular numerical schemes for nuclear norm minimization problems, which arise from
low rank matrix recovery such as matrix completion.

Our motivation to study (1) is mainly from recent burst of research on matrix completion [2, 7, 9, 10],
and more generally low-rank matrix recovery [6, 8, 25, 27, 32], via convex optimization. Matrix completion
refers to recovering a matrix from a sampling of its entries. This routinely comes up whenever one collects
partially filled out surveys, and one would like to infer the many missing entries. The issue is of course
that the matrix completion problem is extraordinarily ill-posed since with fewer samples than entries, we

∗Department of Mathematics, University of California, Los Angeles, CA 90095. Email: cai,sjo@math.ucla.edu. Research
supported by ONR N00014-07-1-0810, ONR N00014-08-1-1119 and an ARO MURI through Rice University.

1

have infinitely many completions. Therefore, it is apparently impossible to identify which of these candidate
solutions is indeed the “correct” one without some additional information. In many instances, however, the
matrix we wish to recover has low rank or approximately low rank. The premise that the unknown has
(approximately) low rank radically changes the problem, making the search for solutions feasible since the
lowest-rank solution now tends to be the right one. Let 𝑴 ∈ ℝ𝑚×𝑛 be a low rank matrix whose rank is 𝑟
satisfying 𝑟 ≪ min{𝑚,𝑛}, and Ω ⊂ {1, 2, . . . ,𝑚} × {1, 2, . . . , 𝑛} be the set of indices of its sampled entries.
The authors in [9, 10] showed that most low rank matrices 𝑴 can be perfectly recovered by solving the
optimization problem

min𝑿 ∥𝑿∥∗
s.t. 𝑋𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ Ω.

(2)

provided that the number of samples is large enough. The minimization problem (2) is convex and can
be recast as a semidefinite programming [15]. Therefore, (2) can be solved by conventional semidifinite
programming solvers such as SDPT3 [36] and SeDeMi [35]. However, such solvers are usually based on
interior-point methods, and can not deal with large matrices because they need to solve huge systems of
linear equations to compute the Newton direction. Usually, they can only solve problems of size at most
hundreds by hundreds on a moderate PC. Interested readers are referred to [26] for some recent progress on
interior-point methods concerning some special nuclear norm-minimization problems.

In order to complete large low rank matrices by solving (2), we have to turn to first-order methods. Here
we give several examples of such first-order methods which are quite popular and recently developed.

∙ The first example is the SVT algorithm in [2]. In the SVT algorithm, the minimization (2) is first
approximated by

min𝑿 𝜏∥𝑿∥∗ + 1
2∥𝑿∥2𝐹

s.t. 𝑋𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ Ω.

with a large parameter 𝜏 , and then we use a gradient ascent algorithm applied to its dual problem.
This algorithm is reformulated as Uzawa’s algorithm [1] or linearized Bregman iteration [3, 4, 31, 38].
The iteration is {

𝑿𝑘 = 𝒟𝜏 (𝒀𝑘−1),

𝒀𝑘 = 𝒀𝑘−1 + 𝛿𝑘𝒫Ω(𝑴 −𝑿𝑘),
(3)

where 𝒟𝜏 is the SVT operator defined in (1). The main step that makes the matrix of low rank is the
SVT operator 𝒟𝜏 . Therefore, the iteration (3) is called SVT algorithm in [2]. The SVT algorithm was
shown to be an efficient algorithm for matrix completion, especially for huge low rank matrices.

∙ The second example is the FPCA algorithm in [27], which combines the fixed point continuation [18]
(also known as proximal forward-backward splitting [12]) with Bregman iteration [30]. The iteration
is ⎧⎨⎩Iterate on 𝑖 to get 𝑿𝑘

{
𝑿𝑖 = 𝒟𝜏 (𝒀𝑖−1),

𝒀𝑖 = 𝑿𝑖−1 + 𝛿𝑖𝒫Ω(𝑴 +𝒁𝑘−1 −𝑿𝑖),

𝒁𝑘 = 𝒁𝑘−1 + 𝒫Ω(𝑴 −𝑿𝑘)

(4)

Here again 𝒟𝜏 is the SVT operator. The FPCA algorithm is in fact a gradient ascent algorithm applied
to an augmented Lagrangian of (2).

∙ The third example is the augmented Lagrangian method (ALM) in [24]. The problem (2) is first
reformulated into

min
𝑿

∥𝑿∥∗ s.t. 𝑿 +𝑬 = 𝒫Ω(𝑴), 𝒫Ω(𝑬) = 0,

where 𝑬 is an auxiliary variable. Then the corresponding (partial) augmented Lagrangian (ALM)
function is

ℒ(𝑿,𝑬,𝒀 , 𝜇) = ∥𝑿∥∗ + ⟨𝒀 ,𝒫Ω(𝑴)−𝑿 −𝑬⟩+ 𝜇

2
∥𝒫Ω(𝑴)−𝑿 −𝑬∥2𝐹 , with 𝒫Ω(𝑬) = 0.

2

Then, an inexact gradient ascent algorithm is applied to the ALM, and it leads to the following
algorithm ⎧⎨⎩

𝑿𝑘 = 𝒟𝜇−1
𝑘
(𝒫Ω(𝑴)−𝑬𝑘−1 + 𝜇−1

𝑘 𝒀𝑘−1),

𝑬𝑘 = −𝒫Ω𝑐(𝑿𝑘),

𝒀𝑘 = 𝒀𝑘−1 + 𝜇𝑘𝒫Ω(𝑴 −𝑿𝑘).

Once again here 𝒟𝜇−1
𝑘

is the SVT operator, and it is the key to make the algorithm converge to

low rank matrices. This algorithm is also known as the split Bregman method [5, 16] in the imaging
community, and it is extended to the decomposition of a matrix into a low-rank matrix plus a sparse
matrix in [6, 24,39].

In all the algorithms mentioned above, the SVT operator 𝒟𝜏 serves as a basic tool to produce low-rank
matrices. It is required to be computed in each iteration. This fact holds true for not only the above three
listed algorithms, but also many other recent popular algorithms for finding low rank matrix via nuclear
norm minimization such as [25,37,40], just name a few more. The role of SVT in these algorithms is the same
as the vector soft-thresholding [14] in many popular successful ℓ1-norm minimization algorithms for finding
sparse vectors in compressed sensing; see [3,4,13,18,38]. However, different from the vector soft-thresholding,
SVT is much harder to compute, as the entries of the unknown matrix are strongly coupled together in (1).
The computational efficiency for SVT is crucial to the efficiency of those algorithms for matrix completion
and low-rank matrix recovery.

It is well known that 𝒟𝜏 (𝒀), the solution of (1), has an explicit expression as follows; see, e.g., [2, 6, 24,
27,39]. Let the singular value decomposition (SVD) [17] of 𝒀 be

𝒀 = 𝑼Σ𝑽 𝑇 ,

where 𝑼 and 𝑽 are orthonormal matrices and Σ = diag(𝜎1, 𝜎2, . . . , 𝜎𝑠) is a diagonal matrix with diagonals
being the singular values of 𝒀 . Then,

𝒟𝜏 (𝒀) = 𝑼

⎡⎢⎣(𝜎1 − 𝜏)+
. . .

(𝜎𝑠 − 𝜏)+

⎤⎥⎦𝑽 𝑇 , where (𝜎𝑖 − 𝜏)+ =

{
𝜎𝑖 − 𝜏, if 𝜎𝑖 − 𝜏 > 0

0, otherwise.
(5)

In other words, the singular vectors of 𝒀 are kept, and only the singular values are shrunk by a soft-
thresholding. That explains the name of SVT.

Based on (5), there is a natural way to find 𝒟𝜏 (𝒀): We first compute SVD of 𝒀 and then obtain 𝒟𝜏 (𝒀)
according to (5). This approach is very popular in the literature. In fact, to the best of our knowledge, all
the algorithms mentioned above compute SVT based on SVD. As a result, the efficiency of those algorithms
depend highly on the performance of the computation of SVD. Generally, the computation of the full SVD is
time consuming. As the size of the matrix 𝒀 increases, the computation of the full SVD becomes very slow
and prohibitive. Therefore, to achieve good performance of those SVT-based algorithms, special techniques
have to be used.

Notice that only those singular values exceeding 𝜏 and their corresponding singular vectors contribute
to 𝒟𝜏 (𝒀). Therefore, a commonly used strategy is to compute only partial SVD instead of the full one,
i.e., we compute only those singular values exceeding 𝜏 and their associated singular vectors. If the number
of singular values exceeding 𝜏 is small compared to the matrix dimension min{𝑚,𝑛}, then partial SVD
can be computed efficiently by some Krylov subspace projection methods [34]. This strategy is adopted in,
e.g., [2, 24, 25, 37], where most of them used PROPACK [23] based on the Lanczos procedure with partial
re-orthogonalization. As we have to specify the number of singular values/vectors to be computed before
calling this SVD package, an important fact that enables us to compute only partial SVD is that the rank
of 𝒟𝜏 (𝒀) is somewhat predictable. For example, in [2], we observed that a large parameter 𝜏 will yield a
sequence of matrices with monotonically increasing rank, and all the matrices in the sequence have a rank
lower than 𝑟, the rank of the true low rank matrix 𝑴 . Therefore, one can estimate the rank of 𝒟𝜏 (𝒀) based

3

on the rank of the matrix in the previous step, and then use this rank estimation as the number of singular
values/vectors to be computed in the partial SVD. This finally leads to an efficient algorithm to find SVT
𝒟𝜏 (𝒀). Similar strategies are employed in [24,25,37].

Under some circumstances, the strategy of computing only partial SVD might not be helpful to accelerate
the computation of SVT. One of such circumstances is that the rank of 𝒟𝜏 (𝒀) is not low compared to the
matrix dimension min{𝑚,𝑛}. This happens when there is no rank control in the algorithm or the rank of the
desired matrix 𝑴 is not very low. As we have mentioned, the efficiency of partial SVD computation depends
highly on the number of singular values/vectors to be computed. The computational time of partial SVDs
increases dramatically with respect to the number of singular values/vectors to be computed. In fact, it was
observed in [24] that when we want to compute more than 0.2min{𝑚,𝑛} principal singular vectors/values,
using PROPACK is often slower than computing the full SVD. In this case, SVT via partial SVD has no
advantage over SVT via the full SVD. Another circumstance under which partial SVD is not helpful is that
the rank of 𝒟𝜏 (𝒀) is completely unpredictable. This might happen, e.g., when we change the algorithm
parameters during the iterations. In the worst case, we have to try many times on the number of singular
values/vectors to be computed, following the strategies in, e.g., [2,24]. This finally slows down the algorithm.

In summary, the performance of computing 𝒟𝜏 (𝒀) via the full SVD needs to be improved. In the past
few decades, a wide range of iterative methods for computing matrix functions of the general form 𝑓(𝒀) have
been developed, see [21] for a survey. It is valuable to investigate whether some of these iterative methods,
or other to be developed, would provide powerful ways for computing 𝒟𝜏 (𝒀). This is the main theme of
this paper. Observe that we are not interested in the singular values and singular vectors but in 𝒟𝜏 (𝒀) as
a single matrix. It is wasteful if we compute all the singular values and singular vectors explicitly. Why not
skip the step of the full SVD and compute 𝒟𝜏 (𝒀) directly? In this paper, we will propose such an algorithm
to compute SVT without using SVD. Throughout the paper, we assume that the matrix size 𝑚× 𝑛 satisfies
𝑚 ≥ 𝑛, and the case 𝑚 < 𝑛 can be done completely analogously since 𝒟𝜏 (𝒀) = (𝒟𝜏 (𝒀

𝑇))𝑇 . The outline of
our proposed algorithm is as follows.

1. Compute the polar decomposition [17] 𝒀 = 𝑾𝒁 by the method in [19–21]. Here 𝑾 is a unitary
matrix and 𝒁 is a symmetric nonnegative definite matrix.

2. Project 𝒁 into the 2-norm ball, i.e., compute 𝒫𝜏 (𝒁) := argmin∥𝑿∥2≤𝜏 ∥𝑿−𝒁∥𝐹 , by a matrix iteration
(c.f. (23) and (24)).

3. Then 𝒟𝜏 (𝒀) = 𝒀 −𝑾𝒫𝜏 (𝒁).

There are only matrix inversions and additions are involved in our proposed algorithm. Both these
operations can be done by basic linear algebra subroutine (BLAS), which are highly optimized on computers
to achieve the best performance. Furthermore, we will show that the iterations involved in our algorithm
all converge quadratically. Therefore, the proposed algorithm is efficient in finding 𝒟𝜏 (𝒀). Numerical
experiments shows that our algorithm saves more than 50% CPU time from the algorithm via the full SVD.

The rest of the paper is organized as follows. In Section 2, we give the proposed algorithm. We first
illustrate our algorithm for scalars, and the matrix version can be viewed as a natural extension of the scalar
case. Numerical experiments are shown in Section 3. Finally, we conclude our paper in Section 4 and give
some discussions on possible extensions of our algorithm to compete with SVT via partial SVD.

2 Algorithms

In this section, we propose our algorithm to find 𝒟𝜏 (𝒀) that is defined in (1). We first transfer (1) to its
dual problem in Section 2.1. Then, we propose our algorithm. We first describe our algorithm for scalars in
order to see the idea clearly, and the matrix version can be seen as a natural extension of the scalar case.

4

2.1 Primal-dual reformulation of 𝒟𝜏 (𝒀)

We do not compute 𝒟𝜏 (𝒀) directly. Instead, we compute the projection 𝒫𝜏 (𝒀) of 𝒀 into the 2-norm ball,
i.e.,

𝒫𝜏 (𝒀) = arg min
∥𝑿∥2≤𝜏

∥𝑿 − 𝒀 ∥𝐹 , (6)

where ∥ ⋅ ∥2 is the 2-norm or the maximum singular value of a matrix. Since the 2-norm and the Frobenius
norm involved in (6) are all invariant under any unitary transformation, there is an explicit expression of
𝒫𝜏 (𝒀) as follows

𝒫𝜏 (𝒀) = 𝑼

⎡⎢⎣min(𝜎1, 𝜏)
. . .

min(𝜎𝑠, 𝜏)

⎤⎥⎦𝑽 𝑇 . (7)

In views of (5) and (7), we have the following relation between 𝒟𝜏 (𝒀) and 𝒫𝜏 (𝒀)

𝒀 = 𝒟𝜏 (𝒀) + 𝒫𝜏 (𝒀). (8)

Therefore, if we can find 𝒫𝜏 (𝒀), then 𝒟𝜏 (𝒀) can be obtained by (8). In other words, the problem of finding
𝒟𝜏 (𝒀) is transferred to the problem of finding the projection 𝒫𝜏 (𝒀).

Before presenting our algorithm for 𝒫𝜏 (𝒀), we remark that the relation (8) holds true not by chance.
There is some theory behind that equation. More precisely, (6) is the dual problem of (1), and (8) is the
relation between the primal and dual variables. Let us derive all these from the primal-dual perspective.
Recall that ∥ ⋅ ∥∗ and ∥ ⋅ ∥2 are the 1-norm and the infinity norm of the vector of singular values. Similar
to the vector 1-norm and infinity norm which are dual to each other, ∥ ⋅ ∥∗ and ∥ ⋅ ∥2 are dual to each other
under the inner product in matrix space. In particular, we can write the nuclear norm into an equivalent
form

∥𝑿∥∗ = max
∥𝒁∥2≤1

⟨𝑿,𝒁⟩, (9)

where ⟨𝑿,𝒁⟩ := trace(𝑿𝑇𝒁) is the inner product in the Hilbert space of matrices. By the definition (1),
𝒟𝜏 (𝒀) is a solution of min𝑿

1
2∥𝒀 −𝑿∥2𝐹 + 𝜏∥𝑿∥∗. Substituting (9) into this equation, we have that 𝒟𝜏 (𝒀)

is a solution of the primal problem

min
𝑿∈ℝ𝑚×𝑛

(
max

∥𝒁∥2≤1

1

2
∥𝒀 −𝑿∥2𝐹 + 𝜏⟨𝑿,𝒁⟩

)
. (10)

The dual problem is obtained by interchanging the min-max

max
∥𝒁∥2≤1

(
min

𝑿∈ℝ𝑚×𝑛

1

2
∥𝒀 −𝑿∥2𝐹 + 𝜏⟨𝑿,𝒁⟩

)
, (11)

which is equivalent to

max
∥𝒁∥2≤1

−1

2
∥𝒀 − 𝜏𝒁∥2𝐹 .

It is obvious that 1
𝜏𝒫𝜏 (𝒀) is a solution of the dual problem. The relation between the solutions of the

primal and dual problems is obtained by solving either the inner maximization problem in (10) or the inner
minimization problem in (11). This is exactly (8).

In summary, instead of solving the primal problem (1) directly, we first solve its dual problem (6) and
then use the primal-dual relation (8) to get the SVT 𝒟𝜏 (𝒀). This strategy was also used in [11] for the
Rudin-Osher-Fatemi model [33] in total variation based image denoising. There is a more general theory
for the decomposition (8). Indeed, 𝒟𝜏 (𝒀) is also known as the Moreau-Yosida proximal operator [22,28,29]
of the nuclear norm, and (8) is the Moreau’s decomposition of 𝒀 with respect to the nuclear norm and its
conjugate. We refer the interested readers to those references for more details.

5

2.2 Algorithm for scalars

Now we present our algorithm for finding 𝒫𝜏 (𝒀). To see our idea more clearly, we start from the simplest
case where 𝑛 = 𝑚 = 1, i.e., matrices are scalars. In this case, the problem of finding 𝒫𝜏 (𝒀) becomes: given
a number real 𝑦, we want to find

𝒫𝜏 (𝑦) = sign(𝑦) ⋅min{∣𝑦∣, 𝜏}. (12)

Since our final goal is for matrices where only addition, multiplication, and inversion are available, only those
operations are allowed in our algorithm for scalars. We treat the two factors sign(𝑦) and min{∣𝑦∣, 𝜏} in (12)
separately. Namely, our algorithm is divided into two steps as follows.

1. Find 𝑤 := sign(𝑦) and 𝑧 := ∣𝑦∣.
2. Find 𝑝 := 𝒫𝜏 (𝑧) = min{𝑧, 𝜏} and set 𝒫𝜏 (𝑦) = 𝑤 ⋅ 𝑝.

Both these two steps are done by Newton’s method, and we assume that 𝑦 ∕= 0.
For the first step, notice that 𝑤 takes the value either −1 or 1 which are each solutions of the equation

𝑤2 = 1. Applying Newton’s method (c.f. [19–21]) yields

𝑤𝑘+1 =
1

2
(𝑤𝑘 + 𝑤−1

𝑘). (13)

We have to find a proper initial guess 𝑤0 so that 𝑤𝑘 converges to the correct sign of 𝑦. The following lemma
ensures that (13) with 𝑤0 = 𝑦 always converges to the correct solution and the convergence rate is quadratic.

Lemma 1 Assume that 𝑦 ∕= 0. Let 𝑤 = sign(𝑦) and 𝑤0 = 𝑦. Then, 𝑤𝑘 generated by (13) is well-defined
and satisfies

∣𝑤𝑘+1 − 𝑤∣ ≤ min

{
1

2
∣𝑤𝑘 − 𝑤∣2, 1

2
∣𝑤𝑘 − 𝑤∣

}
.

Proof. We show the lemma by two cases, namely, 𝑦 > 0 and 𝑦 < 0. If 𝑦 > 0, then 𝑤 = 1. Since 𝑤0 = 𝑦 ∕= 0,
𝑤1 is well-defined and 𝑤1 = 1

2 (𝑤0 + 𝑤−1
0) ≥ 1

2 (2 ⋅ 𝑤0 ⋅ 𝑤−1
0) = 1. Therefore, 𝑤1 ∕= 0. Consequently, 𝑤2 is

well-defined, 𝑤2 ≥ 1, and 𝑤2 ∕= 0. Repeating this argument, we conclude that 𝑤𝑘 is well-defined and 𝑤𝑘 ≥ 1
for all 𝑘. Moreover, by (13),

∣𝑤𝑘+1 − 1∣ =
∣∣∣∣12(𝑤𝑘 + 𝑤−1

𝑘)− 1

∣∣∣∣ = 1

∣2𝑤𝑘∣ ∣𝑤𝑘 − 1∣2 ≤ 1

2
∣𝑤𝑘 − 1∣2,

and

∣𝑤𝑘+1 − 1∣ = 1

∣2𝑤𝑘∣ ∣𝑤𝑘 − 1∣2 =
1

2
(1− 1

𝑤𝑘
)∣𝑤𝑘 − 1∣ ≤ 1

2
∣𝑤𝑘 − 1∣.

The case of 𝑦 < 0 is proved analogously.

In the second step, in order to find 𝑝 = min{𝑧, 𝜏}, we first notice that 𝑝 must be a solution of the following
quadratic equation

(𝑝− 𝑧)(𝑝− 𝜏) = 0.

Again, we use Newton’s iteration to solve the above equation and obtain the following iteration:

𝑝𝑘+1 =
𝑝2𝑘 − 𝜏𝑧

2𝑝𝑘 − 𝑧 − 𝜏
. (14)

With the initial guess 𝑝0 = 0, we can show that 𝑝𝑘 always converges to the desired solution 𝑝 = min{𝑧, 𝜏}.
Moreover, the convergence rate is quadratic if 𝑧 ∕= 𝜏 and linear if 𝑧 = 𝜏 . The results are summarized into
the next lemma.

Lemma 2 Let 𝑧 = ∣𝑦∣ and 𝑝 = min{𝑧, 𝜏}. Set 𝑝0 = 0. Then, 𝑝𝑘 generated by (14) is well-defined and
satisfies

6

∙ When 𝑧 ∕= 𝜏 :

∣𝑝𝑘+1 − 𝑝∣ ≤ min

{
1

∣𝜏 − 𝑧∣ ∣𝑝𝑘 − 𝑝∣2, 1
2
∣𝑝𝑘 − 𝑝∣

}
, (15)

∙ When 𝑧 = 𝜏 :

∣𝑝𝑘+1 − 𝑝∣ ≤ 1

2
∣𝑝𝑘 − 𝑝∣. (16)

Proof. We first prove by induction that 0 ≤ 𝑝𝑘 < 𝑝 for all 𝑘, and therefore, 2𝑝𝑘 − 𝜏 − 𝑧 < 0 and 𝑝𝑘+1 is well
defined. For this purpose, it is obvious that 0 ≤ 𝑝0 < 𝑝. Assume that 𝑝𝑘 ∈ [0, 𝑝). Now we show 𝑝𝑘+1 ∈ [0, 𝑝).
Since 𝑝𝑘 ∈ [0, 𝑝), both the denominator and the nominator in (14) are negative. So 𝑝𝑘+1 > 0. The upper
bound of 𝑝𝑘+1 is derived as follows. If 𝑧 > 𝜏 , then 𝑝 = 𝜏 and, therefore,

𝑝𝑘+1 − 𝑝 =
𝑝2𝑘 − 𝜏𝑧

2𝑝𝑘 − 𝑧 − 𝜏
− 𝜏 =

(𝑝𝑘 − 𝜏)2

2𝑝𝑘 − 𝑧 − 𝜏
=

(𝑝𝑘 − 𝑝)2

2𝑝𝑘 − 𝑧 − 𝜏
< 0. (17)

If 𝑧 < 𝜏 , then 𝑝 = 𝑧 and, therefore,

𝑝𝑘+1 − 𝑝 =
𝑝2𝑘 − 𝜏𝑧

2𝑝𝑘 − 𝑧 − 𝜏
− 𝑧 =

(𝑝𝑘 − 𝑧)2

2𝑝𝑘 − 𝑧 − 𝜏
=

(𝑝𝑘 − 𝑝)2

2𝑝𝑘 − 𝑧 − 𝜏
< 0. (18)

Consequently, 𝑝𝑘+1 < 𝑝 and 𝑝𝑘+1 ∈ [0, 𝑝).
It remains to show (16). By (17) and (18), we have

∣𝑝𝑘+1 − 𝑝∣ = −1

2𝑝𝑘 − 𝑧 − 𝜏
∣𝑝𝑘 − 𝑝∣2 ≤ −1

2𝑝− 𝑧 − 𝜏
∣𝑝𝑘 − 𝑝∣2 =

1

∣𝑧 − 𝜏 ∣ ∣𝑝𝑘 − 𝑝∣2

and

∣𝑝𝑘+1 − 𝑝∣ = 1

2

𝑝𝑘 − 𝑝

𝑝𝑘 − (𝑧 + 𝜏)/2
∣𝑝𝑘 − 𝑝∣ ≤ 1

2
∣𝑝𝑘 − 𝑝∣.

2.3 Algorithm for matrices

Now we derive our algorithm for finding 𝒫𝜏 (𝒀). It can be seen as a natural extension of the algorithm for
scalars in the last subsection. This technique, extending Newton’s iteration for scalars to matrices, is widely
used in computing functions of matrices; see an review in [21].

Similar to the scalars case, our algorithm for matrices is divided into two steps. In the first step, we
factorize the matrix 𝒀 into the product of its “signum” and “absolute value”; then, in the second step, we
project the “absolute value” onto the 2-norm ball. The matrix correspondence of the “signum” and “absolute
value” factorization is called the polar decomposition [17, 19]. It factors a given matrix into the product of
a unitary matrix, which is the “signum” of the matrix, and a symmetric nonnegative definite matrix, which
is the “absolute value” of the matrix. More precisely, for the matrix 𝒀 , we factor it into

𝒀 = 𝑾𝒁, where 𝑾 is unitary, 𝒁 is symmetric nonnegative definite. (19)

With the polar decomposition, now we transfer the problem of finding 𝒫𝜏 (𝒀) defined in (6) to a problem of
finding the projection of 𝒁 onto the 2-norm ball. Since all the norms involved in (6) are unitary invariant,
(6) is equivalent to

𝒫𝜏 (𝒀) = 𝑾 ⋅ arg min
∥𝑿∥2≤𝜏

∥𝒁 −𝑿∥2𝐹 = 𝑾𝒫𝜏 (𝒁), where 𝒀 = 𝑾𝒁. (20)

Therefore, finding 𝒫𝜏 (𝒀) is identical to finding 𝑾𝒫𝜏 (𝒁). With 𝒫𝜏 (𝒀), we use the relation (8) to get the
SVT 𝒟𝜏 (𝒀). We write the outline of our algorithm for the SVT 𝒟𝜏 (𝒀) as follows. The details of the two
subroutines are discussed in the successive two subsections.

7

Algorithm 1: Algorithm for SVT without SVD.
Input: matrix 𝒀
Output: SVT 𝒟𝜏 (𝒀)
(1) Compute the polar decomposition 𝒀 = 𝑾𝒁 defined in (19).
(2) Compute the projection 𝒟𝜏 (𝒁) = argmin∥𝑿∥2≤𝜏 ∥𝒁 −𝑿∥𝐹 .
(3) Set 𝒫𝜏 (𝒀) = 𝒀 −𝑾𝒫𝜏 (𝒁).

2.3.1 Compute the Polar Decomposition

In this subsection, we give the algorithm to compute the polar decomposition (19). The algorithm is
from [19, 20]. The polar decomposition has an explicit expression. Let 𝒀 = 𝑼Σ𝑽 𝑇 be the SVD of 𝒀 .
Then, 𝒀 = 𝑾𝒁, where 𝑾 = 𝑼𝑽 𝑇 ∈ ℝ𝑚×𝑛 and 𝒁 = 𝑽 Σ𝑽 𝑇 ∈ ℝ𝑛×𝑛, is the polar decomposition of 𝒀 .
Therefore, to get the polar decomposition of 𝒀 , one can of course use SVD. However, we do not intend to
use SVD to compute it since it is generally time consuming.

We temporarily assume that the matrix 𝒀 is nonsingular and square. We use an iteration which is a
natural extension of (13) to compute the polar decomposition of 𝒀 . The iteration is

𝑾𝑘+1 =
1

2

(
𝑾𝑘 +𝑾−𝑇

𝑘

)
, 𝑘 = 0, 1, . . . , 𝑾0 = 𝒀 , (21)

where 𝑾−𝑇
𝑘 stands for the inverse and transpose of 𝑾𝑘. This algorithm is essentially the algorithm proposed

in [19, 20]. It was also shown there that the iteration always converges quadratically to the polar factor.
Here we give a very brief proof of the theorem for completeness.

Theorem 1 Assume that 𝒀 is square and nonsingular. Let 𝑾 be the polar factor of 𝒀 in (19). Then 𝑾𝑘

generated by (21) is well-defined and satisfies

∥𝑾𝑘+1 −𝑾 ∥2 ≤ min

{
1

2
∥𝑾𝑘 −𝑾 ∥22,

1

2
∥𝑾𝑘 −𝑾 ∥2

}
.

Proof. Let 𝒀 = 𝑼Σ𝑽 𝑇 be the SVD of 𝒀 . Then 𝑾0 = 𝑼Σ𝑽 𝑇 has the left singular vectors 𝑼 and the
right singular vectors 𝑽 . Consequently, 𝑾1 = 1

2 (𝑾0 + 𝑾−𝑇
0) = 𝑼(12 (Σ + Σ−1))𝑽 𝑇 . Therefore, 𝑾1 has

the same singular vectors as 𝒀 . Repeating this argument, we find that 𝑾𝑘 for any 𝑘 has the same left and
right singular vectors as 𝒀 . As a result, (21) changes only the singular values which are governed by (13).
The lemma follows immediately from Lemma 1.

When the matrix 𝒀 is singular or rectangular, the iteration (21) is not available since 𝑾0 = 𝒀 is not
invertible. Following [19], we reduce 𝒀 to a nonsingular square matrix by using a complete orthogonal
decomposition (COD). More specifically, given an arbitrary matrix 𝒀 ∈ ℝ𝑚×𝑛, we can decompose it into

𝒀 = 𝑶

[
𝑹 0
0 0

]
𝑸𝑇 , (22)

where 𝑶 ∈ ℝ𝑚×𝑚 and 𝑸 ∈ ℝ𝑛×𝑛 are orthogonal matrices, and 𝑹 ∈ ℝ𝑠×𝑠 is an invertible upper triangular
matrix. The COD can be done by, e.g., the QR decomposition; see [20] for details. Once we obtain 𝑹,

we have 𝒟𝜏 (𝒀) = 𝒀 − 𝑶

[𝒫𝜏 (𝑹) 0
0 0

]
𝑸𝑇 . Therefore, we only need to find the projection 𝒫𝜏 (𝑹) for a

nonsingular square matrix. So, we apply the iteration (21) by replacing 𝒀 by 𝑹. Of course, in addition to
that, we need to change Step 3 in Algorithm 1 accordingly in order to get 𝒟𝜏 (𝒀). We omit the details here.

Anyway, we get back to assume that 𝒀 is a nonsingular square matrix. In order to further accelerate
the convergence of (14), the matrix is scaled in each iteration, as done in [19, 20]. The final algorithm to
compute the polar decomposition is described in Algorithm 2.

8

Algorithm 2: Algorithm for the polar decomposition 𝒀 = 𝑾𝒁 [19,20].
Input: Matrix 𝒀
Output: the polar factor 𝑾 , the symmetric nonnegative matrix 𝒁
(1) If necessary, compute COD of 𝒀 in (22) and set 𝑾0 = 𝑹; otherwise, set 𝑾0 = 𝒀 .
(2) for 𝑘 = 0 to maximum number of iteration
(3) Compute 𝑾−𝑇

𝑘

(4) Set 𝛾𝑘 =
(∥𝑊−1

𝑘 ∥1∥𝑊−1
𝑘 ∥∞

∥𝑊𝑘∥1∥𝑊𝑘∥∞

)1/4

(5) Set 𝑾𝑘+1 = 1
2 (𝛾𝑘𝑾𝑘 + 𝛾−1

𝑘 𝑾−𝑇
𝑘)

(6) if ∥𝑾𝑘+1 −𝑾𝑘∥𝐹 ≤ 𝜖∥𝒀 ∥𝐹
(7) return 𝑾 = 𝑾𝑘+1 and 𝒁 = 𝑾 𝑇𝒀

2.3.2 Compute the projection 𝒫𝜏 (𝒁)

To find 𝒫𝜏 (𝒁) = argmin∥𝑿∥2≤𝜏 ∥𝒁 −𝑿∥𝐹 , we extend (14) to the matrix case. The iteration is

𝑷𝑘+1 = (2𝑷𝑘 −𝒁 − 𝜏𝑰)−1(𝑷 2
𝑘 − 𝜏𝒁), 𝑘 = 0, 1, 2, . . . , 𝑷0 = 0. (23)

Similar to the scalar case, the iteration (23) always converges to 𝒫𝜏 (𝒁). Furthermore, when 𝒁 − 𝜏𝑰 is
invertible, the convergence rate is quadratic; while when 𝒁 − 𝜏𝑰 is not invertible, the convergence rate is
linear. We summarize the results into the following theorem and give an outline of the proof.

Theorem 2 Let 𝒀 = 𝑾𝒁 be the polar decomposition and 𝑷 = 𝒫𝜏 (𝒁). Then 𝑷𝑘 generated by (23) is well
defined and satisfies

∙ When 𝒁 − 𝜏𝑰 is invertible:

∥𝑷𝑘+1 − 𝑷 ∥2 ≤ min

{
∥(𝒁 − 𝜏𝑰)−1∥2 ⋅ ∥𝑷𝑘 − 𝑷 ∥22,

1

2
∥𝑷𝑘 − 𝑷 ∥2

}
,

∙ When 𝒁 − 𝜏𝑰 is not invertible:

∥𝑷𝑘+1 − 𝑷 ∥2 ≤ 1

2
∥𝑷𝑘 − 𝑷 ∥2.

Proof. Since 𝒀 = 𝑾𝒁 is the polar decomposition of 𝒀 , the matrix 𝒁 is a symmetric nonnegative definite
matrix. Let 𝒁 = 𝑽 ′Σ′(𝑽 ′)𝑇 be the eigen-decomposition of 𝒁. Then, Σ′ is a diagonal matrix with nonneg-
ative diagonals. So, 𝒀 = (𝑾𝑽 ′)Σ′(𝑽 ′)𝑇 is the SVD of 𝒀 . This implies that the eigenvalues of 𝒁 are the
singular values of 𝒀 , and the eigenvectors are the right singular values of 𝒀 . Recall that the SVD of 𝒀 is
𝒀 = 𝑼Σ𝑽 𝑇 . In order to save notations, we write 𝒁 = 𝑽 Σ𝑽 𝑇 .

By induction on (23), one can easily see that 𝑷𝑘 for any 𝑘 is a symmetric matrix whose eigenvalues are
the same as 𝒁. Therefore, in (23), we keep the eigenvectors and change only the eigenvalues of 𝑷𝑘 as 𝑘
varies. Moreover, the changing of the eigenvalues is governed by (14). The theorem follows immediately
from this observation.

The above theorem indicates that the iteration converges very fast to 𝒫𝜏 (𝒁) due to the quadratic con-
vergence rate. In the following, we discuss several issues to further accelerate the convergence, to reduce the
computational cost per iteration, and to enhance the numerical stability.

First of all, in each iteration of (23), we need one matrix-matrix product 𝑷 2
𝑘 and one inversion (2𝑷𝑘−𝒁−

𝜏𝑰)−1, which both are computed in 𝑂(𝑛3) operations. The remaining operations are matrix additions and
subtractions, whose computational costs are only 𝑂(𝑛2). Therefore, the main computations of (23) are the
matrix-matrix product and the inversion. By carefully checking the iteration, we find that the matrix-matrix
product is not necessary in each iteration. In fact, we can rewrite the iteration in (23) into an equivalent
formulation

𝑷𝑘+1 =
1

2
𝑷𝑘 +

1

4
𝒁 +

3𝜏

4
𝑰 − (2𝑷𝑘 −𝒁 − 𝜏𝑰)−1(𝜏𝑷𝑘 − 1

4
𝒁2 − 3𝜏2

4
𝑰). (24)

9

In the above formulation, the only matrix-matrix product 𝒁2 is a constant during the whole iteration and
we only need to compute it once at the beginning of the iteration. Therefore, the inversion (2𝑷𝑘−𝒁−𝜏𝑰)−1

is the only 𝑂(𝑛3) operation that needs to be computed in each step. By this trick, the computational cost
is reduced greatly compared to (23).

Secondly, notice that all matrices involved in the iteration (24) are symmetric. We can take advantage of
this to further reduce the computational cost per step. More specifically, since the matrices (2𝑷𝑘−𝒁−𝜏𝑰)−1

and 𝑷𝑘 − 1
4𝒁

2− 3𝜏2

4 𝑰 are all symmetric and have the same eigenvectors as shown in the proof of Theorem 2,

their product (2𝑷𝑘−𝒁−𝜏𝑰)−1(𝜏𝑷𝑘− 1
4𝒁

2− 3𝜏2

4 𝑰) shares the same eigenvectors with them and, therefore, is
symmetric. This, in turn, implies that only half of the entries are required to be computed in the inversion.
This helps us further reduce half of the computational cost per iteration.

Finally, we use a “deflation” technique [34] to accelerate the convergence of (23) (or equivalently (24))
and enhance its numerical stability. As shown in Theorem 2, the convergence speed of (23) depends on
∥(𝒁 − 𝜏𝑰)−1∥2, i.e., the reciprocal of the gap between the threshold 𝜏 and the singular values of 𝒀 . The
smaller the gap is, the slower the algorithm converges. In the extreme case where 𝜏 is a singular value
of 𝒀 , the convergence rate degenerate from quadratic to linear as stated in Theorem 2. In order to get a
faster convergence speed of (23), we need to enlarge the gap between the threshold and the singular values.
Another reason that we have to enlarge this gap is for the numerical stability. As seen in (23), we need to
invert the matrix 2𝑷𝑘 − 𝒁 − 𝜏𝑰 in each iteration. Recall that 𝑷𝑘 converges to 𝑷 , whose eigenvalues are
2𝑝(𝜎𝑖) − 𝜎𝑖 − 𝜏 . If the gap between the threshold and the singular values is very small, then there exists
an 𝑖 such that 𝑝(𝜎𝑖), 𝜎𝑖 and 𝜏 are very close to each others. Therefore, the matrix 2𝑷𝑘 − 𝒁 − 𝜏𝑰 becomes
more and more close to be singular as the iteration goes on. As a result, the error contained in 𝑷 2

𝑘 − 𝜏𝒁
is amplified by the inversion of 2𝑷𝑘 − 𝒁 − 𝜏𝑰. This, in turn, makes the computation of 𝑷𝑘+1 numerically
unstable when it is close to 𝑷 . Therefore, for a faster convergence and a more stable numerical scheme, we
require that the gap between the threshold 𝜏 and the singular values of 𝒀 is not small.

In order to enlarge the gap between the threshold and the singular values, we use a technique similar to
deflation in eigenvalue computations. The idea is to remove those singular values around the threshold 𝜏 .
From the definition of 𝒫𝜏 (𝒁), we see that 𝒫𝜏 (𝒁) is separable according to its eigenvectors. More precisely,
𝒫𝜏 (𝒁) has the following property. Let the eigen decomposition of 𝒁 be 𝑽 Σ𝑽 𝑇 , and we partition 𝑽 into
𝑽 = [𝑽1 𝑽2] and Σ into Σ = diag(Σ1,Σ2). So we have

𝒁 = 𝑽1Σ1𝑽
𝑇
1 + 𝑽2Σ2𝑽

𝑇
2 . (25)

With this decomposition, we have

𝒫𝜏 (𝒁) = 𝒫𝜏 (𝑽1Σ1𝑽
𝑇
1) + 𝒫𝜏 (𝑽2Σ2𝑽

𝑇
2). (26)

Based on this property, our deflation technique is as follows. Once we obtained the matrix “absolute value”
𝒁, we computes its eigenvalues around the threshold 𝜏 and their corresponding eigenvectors, and denote
the eigenvalues be the diagonals of Σ1 and the eigenvectors be 𝑽1. Then, we can write 𝒁 into (25), where
Σ2 and 𝑽2 are the eigenvalues far away from the threshold 𝜏 and their associated eigenvectors. According
to (26), we can compute the projection of these two parts separately. The computation of 𝒫𝜏 (𝑽1Σ1𝑽

𝑇
1) is

straightforward. In order to get 𝒫𝜏 (𝑽2Σ2𝑽
𝑇
2), we use the iterative algorithm (24). Since Σ2 contains only

eigenvalues which are far from the threshold, the iteration converges quadratically which is very rapid due
to Theorem 2. Moreover, the iteration is numerically more stable since the matrices to be inverted is well
conditioned.

Combining all together, the algorithm for computing 𝒫𝜏 (𝒁) is summarized in the following algorithm.

10

Figure 1: Singular values distribution of a 500× 500 Gaussian random matrix

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Singular values

Threshold τ

Algorithm 3: Algorithm for computing 𝒫𝜏 (𝒁)
Input: a symmetric nonnegative definite matrix 𝒁, a real number 𝛿
Output: the projection 𝑷 = 𝒫𝜏 (𝒁)
(1) Compute the eigenvalues Σ1 of 𝒁 in the interval [𝜏(1 − 𝛿), 𝜏(1 + 𝛿)], and their

associated eigenvectors 𝑽1.
(2) Set 𝒁 := 𝒁 − 𝑽1Σ1𝑽

𝑇
1 , and 𝑷𝑘 = 0.

(3) for 𝑘 = 0 to maximum number of iterations

(4) Compute 𝑷𝑘+1 = 1
2𝑷𝑘 + 1

4𝒁 + 3𝜏
4 𝑰 − (2𝑷𝑘 −𝒁 − 𝜏𝑰)−1(𝜏𝑷𝑘 − 1

4𝒁
2 − 3𝜏2

4 𝑰)
(5) if ∥𝑷𝑘+1 − 𝑷𝑘∥𝐹 ≤ 𝜖∥𝒁∥𝐹
(6) return 𝑷 = 𝑷𝑘+1 + 𝑽1𝒫𝜏 (Σ1)𝑽

𝑇
1

3 Numerical Experiments

In this section, we give some numerical results to show that our proposed algorithm is very efficient to
compute the SVT 𝒟𝜏 (𝒀). The algorithm is implemented in Matlab using mex programming. The computer
is with an Intel Pentium 4 CPU at 3.00GHz and 1.49GB of memory, and the Matlab version is 7.6.0(R2008a).
As mentioned in the introduction section, we do not intend to compete our algorithm with SVT via partial
SVD, but with SVT via the full SVD which is implemented by calling the Matlab build-in function “svd”.
Our numerical examples show that our proposed algorithm saves more than 50% of computational time from
SVT via the full SVD.

First, we test our algorithm for square matrices. The test matrices are random Gaussian matrices, whose
entries are randomly drawn from the standard Gaussian distribution. As predicted by Theorem 2, the
computational speed of our algorithm depends on the singular values distribution, in particular, on the gap
between the threshold 𝜏 and the singular values. Therefore, we plot the singular values of test matrices and
the threshold 𝜏 in Figure 1. We choose 𝜏 =

√
𝑛/2. We see that there is no obvious gap between 𝜏 and

the singular values, so the SVT for Gaussian random matrices are not treated as easy example problems for
our algorithm. Even so, our algorithm still performs very well. In Table 1, we list the number of iterations
required for both the two steps in Algorithm 1, where we stop the iterations whenever the relative change
of two successive steps is less than 10−6. We remark that, though 10−6 is used in the stopping, the relative
difference between the final result and 𝒫𝜏 (𝒀) via the full SVD is of precision of order 10−10; see this in
Table (1). From Table 1, we see that both steps of our algorithm converges very fast: they need only 7
and 9 iterations respectively to converge, and the number of iterations keeps constant as the matrix size
increases. The numbers of eigen pairs removed in the deflation step, where 𝛿 = 0.03, in Algorithm 3 are
also listed in Table 1. To compare our algorithm with the method via the full SVD, we report in Table
1 the computational time of both these two algorithms. We see that our algorithm saves more than 50%
computational time from the method via the full SVD. For example, when 𝑛 = 2000, the computational
time for our algorithm is 194 seconds, and that for SVT via the full SVD is 81.8 seconds.

Next, we test our algorithm for rectangular and singular matrices respectively. The results are shown

11

Table 1: Computational results for nonsingular square matrices. All results are averages of 10 runs.

Our algorithm (Alg. 1) Full SVD Relative
𝑛

iters in Alg. 2 # eig’s removed iters in Alg. 3 total time (s) total time (s) difference
500 7 9.5 9 1.6 2.9 7.4× 10−11

1000 7 18.8 9 11.1 22.8 1.0× 10−10

1500 7 27.2 9 35.6 77.6 8.9× 10−11

2000 7 37.2 9 81.8 194 7.1× 10−11

2500 7 46.1 9 153 361 8.4× 10−11

3000 7 55.4 9 254 657 8.2× 10−11

Table 2: Computational results for rectangular and singular matrices. All results are averages of 10 runs.

Our algorithm (Alg. 1) Full SVD Relative
size

iters in Alg. 2 # eig’s removed iters in Alg. 3 total time (s) total time (s) difference
1000× 500 5 12.4 9 1.8 4.2 9.5× 10−11

2000× 1000 5 25 9 12.8 33.5 1.1× 10−10

3000× 1500 5 37.9 9 40.3 112 9.0× 10−11

1000× 1000 7 15.9 9 9.8 18.9 8.3× 10−11

2000× 2000 7 32 9 69.5 161 9.1× 10−11

3000× 3000 7 44.7 9 221 545 7.9× 10−11

in Table 2. We use rectangular Gaussian random matrices as test rectangular matrices, and we choose
𝜏 =

√
max{𝑚,𝑛}/2. For singular test matrices, we generate them by 𝒀 = 𝑴𝐿𝑴𝑅, where 𝑴𝐿 and 𝑴𝑅

are Gaussian random matrices of size 𝑛 × 𝑟 and 𝑟 × 𝑛 respectively. We choose 𝑟 = 0.9𝑛 and 𝜏 = 𝑛/2.
Due to the singular values distribution of Gaussian random matrices, these test problems are not treated as
easy problems for our algorithm. From Table 2, we see again that our algorithm takes a small number of
iterations to converge and saves more than 50% computational time from the method via the full SVD.

4 Conclusion and Discussion

In this paper, we proposed an algorithm to compute the singular value thresholding (SVT) for a given matrix.
The algorithm is in two steps, namely, the polar decomposition step and the projection step, and both steps
are done by Newton’s method. Numerical experiments show that our algorithm is much faster than the
method via the full singular value decomposition (SVD). Our algorithm saves more than 50% computational
time from the method via the full SVD.

For future research, we may develop similar algorithms to compete with the method via partial SVD.
One possible way is to use the Krylov subspace method. More precisely, we can first project the matrix 𝒀
into the Krylov subspace via the Lanczos bidiagonalization procedure to get 𝑺𝑇𝒀 𝑻 = 𝑩, where 𝑺 and 𝑻
are “tall” and “thin” orthonormal matrices and 𝑩 is a bidiagonal matrix; then we apply the algorithm in
this paper to compute 𝒟𝜏 (𝑩); finally we have 𝒟𝜏 (𝒀) ≈ 𝑺𝒟𝜏 (𝑩)𝑻 𝑇 . The difficulty is how to determine the
dimension of the Krylov subspace. If the dimension is too high, the computational speed will be slow, and
if the dimension is too low, the approximate precision will be not good.

Another possible future research topic is how to integrate the algorithm proposed in this paper with
those SVT-based nuclear norm minimization algorithms. One may develop automatic schemes to choose
what algorithm to be used for SVT according to the available rank information of the iteration matrices.
We leave all these as future research topics.

12

References

[1] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[2] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion.
SIAM J. Optimiz., 20(4):1956–1982, 2010.

[3] J.-F. Cai, S. Osher, and Z. Shen. Convergence of the linearized Bregman iteration for ℓ1-norm mini-
mization. Math. Comp., 78(268):2127–2136, 2009.

[4] J.-F. Cai, S. Osher, and Z. Shen. Linearized Bregman iterations for compressed sensing. Math. Comp.,
78(267):1515–1536, 2009.

[5] J.-F. Cai, S. Osher, and Z. Shen. Split Bregman methods and frame based image restoration. Multiscale
Modeling & Simulation, 8:337–369, 2009.

[6] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Arxiv preprint
arXiv:0912.3599, 2009.

[7] E. Candès and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 2009.

[8] E. Candès and Y. Plan. Tight oracle bounds for low-rank matrix recovery from a minimal number of
random measurements. Arxiv preprint arXiv:1001.0339, 2010.

[9] E. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computa-
tional Mathematics, 9(6):717–772, 2009.

[10] E. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. arXiv, 903,
2009.

[11] A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imaging Vision,
20(1-2):89–97, 2004. Special issue on mathematics and image analysis.

[12] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul., 4(4):1168–1200 (electronic), 2005.

[13] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Comm. Pure Appl. Math., 57(11):1413–1457, 2004.

[14] D. L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform. Theory, 41(3):613–627, 1995.

[15] M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization with applications
to hankel and euclidean distance matrices. In American Control Conference, 2003. Proceedings of the
2003, volume 3, 2003.

[16] T. Goldstein and S. Osher. The split Bregman method for L1 regularized problems. SIAM Journal on
Imaging Sciences, 2(2):323–343, 2009.

[17] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.

[18] E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for ℓ1-minimization: Methodology and
convergence. SIAM Journal on Optimization, 19:1107–1130, 2008.

[19] N. Higham. Computing the polar decomposition – with applications. SIAM J. Sci. Stat. Comput.,
7(4):1160–1174, 1986.

[20] N. Higham and R. Schreiber. Fast polar decomposition of an arbitrary matrix. SIAM J. Sci. Stat.
Comput., 11(4):648–655, 1990.

13

[21] N. J. Higham. Functions of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2008. Theory and computation.

[22] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms. I, volume 305 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1993. Fundamentals.

[23] R. Larsen. PROPACK: Software for large and sparse SVD calculations.
http://soi.stanford.edu/rmunk/PROPACK.

[24] Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method for exact recovery of
a corrupted low-rank matrices. Mathematical Programming, submitted, 2009.

[25] Y. Liu, D. Sun, and K. Toh. An implementable proximal point algorithmic framework for nuclear norm
minimization. Preprint, July, 2009.

[26] Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with application
to system identification. SIAM Journal on Matrix Analysis and Applications, 31(3):1235–1256, 2009.

[27] S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for matrix rank mini-
mization. Mathematical Programming, to appear.

[28] J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad.
Sci. Paris, 255:2897–2899, 1962.

[29] J.-J. Moreau. Proximitéet dualité dans un espace hilbertien. Bull. Soc. Math. France, 93:273–299, 1965.

[30] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for total
variation-based image restoration. Multiscale Model. Simul., 4(2):460–489 (electronic), 2005.

[31] S. Osher, Y. Mao, B. Dong, and W. Yin. Fast linearized Bregman iteration for compressive sensing and
sparse denoising. Commun. Math. Sci., 8(1):93–111, 2010.

[32] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Review, to appear.

[33] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys. D,
60:259–268, 1992.

[34] Y. Saad. Numerical methods for large eigenvalue problems. Manchester University Press, 1992.

[35] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization
Methods and Software, 11(1):625–653, 1999.

[36] K. Toh, M. Todd, and R. Tutuncu. SDPT3 – a Matlab software package for semidefinite programming.
Optimization Methods and Software, 11(12):545–581, 1999.

[37] K.-C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least
squares problems. Pacific J. Optimization, to appear.

[38] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for ℓ1-minimization with
applications to compressed sensing. SIAM J. Imaging Sci., 1(1):143–168, 2008.

[39] X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating direction methods.
preprint, 2009.

[40] X. Zhang, M. Burger, and S. Osher. A unified primal-dual algorithm framework based on Bregman
iteration. J. Sci. Comput., to appear.

14

