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Abstract

After many years of study, the subject of image processing on the plane, or
more generally in Euclidean space is well developed. However, more and more
practical problems in different areas inspire us to consider imaging on surfaces
beyond imaging on Euclidean domains. Several approaches, such as implicit
representation approaches and parametrization approaches, are investigated
about image processing on surfaces. Most of these methods require certain
preprocessing to convert image problems on surfaces to image problems in
Euclidean spaces. In this work, we use differential geometry techniques to
directly study image problems on surfaces. By using our approach, all plane
image variation models and their algorithms can be naturally adapted to
study image problems on surfaces. As examples, we show how to generalize
Rudin-Osher-Fatemi (ROF) denoising model [39] and convexified Chan-Vese
(CV) [10] segmentation model on surfaces, and then demonstrate how to
use popular algorithms to solve the total variation related problems on sur-
faces. This intrinsic approach provides us a robust and efficient method to
directly study image processing, and in particular, total variation problems
on surfaces without requiring any preprocessing.

Keywords: differential geometry, surface imaging, total variation, image
denoising, image segmentation.

1. Introduction

The variational method in image processing is quite an important ap-
proach. After decades of development, many beautiful results are explored,
such as variational models of image denosing, image inpainting, image seg-
mentation [39, 12, 11, 10, 13] etc. However, most results focus on image pro-
cessing in Euclidean space, in particular, image processing on the 2D plane.

Preprint submitted to June 4, 2010



With the development of 3D data acquisition technology and the requirement
of various applications, there has been increasing interest in studying image
processing and variational problems on surfaces or general manifolds. For
instance, in fields like computer vision, computer graphics, geometry model-
ing, medical imaging, computational anatomy, geo-physics and 3D cartoon,
it is critical to consider images on 3D surfaces instead of images only on 2D
planes.

Several approaches are explored to study image processing on surfaces
by using the variational PDE method. To the best of our knowledge, there
are, roughly speaking, two classes of approaches to study surfaces imaging,
which reflect two different surface representations. One class is using implicit
representation of surfaces. S. Osher, G. Sapiro, M. Bertalmio, L. T. Cheng
et al. [5, 29, 4, 36, 7] view a closed surface as a zero level set of a signed
distance function on a Euclidean domain or a narrow band of the given sur-
face. They approximate differential operators on surfaces by combining the
standard Euclidean differential operators with projection along the normal
direction. The biggest advantage of implicit representation of surfaces is that
one can easily handle topological changes under surface evolution. However,
it has its own limitations. For instance, fast algorithms in Euclidean cases
can not be easily adapted to surface cases by implicit method; For open sur-
faces, or surfaces with complicated structures, like human’s cortical surfaces
with many close and deep folding parts, it is not easy to obtain their im-
plicit representations. In addition, the cost of the implicit representations is
the pre-step to extend all data on the definition domain of implicit function.
These additional increasing data might decrease the computation speed. An-
other class is using explicit representation of surfaces, namely, surfaces are
represented by polygon meshes, in particular, triangle meshes. J. Stam, L.
Lopez-Perez, X. Gu, L. Lui et al. [41, 32, 28, 33] introduce either standard
patch-wise parametrization or conformal parametrization to the given sur-
face, then differential operators can be computed under the corresponding
parametrization. However, the computation of a parametrization is a compli-
cated pre-processing for arbitrary given surfaces, especially for those surfaces
with complicated structures or high genus. To conclude, the above methods
mainly focus on converting problems on surfaces to problems in Euclidean
space. They require pre-processing, either extending data to the narrow band
of the given surface or finding a parametrization of the given surface.

Our strategy is different from the above methods. To avoid the need for
pre-processing, we will focus on studying variational imaging models directly
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on the given surface instead of converting them to be problems in Euclidean
spaces. Specially, we take two well-known models, namely the ROF denoising
model and the CV segmentation model, as examples to explain our strategy.
Related work and applications of the intrinsic geometry method can be found
in a series work of M. Meyer, M. Desbrun, P. Schroder, A. Barr, G. Xu, C.
Bajaj and U. Clarenz, et al. [37, 19, 2, 42, 16]. However, our contribution
in this work is using intrinsic geometry method to study the total variation
related image processing problems on surfaces and fast algorithms. The most
natural extension of the total variation (TV) on surfaces, which is also well-
defined on any n-dimensional manifold, is given by M. Ben-Artzi and P. G.
LeFloch in [3]. By their natural definition of the total variation on surfaces,
we prove the analogous boundary perimeter formula and co-area formula of
TV on surfaces, which illustrate the suitability of using TV to study image
processing on surfaces. After this, we generalize the ROF denosing model and
the CV segmentation model on surfaces as two examples. To implement the
above models on triangulated surfaces, we approximate surface gradient and
divergence operators by using their intrinsic differential geometry definition.
Furthermore, we represent the action of these operators as the multiplication
of sparse matrix to simplify our computation. As a consequence of this in-
trinsic geometry method, we can easily adapt many well-known algorithms
in the total variation related problems in Euclidean cases to the general-
ization total variation image models on surfaces. As examples, we discuss
the split Bregman iteration method [27, 26] and Chambolle’s dual method
[9, 6] on surfaces. In our experience, there are at least two advantages of
our intrinsic method. First, we do not need to conduct pre-processing, such
as extending all data on the narrow band in the implicit representation or
finding a good parametrization in explicit representation. For instance, in
the implicit method, when we process high resolution data, like a cortical
surface, dealing with large amount of additional data will waste too much
computation time; in the parametrization method, when we process surfaces
with complicated structures, it is not easy to obtain a good parametriza-
tion. Our direct method can be expected to overcome these limitations. In
addition, fast algorithms in Euclidean cases can be easily adapted to solve
the total variational problems on surfaces due to the intrinsic method. Sec-
ond, by this intrinsic method, it is easy to handle open surfaces and surfaces
with complicated geometric or topological structures, which can not be easily
processed by implicit methods or parametrization methods. A brief compar-
ison among different methods is given in the Table 1. To explain everything

3



method principle Advantage Disadvantage

level set represen-
tation

view a surface as a
zero level set of a func-
tion

easy to handle topological
changes when dealing with
surface evolution

all data need to be ex-
tended to the narrow band
of surface, hard to adapt
fast algorithms in Eu-
clidean cases

parametrization
method

parameterize patches
of a surface by Eu-
clidean coordinates

differential operators are
easy to compute after find-
ing parametrization

not easy to obtain
parametrization for an
arbitrary surface, hard to
handle topological change

intrinsic
geometry method

computation pro-
cessed on the given
surface itself by
differential geometry
techniques

can deal with any surface
without any preprocessing,
easy to adapt fast algo-
rithms in Euclidean cases

hard to handle topological
changes

Table 1: comparison among different methods

clearly, we are here just focusing on closed surface cases. One can also study
open surfaces with this general technique.

The rest of the paper is organized as follows. In Section 2, we give a
brief review of the intrinsic definition of gradient, divergence and Laplace-
Beltrami operators on a given surface, then provide their discretization and
sparse matrix representations. After that, in Section 3, we first generalize
the concept of TV on surfaces, and demonstrate the analogous version of the
boundary perimeter formula and co-area formula for TV on surfaces. Then,
we introduce a general form of variational models on surfaces and take the
ROF denoising model, the total variational inpainting model, the CV seg-
mentation model as examples to show how to generalize variational models
of image processing on planes to variational models of image processing on
surfaces. The numerical algorithms of ROF denoising and CV segmentation
on surfaces are then presented in Section 4. In particular, we use the split
Bregman iteration and the dual method on surfaces to solve above mod-
els on surfaces. Numerical comparisons with the conformal parametrization
method and the level set method are given in Section 5. Meanwhile, we
demonstrate applications of surface image denoising to geometric processing
and surface image segmentation to cortical surface parcellation in computa-
tional anatomy. Finally, conclusions are made in Section 6.
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2. Background of Differential Geometry

To generalize image processing on surfaces, it is necessary to involve the
geometry of the ground surface in the processing. Fortunately, standard
differential geometry provides us a natural way to handle surface geometry.
Therefore, we would like to review a little bit of differential geometry concepts
before we discuss image processing on surfaces. In this section, we will in-
troduce the intrinsic definition of gradient, divergence and Laplace-Beltrami
operators on a given surface, then we will discuss their discretization and
sparse matrix representation.

2.1. Differential operators on surfaces

Let (M, g) be a two dimensional closed Riemannian manifold. For any
point p ∈M and its local coordinate chart {U, x = (x1, x2)}, we can represent
the metric g(p) = (gij(x))i,j=1,2. Then, one can define the surface gradient,
divergence, and Laplacian-Beltrami operators as the following:

∇Mf =

2∑
i,j=1

gij
∂f

∂xi
∂xj (1)

divMV =
1√
G

2∑
i=1

∂

∂xi
(
√
Gvi), for V =

2∑
i=1

vi∂xi (2)

△Mf = divM (∇Mf) =
1√
G

2∑
i=1

∂

∂xi
(
√
G

2∑
j=1

gij
∂f

∂xj
) (3)

where (gij) is the inverse matrix of (gij) and G = det(gij).
For any two functions f, g : M → R, and any tangent vector field V =∑2

i=1 v
i ∂
∂xi , the divergence theorems on surfaces similar as in Rn can be

describe by: ∫
M
(divMV)fds = −

∫
M

V · ∇Mfds (4)∫
M
(△Mf)gds = −

∫
M
∇Mf · ∇Mgds (5)

Details about the above differential geometry concepts can be obtained in
many textbook on differential geometry, for example [31].

Moreover, one can define the l1 and l2 norm, respectively, as follows:

||f ||1 =
∫
M
|f |ds, ||f ||2 = (

∫
M

f2ds)1/2, ⟨f, g⟩ =
∫
M

fgds (6)
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|V| = (

2∑
i,j=1

gijv
ivj)1/2, ||V||1 =

∫
M
|V|ds, ||V||2 =

∫
M
|V|2ds, (7)

2.2. Discretization of differential operators

With the mathematical definition of differential operators given above, we
can consider their numerical approximation in a discrete data setting. The
surface data structure we focus on is the triangle mesh surface representation.
Namely, given surfaceM in R3, it is represented as a triangle meshM = {P =
{pi}Ni=1, T = {Tl}Ll=1}, where pi ∈ R3 is the i-th vertex and Tl ∈ N3 represents
indices of three vertices of the l-th triangle. Since the definition of surface
gradient, divergence operator are pointwise, we can consider the pointwise
first order numerical approximation of them in the first ring of each vertex.
The idea of our approximation can be realized as two steps. We first compute
the discretization on each triangle by their definition given in (1),(2), then
take a weighted average in the first ring of each of the vertex in terms of the
neighbor triangle areas.

First of all, we show the operators discretization on a given triangle Tl =
{p0, p1, p2}. In the discrete case, we have a function f = {f(p0), f(p1), f(p2)}
and a vector field V = {V(p0),V(p1),V(p2)} defined on each vertex re-
spectively. With the barycentric coordinates {(x1, x2, 1 − x1 − x2) | 0 6
x1, x2, x1 + x2 6 1} of Tl, any point p ∈ Tl, the linear interpolation of f,V in
Tl can be given by:

p = x1(p1 − p0) + x2(p2 − p0) + p0
f(p) = x1(f(p1)− f(p0)) + x2(f(p2)− f(p0)) + f(p0)
V(p) = x1(V(p1)− V(p0)) + x2(V(p2)− V(p0)) + V(p0)

(8)

Then we have ∂x1 = p1 − p0, ∂x2 = p2 − p0, and the metric matrix of Tl

would be:

g = (gi,j)i,j=1,2 =

(
∂x1 · ∂x1 ∂x1 · ∂x2

∂x2 · ∂x1 ∂x2 · ∂x2

)
and (gi,j)i,j=1,2 = g−1 (9)

where · is the dot product in R3. We then have the following discretization:

∇d
Tl
f(p0) =

2∑
i,j=1

gij
∂f

∂xj
∂xi = (f(p1)− f(p0), f(p2)− f(p0))g

−1

(
∂x1

∂x2

)
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= (f(p1)− f(p0), f(p2)− f(p0))

(
∂x1 · ∂x1 ∂x1 · ∂x2

∂x2 · ∂x1 ∂x2 · ∂x2

)−1(
p1 − p0
p2 − p0

)
(10)

We next discretize the divergence operator on the triangle Tl. Suppose
V = v1∂x1 +v2∂x2 is a vector field on Tl. Then the coefficients v1, v2 are given
by: (

v1
v2

)
= g−1

(
V · ∂x1

V · ∂x2

)
(11)

Differentiate both sides of above equality, we have:(
∂

∂x1 v1
∂

∂x2 v2

)
=

(
g11(V(p1)− V(p0)) · ∂x1 + g12(V(p1)− V(p0)) · ∂x2

g21(V(p2)− V(p0)) · ∂x1 + g22(V(p2)− V(p0)) · ∂x2

)
(12)

Since
√
G is constant on each triangle, we can obtain the discretization of

the divergence operator on triangle Tl by directly using its definition in (2)

divdTl
V(p0) =

1√
G

2∑
i=1

∂

∂xi
(
√
Gvi) =

∂

∂x1
(v1) +

∂

∂x2
(v2) (13)

Now, we can discuss the discretization of the gradient and divergence
operators at each vertex by taking a weighted average in the first ring of
each vertex in terms of triangle areas. Namely, for any function f and vector
field V defined on triangle mesh {V = {pi}Ni=1, T = {Tl}Ll=1}, we use the
following discretization of gradient and divergence operators:

∇d
Mf(pi) =

1∑
l Area(Tl)

∑
l

Area(Tl)∇d
Tl
f(p0) (14)

divdMV(pi) =
1∑

l Area(Tl)

∑
l

Area(Tl)div
d
Tl
V(p0) (15)

where l goes through all triangles in the first ring of pi as showed in above
figure.

In the rest of the paper, we will also use ∇M , and divM to denote their
discretization operators respectively.

Remark 1. We need to point out that we are not the first group to consider
similar discretization of surface gradient and divergence. Other different dis-
cretization methods and their approximation analysis can be found in a se-
ries works of M. Meyer, M. Desbrun, P. Schroder, A. Barr and G.Xu et.al
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[37, 19, 42]. In this paper, our contribution is using above discrete differential
geometry technique to solve variational problems on surfaces, especially the
total variation models and their related image processing problems. In Section
4.3, We will use finite element to compute surface Laplacian to avoid approx-
imating the second order operators. Therefore, we just need to approximate
gradient and divergence operators.

2.3. Sparse matrix representations of differential operators

With above discretization of differential operators, one can compute the
gradient and divergence on any surface. In addition, we observe that one can
write down the sparse matrix representations of gradient and divergence.
Namely, these two surface differential operators can be realized as matrix
multiplications. It turns out that the computation speed can be improved a
lot with the sparse matrix representations of differential operators. In prin-
ciple, all linear operators on surface can be written as matrix multiplications
with similar technique.

Before we discuss the sparse representations of differential operators, we
would like to introduce some notation as follows:

We write
−→
C = (−→cij),

−→
D = (

−→
dij) as a vector matrix, i.e. each entry of

−→
C ,

−→
D is a vector in R3 instead of a number, let A = (aij) be a number matrix
as usual and λ be a real number. We define the following multiplications:

(λ
−→
D)ij = λ

−→
dij , (

−→
DA)ij =

∑
k

−→
dikakj (16)

(
−→
C • −→D)ij =

∑
k

−→cik ·
−→
d kj , (

−→
C ×−→D)ij =

∑
k

−→cik ×
−→
d kj (17)

where ·,× in the right hand side is the standard dot, cross product in R3

respectively.
We first write down the matrix representation of gradient and divergence

on each triangle. From (10) and (13), we have:

∇Tl
f(p0) = g11(f(p1)− f(p0))∂x1 + g12(f(p1)− f(p0))∂x2

+g21(f(p2)− f(p0))∂x1 + g22(f(p2)− f(p0))∂x2 (18)

DivTl
V(p0) = g11(V(p1)− V(p0)) · ∂x1 + g12(V(p1)− V(p0)) · ∂x2

+g21(V(p2)− V(p0)) · ∂x1 + g22(V(p2)− V(p0)) · ∂x2 (19)
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Remember ∂x1 = p1 − p0 and ∂x2 = p2 − p0. If we write

−→w p0
Tl

= −(g11 + g21)(p1 − p0)− (g12 + g22)(p2 − p0)
−→w p1

Tl
= g11(p1 − p0) + g12(p2 − p0)

−→w p2
Tl

= g21(p1 − p0) + g22(p2 − p0)−→
W Tl

= (−→w p0
Tl
,−→w p1

Tl
,−→w p2

Tl
)

fTl
= (f(p0), f(p1), f(p2))

t

VTl
= (V(p0),V(p1),V(p2))t

(20)

then we have, {
∇Tl

f(p0) =
−→
W Tl

fTl

divTl
V(p0) =

−→
W Tl

• VTl

(21)

By plugging the above formula (21) in (14) and (15), we can write the
matrix representation of surface gradient and divergence. For a given vector
field V = (V(p1), · · · ,V(pN))t and a given function f = (f(p1), · · · , f(pN))t
on the triangulated surface M = {P = {pi}Ni=1, T = {Tl}Ll=1} , the sparse

differentiation matrix
−→
W is given as follows:

−→
W (pi, pj) = 0 if pi, pj are not two vertex of the same triangle
−→
W (pi, pi) =

1∑
l Area(Tl)

∑
l Area(Tl)

−→w pi
Tl
, i = 1, · · · , N

−→
W (pi, pj) =

1∑
l Area(Tl)

(Area(Tl1)
−→w pj

Tl1
+Area(Tl2)

−→w pj
Tl2

) ,

if Tl1 and Tl2 are two common triangles of pi and pj

(22)

where l goes through the first ring of pi. Then we have:{
∇Mf =

−→
Wf

divMV =
−→
W • V

(23)

Remark 2. To the best of our knowledge, we are the first to write down sur-
face gradient and divergence as matrix product in the above compact form.
The biggest advantage of this sparse matrix representation is to speed up the
computation. In this paper, our main concern is solving the total variation
related imaging models. To solve total variational related problems, iterative
methods are commonly used. With our above surface differential operator
matrix representation, we only need to compute a series of sparse matrix
products instead of computing gradient and divergence directly by their defi-
nition in each iteration. It is clear that we can save much more time in this
way.
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3. The Total Variation and Image Processing Models on Surfaces

In variational models of image processing on the plane, total variation
plays an important role as a regularizing term. One can expect that the
analogue of total variation on surfaces and similar variational models should
also be useful in image processing on surfaces. In this section, we first de-
scribe the generalization of the total variation concept on surfaces, and then
we prove it has similar boundary perimeter formula and co-area formula as
on plane cases. After these preparations, we can consider the analogous vari-
ational models on surfaces. In particular, we explain the generalization of
ROF denoising and CV segmentation as two examples. One can use the same
technique to generalize other plane image models to surface image models.

3.1. The total variation on surfaces
For a given surface M , denote the tangent bundle of M by TM and write

the set of C1 sections of TM , i.e. the set of C1 tangent vector fields on M ,
by Γ(TM). For any function φ ∈ L1(M), the total variation (TV) of φ is
given by [3]:

TV (φ) = sup
V∈Γ(TM),|V|61

∫
M

φdivMVds (24)

Let’s write BV (M) for all functions in L1(M) with finite TV s. If φ is a C1

function, then TV (φ) =
∫
M
|∇Mφ|ds. Therefore, we also use

∫
M
|∇Mφ|ds to

denote the total variation of φ for convenience.
The importance of the total variation in imaging on 2D planes is that: 1.

TV does not penalize edges of image due to the co-areaformula; 2. TV can
also control the geometry of boundary because of the boundary perimeter
formula. The rigorous proof of these two formulas can be found in [24, 25].
With the similar proof as in Euclidean cases, we can still have the analogue of
these two formulas on surfaces. This tells us that it is reasonable to consider
the total variation when we study image processing on surfaces. Moreover,
we can similarly adapt other properties of total variation in Euclidean spaces
to surfaces by using differential geometry techniques and functional analysis
on manifolds.

Let E ⊂ M be a measurable subset in M and χE be its characteristic
function. We can similarly define the perimeter Per(E) of E by TV (χE).
Since the definition of the total variation on surfaces is a natural extension
from the Euclidean case, we can similarly prove the following theorem by
combining with differential geometry:
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Theorem 1 (boundary perimeter formula). Let E be a connected sub-
set in M with C2 boundary, then

Per(E) =

∫
M
|∇MχE |ds = length(∂E) (25)

[proof]: Remember

Per(E) = TV (χE) = sup
V∈Γ(TM),|V|61

∫
M

χEdivMVds

Let −→n be the unit normal vector of ∂E. Then, for any V ∈ Γ(TM) with
|V| 6 1, we have

|
∫
M

χEdivMVds| = |
∫
E
divMVds| = |

∫
∂E

V · −→n dl| 6
∫
∂E

1dl = length(∂E)

=⇒ Per(E) 6 length(∂E).

On the other hand, since ∂E is C2 smooth, one can easily construct a tangent
vector field

−→
V0 ∈ Γ(TM), such that

−→
V0|∂E = −→n . Then,∫

M
χEdivM

−→
V0ds =

∫
E
divM

−→
V0ds =

∫
∂E

−→
V0 · −→n dl =

∫
∂E

1dl = length(∂E)

=⇒ Per(E) > length(∂E)

Therefore, Per(E) = length(∂E) �
Furthermore, we also have the analogue of the co-area formula. To prove

co-area formula for bounded variation functions on surfaces, we need to use
its smooth version as follows. It is a standard result in differential geometry.
The main idea of the proof is simply change of variables [14].

Theorem 2 (Smooth Co-area formula). Given φ ∈ C∞(M), we write
Et = {p ∈M | φ(p) > t }. Then

TV (φ) =

∫
M
|∇Mφ|ds =

∫ +∞

−∞
Per(Et)dt (26)

Now, we prove the co-area formula on surfaces. The idea of the proof is
similar to Euclidean case in [24]. We prove it as follows by using the result
of Theorem.2
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Theorem 3 (Co-area formula). Given φ ∈ TV (M), we write Et = {p ∈
M | φ(p) > t }. Then

TV (φ) =

∫
M
|∇Mφ|ds =

∫ +∞

−∞
Per(Et)dt (27)

[Proof]: For any real number t, we define a L1 measurable function bt on M
by:

bt(p) =

{
χEt(p), if t > 0
−χEc

t
(p) = χEt(p)− 1, if t < 0

Given an arbitrary point p ∈M ,∫ +∞

−∞
bt(p)dt =

{ ∫ φ(p)
0 χEt(p)dt =

∫ φ(p)
0 1dt = φ(p), if φ(p) > 0

−
∫ 0
φ(p) χEc

t
(p)dt = −

∫ 0
φ(p) 1dt = φ(p), if φ(p) < 0

Hence, for any V ∈ Γ(TM) with |V| 6 1, by Fubini’s theorem∫
M

φdivMVds =

∫
M

(∫ +∞

−∞
btdt

)
divMVds

=

∫ +∞

−∞

(∫
M

btdivMVds
)
dt

=

∫ +∞

−∞

(∫
M

χEtdivMVds
)
dt

6
∫ +∞

−∞
Per(Et)dt

where
∫
and

∫
denote lower and upper Lebesgue integrals respectively. Then

we have:

TV (φ) 6
∫ +∞

−∞
Per(Et)dt.

On the other hand, one can find a sequence {φk} ⊂ C∞(M), such that:

lim
k→∞

∫
M
|φ− φk| ds = 0 (a)

lim
k→∞

∫
M
|∇Mφk| ds = TV (φ)
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Denote Ek
t = {x ∈ M | φk > t}, then from the smooth co-area formula on

surfaces, we have:∫
M
|∇Mφk| ds =

∫ +∞

−∞
Per(Ek

t )dt, for each k

From (a), it is clear that there is a zero measure subset N ⊂ R, such that
for any t ∈ R−N ,

lim
k→∞

∫
M
|χEt − χEk

t
| ds = 0 (b)

Given t ∈ R−N , if TV (χEt) <∞, (b) implies

lim
k→∞

TV (χEk
t
) = TV (χEt)

Thus for any ϵ > 0, there is a integer k0, such that for k > k0,

TV (χEt) 6 TV (χEk
t
) + ϵ

This implies:

Per(Et) = TV (χEt) 6 lim
k→∞

inf TV (χEk
t
) (c)

If TV (χEt) =∞, (c) is also true. Now by Fatou’s lemma, we have:∫ +∞

−∞
Per(Et)dt 6

∫ +∞

−∞
lim
k→∞

inf TV (χEk
t
)dt

6 lim
k→∞

inf

∫ +∞

−∞
TV (χEk

t
)dt

= lim
k→∞

inf TV (φk) = TV (φ)

— To conclude, we have:

TV (φ) 6
∫ +∞

−∞
Per(Et)dt 6

∫ +∞

−∞
Per(Et)dt 6 TV (φ)

Therefore: TV (φ) =
∫ +∞
−∞ Per(Et)dt �

In the following two subsections, as two examples, we will generalize ROF
denoising and CV segmentation to show how to adapt variational models on Eu-
clidean domains to variational models on surfaces by differential geometry tech-
niques.
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3.2. Variational models on surfaces

Similar to variational problems in the Euclidean space Rn, a general setting of
variational problems on a surface M can be written as:

min
φ∈S
J (φ) +H(φ) (28)

where S is certain function space on M , J and H are two convex functions on S.
In particular, let S = BV (M) and J (φ) = TV (φ) as we discussed in Section 3.1,
the general variational problem (28) becomes the total variation related problems
on the surface M . More specifically, we list the surface analogous forms of several
popular total variational models as follows:
A. The ROF model on surfaces

The Rudin-Osher-Fatemi (ROF) image denoising model was first introduced
by Rudin et al.[39] in plane image cases. Similarly, let I : M → R be an image
on a surface M . Let J (φ) =

∫
M |∇Mφ|ds,H(φ) = µ

2

∫
M (φ− I)2ds, the analogous

ROF image denoising model on the surface M can be represented as follows:

min
φ∈BV (M)

E1(φ) =

∫
M
|∇Mφ|ds+ µ

2

∫
M
(φ− I)2ds (29)

More general, let H(φ) = µ
2

∫
M (Kφ− I)2ds the analogue of the total variational

image deblurring model can be written as:

min
φ∈BV (M)

E2(φ) =

∫
M
|∇Mφ|ds+ µ

2

∫
M
(Kφ− I)2ds (30)

where K is a linear blurring kernel operator on M .
B. The total variation inpainting model

The total variation inpainting model was first introduced by Chan and Shen [11].
Similarly, assume I : M → R is an image on the surface M . Let D ⊂M be the in-
painting domain of I andH(φ) =

∫
M−D(φ−I)

2ds. The analogous total variational
inpainting model on surfaces can be written as the following:

min
φ∈BV (M)

E3(φ) =

∫
M
|∇Mφ|ds+ µ

2

∫
M−D

(φ− I)2ds (31)

C. CV segmentation and its convexified version
The CV segmentation model was first introduced by Chan and Vese [12] for

segmentation of images in the Euclidean space. For the surface case, suppose
I : M → R is an image on surface M . We also represent a closed curve C on M

14



as the zero level let of a function φ : M → R. The CV segmentation model on M
can be given by:

min
φ,c1,c2

∫
M
|∇MH(φ)|ds+ µ

∫
M
(c1 − I)2H(φ)ds+ µ

∫
M
(c2 − I)2(1−H(φ))ds (32)

where H denotes the one dimensional Heaviside function.
However, the energy of CV model is not convex, it might get ”stuck” at certain

local minima. Chan et al. [10] propose another convexified CV(CCV) segmenta-
tion model based on a convex energy. It can be adapted to a segmentation model
on surfaces. Namely, fix µ ∈ (0, 1) and let Ω+(φk) = {p ∈ M | φk(p) > µ}
and Ω−(φk) = {p ∈ M | φk(p) < µ}, the whole procedure of optimizing CCV
segmentation would be iterating the following two steps until the steady state:

1. Solve φk+1 = arg min
06φ61

∫
M |∇Mφ|+ µ

∫
M φ((ck1 − I)2 − (ck2 − I)2)ds

2. Update ck+1
1 =

∫
Ω+(φk+1) Ids, c

k+1
2 =

∫
Ω−(φk+1) Ids

Thanks to differential geometry, we can easily adapt the total variational im-
age models to surface by using differential geometry terminology. With similar
techniques, many other popular variational PDE models in Euclidean space can
be generalized on surfaces.

4. Numerical Algorithms for Total Variation Related Problems on
Surfaces

To solve the above minimization problems, a direct method could be used is
gradient descent method to find the minimizer. However, it has its own limitation
of computation speed. As an advantage of the intrinsic method, it is easy to adapt
popular fast algorithms to the above total variation related problems on surfaces.
As examples, we will focus on solving the ROF denoising model and the CCV
segmentation models on surfaces by adapting two fast algorithms, namely the
split Bregman iteration method and Chambolle’s dual projection method. Similar
approaches can be used to solve other relevant models on surfaces.

4.1. Primal approaches: Split Bregmen iterations

Bregman iteration is first introduced by S. Osher et al.[38]. Later, Tom Gold-
stein et al. [27, 26] introduce the split Bregman method to compute ROF and
global convex segmentation problems in plane image cases. The convergence anal-
ysis of this algorithm is given by J.F. Cai et al. in [8]. This algorithm is much
faster than gradient descent. Here we can adapt their algorithms to solve the total
variation related problems on surfaces as follows.
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We consider a general total variation related optimization problem on surfaces:

min
φ

∫
M
|∇Mφ|ds+H(φ) (33)

where H(·) is a convex function.
Let Γ(TM) be the linear space of all tangent vector fields on M. We also

introduce the auxiliary variable V ∈ Γ(TM), and consider the following equivalent
optimization problem:

min
φ,V∈Γ(TM)

||V||1 +H(φ) subject to V = ∇Mφ (34)

where ||V||1 is defined in (7). The corresponding unconstrained problem would
be:

(φ∗,V∗) = arg min
φ,V∈Γ(TM)

||V||1 +H(φ) +
λ

2
||V−∇Mφ||22 (35)

Then, we can apply the Bregman iteration on the above problem, namely, we
should solve a sequence of the following problems:

(φk,Vk) = arg min
φ,V∈Γ(TM)

||V||1 +H(φ) +
λ

2
||V−∇Mφ−−→b k||22 (36)

−→
b
k+1

=
−→
b
k
+∇Mφk − Vk (37)

To solve (36), we can iteratively minimize with respect to φ and V separately:

φk+1 = argmin
φ
H(φ) + λ

2
||Vk −∇Mφ−−→b k||22 (38)

Vk+1 = arg min
V∈Γ(TM)

||V||1 +
λ

2
||V−∇Mφk+1 −−→b k||22 (39)

For (39), the solution is also similar to plane image cases, which can be obtained
by the following shrinkage:

Vk+1 = max{|∇Mφk+1 +
−→
b
k| − 1/λ, 0} ∇Mφk+1 +

−→
b
k

|∇Mφk+1 +
−→
b
k|

(40)

To summarize, the whole procedure of using split Bregman iterations for the
minimization problem (33) on the surface M is the following:

1. Let V0 =
−→
b
0
= 0, Do
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2. Update φk+1 = argmin
φ
H(φ) + λ

2 ||V
k −∇Mφ−−→b k||22;

3. Update Vk+1 = max{|∇Mφk+1 +
−→
b
k| − 1/λ, 0} ∇Mφk+1+

−→
b

k

|∇Mφk+1+
−→
b

k

|
;

4. Update
−→
b
k+1

=
−→
b
k
+∇Mφk+1 − Vk+1;

5. while (”not converge”)

Fact 1. If the initial auxiliary variables
−→
b
0
,V0 are two tangent vector fields on

M , then each
−→
b
k
,Vk will also be tangent fields on M .

[Proof]: By the definition of step 3 and 4 in above algorithm, and using induction
on k, the fact is obviously true. �

When we implement the above algorithms, the surface we consider is an em-
bedding surface in R3, thus a tangent vector on the surface can also be viewed as

a vector in R3. By Fact 1, if the initial data
−→
b
0
,V0 are two tangent vector fields

on the surface, the results of each iteration are automatically two tangent vector
fields of the given surface, even if we view the tangent vector field as a vector field
in R3.
A. Split Bregman iteration for ROF deoising model on surfaces.

In ROF denoising model (31), H(φ) = µ
2 ||φ− I||22. In this case, the solution of

the minimization problem (38) should satisfy:

(µId− λ△M )φk+1 = µI + λ divM (
−→
b
k − Vk) (41)

Therefore, the split Bregman iteration for ROF denoising model (31) would be
given by:

1. Let V0 =
−→
b
0
= 0, Do

2. Solve (µId− λ△M )φk+1 = µI + λ divM (
−→
b
k − Vk);

3. Update Vk+1 = max{|∇Mφk+1 +
−→
b
k| − 1/λ, 0} ∇Mφk+1+

−→
b

k

|∇Mφk+1+
−→
b

k

|
;

4. Update
−→
b
k+1

=
−→
b
k
+∇Mφk+1 − Vk+1;

5. while (”not converge”)

B. Split Bregman iterations for CCV segmentation model on surfaces
The key step in CCV segmentation model is solving

φk+1 = arg min
06φ61

∫
M
|∇Mφ|+ µ

∫
M

φrkds (42)
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where rk = (ck1 − I)2 − (ck2 − I)2. In this case, we have H(φ) = µ
∫
M φrkds. The

minimization problem (38) becomes:

φk+1 = arg min
06φ61

λ

2
||Vk −∇Mφ−−→b k||22 + µ

∫
M

φrkds (43)

Since the above minimization is a quadratic problem with constraint 0 6 φ 6 1,
its solution can be obtained by:

solve: △Mφk+1 =
µ

λ
rk + divM (Vk −−→b k

)

update: φk+1(pi) ←− min{max{φk+1(pi), 0}, 1} (44)

Therefore, the split Bregman iteration for CCV segmentation model would be
given by:

1. Let V0 =
−→
b
0
= 0, Do

2. Update rk = (ck1 − I)2 − (ck2 − I)2;

3. Solve △Mφk+1 = µ
λr

k + divM (Vk −−→b k
),

φk+1(pi)←− min{max{φk+1(pi), 0}, 1};

4. Update Vk+1 = max{|∇Mφk+1 +
−→
b
k| − 1/λ, 0} ∇Mφk+1+

−→
b

k

|∇Mφk+1+
−→
b

k

|
;

5. Update
−→
b
k+1

=
−→
b
k
+∇Mφk+1 − Vk+1;

6. Update ck+1
1 =

∫
Ω+(φk+1)

Ids, ck+1
2 =

∫
Ω−(φk+1)

Ids;

7. while (”not converge”)

4.2. Dual approaches: Chambolle’s projection methods

The discussion based on the variational model (33) with split Bregman iteration
method, can be viewed as the primal approach to solve the total variation related
problems on surfaces. Meanwhile, based on the definition of the total variation,
there has been increasing interests on dual approaches. One famous dual algorithm
is Chambolle’s projection method of ROF denoising model [9]. It offers us a fast
and easy-coding algorithm to solve ROF denoising model. Later, X. Bresson et
al [6] propose an algorithm based on Chambolle’s projection method to solve CCV
model for plane image problems. Here, we can similarly apply the Chambolle’s
projection methods to solve the total variation related optimization problems on
surfaces. Remembering the definition of the total variation on surfaces in (24), we
consider the following variational problem:

min
φ

sup
V∈Γ(TM),|V|61

∫
M

φdivMVds+H(φ) (45)
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By the min-max theorem in optimization theory [21], we can interchange the min
and max, to obtain the following equivalent optimization problem:

max
V∈Γ(TM),|V|61

min
φ

∫
M

φdivMVds+H(φ) (46)

A. Dual method for ROF denoising model on surfaces
In ROF denoising model (31), H(φ) = µ

2 ||φ − I||22. In this case, we need to
consider the following problem:

max
V∈Γ(TM),|V|61

min
φ

∫
M

φdivMVds+
µ

2
||φ− I||22 (47)

The solution of the inner minimization problem can be solved exactly as φ =
I − 1

µdivMV. Plug in this back to the above problem, we have the following
maximization problem:

arg max
V∈Γ(TM),|V|61

∫
M
(I − 1

µ
divMV)divMVds+

µ

2
|| 1
µ
divMV||22

= arg max
V∈Γ(TM),|V|61

µ

2
(||I||22 − ||

1

µ
divMV− I||22)

= arg min
V∈Γ(TM),|V|61

|| 1
µ
divMV− I||22 (48)

As indicated in Chambolle’s method [9], we can also solve the last minimization
problem by the iterative method as follows:

Vn+1 =
Vn + τ∇M (divMVn − µI)

1 + τ |∇M (divMVn − µI)|
(49)

The convergence analysis in Euclidean cases can be easily adapted to surface cases
to prove the convergence.
B. Dual method for CCV segmentation model on surfaces

The key step in CCV segmentation model is solving

min
06φ61

TV (φ) + µ

∫
M

φrkds (50)

where rk = (ck1− I)2− (ck2− I)2. It has the same set of minimizers as the following
unconstrained problem [10]:

min
φ

TV (φ) + µ

∫
M
(φrk + αν(φ))ds (51)
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where ν(ξ) = max{0, 2|ξ − 1/2| − 1}, provided that α > µ
2 ||r

k(x)||L∞ . As the
algorithms proposed in [1, 6], we can similarly consider convex regularization of
the above minimization problem on surfaces as follows:

min
φ,v

TV (φ) +
θ

2
||φ− v||22 + µ

∫
M
(vrk + αν(v))ds (52)

whose solution can be approached by iteratively updating φ, v by the following
two steps:

φl+1 = argmin
φ

TV (φ) +
θ

2
||φ− vl||22 (53)

vl+1 = argmin
v

θ

2
||φl+1 − v||22 + µ

∫
M
(vrk + αν(v))ds (54)

By the dual algorithm of ROF model, the minimizer of (53) can be obtained by
φl+1 = vl − 1

θdivMV, where V can be iteratively solved by

Vn+1 =
Vn + τ∇M (divMVn − θvl)

1 + τ |∇M (divMVn − θvl)|
(55)

and the solution of (54) is given by vl+1 = min{max{φl+1 − µ
θ r

k, 0}, 1}. All
convergence proofs of this algorithm on surface optimization problem (50) can be
naturally adapted from the proofs in Euclidean cases in [6]. To conclude, the
algorithm of dual method to solve CCV segmentation model on surfaces is given
as follows:

1. Let v0 = 0,V0 = 0, Do

2. Update rk = (ck1 − I)2 − (ck2 − I)2;

3. Do

4. Do Vn+1 = Vn+τ∇M (divMVn−θvl)
1+τ |∇M (divMVn−θvl)| while (|Vn+1 − Vn| > ϵ)

5. Update φl+1 = vl − 1
θdivMVn+1;

6. Update vl+1 = min{max{φl+1 − µ
θ r

k, 0}, 1}
7. while (max{|φl+1 − φl|, |vl+1 − vl|} > ϵ)

8. Update ck+1
1 =

∫
Ω+(φk+1)

Ids, ck+1
2 =

∫
Ω−(φk+1)

Ids;

9. while (”not converge”)

To summarize, we want to point out that the successful generalization of the
image models and their related algorithms from Euclidean cases to surface cases
is because of differential geometry. Due to the power of differential geometry, a
natural extension of Euclidean geometry, we can generalize the concept of the total
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variation on surfaces, then ROF denoising model and CCV segmentation model
and their related algorithms are adapted on surfaces as examples. Moreover, one
can also prove similar convergence results as Euclidean cases. With the same
technique, the generalization of fast algorithms is not necessarily limited to split
Bregman iteration and dual projection method, one can similarly generalize other
fast algorithms such as primal-dual methods [43, 23] and so on.

4.3. Implementation

So far, we extend all formulas on surfaces. It is easy to observe that each
abstract formula is quite consistent with plane image cases due to differential ge-
ometry terminologies. At the first glance, the only difference is that we replace all
Euclidean gradient, divergence, Laplace operators and Euclidean integrals by their
corresponding surface forms. However, since the surface metric has been involved
in the above surface differential operators and surface integrals, the mathemati-
cal meaning of each term is quite different and also numerical implementation is
different.
A. Surface differential operators

As we described in section 2.2, the data structure of each surface is given by
a triangle mesh M = {P = {pi}Ni=1, T = {Tl}Ll=1}, where pi ∈ R3 is the i-th
vertex and Tl is the l-th triangle. Any function f defined on M can be written as
f = {f(pi)}Ni=1. Since M is a embedding surface in R3, then any tangent vector
V on M can be written as V = {V(pi)}Ni=1, where each V(pi) can be viewed as
a vector in R3. Let

−→
W be the differentiation vector matrix defined in section 2.3

associated with the triangle mesh M . Then we can easily compute the surface
gradient and divergence by the matrix product as the discussion in section 2.3:

∇Mf =
−→
Wf ; divMV =

−→
W • V (56)

Once we can compute the surface gradient and divergence, then the Chambolle’s
projection method to compute ROF denoising model and CCV segmentation model
on surface can be easily implemented, since the algorithms of Chambolle’s projec-
tion method only need surface gradient and divergence.
B. Surface PDEs

The next step is to implement the split Bregman iterations on surfaces. There
are two PDEs related to the Laplace operator we need to solve on surfaces. One
is to solve the equation (41) for ROF denoising:

(µId− λ△M )φk+1 = µI + λ divM (
−→
b
k − Vk) (57)

another one is the equation (44) for CCV segmentation. small

△Mφk+1 =
µ

λ
rk + divM (Vk −−→b k

) (58)
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Since above two equations are defined on a triangulated surface, we can not
use the fast solver, fast fourier transform (FFT), to solve it as we deal with the
same type of equations in 2D regular domain. One possible method is by using
the discretization of △M given by Meyer, Desbrun, Xu et al.[37, 19, 42], then use
Gauss-Seidel, conjugate gradient to solve them. However, the approximation of
Laplace-Beltrami operator on an arbitrary triangulated surface depends on the
quality of triangle mesh. To avoid discretizing the second order differential oper-
ator, we are here proposing to use finite element methods to solve equations (41)
and (44).

We choose the linear elements {ei}Ni=1 on triangle mesh {V = {pi}Ni=1, T =
{Tl}Ll=1}, such that ei(pj) = δi,j and write S = SpanR{ei}Ni=1. Then the discrete
version of the continuous variational problem of (41) is to find a φk+1 ∈ S, such
that

µ
∑
l

∫
Tl

φk+1ej + λ
∑
l

∫
Tl

∇Mφk+1∇Mej =
∑
l

∫
Tl

Θkej , ∀ej ∈ S. (59)

where Θk = µI + λ divM (
−→
b
k − Vk).

If we write 
φk+1 =

∑N
i xiei, Θk =

∑N
i θiei

Q = (aij)N×N , aij =
∑

l

∫
Tl
∇Mei∇Mej

K = (bij)N×N , bij =
∑

l

∫
Tl
eiej

(60)

and if we also write φk+1 = (x1, · · · , xN )t and Θk+1 = (θ1, · · · , θN )t with abused
notations, then to solve φk+1 is equivalent to solving the following linear equations:

(µK + λQ)φk+1 = KΘ (61)

One fact we would like to point out here is:

Fact 2. K is a symmetric positive definite sparse matrix and Q is a symmetric
nonnegative definite sparse matrix.

[Proof]: Symmetry ofQ,K is easy to see. For any f = (f1, · · · , fN )t, g = (g1, · · · , gN )t,
if we also write f =

∑
fiei and g =

∑
giei, then fKgt =

∫
M fg and fQgt =∫

M ∇Mf∇Mg. So K is positive definite and Q is nonnegative definite. �
Therefore, when µ and λ are both positive, the matrix (µK+λQ) is a symmetric

positive definite sparse matrix. The solution φk+1 of (61) can be obtained by using
conjugate gradient or Gauss-Seidel.
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Similarly, the discrete version of the continuous variational problem of (44) is
to find a φk+1 ∈ S, such that∑

l

∫
Tl

∇Mφk+1∇Mej = −
∑
l

∫
Tl

Γkej , ∀ej ∈ S. (62)

where Γk = µ
λr

k + divM (Vk −−→b k
).

If we write φk+1 =
∑N

i xiei, Γk =
∑N

i γiei, the solution φk+1 of (44) is
equivalent to solving the following linear equation:

Qφk+1 = −KΓk (63)

which can be solved by the Gauss-Seidel method.

5. Experiment Results and Applications

In this section, several examples will be given to demonstrate advantages of
the intrinsic method. The intrinsic method can provide us a robust and efficient
method to study image problems on surfaces. It can easily handle surfaces with
different complexity, different topologies. Moreover, we will further show two
applications of our intrinsic method of image processing on surfaces. All algorithms
are written in C++ and all experiments are ran on a PC with a 2.0GHz CPU.

5.1. Comparison with other approaches

The intrinsic method can efficiently solve variational problems directly on sur-
faces and does not need preprocessing. Due to the natural extension of differential
operators on surfaces, the fast algorithms for variational problems in Euclidean
cases can also be easily adapted on surfaces by this intrinsic method. To demon-
strate these advantages of our intrinsic method, we here compare our method
with level set method and conformal parametrization method. We test the CCV
segmentation model on following two surfaces M1,M2 with characters by the in-
trinsic method, the level set method [29, 36] and the conformal parametrization
method [33] respectively. In Figure 1, Surface M2 is a cortical surface in human’s
brain1 and surface M1 is a smoothing version of surface M2. Both surfaces have
39994 vertices. The computation cost comparison is listed in table 2.

From Table 2, we can observe two facts as follows:

1Meshes are provided by the public available database ADNI at LONI
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M1

(a1) (b1) (c1) (d1) (e1)

M2

(a2) (b2) (c2) (d2) (e2)

Figure 1: CCV segmentation results on two surfaces with different complexity. The first
row: (a1), (b1) two views of characters image I on surface M1, (c1) the initial curve for
CCV segmentation on M1, (d1), (e1) two views of the CCV segmentation results φ. The
second row: (a2),(b2) two views of characters image I on surface M2, (c2) the initial curve
for CCV segmentation on M2, (d2), (e2) two views of the CCV segmentation results φ.

intrinsic method conformal parametrization level set

CCV by split Bregman parametrization: 126.63s + implicit representation with

M1 18.61s CCV by split Bregman in 0.55s 65 × 162 × 99 grid points in 5.92s

+ CCV by gradient descent in 84.44s

CCV by split Bregman parametrization: 602.91s + implicit representation with

M2 18.94s CCV by split Bregman in 0.56s 143 × 350 × 227 grid points in 29.55s

+ CCV by gradient descent in 756.4s

Table 2: The computation cost of different methods.

1. Computation cost under surface structure variance:
For the conformal parametrization method and level set method, they both
depend on the complexity of surfaces. More specifically, it needs more time
to obtain the conformal parametrization if the surface geometry is farther
from the sphere. Similarly, the level set method also needs more data to
represent a surface with more complicated structure, which requires more
time to solve variational problems. However, the computation of the intrinsic
method is fast and stable under surface structure variance.

2. Adaptability of fast algorithms:
For the conformal parametrization method, once the parametrization is ob-
tained, one can easily transfer the surface variational problems into 2D Eu-
clidean cases, then several fast algorithms can be also applied. For the level
set method, since the surface gradient operator is computed by projection
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and expression of surface divergence by level set function is very complicated,
the generalization of fast algorithms, like split Bregman or Chambolle’s pro-
jection method is not straightforward. Meanwhile, the data size of implicit
surface representation will consume more computation cost. However, as
we discussed in section 4.3, fast algorithms in Euclidean cases can be easily
adapted in surface cases by the intrinsic method.

5.2. Further demonstration on high genus surfaces and open surfaces

In many fields such as computer graphics, geometry modeling, medical imaging,
computational anatomy, 3D cartoon, it is also necessary to process high genus
surfaces or open surfaces. Usually, to find a parametrization of a high genus
surface is not so easy, one has to cut the surface into several patches [28, 35], then
process these patches separately. This artificial cutting of patches and separately
processing may introduce numerical inaccuracy on the cutting edges. In addition,
the parametrization method and level set method have their own limitations to
study open surfaces, specially open surfaces with topological nontrivial boundaries.
However, the intrinsic method can easily handle high genus surfaces and open
surfaces as surfaces with spherical topology.

Here, we demonstrate this advantage of the intrinsic method in several syn-
thetic examples. In Figure 2, we take a one handled cup 2 with 25075 vertices as
a ground surface and show ROF denoising results of the Lena image with Gaus-
sian noise σ = 40. As we discussed in Section 4, the split Bregman iterations
and Chambolle’s dual projection method can be applied to solve ROF denoising
models on surfaces. We show denoising results obtained by split Bregman and
Chambolle’s dual projection method respectively in Figure 2. In addition, we also
apply our algorithms for the CCV segmentation model on surfaces to the same
one handled cup and a torus. The segmentation results are showed in Figure 3
and Figure 4. Moreover, to show the advantage of dealing with open surfaces
with the intrinsic method, we show CCV segmentation results in Figure 5 on a
human hand surface 3 and Figure 6 on a half torus, which both are open surfaces.
To summarize, our intrinsic method can provide a robust and efficient approach
to study image problems on surfaces, whenever surfaces are closed or open, with
genus zero or high genus, with simple or complicated geometric structure.

5.3. Applications

A. Geometric processing

2One handled cup is obtained from the public available database SHARP3D
3This model is provided by the public available database AIM@SHAPE Shape Repos-

itory
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(a) (b)

(c)

(e)

(d)

(f)

Figure 2: ROF denoising results of the Lena image I on a 25075 vertices cup surface with
split Bregman iterations and Chambolle’s projection method. (a) the clear lena image. (b)
the noise image with Gaussian noise σ=40. (c), (d) a denoising result φ by split Bregman
iterations with λ = 0.05, µ = 1000 in 17.73 seconds and its corresponding residual I − φ.
(e), (f) a denoising result φ by Chambolle’s projection method with µ = 10 in 35.46
seconds and its corresponding residual I − φ.

(a) (b) (c) (d) (e)

Figure 3: CCV segmentation results on a 25075 vertices cup surface with split Bregman
iterations and Chambolle’s projection method. (a) the cameraman image and the initial
segmentation curve marked by the red contour. (b), (c) the CCV segmentation result ob-
tained by split Bregman method with λ = 8, µ = 50 in 14.57 seconds and the corresponding
edges marked by red contours in the original image. (d), (e) the CCV segmentation result
obtained by Chambolle’s projection method with µ = 0.1, θ = 400 in 73.34 seconds and
the corresponding edges marked by red contours in the original image.
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(a)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

(e1)

(e2)

Figure 4: CCV segmentation results on a 65536 vertices torus with split Bregman it-
erations and Chambolle’s projection method. (a) the cameraman image and the initial
segmentation curve marked by the red contour. (b1), (c1), (d1), (e1) two views the CCV
segmentation result obtained by split Bregman method with µ = 10, λ = 50 in 42.95
seconds and two views of the corresponding edges marked by red contours in the original
image. (b2), (c2), (d2), (e2) two views the CCV segmentation result obtained by Cham-
bolle’s projection method with µ = 0.1, θ = 1000 in 162.99 seconds and the corresponding
edges marked by red contours on the original image.

An interesting application of ROF denoising is geometric processing, namely,
surface denoising or geometric processing [15, 17, 18, 2, 22, 20, 33]. Given a surface
M ⊂ R3, there are three coordinate functions (f1, f2, f3) on M , namely we have
the embedding:

−→
f = (f1, f2, f3) : M −→ R3

p 7−→ (f1(p), f2(p), f3(p)) (64)

It is natural to view the three coordinate functions (f1, f2, f3) as three image
functions on the surface M . A noisy surface is a perturbation in the geometry
of the surface, namely, we can view the noisy surface

−−−→
fnoise as

−−−→
fclear +

−−−→
noise with−−−→

noise ∈ N (0, σ) ×N (0, σ)×N (0, σ). Thus each coordinate function of the noisy
surface can be viewed as a noisy image on the surface, then we can study the
geometry processing via the surface coordinate functions. As an example, we
naively consider surface ROF denosing model on each coordinate function as an
approach to study surface denosing. Figure 7 shows two preliminary results of the
surface denoising. The first row in Figure 7 is the surface denoising of a cube with
Gaussian noise σ = 0.1. The edge preserving property of the total variation can
be observed from the denoising result. The second row is a denoising result of a
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

(e1)

(e2)

Figure 5: CCV segmentation results on a 58875 vertices open hand surface with split
Bregman iterations and Chambolle’s projection method. (a1), (a2) two views the image
and the initial segmentation curve marked by the red contour. (b1), (c1), (d1), (e1) two
views the CCV segmentation result obtained by split Bregman method with µ = 5, λ = 50
in 29.74 seconds and two views of the corresponding edges marked by red contours in the
original image. (b2), (c2), (d2), (e2) two views the CCV segmentation result obtained
by Chambolle’s projection method with µ = 0.1, θ = 1000 in 184.94 seconds and the
corresponding edges marked by red contours on the original image.

(a) (b) (c) (d) (e)

Figure 6: CCV segmentation results on a 31247 vertices half double torus with split
Bregman iterations and Chambolle’s projection method. (a) the characters image with
Gaussian noise σ = 100 and the initial segmentation curve marked by the red contour. (b),
(c) the CCV segmentation result obtained by split Bregman method with λ = 100, µ = 50
in 21.33 seconds and the corresponding edges marked by red contours in the original image.
(d), (e) the CCV segmentation result obtained by Chambolle’s projection method with
µ = 0.1, θ = 1000 in 108.4 seconds and the corresponding edges marked by red contours
in the original image.
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human’s cortical surface4.
B. Cortical parcellation

Image segmentation techniques are quite useful in image analysis on the 2D
plane. For 3D surface analysis, image segmentation technique can also be used
to detect certain special parts of the given surface. For instance, in anatomical
brain structure analysis, sulci/guri detection for cortical surfaces is important [34,
40, 30]. However, in most cases, cortical surfaces have many very deep and closed
folding parts. These folding parts might restrict us to easily and efficiently find
parameterization or use implicit method. With our intrinsic image processing
on surfaces method, we can directly process the image segmentation on cortical
surfaces without any preprocessing. This will help us deal with surfaces with
complex structures. For the sulci/guri detection problem, we can view the mean
curvature of cortical surfaces as an image on the surfaces, which can be obtained
by the algorithms given in [37], then apply CCV segmentation on mean curvature.
The CCV segmentation result will give provide us a promising cortical parcellation.
In Figure 8, we show the segmentation results of two type of cortical surfaces. The
first row is a human’s cortical surface5 and the second row is a vervet’s cortical
surface6. Both surfaces are with deep and narrow sulcal regions.

6. Conclusions and Future Work

In this work, we use differential geometric techniques to study intrinsical im-
age processing on surfaces. We generalize the total variation concept on surfaces
and show it is also a suitable regularizing term when we study image processing
on surfaces. Furthermore, we take ROF denoising model and CV segmentation
model as two examples to illustrate our intrinsic method. As an advantage of the
intrinsic method, we show the adaptability of fast algorithms in Euclidean spaces
to the total variational related problems on surfaces by using the intrinsic method.
Specifically, we implement the split Bregman method and Chambolle’s dual pro-
jection method as two examples. The intrinsic method is a very general approach
to study variational problems, differential equations and image processing on sur-
faces. This technique can be further extended to study diffusion equations, motions
of curves, and other surface PDEs or variation related problems on surfaces. In
the future, we will explore along this direction and demonstrate more applications
of this intrinsic geometric technique.

4This model is provide by the public available database ADNI at LONI
5This model is obtained from the public available database ADNI at LONI
6This model is provided by Dr. Scott Fears
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(a1) (b1) (c1)

(a2) (b2) (c3)

Figure 7: the first column: clean surfaces. the second column: noise surfaces with Gaussian
noise σ = 0.1. the third column: denoised results obtained by split Bregman method.
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