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Abstract

A new numerical method for approximating highly oscillatory wave fields as
a superposition of Gaussian beams is presented. The method estimates the
number of beams and their parameters automatically. This is achieved by an
expectation-maximization algorithm that fits real, positive Gaussians to the
energy of the highly oscillatory wave fields and its Fourier transform. Beam
parameters are further refined by an optimization procedure that minimizes
the difference between the Gaussian beam superposition and the highly os-
cillatory wave field in the energy norm.
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1. Introduction

Numerical simulation of high frequency waves is an active field of com-
putational mathematics with applications in seismic migration [30], com-
putational electro-magnetics [5], semiclassical approximations in quantum
mechanics [21] and more. As the term “high frequency” suggests, such
applications involve many wave oscillations in the domain of interest and
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thus, direct numerical simulation methods of the wave propagation are pro-
hibitively computationally costly. The standard approach to surmounting
this difficulty is to use an approximate model for the wave propagation that
converges to the exact model as the frequency increases. Examples of such
asymptotic high frequency methods include geometric optics [5], Gaussian
beam methods (GBs) [1, 3], wavefront tracking methods [29] and others. For
a comprehensive review, we refer the reader to [11].

In a simple formulation of geometric optics and Gaussian beams, the
solution of the hyperbolic partial differential equation (PDE) that models
the wave propagation is assumed to be of the form

u(x, t) = a(x, t)eikφ(x,t) , (1.1)

where k is the large parameter, a(x, t) is the amplitude and φ(x, t) is the
phase function. For geometric optics φ is a real valued function, while for
Gaussian beams the phase is complex valued with an imaginary part that
concentrates u(x, t) near a certain curve in space time (the central ray).
Using the PDE, we find equations for the phase and amplitude and central
ray. These equations are independent of k, and consequently, the phase and
amplitude are independent of k, thus they can be represented accurately
in the domain of interest with far fewer grid points than the original wave
field u(x, t). However, even though the original PDE for u(x, t) is linear,
the equations determining the phase are usually not. In geometric optics,
this non-linearity leads to the breakdown of classical solutions at caustics
[11]. The additional assumptions on the phase and amplitude guarantee
that Gaussian beams are global asymptotic solutions that are valid even at
caustics [26, 27].

The existence of Gaussian beam solutions has been known for quite some
time, first in connection with lasers, see [1], and later in the study of prop-
agation of singularities in hyperbolic PDEs [16, 26]. Furthermore, as the
PDE is linear, superpositions of such Gaussian beams will also be global
asymptotic solutions. The idea of using superpositions of Gaussian beams
was introduced in [2] and was proposed as a method for computational wave
propagation in [23]. The primary motivations for developing Gaussian beam
superposition methods as a computational tool was driven by seismic mi-
gration and the literature on the subject is quite extensive, for example, see
[7, 13, 14, 15, 18, 24]. Research in Gaussian beam methods continues today
with extensions to more complicated wave propagation including anisotropic
media [8], rigorous error analysis [19, 20], and other aspects [12].

2



From the numerical point of view, the goal is to build an approximate
solution that is close to the true solution in an appropriate norm for the
given problem. Errors of such approximations have two components: how
closely the initial data is approximated and how well the PDE is satisfied.
In this paper, we will focus on answering the question of how to take high
frequency initial data and approximate it by a linear superposition of a few
functions of the form (1.1) that are suitable for providing initial conditions
for a Gaussian beam based asymptotic solution method. However, we point
out that the question of approximating the initial data and satisfying the
PDE are not independent in the sense of the accuracy of the approximate
solution. The initial conditions for a Gaussian beam also affect how well
the Gaussian beam satisfies the PDE. We will only focus on the initial data,
since this is the dominating error at least for short time.

In the geometric optics setting, this question has been addressed in [4]. In
that paper, the authors present a method for determining a small number of
plane waves, aje

ikξj ·(x−y), that locally approximate the high frequency initial
data near a fixed point y. At all points, using the Fourier transform one can
always rewrite the initial data as a linear superposition of plane waves. Simi-
larly, in the case of Gaussian beams, one can use the Fourier-Bros-Iaglonitzer
(FBI) transform to rewrite the initial data as a linear superposition of Gaus-
sian beams [6]. Locally, the FBI transform provides a plane wave approxima-
tion to the wave field inside a Gaussian envelope. Since our method allows
the wave fronts to have curvature, it will more closely match the wave field
than the FBI transform. This will provide a more optimal local representa-
tion. However, for our method to be efficient, we will assume that the wave
energy is concentrated in a small subpart of the domain. If this assumption
is not satisfied, it is unlikely that a few functions of the form (1.1) will be
sufficient to represent the given wave field. In this case, other methods such
as the ones based on the FBI transform [6, 25] would be more appropriate.

As described in section 2 and Appendix A, the phase and amplitude of a
Gaussian beam are given as Taylor polynomials around the central ray. Thus,
the initial data for a Gaussian beam are the parameters (base point and co-
efficients) that define the Taylor polynomials for the phase and amplitude.
We will refer to these initial values as the initial beam parameters or simply
the initial beams. The wave fields generated by Gaussian beam parameters
can be viewed as a redundant basis for representing general wave fields. In
this sense, we can think of the problem of approximating (or decomposing)
an initial high frequency data as finding the parameters of a small number
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of beams such that the wave field generated by the superposition of these
beams is a good approximation to the initial data for the PDE. That is, given
the initial data u and an error tolerance ε, the objective is to approximate
the initial data in the energy norm || · ||E (see equation (2.2)) using the su-
perposition of as few Gaussian beams as possible. One can formally consider
a basis-pursuit style formulation

min
a
|a|`0 s.t. ||Sa− u||2E ≤ ε2 ,

where S is the discretized basis matrix, a are the associated weights and |a|`0
is the number of non-zero elements in a. One can then envision using the
latest fast algorithms for constrained L1 minimization for finding a sparse
approximation, for example [31]. However, the set of all Gaussian beams
forms a high dimensional space since each Gaussian beam basis function is
defined by 11 parameters in 2D and 19 parameters in 3D, which make these
algorithms prohibitively computationally expensive.

In [28], the authors propose a practical method for decomposing a general
wave field into a a superposition of Gaussian beams. Their method can be
described as a greedy bottom-up approach. At the (N + 1) iteration of “the
greedy outer loop”, a new set of parameters is found for a single beam that
approximates the difference between the initial data for the PDE and the
wave field generated by previous (N) Gaussian beams. This new set of beam
parameters is directly estimated from the residual wave field. Then, the
parameters are locally optimized using the Nelder-Mead method [22]. The
procedure is repeated until a desired tolerance or number of beams is reached.

The basic assumption underlying this strategy is that the sets of parame-
ters that give the optimal (N + 1)-beam minimum will be closely related (in
parameters space) to the parameters that give the optimal (N)-beam mini-
mum. Thus, the method of sequentially adding beams is highly advantageous
if the different beams are close to orthogonal in the energy inner product as
the minimum can be reached by optimizing each set of beam parameters
independently of the others. This assumption holds for the case of waves
that are spatially separated and also for the case of crossing wave, in which
waves arrive to the same point, but have different directions (see the crossing
waves example in section 4). However, waves do not always exhibit this type
of behavior. Near a caustic region, waves are traveling in similar directions
and are close together in space. In this situation, the individual beams will
not be orthogonal and the sets of parameters that give the (N + 1)-beam
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minimum may be quite different from the sets of parameters that give the
(N)-beam minimum. Therefore, while adding Gaussians decreases the error
in the approximation of the initial data for the PDE, the required number of
beams to reach a given tolerance may be suboptimal.

In this paper, following the greedy approach of [28], we propose a different
decomposition algorithm which can be more efficient in handling wave fields
containing many different beams with similar centers and wave directions.
Inside each iteration of the greedy outer loop, an additional set of several
Gaussian beams is constructed simultaneously to fit the difference between
the initial wave field and the Gaussian beam approximation from previous
iteration. In contrast, we note that in [28], a single beam is added in each
iteration. To obtain this set of several beams, we exploit the fact that the
energy of a single beam is non-negative and nearly Gaussian shaped. The
same holds for the energy of the Fourier transform of a single beam as shown
in section 2.1. Accordingly, our method is based on fitting Gaussians to a
smoothed version of the energy of the initial data for the PDE and its Fourier
transform. This is done using the expectation maximization (EM) algorithm
[9], which is reviewed in Appendix B. The advantage of the EM algorithm
is its efficiency in simultaneously optimizing a large number of parameters
that define a sum of Gaussians.

After the new set of Gaussian beams is identified, all the beam parame-
ters, including the newly constructed and the ones from the previous itera-
tion, are optimized to minimize the error in the energy norm. This approach
may bypass some of the local minima, for example near a caustic point, that
may be encountered in the approach of [28], in which beams are added se-
quentially. Of course, our approach is also suboptimal as there is no general
methodology for finding the global minimum of a highly multi-dimensional
function that is not computationally prohibitive.

The structure of each iteration of the greedy outer loop can be summa-
rized as follows. Let u0(x) and ∂tu0(x) denote the initial wave field and its
derivative with respect to time, respectively. In addition, let unGB denote the
Gaussian beam approximation after n iterations of the greedy outer loop,
where u0

GB ≡ 0.

• EM-based approximation: Construct a Gaussian beam approximation
for the residual wave field, u0 − unGB and ∂tu0 − ∂tunGB using the EM
method, as described below. We denote the approximation by vGB.

• Local optimization (section 3.5): Update the sets of beam parameters
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for unGB and vGB constructed so far to minimize the difference between
the wave field generated by these beams and the initial data for the
PDE. Eliminate beams whose contribution to the overall approximation
is smaller than a prescribed threshold. Let un+1

GB be the beams defined
by the optimized parameters.

The EM-based approximation is summarized in the following:

• Pre-processing (section 3.1): Calculate the energy function of the ini-
tial data for the PDE and the energy function of its scaled Fourier
transform. Mollify these energies by a Gaussian kernel.

• EM (section 3.2): Fit a linear superposition of Gaussians to the molli-
fied energies using the EM method.

• Reconstruction (section 3.3): Reconstruct sets of beam parameters by
pairing the Gaussian coefficients obtained by EM from the physical
and Fourier domains. All such pairs are tested by projections on the
initial data for the PDE in the energy norm. Candidate pairs with
small projections are discarded.

• Corrections (section 3.4): Improve the accuracy of the fit by extrapo-
lation.

The outline of the paper is as follows. Section 2 gives a precise state-
ment of the problem considered and briefly reviews geometric optics and
Gaussian beam solutions to the wave equation. Section 3 explains our nu-
merical method with examples in section 4. We summarize our results in
section 5. Several technical aspects of the calculations involved are detailed
in the appendices.

2. Gaussian beam solutions

Consider the isotropic wave equation with variable coefficients in Rd

�u = utt(x, t)− c2(x)∆u(x, t) = 0, t > 0

u(x, 0) = f(x)

ut(x, 0) = g(x),

(2.1)

where subscripts denote partial differentiation and ∆ is the Laplacian. We
seek solutions in which the ratio between the wave length and the scale on
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which c(x) varies (assumed to be of order one) is large. This ratio, denoted by
k, satisfies k � 1. The wave equation is well posed in the energy (semi-)norm
[17]

||u||2E =

∫
Rd
e(x, t)dx, (2.2)

where e(x, t) is the energy function weighted by k,

e(x, t) = k−2

[
1

c2(x)
|ut|2 + |∇u(x, t)|2

]
. (2.3)

We will also use the scalar product underlying the energy norm

〈u, v〉 = k−2

∫
Rd

[
1

c2(x)
utv
∗
t +∇u · ∇v∗

]
dx, (2.4)

where [·]∗ denotes complex conjugation. Note that (2.2)-(2.4) are scaled to
be of order unity for functions of the form (2.5) below. In order to obtain
the high-frequency geometric optics approximation, we make the standard
ansatz

u(x, t) = a(x, t)eikφ(x,t). (2.5)

In geometric optics, one finds solutions for a(x, t) and φ(x, t) in the form
of rays, which are the characteristics of an eikonal equation for φ. The GB
methods goes further and approximates solutions to the wave equation in the
form of expansions around a specific ray. For completeness, the derivation of
the ray and GB solutions are reviewed in Appendix A.

For example, when the speed of propagation is constant, c(x) ≡ c, the
rays are straight lines and analytic formulas for Gaussian beam solutions can
be derived [28]. Denote the source point of the ray by ξ, the initial direction
by η and the initial Hessian by M(0) = iβ. In one-dimension (1D), a GB
has the form

u(x, t) = Aeikη(x±ct−ξ)e−kβ(x±ct−ξ)2/2, (2.6)

where β is a complex number with a positive real part, Reβ > 0. Note that
in this case the Gaussian beam solution is an exact solution to the wave
equation since it is a function of x± ct. In two-dimensions (2D), a single GB
has the form

u(x, t) = a(t)eikη·(x±η̂ct−ξ)eik(x±η̂ct−ξ)TM(t)(x±η̂ct−ξ)/2, (2.7)
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where η̂ = η/|η|, [·]T denotes transposition and β is a complex 2× 2 matrix
with a positive definite real part, Reβ > 0. The amplitude and the Hessian
matrix are given by

a(t) = A

√
|η|3

|η|3 ∓ i(det β)(ηTβη)ct

M(t) =
±i|η|3β + (det β)(ηηT )ct

±|η|3 + i(det β)(ηTβη)ct
,

(2.8)

where A = a(0). See Appendix A.2 for details.

2.1. Single beam

One of the important observations is that to leading order in k the energy
function of a single Gaussian, e(x, t), is a real valued Gaussian. In particular,
the initial energy function of a single beam is

e(x, 0) = 2|A|2|η|2e−k(x−ξ)T (Reβ)(x−ξ) +O(1/
√
k), (2.9)

which is a real and positive Gaussian centered at ξ with covariance Σx =
(Reβ)−1/2. Note that, by assumption, |η| > 0 and is of order one (in k). A
similar version of (2.9) as well as all expressions in this section hold in the
general case of a variable propagation speed c(x) and in any dimension d.
Furthermore, due to symmetry with respect to the Gaussian center ξ, the
contribution of O(1/

√
k) terms to the total energy ||u||E is of order O(1/k).

We refer the reader to Appendix A for details.
A similar energy function can be found in Fourier space. To this end we

define a weighted Fourier transform

f̃(p, t) = Ff(x, t) =

∫
f(x, t)eikp·xdx. (2.10)

At t = 0, a single transformed GB takes the form

ũ(p, 0) = k−1/2Aeikp·ξe−k(p+η)T β−1(p+η)/2, (2.11)

and the Fourier energy function,

ẽ(p, t) = k−1
[
|ũt|2 + |∇pũ(p, t)|2

]
, (2.12)
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becomes, at t = 0,

ẽ(p, 0) = |A|2(|ξ|2 + 2c2(ξ)|η|2)e−k(p+η)T (Re[β−1])(p+η) +O(1/
√
k). (2.13)

As in position space, the contribution of O(1/
√
k) terms to the total energy

||ũ||E is of order O(1/k). To leading order in k, ẽ(p, 0) is a real, positive
Gaussian centered at p = −η with covariance Σp = (Re[β−1])−1/2.

The above observations suggest that the two energy functions can be used
to reconstruct all the parameters that make up a beam. In position space,
e(x, 0) given by (2.9) can be used to obtain ξ and Re[β]. In Fourier space
ẽ(x, 0) given by (2.13) can be used to obtain η and Re[β−1]. In Appendix
D, we show that this is sufficient to derive Im[β] as well. The amplitude can
be obtained by projecting a normalized beam with parameters ξ, η and β on
the initial field.

2.2. Superposition of beams

The analysis of wave fields consisting of a superposition of several GBs is
more complicated. In 2D, let

u(x, t) =
N∑
n=1

an(t)eikηn·(x+snη̂nt−ξn)eik(x+snη̂nt−ξn)TMn(t)(x+snη̂nt−ξn)/2, (2.14)

where sn = +1 or −1 is the sign appearing in (2.6) or (2.7). The time
dependent amplitude, an(t), and Hessian, Mn(t), are given by (2.8) with
parameters η = ηn, respectively. At time t = 0, the initial field can be
written as

u(x, 0) =
N∑
n=1

Ane
ikηn·(x−ξn)e−k(x−ξn)T βn(x−ξn)/2, (2.15)

where An = an(0) and βn = −iMn(0). The initial energy function is

e(x, 0) =
N∑

n,j=1

AnA
∗
j (ηn · ηj + snsj|ηn||ηj|) eik[ηn·(x−ξn)−ηj ·(x−ξj)]

× e−k[(x−ξn)T βn(x−ξn)+(x−ξj)T β∗
j (x−ξj)]/2 +O(1/

√
k).

We note that e(x, 0) ≥ 0 and for clarity, we continue with a superposition
of two beams and generalize to the case of a finite number of beams later.
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Rearranging terms,

e(x, 0) =esingle(x) + eint(x) +O(1/
√
k)

esingle(x) =2
2∑

n=1

|An|2e−k(x−ξn)TRe[βn](x−ξn)

eint(x) =2Re
[
A1A

∗
2 (η1 · η2 + s1s2|η1||η2|) eik[η1·(x−ξ1)−η2·(x−ξ2)]

× e−k(x−ξ1)T β1(x−ξ1)e−k(x−ξ2)T β∗
2 (x−ξ2)/2

]
.

The first term, esingle, describes the energies of each separate beam. The
second term, eint, is due to interference between the two beams. Since β1

and β2 have positive definite real parts, we have that for some constant c,∣∣∣e−k(x−ξ1)T β1(x−ξ1)e−k(x−ξ2)T β∗
2 (x−ξ2)/2

∣∣∣ ≤ e−kc|ξ1−ξ2|
2

.

Furthermore, for some complex constant, |λ| = 1, we may write the oscilla-
tory term in eint as

eik[η1·(x−ξ1)−η2·(x−ξ2)] = λeik[(η1−η2)·x] .

Using these expressions, eint can be considered in the following regimes:

• If |ξ1 − ξ2| is large compared to k−1/2, then eint is negligible for all x.

• If |ξ1 − ξ2| ≤ O(k−1/2) but |η1 − η2| is large compared to k−1/2, in the
sense that the oscillating term eik[η1·(x−ξ1)−η2·(x−ξ2)] has a frequency of
the order of at least k1/2+δ for some small positive constant δ. We
denote such terms by eosc and we will shortly show that they can be
removed by convolving the energy function with a smoothing kernel.

• If |ξ1− ξ2| ≤ O(k−1/2) and |η1−η2| is o(k−1/2+δ), then eint may be non-
negligible. We denote such terms by espur and note that these terms
may oscillate, however, they will not oscillate as rapidly as eosc.

In the case of more than two Gaussian beams, each pair of beams will have a
term of the form of eint and it will fit into one of the three categories above.
Thus, in the case of many beams, each eosc and espur will contain a sum of
terms that fit into the particular category. Thus, in the general case of a
superposition of N GBs, we may write

e(x, 0) = esingle + espur + eosc +O(k−1/2), (2.16)
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where

esingle(x) = 2
N∑
n=1

|An|2|ηn|2e−k(x−ξn)TRe[βn](x−ξn) (2.17)

is the energies of the separate beams, eosc is oscillatory, and espur is a real
valued function that may be non-negligible due to the interference of beams
that have similar positions and oscillation directions. In order to suppress
the oscillatory terms, we convolve e(x, 0) with a smoothing kernel of the form

χ(x) = e−kx
2/(2l), (2.18)

where l > 0 is independent of k. The convolution attenuates oscillations with
frequency p by a factor of e−Cp

2/k, where C > 0 is a constant that depends
only on l and the eigenvalues of Reβ. Hence, high frequencies of the order
of k1/2+δ are suppressed by at least by a factor of e−Ck

2δ
. In particular, note

that the term eosc will be small after this convolution. Thus, the convolved
energy has the form

el(x) = χ(x) ∗ e(x, 0) = esinglel + espurl +O(k−1/2),

where the subscript l is used to denote convolution with (2.18). We again
remark that el(x, 0) ≥ 0. The principle part of single-beam energies takes
the form

esinglel = 2
N∑
n=1

|An|2|ηn|2e−k(x−ξn)TΣ(Re[βn])(x−ξn), (2.19)

where, Σ−1(·) is the new variance which is changed due to the convolution.
In 2D, it is given by

Σ(B) =
B + 2l(detB)I

1 + 2lTrB + 4l2 detB
, (2.20)

where Tr denotes the trace and I is the identity matrix.
Following the same procedure in Fourier space, the convolved Fourier

initial energy is

ẽl(p) = χ(p) ∗ ẽ(p, 0) = ẽsinglel + ẽspurl +O(k−1/2), (2.21)

where

ẽsinglel =
N∑
n=1

|An|2(|ξn|2 + 2c2(ξn)|ηn|2)e−k(p+ηn)TΣ(Re[β−1
n ])(p+ηn). (2.22)
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Thus, both el and ẽl are of the same form. If espur is small, then the ideas
for recovering the Gaussian beam parameters of the previous section apply
directly and we can recover the parameters for all of the beams. If espur is
not small, it will cause a perturbation of the Gaussian structure of el and
ẽl locally near the centers of the Gaussians. However, this perturbation will
not prevent us from using the EM method, since both el and ẽl are non-
negative. The effect of espur will manifest itself in the inaccurate recovery of
the Gaussian beam parameters and in the detection of extra Gaussian beams.
To improve the results, we locally optimize the Gaussian beam parameters
and eliminate the extra Gaussian beams by projecting them onto the original
wave field. More details will be given in the description of the method in
section 3.

3. Numerical method

In this section, we detail the different stages making out a single iter-
ation of the greedy outer loop in our numerical algorithm: pre-processing,
EM, reconstruction, corrections and parameter optimization. In addition, we
comment on the efficiency of the algorithm.

3.1. Pre-processing

The purpose of the pre-processing stage is to change the initial condition
into a form that can be approximated by a linear combination of real and
positive Gaussians. The steps, described in section 2.2, consists of convolving
the initial energy function, e(x, 0) given by (2.3), with the smoothing kernel
(2.18). Then, the initial field u(x, 0) is Fourier transformed using FFT. The
initial Fourier energy ẽ(p, 0) is calculated and convolved with a similar kernel.
The process yields el and ẽl given by (2.19) and (2.22). Smoothing the initial
data removes high frequency oscillations which allows using a coarser grid
than required for a numerically accurate description of a high frequency wave.

3.2. Expectation-Maximization

We now explain the method used to approximate the real and positive
smoothed energy functions el(x) and ẽl(p) using a linear combination of Gaus-
sians. For brevity, we refer only to the energy in position space, el(x). The
same process is applied to approximate ẽl(p). In section 2.2, we show that if
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the solution is indeed a superposition of GBs, then el and ẽl are, to leading
order in k, a linear combination of real and positive Gaussians. Let,

el(x) =
N∑
j=1

DjGj(x) ; Gj(x) = z−1
i e−(x−µj)·σ−1

j (x−µj)/2. (3.1)

The values of el are given on a grid with M points X = {xi}Mi=1. Here, zi
are normalization constants such that

∑M
i=1Gj(xi) = 1 for all j = 1 . . . N .

The energy function, el is normalized so that Σiel(xi) = 1. This implies
that

∑
j Dj = 1. The parameters for fitting the normalized el(x) using N

Gaussians are found using the EM algorithm. The procedure consists of
picking an initial random guess of parameters {Aj, µj, σj}Nj=1 and iterating
the following calculations:

D′j =
∑
i

el(xi)pij

µ′j =
∑
i

el(xi)
pij
D′j

xi

σ′j =
∑
i

el(xi)
pij
D′j

xix
T
i − µ′j(µ′j)T ,

(3.2)

where

pij =
AjGj(xi)∑N
j=1DjGj(xi)

.

The algorithm is explained and motivated in Appendix B.
The EM algorithm [9] is an iterative process that converges to a local

extremum of the likelihood for obtaining the observation el from a random
sample of Gaussians with coefficients {Aj, µj, σj}Nj=1. Local minima are stable
while local maxima are unstable. Therefore, in general, the algorithm may
not converge to the global minimum or the set of parameters which will give
the smallest final fit error (in the energy norm). However, it can be shown
that with a single Gaussian EM converges in a single iteration. In addition,
if the initial field is composed of a sum of Gaussian beams which are well
separated in both position and Fourier space, then the likelihood which EM
minimizes is unique and iteration of (3.2) will converge for all reasonable
initial guesses. By a reasonable guess we exclude some degenerate cases and
initial guesses that are so far from the global minimum that the coefficients pij
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in (3.2) are smaller than the round-off error. The computational complexity
of each iteration is O(N).

The number of Gaussians required for the fit is not known in advance. In
order for the GB approximation to be consistent, all beam parameters should
be of order one (in k). This condition can be manifested in a requirements
for some maximal and minimal beam width that can be used to evaluate the
number of beams. Furthermore, an EM fit with particularly thin or wide
Gaussian can respectively suggest the need to reduce or increase the number
of beams. In practice, the number of Gaussians, N , was increased gradually
until the error (in the L1 norm) was below a given threshold (usually 5 −
10%). Note that the algorithm converges quickly even for large N and several
different random initial guesses for EM can be checked.

3.3. Reconstruction

The EM fit provides a list of N1 and N2 Gaussians fitted to the smoothed
position and Fourier energy functions, respectively. Pairing up each Gaussian
in position space with a Gaussian in Fourier space yields a list of N1N2 pairs
with four parameters: position center, µ, position covariance, σ, Fourier
center µ̃ and Fourier variance σ̃. The amplitudes are discarded. These four
multi-dimensional parameters will be used to construct a candidate Gaussian
beam. Comparing with (2.19) and (2.22) we find that

ξ = µ

η = −µ̃
Σ(Re[β]) = σ−1

Σ(Re[β−1]) = σ̃−1,

where Σ(·) is the widening of variances due to the smoothing convolution,
given, for example in two dimensions, by (2.20). Appendix C describes a
simple iterative method for inverting this matrix-valued function. Hence, one
can derive candidate values for ξ, η, Re[β] and Re[β−1]. In Appendix D, we
describe a method for using the real part of the inverse, Re[β−1], in order to
reconstruct the imaginary part of β. The solution for Im[β] is not unique.
In general, for fixed A = Re[β], there are 2d possible real and symmetric
matrices B that give the same Re[(A+ iB)−1] in d dimensions. The method
described in Appendix D is numerical, however, we also give an analytic
formula for one and two dimensions. The formula provides all solutions.
For robustness, we also use the case in which β is purely real with its real
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part derived from the fit in position space alone. Finally, each parameter
combination could occur with either s = +1 or s = −1 as this information
is not manifested directly in the EM fit.

To summarize, the EM stage provides us with N = 2(1 + 2d)N1N2 candi-
date Gaussian beams. Most candidates do not correspond to actual beams
in the initial fields as the right pairing is not known. Moreover, some Gaus-
sians in the EM results may correspond to the energy term espur of (2.16)
rather than esingle. Note, however, that in the latter case, as discussed in
section 2.2, the Gaussian center is O(k−1/2) away from that of the actual
beam. Therefore, each candidate is projected on the initial field to find its
amplitude. Candidates with a poor projection are discarded.

3.4. Corrections

The EM fit provides a good approximation to the parameters making up
the initial beams. However, the process has several sources of errors such
as the terms due to espur (c.f. section 2.2), the neglected terms of order k−1

(c.f. Appendix A.2) and the inversion of Σ(·) (c.f. Appendix C). These
errors and others can be compensated for using the following extrapolation
procedure.

Consider a superposition of beams given by a set of parameters θ0 that
generate a field u0. Applying our decomposition method (pre-processing, EM
and reconstruction) to this field, yields an approximated set of beams with
parameters θ1 which is close, but not identical to θ0. Let u1 denote the field
generated by GBs with parameters θ1. Applying our fitting procedure to u1

yields a new parameter set θ2, which is again similar, but not exactly the
same as θ1. The difference between θ2 and θ1 can be used to evaluate the
unknown error of θ1 compared to θ0.

We formally denote the error in the fitted parameters as a function of the
initial beam parameters as εE(θ), where ε is a small parameter, for example
of order 1/k, such that the error function itself is of order unity. The main
assumption here is that E(θ) is continuously differentiable in θ for some range
of parameters. With θ0 unknown, one can devise an extrapolation algorithm
as follows. Let θ1 = θ0 + εE(θ0) and θ2 = θ1 + εE(θ1). Expanding E(θ1)
around θ0,

θ2 − θ1 = εE(θ1) = εE(θ0) + εO(θ1 − θ0) = εE(θ0) + ε2O(E(θ0)).

We conclude that 2θ1− θ2 is an improved approximation (of order ε2) for the
unknown θ0.
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If the difference |θ1 − θ2| is small enough, then the new β will have a
positive definite real part. In practice, we verify that 2θ1− θ2 are admissible
GB parameters and that the error in using 2θ1 − θ2 is indeed smaller than
the error in using θ1. We found that one or two iterations of this procedure
can considerably improve results. The correction is done in two steps: first
for the reconstruction step stage alone and then for the three stages together
(pre-processing, EM and reconstruction). The computational cost is low as
one can use the previous EM fit as initial conditions for the new one. See
section 4.1 for an example.

3.5. Local optimization

The final stage of the process is to gradually update beam parameters to
decrease the overall error in the energy norm. The beams obtained from the
previous stages using smoothing, EM, reconstruction and corrections serve
as initial conditions. In 2D, each beam involves 13 real parameters. Since
amplitudes and the sign sn can be found using least squares [28], this implies
minimization in a 10N -dimensional parameter space. This high dimensional
minimization should be carried over all of the parameters simultaneously.
However, to accomplish it in practice, we iterate over all parameters, holding
all but one fixed and optimizing over it using steps of fixed size until a local
minima (as a function of the single parameter being changed) is reached.
Then, beams whose contribution to the error is lower than some threshold
are removed, which is determined by looking at the error in approximating
the initial field with each one of the beams removed. This is an important
step that can eliminate beams whose parameters are similar. The optimiza-
tion steps are repeated with decreasingly smaller step sizes to a prescribed
tolerance.

One of the fundamental assumptions underlying GBs is that all beam
parameters are appropriately scaled in terms of k. Violating this requirement
leads to a poor approximation of the beams evolution in time. To this end,
we add a penalty to the fit error in order to enforce the scaling.

3.6. Efficiency

The precise efficiency of the EM method is difficult to estimate as it de-
pends on the initial guess and error tolerance. However, the discussion of
section 3.3 suggests that the method is roughly quadratic in the number of
beams. Therefore, our method is advantageous compared to direct discretiza-
tion of the position and Fourier domains of interest if the number of beams
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does not grow too rapidly with k. For example, if the number of beams in
d dimensions is kd/2 then the reconstruction step yields O(kd) candidates,
which are to be tested by projection on the initial field. Since most of the
energy of a GB is supported inside a ball with radius of order k−1/2 the cost
of projection is O(kd/2). Therefore, in such cases our method is O(k3d/2) and
direct discretization may be more favorable.

4. Examples

In this section we describe several numerical experiments. In the first
three examples, the initial field is generated from a superposition of beams.
Hence, the purpose of the example is to demonstrate that the algorithm
can successfully reconstruct the generating beams. The last two examples
describe a field which cannot be written as a finite sum of GBs. These
raise two questions: what is the optimal way to approximate the field with
beams to a given tolerance and how well can our algorithm approximate the
optimal combination. All example are constructed with k = 50, which is
a relatively modest scale separation. This is a more challenging scenario as
multi-scale algorithms tend to improve with larger scale separation, i.e. larger
k. Furthermore, the different examples consider different regimes in which
the distance between beam centers in both position and weighted Fourier
space is of order k−1, k−1/2 or 1, as discussed in section 2.2.

Note that the number of beams used for the final fit is not a parameter
in our algorithm. Instead, the method automatically adjusts the number of
beams according to fitness criteria such as the required precision of the EM
fit and other optimization parameters. As explained in the introduction, our
goal is to find a representation of the initial wave field using a small number
of GBs.

In the following, we define the EM-error as the L1 norm of the differ-
ence between the smoothed energy function and the linear combination of
Gaussians found by EM. By error, or fit-error, we refer to the energy norm
of the difference between a superposition of GBs and the initial wave field,
||u0−unGB||E. Relative errors are relative to the norm of the initial fields (L1

for EM and energy otherwise).
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4.1. A single beam

We approximate the initial field generated by a single GB with the fol-
lowing coefficients

A = 1 + i

ξ = (0, 0.5)

η = (0.5, 0.5)

β =

(
1 0.2 + i

0.2 + i 1

)
s = +1.

(4.1)

The initial field and energy function are depicted in figure 1. With a single
Gaussian the energy function is, to leading order in k, Gaussian. The EM
algorithm converges in a single iteration with a relative EM-error of about
1.3% in both position and Fourier spaces. The reconstruction stage yields a
single GB whose coefficients ξ, η and β are about 5% off:

A = 1.1 + 0.8i

ξ = (0.00, 0.498)

η = (0.51, 0.52)

β =

(
0.97− 0.05i 0.23 + 1.00i
0.23 + 1.00i 0.48 + 0.13i

)
s = +1.

Despite the close match in coefficients, the relative fit error is about 21%. A
single correction iteration (c.f. section 3.4) yields a new set of beam parame-
ters which are about 0.1% away from (4.1). The relative fit error is 0.7%. A
second correction iteration yields a beam with a negligible 0.002% error. Note
that this Gaussian beam is obtained without any non-linear optimization in
parameters space to reduce the error in the energy norm (section 3.5).
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Figure 1: A single Gaussian beams. (a) the real part of the field, (b) the real part of the
weighted Fourier transform, (c) the energy function in position space, and (d) the energy
function in Fourier space.

4.2. A focus point

We approximate the following field generated by eight beams (eight com-
binations of ±) focused at the origin, as in [28]:

A = 1

ξ = (0, 0)

η = (±0.7, 0) and (0,±0.7)

β = I
s = ±1.

The field, energy function and smoothed energy function are depicted in
figure 2. In position space (left), the energy is oscillatory due to interference
between the beams. Following a convolution with a smoothing kernel, the
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energy appears Gaussian and suggests using a single Gaussian in position
space and four in Fourier space. The reconstruction step yields 2 ∗ (1 +
22) ∗ 1 ∗ 4 = 40 candidate beams, out of which only 8 have a significant
projection on the initial field. The relative fit error of the 8 beams is 27%.
Corrections (section 3.4) and parameter optimization reduces the error to
1.8%. A 200× 200 grid was used.

4.3. A tight superposition of beams

We generate ten GBs with random coefficients. To make the decompo-
sition challenging, the centers of all the beams are crowded in a small area
in both position and Fourier domains. Figure 3a-b shows the real part of
the initial field in both domains. Figure 3c-d shows the associated energy
functions. Even though the energy function of a single beam is a Gaussian,
the energy function of the superposition shows oscillations of the order of
1/k due to interference between different beams. As the figure shows, the
Gaussian structure of the energy function is not evident. Figure 3e-f shows
the energy function after convolution with the smoothing kernel (2.18).

The algorithm was implemented on the domain depicted in figure 3 on a
coarse 50× 50 rectangular grid. In addition, points in which the energy was
below a given threshold were ignored. This left fewer that 1000 points to
consider in each domain (M < 1000). The EM fit resulted in 12 Gaussians,
the smallest number which gave an EM-error smaller than 10%. The first
iteration of the greedy outer loop yielded 11 GBs that approximate the initial
field with a 22% error. Closer inspection of the result showed that the algo-
rithm captured 8 out of the original 10 GBs correctly and compensated for
the error with three other beams which were misplaced. The result demon-
strates that the final optimization algorithm did not converge to the correct
result even though we used enough Gaussians for the approximation. This is
either because the minimization algorithm got trapped in a local minimum
or that convergence was too slow. After the first iteration of the outer loop,
the field generated by the 11 beams was subtracted from the initial one and
the EM process was repeated. Using 5 Gaussians in the EM fit the algorithm
approximates the difference field with an EM-error of 6%. Reconstructing
GBs from the EM data yielded 4 GBs which were combined with the previous
fit. Repeating the optimization step, which includes parameter optimization
and removal non-contributing Gaussians, yielded 11 GBs with an 18% error.
A Closer inspection showed that the 11 Gaussian include 9 of the original
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Figure 2: A superposition of eight Gaussian beams at a focus point. (a) the real part of
the field, (b) the real part of the weighted Fourier transform, (c) the energy function in
position space, (d) the energy function in Fourier space, (e) the smoothed energy function
in position space, and (f) the smoothed energy function in Fourier space.

ones. The third iteration of the greedy outer loop yielded 10 GBs with a
relative error of 8%.
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Figure 3: A superposition of ten Gaussian beams with random coefficients. (a) the real part
of the field, (b) the real part of the weighted Fourier transform, (c) the energy function in
position space, (d) the energy function in Fourier space, (e) the smoothed energy function
in position space, and (f) the smoothed energy function in Fourier space.

4.4. A modulated plane wave
We fit a wave field given by a plane wave in 2D, modulated by a Gaussian

in one dimension, as depicted in figure 4a. The EM fit resulted in 5 Gaussians
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in position space and a single one in Fourier space. Also, as explained in
section 3.5, in order to prevent the optimization process from converging
toward beams that are exceedingly wide, we add a penalty if the smallest
eigenvalue of Re[β] is smaller than 0.3. This threshold corresponds to a beam
whose standard deviation is about 0.5.

The first iteration of the greedy outer loop yielded two beams that fit the
initial field with a 40% relative error. A second iteration yielded five addi-
tional beams which reduce the relative error to about 4%. The approximating
beams are depicted in figure 4b-h.
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Figure 4: (a) A plane wave modulated by a Gaussian. (b)-(h) Seven beams approximating
(a) with a 4% error.

4.5. The double slit experiment

To test our method with data that does not have an underlying Gaussian
beam superposition and also exhibits many of the typical wave phenomena,
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including crossing waves and spreading, we look at the classical double slit
experiment. To generate the data, we simulate coherent waves as they pass
though two slits, using a standard second order finite difference method with
absorbing boundary conditions [10]. The slits are closely spaced together
and their width is similar to the wave length. The wave field after the waves
have passed though the two slits in shown in figure 5. We will decompose
this field into a sum of a few Gaussian beams.

Our method was applied using the smoothing kernel with width l = 0.2
in position space and l = 0.3 in Fourier space. With a cutoff EM-error at
5%, EM found four Gaussians in position space and five Gaussians in Fourier
space. The first iteration of the greedy outer loop yielded 8 GBs with a 30%
error. A second iteration yielded a total of 14 GBs with a 10% error. The
resulting beams are depicted in figure 6.
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Figure 5: Real part of the wave field to be decomposed for the double slit experiment.

5. Summary

We presented a numerical method for approximating a high frequency
wave field using Gaussian beams and applied it to decompose wave fields
consisting of Gaussian beams and to more general wave fields in two dimen-
sions.

Our approach approximates the energy functions of the wave equation in
both the position space and the fourier space. By considering both spaces
simultaneously, our strategy has an advantage of decomposing waves which
may not be easily distinguished in one space but are separated in the other.
We apply the well-established Expectation-Maximization algorithm which
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Figure 6: The real part of the wave fields of the first 8 beams approximating the double
slit experiment in section 4.5.

allows for efficient search of multiple Gaussians approximating the mollified
energy functions. The EM fit is then processed into a superposition of Gaus-
sian beams which approximates the high frequency wave field.

We demonstrate that our algorithm provides an efficient way of approx-
imating high frequency wave fields by superposition of a relatively small
number of Gaussian beams. We suggest that generalizations of our algo-
rithm to other types of highly oscillatory fields, for example, fields generated
by solutions to the Schrödinger equation, may be advantageous.
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Appendix A. The Gaussian beams approximation

In this appendix we review the derivation of rays and GBs in the variable
coefficient wave equation in Rd (2.1). The GB equations are solved exactly
for the simple case of constant propagation speed in 2D.

Appendix A.1. Geometric Optics

In order to obtain the high-frequency geometric optics approximation,
one makes the ansatz

u(x, t) = a(x, t)eikφ(x,t), (A.1)

where k � 1 is a large parameter characterizing the ratio between the wave
length and the scale on which c varies (assumed to be of order one). Sub-
stituting (A.1) into the wave equation (2.1) and equating equal powers of k
yields the eikonal equation for the phase φ and a transport equation for the
amplitude a. To leading order in k,

|φt|2 − c2(x)|∇φ(x)|2 = 0

2φtat − 2c2(x)∇φ · ∇a = −a�φ.
(A.2)

Without loss of generality, we assume that φt ≤ 0, otherwise, take t 7→ −t.
The eikonal equation has the form of a Hamilton-Jacobi equation

φt +H(x,∇φ) = 0, (A.3)

with
H(x, p) = c(x)|p|. (A.4)

In geometric optics, one describes waves using rays, which are the character-
istics of (A.3). Parameterizing the characteristics by s, we look for a solution
φ = φ(t(s), x(s)) and a trajectory x(s) such that z(s) = φ(t(s), x(s)) satis-
fies an ODE. We denote p = ∇xφ, where the subscript is added in order to
emphasize that the gradient is with respect to x, ∇xu = (∂x1 , . . . , ∂xd)

T and
[·]T denotes the transpose. Differentiating with respect to s yields

dz

ds
= φt

dt

ds
+ p

dx

ds
dp

ds
=

d

ds
∇φ(t(s), x(s)) = ∇φt

dt

ds
+∇x∇T

xφ
dx

ds
.

(A.5)
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Note that ∇x∇T
x is the Hessian. In addition, differentiating the PDE (A.3)

with respect to x yields

∇xφt +∇xH(x, p) +∇pH(x, p)∇x∇T
xφ = 0. (A.6)

We now see that if dt/ds = 1 and dx/ds = ∇pH(x, p), then one could
eliminate the second order term (∇xp

T ) from (A.5). Substituting (A.6) into
(A.5) and taking s = t yields Hamilton’s equations of motion

ẋ = ∇pH(x, p)

ṗ = −∇xH(x, p),
(A.7)

where dot denotes differentiation with respect to time t. For the case at
hand, H = c(x)|p|, and the characteristics are given by

ẋ = c(x)p̂

ṗ = −|p|∇c(x).
(A.8)

with some initial conditions x(0) = ξ and p(0) = ∇φ(0) = η. Here, p̂ = p/|p|.
Thus, the Hamiltonian H(x, p) is conserved under the dynamics, H(x, p) =
H(x0, p0) = H0. Since H is constant, (A.3) implies that along the rays the
phase is linear in time

φ(t) = φ0 −H0t. (A.9)

Without loss of generality we take φ0 = 0 since the phase eikφ0 is just a
multiplicative factor that does not change further derivations.

The GB approximation also requires the value of the Hessian, ∇∇Tφ
along the ray. Similar to the derivation of p, we write M(s) = ∇∇Tφ(x(s))
and differentiate with respect to s. The chain rule yields a three dimensional
tensor involving all third order derivatives of φ with respect to x. Differenti-
ating (A.6) with respect to x involves the same tensor. Thus, all third order
derivatives can be eliminated. We obtain

Ṁ = −M(∇p∇T
pH)M −M(∇p∇T

xH)− (∇T
p∇xH)M − (∇x∇T

xH). (A.10)

Using (A.4)

∇p∇T
pH =

c(x)

|p|
[
I − p̂p̂T

]
∇p∇T

xH = p̂(∇xc(x))T

∇x∇T
xH = |p|∇x∇T

x c(x),

(A.11)

27



where I is the identity matrix. Initial conditions are M(0) = iβ where
Reβ > 0.

Similarly, the characteristics of the linear transport equation for the am-
plitudes (A.2) are found as follows. Denoting X = (x, t) ∈ Rd × R, the
characteristics for X, parameterized by s, satisfy dX/ds = (2φt, 2c

2(x)∇φ).
This can be written as,

t = 2H0s = 2c(x)|p|s
dx

dt
=
dx

ds

ds

dt
= 2c2(x)p

1

2c(x)|p|
= c(x)p̂.

(A.12)

Hence, the characteristics of a are the same as those of φ (compare with
(A.8)). As a result, the derivative of a along the ray is given by

da

ds
= at

dt

ds
+∇xa ·

dx

ds
= 2H0at − 2c2p · ∇xa = −(2atφt − 2c2(x)∇xa · ∇xφ) = a�φ,

(A.13)

where we used the transport equation (A.2). Re-parameterizing with respect
to time and using (A.4) and (A.9) yields

ȧ = 2H0a�φ = −2c3(x)|p|Tr[M ]a, (A.14)

where Tr[·] denotes the trace.
For example, with a constant speed c(x) = c,

p = η

x = ξ + cηt

Ṁ = − c

|η|
M(I − η̂η̂T )M ; M(0) = iβ

ȧ = −2c3|p|Tr[M ]a ; a(0) = A.

(A.15)

Solving the equations for M(t) and a(t) yields in 2D (2.8).

Appendix A.2. Gaussian beams

The main idea underling the GB approximation is to expand the solution
of the phase around a particular beam [26]. Let X(t) denote the characteris-
tics of a ray originating at t = 0 from a point ξ and with an initial direction
η. The phase, its gradient and Hessian are denoted Φ(t), P (t) and M(t), re-
spectively. In addition, denote the amplitude obtained by integrating (A.14)
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as A(t). Note that we have chosen to parameterized the ray with respect to
time. The GB approximation for φ(x, t) is a second order Taylor polynomial
for φ around the point (X(t), t), i.e.,

φ(x, t) = Φ(t) + P (t) · [x−X(t)] +
1

2
[x−X(t)]TM(t)[x−X(t)]

a(x, t) = A(t).
(A.16)

Therefore,

u(x, 0) =Aeikη·(x−ξ)e−k(x−ξ)T β(x−ξ)/2

∇xu(x, 0) =ku(x, 0) [iη − β(x− ξ)]
ut(x, 0) =ku(x, 0)

[
k−1ȧ(t) + ic(x)|η| − i|η|∇c(x) · (x− ξ)−

c(x)η̂Tβ(x− ξ) + i(x− ξ)TM ′(0)(x− ξ)/2
] (A.17)

where A = a(0). The derivation above used the characteristic equation
(A.8). Substituting into (2.3) yields the energy function. However, since the
exponent is small for |x − ξ| > 1/

√
k, terms that are of order |x − ξ|2 are

comparable with 1/k and can be neglected. Similarly, c(x) and ∇c(x) can
also be expanded around ξ. The expansion yields

e(x, 0) = |A|2|η|2e−k(x−ξ)T (Reβ)(x−ξ) [1− c−2(ξ)∇c(ξ) · (x− ξ)
]

+O(1/k).
(A.18)

Furthermore, the leading in the expression above are symmetric with respect
to the Gaussian center, ξ. Hence, terms that are proportional to x− ξ cancel
upon integration of e(x, 0). To keep notation simple, we write

e(x, 0) = 2|A|2|η|2e−k(x−ξ)T (Reβ)(x−ξ) +O(1/
√
k). (A.19)

and remember that the contribution of the last term to the overall energy is
smaller. In the case of constant propagation speed, c(x) = 1, and the energy
function reduces to (2.9).

Hence, the contribution of exponential terms that are multiplied by poly-
nomials to the total energy is of order 1/k.

Similarly, in the frequency domain, substituting (A.16) into (2.10) yields

ũ(p, t) = k−1/2a(t)eikΦ(t)eikp·X(t)e−i[p+P (t)]TM−1(t)[p+P (t)]. (A.20)

At t = 0 this expression becomes (2.11). Substituting into the Fourier energy
function (2.12) and using the characteristic equation (A.8) yields (2.13).
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Appendix B. Expectation-Maximization

In this section we describe how to apply the expectation-maximization
(EM) algorithm [9] to approximate a probability distribution given on a set
of points using Gaussian random variables.

Let f(x) denote a non-negative density function on Rd. Let X = {xi}Mi=1

denote a list of M points in Rd and denote fi = f(xi). Without loss of
generality we assume that f(x) induces a probability measure on X, i.e.,∑M

i=1 fi = 1. For example, in the numerical examples described in section 4,
{xi}Mi=1 are the points on a rectangular two-dimensional grid with f(x) above
some fixed threshold.

The purpose of this section is to use the sample of f(x) at the points
xi in order to find a linear combination of N that approximates f(x) in a
probabilistic sense by Gaussians

g(x) =
N∑
j=1

AjGj(x) ; Gj(x) = z−1
i e−(x−µj)·Σ−1

j (x−µj)/2. (B.1)

Here, zi are normalization constants such that
∑M

i=1Gj(xi) = 1 for all j =

1 . . . N and
∑M

i=1Ai = 1. Hence, Gj(x) and g(x) are probability measures on
X. To this end, let θ denote the set of parameters defining the N Gaussians,
i.e., θ = {Aj, µj,Σj}Nj=1, where, for all j = 1 . . . N , Aj ∈ R, Aj ≥ 0, µj ∈ Rd

and Σj are positive definite d × d matrices. In addition, we require that∑M
i=1Ai = 1. An intuitive approach for constructing an EM algorithm is

to think of a random game that generates points from X with probabilities
gi = g(xi). First choose a Gaussian j out of {1, . . . , N} with probabilities
A1, . . . , AN , respectively. Then, draw a point xi with probability Gj(xi).
Thus, for fixed θ, the probability for getting xi is gi. Indeed, the probability
that point xi was generated from the Gaussian Gj, denoted pij, is

pij = AjGj(xi)/g(xi). (B.2)

Therefore, Aj is the average number of points chosen from Gaussian j,
weighted by gi:

Aj =
∑
i

gipij, (B.3)

µj is the weighted average position of points drawn from Gaussian j,

µj =
∑
i

gi
pij
Aj
xi, (B.4)
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and Σj is the associated covariance matrix

Σj =
∑
i

gi
pij
Aj
xix

T
i − µjµTj . (B.5)

We see that, if gi = fi for all i, then θ is a fixed point of the map θ → θ′ =
{A′j, µ′j,Σ′j}Nj=1 given by:

A′j =
∑
i

fipij

µ′j =
∑
i

fi
pij
A′j
xi

Σ′j =
∑
i

fi
pij
A′j
xix

T
i − µ′j(µ′)Tj .

(B.6)

Following [9] one can show that, for general non-negative and normalized
f(x), (B.6) defines a contraction and that fixed points are local minima for
the likelihood of obtaining a distribution fi over X from a set of parameters
θ.

Summarizing, for the case at hand the EM algorithm can be applied as
follows: start with an initial guess θ0 and iterate (B.6) until the process
converges within a given tolerance. The resulting parameters describe a
linear combination of Gaussians of the form of B.1 that approximate the
distribution f(x) on X.

Appendix C. Deconvolving variances

In section 2 we saw that convolving the energy function of a GB with the
smoothing kernel function (2.18) changes the variance matrix. In 1D, the
relation between the original variance B−1 and the convolved Σ−1 is:

Σ(B) =
B

1 + 2lB
. (C.1)

In 2D it is given by (2.20):

Σ(B) =
B + 2l(detB)I

1 + 2lTrB + 4l2 detB
, (C.2)

where I is the identity matrix. As a result, fitting a Gaussian to the convolved
energy function yields a biased variance. Hence, we would like to invert the
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above formulas. This is simple in 1D. In two or more dimensions we use the
fact that the shift in B is independent of k, but is of order l < 1. We rewrite
(C.2) as

B = Σ + 2l [(TrB)Σ− (detB)I] + 4l2(detB)Σ. (C.3)

Recall that l is known and we are solving for B. For small enough values of
l, the solution can be done iteratively by taking

B0 = Σ

Bj+1 = Σ + 2l [(TrBj)Σ− (detBj)I] + l24(detBj)Σ.
(C.4)

In Fourier space, one is actually looking for B−1 rather than B. While it is
still possible to use (C.4) and invert, we found that this approach introduced
a large numerical error if | detB| is small. Instead, one can invert (C.3),
expand to some order in l and solve iteratively. For example, the order two
approximation is

B−1
0 = Σ−1

B−1
j+1 =

[
1− lCj + l2(C2

j −Dj) +O(l3)
]

Σ−1,
(C.5)

where

Cj = − 2

detBj

Σ−1 +
TrBj

detBj

I

Dj =
4

detBj

I.
(C.6)

Appendix D. Reconstructing β

Let β denote a complex d× d symmetric matrix with a positive definite
real part. Denote A = Re[β] and C = Re[β−1]. One can show that C is also
positive definite. In this appendix we address the following problem: given
A and C, can one determine β?

Appendix D.1. General dimension

Denote B = Im[β] and D = Im[β−1], i.e., β = A+ iB and β−1 = C + iD.
Then,

I = ββ−1 = (A+ iB)(C + iD) = (AC −BD) + i(AD +BC), (D.1)
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where I is the identity matrix. Hence

AC −BD = I
AD +BC = 0.

(D.2)

Since A is positive definite it is invertible and

D = −A−1BC.

Substituting into the real part of (D.1) and multiplying by C−1 yields

BA−1B = C−1 − A. (D.3)

Equation (D.3) is a quadratic equation for the missing imaginary part, B.
Since A is real and symmetric, its inverse is diagonalizable with an or-

thonormal matrix, i.e., A−1 = QΛQT , Λ = diag{λ1, . . . , λd}. Multiplying
(D.3) by QT on the left and Q on the right yields

B̃ΛB̃ = H,

where B̃ = QTBQ and H = QT (C−1−A)Q are real and symmetric matrices.
Hence, without loss of generality, we need to solve a matrix equation (for B)
of the form

BΛB = H. (D.4)

Denoting the entries of B and H by {bij}di,j=1 and {hij}di,j=1, respectively,
(D.4) consists of n = d(d+ 1)/2 equations and unknowns:

eq(i, j) :
d∑

k=1

λjbikbjk = hij, (D.5)

for all i ≤ j. Arranging the matrix elements {bij}i≤j in the form of a vector
b, (D.5) can be written as n quadratic equations

eq(i, j) : bTLijb = hij, (D.6)

where, for each i ≤ j, Lij is a sparse n× n symmetric matrix. For example,
in two dimensions

L11 =

 λ1 0 0
0 λ2 0
0 0 0

 ; L12 =
1

2

 0 λ1 0
λ1 0 λ2

0 λ2 0

 ; L22 =

 0 0 0
0 λ1 0
0 0 λ2


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and in three dimensions

L11 =


λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ; L12 =
1

2


0 λ1 0 0 0 0
λ1 0 0 λ2 0 0
0 0 0 0 λ3 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
0 0 0 0 0 0



L13 =
1

2


0 0 λ1 0 0 0
0 0 0 0 λ2 0
λ1 0 0 0 0 λ3

0 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0

 ; L22 =


0 0 0 0 0 0
0 λ1 0 0 0 0
0 0 0 0 0 0
0 0 0 λ2 0 0
0 0 0 0 λ3 0
0 0 0 0 0 0



L23 =
1

2


0 0 0 0 0 0
0 0 λ1 0 0 0
0 λ1 0 0 0 0
0 0 0 0 λ2 0
0 0 0 λ2 0 λ3

0 0 0 0 λ3 0

 ; L33 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 λ1 0 0 0
0 0 0 0 0 0
0 0 0 0 λ2 0
0 0 0 0 0 λ3

 .

Since all eigenvalues λj are strictly positive, the diagonal equations e(i, i)
are elliptic cylinders. The rest are hyperbolic cylinders. Furthermore, since
the free axes of the cylinders are orthogonal, there is no degeneracy and the
number of solutions is finite, 2d at most.

Generally, (D.4) should be solved numerically. Since the equations are
quadratic, Newton-Raphson is accurate and efficient. The principle axes of
the cylinders described in (D.6) divide Rd into regions that correspond to
the basins of attractions of the different solutions. Hence, all solutions can
be identified by appropriately chosen initial guesses.

Appendix D.2. Two dimensions

In 2D equation (D.4) can be solved analytically. First, we note that (D.4)
is homogeneous in the sense that, for all α > 0,

(
√
αB)Λ(

√
αB) = αH.

Hence, without loss of generality we take λ2 = 1/λ1 and consider two cases:
detH = 0 and detH = 1. Solving using Mathematica and simplifying yields
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four solutions. With detH = 0,

B =

√
λ1

h22 + h11λ1

(
h11 ±h12

±h12 h22

)
,

and −B±. With detH = 1, if h12 6= 0

B± =

√
λ1λ2

h11λ1 + h22λ2 ± 2λ1λ2

(
h11 ± λ2 h12

h12 h22 ± λ1

)
,

and

B± =

( √
h11λ1 0
0 ±

√
h22λ2

)
,

otherwise. The other two solutions are −B±. It can be shown that in all the
expressions above the denominator is strictly positive.
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