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Abstract

Simultaneous algebraic reconstruction technique (SART) [1, 2] is an iterative method for solv-
ing inverse problems of the form Ax = b. This type of problems arises for example in computed
tomography reconstruction, when A is obtained from the discrete Radon transform. In this paper,
we provide two new methods for the derivation of the SART method. Using these, we also prove
in two different ways the convergence of the simultaneous algebraic reconstruction technique. The
first approach uses the linearized Bregman iteration, while the second approach uses the dual gra-
dient descent method. These novel proofs can be applied to other Landweber-like schemes such as
Cimmino’s algorithm and component averaging (CAV). Furthermore the noisy case is considered
and error estimate is given. Several numerical experiments for computed tomography are provided
to demonstrate the convergence results in practice.

Keywords: simultaneous algebraic reconstruction technique, Bregman iteration, dual gradient
descent, image reconstruction, component averaging, Cimmino’s algorithm

1 Introduction

As a group of methods for reconstructing two dimensional and three dimensional images from the
projections of the object, iterative reconstruction has many applications such as in computerized to-
mography (CT), positron emission tomography (PET) and magnetic resonance imaging (MRI). This
technique is quite different from the filtered back projection (FBP) method [20], which is the most
commonly used algorithm in practice by manufacturers. The main advantages of the iterative recon-
struction technique over FBP are insensitivity to noise and flexibility [13]. The data can be collected
over any set of lines, the projections do not have to be distributed uniformly in angle, and may be even
incomplete.

There are many available algorithms for iterative reconstruction of the solution of an inverse prob-
lem. The inverse problem to be solved is based on the system of linear equations

Ax = b,
where © = (x1,--- ,2y)7 € RY is the unknown (for example, the image to be reconstructed from
projections expressed as a long vector), b is the given measurement with b = (by,--- ,byr)T € RM, and

Ais a M x N matrix describing the transformation from x to the measurements. This matrix A is
different for different purposes. For example, in computed tomography, A represents the discrete Radon
transform, with each row describing an integral along one straight line, and having all the elements
nonnegative.

Some examples of iterative reconstruction algorithms are expectation maximization (EM) [21],
algebraic reconstruction techniques (ART) [9, 10], and component averaging methods (CAV) [6]. Si-
multaneous algebraic reconstruction technique (SART) [1, 2], as a refinement of ART, is also widely
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used [3, 18, 27]. Furthermore, the convergence analysis of SART and CAV are studied by Jiang and
Wang et. al. [11, 12, 19], Wang and Zheng [24], Censor and Elfving [6].

The Bregman iteration [5] is a technique used to solve a constrained optimization problem by
solving a sequence of unconstrained problems [5]. Osher et al. used this in image restoration [16] and
the technique is now widely used in compressed sensing and image processing to solve [1-minimization
problems. In addition, a linearized version of Bregman iteration, named linearized Bregman iteration
is proposed by Osher et al. [17] and Yin et al. [26].

We will provide in this paper a novel convergence analysis of the SART method from the linearized
Bregman iteration of an optimization problem and from the gradient descent method with unit step
applied to the dual problem. The exponential decay of the residual and of the difference with the exact
solution is shown in corresponding norms. Furthermore, for the noisy case, a bound of the error is
provided in corresponding norm.

The organization of the paper is as follows: in section 2, we will give an introduction to the
SART algorithm. The concept of Bregman iteration and linearized Bregman iteration, along with the
connection of SART and linearized Bregman iteration of an optimization problem, will be provided in
section 3. Then we will show the convergence analysis of the SART method using linearized Bregman
iteration and dual gradient descent in sections 4 and 5 respectively. Also, we show that the convergence
analysis can be applied to a general Landweber scheme [14]. Furthermore, we discuss the noisy case
in section 6. In order to illustrate the convergence results shown in this paper, we present numerical
experiments for both noise free and noisy cases in section 7, corresponding to the computed tomography
case. Finally, we end up with a conclusion and remark section.

2 Simultaneous Algebraic Reconstruction Technique

In this section, we provide an introduction to the simultaneous algebraic reconstruction technique
(SART) [1, 2]. Recall from section 1, we have the system of linear equations

Az = b. (1)

Here, we have the assumption that all elements in A are nonnegative (this is a property that must
hold when A is obtained from the discrete Radon transform in computed tomography). Even if this
assumption is not satisfied, we still obtain the same convergence analysis without any difficulty (for
more details, see the remark in the last section).

The objective of the reconstruction technique is to find a solution x of this system. In this section,
we only consider the noise free case, and the existence of the solution is guaranteed. However, the
uniqueness is still unknown. If A has full column rank, the solution to the system is unique. Otherwise,
there are infinite many solutions to this system. SART is a method used to find one solution, which
depends on the initial guess.

We define

N
Ai,—l—:ZAi,j fOI‘iZl,---,M,
7j=1

M
A+,j:ZAi,j fOI‘jzl,---,N.
=1

A; 4+ is the summation of all elements in the ith row, and A, ; is the summation of all elements in the
j™ column. In addition, there is an assumption on A; ; and A, j that A; > 0 and A, ; > 0. Actually
if A; 1+ =0, the i*" measurement is 0 for any x. A4 j = 0 means that change in the 4% component of
x cannot be detected in the measurements.

Let V' be the diagonal matrix with diagonal elements A, ;, and W be the diagonal matrix with



diagonal elements A; ;. The SART method proposed in [1, 2] is
aF = P vVt ATW (b — AzR), (2)

for k =0,1,--- , where w is a relaxation parameter in (0,2), and the starting point is V.

3 SART from Bregman Iteration

Before deriving SART from the Bregman iteration, we provide some definitions for later use. First
we recall the definition of ellipsoidal norm for vectors. Let G be an n X n symmetric positive definite
matrix. The ellipsoidal norm of x € R" is defined as follows:

H~"3||%; = (z,z)q = (z,Gz) = 2T Gz.

Since we may obtain different ellipsoidal norms for different matrices, we indicate the positive definite
matrix in the notation of these norms. The ellipsoidal norm with matrix G is named as G-norm. We
will use two ellipsoidal norms ||z||y and ||y|ly -1, named V-norm and W~!-norm respectively.

From the convergence analysis of SART in [12], SART converges to the solution of Az = b with
the least V-norm if the initial guess 2° = 0. We consider the following problem which depends on the

initial guess ,

minimize ||z — $OH%/, (3)
x
subject to Az =b.

This is a convex constrained optimization problem and the existence and the uniqueness of a solution is
guaranteed. We can approximate this problem by adding a quadratic penalty function of the equality
constraint onto the objective function to obtain an unconstrained problem as follows,

1
minixmizeuHx — %% + 5“’435 — b3, (4)

where p is a positive parameter.

The solution of (4) converges to the solution of (3) as 1 — 0 [15]. Thus, we can find an approximate
solution of (3) by solving (4) with a sufficient small u. However, small p will slow down many algorithms.

Recently, the Bregman iteration method for solving constrained problems by solving a sequence of
unconstrained problems is proposed by Osher et al. [16] in image processing. Actually this idea dates
back to 1967, provided by Bregman [5].

Instead of solving one unconstrained problem to obtain an approximate solution of problem (3),
we solve several unconstrained problems iteratively, and the result also converges to the solution of the
unconstrained problem.

We define J(z) = pllz — 2%|? and the Bregman distance by

Dh(z!,2%) = J(z') = J(2®) = (p,z’ —2?),

with p € 0.J(x?), a subgradient of J at 2. In general, the Bregman distance is not a distance in the
common sense. However, for this special J in this paper, the Bregman distance is a distance in the
common sense, and we have D' (z!, 2?) = pljz! — 2|}

The Bregman iteration is as follows

1
2"+ = argmin D (z, %) + 5llAz - b2

xT

1
= argmin pllz — 25} + 5 Az — bl (5)
X



for k = 0,1,---, starting with initial guess 2°. In each iteration, we can find the optimal solution

analytically. From the optimality of z*! in (5), it follows that
2uV (zF Tt — 2Py + ATW L (AzF Tt —b) = 0.
Therefore, for each iteration, we have to solve a system of linear equations
QuV + ATW Az = ATW b + 2V 2k (6)

The matrix in the left-hand-side remains unchanged while the right-hand-side changes for each iteration.
Furthermore, we can linearize the second quadratic term in (5) and obtain the linearized Bregman
iteration as follows,

k+1

1
2P = argmin pllz — 2|3 4 (AP — b, Ax)y1 + ng —zF|3.. (7)
xT

In this linearized version, the optimal solution is also easy to find, and it is given by

ﬁv_lATW_l(b — A.%'k)
M —

07

Denoting w = we thus observe that the SART method is now derived from the linearized

1
2#—1—% )
Bregman iteration. Then we can find the convergence of SART using the linearized Bregman method,
as presented next.

4 Convergence Analysis of Linearized Bregman Iteration

In this section, we will show the convergence of SART from linearized Bregman iteration. First we
state the following important lemma [11], which will be used several times.

Lemma 4.1 Show that V. — ATW YA and W — AV—YAT are positive semidefinite matrices.

Remark: In addition, we have ||Az||y-1 < ||z|v. Furthermore, V — ATW 1A and W — AV~ AT are
not positive definite, because x with same constant value for each component is in the null spaces of

V—ATW1A and W — AV 14T,

Firstly, we show that the residual is decreasing with respect to the W ~!'-norm by the following theorem,
and we give a different proof from [12].

Theorem 4.2 For z* obtained by (2), the W~ -norm of the residual b— Az* is decreasing if 0 < w < 2.
Furthermore,we have the following inequality:

2
A4 = bRy + (2= 1)l - aF < A b, ®)
fork=0,1,---.
Proof: The linearized iteration (7) is equivalent to

1
2 = argmin — ||z — xk||%/ + (AzF — b, Ax)yy—1,
z 2w

k+1

and from the optimality of """, we have

af = 2P 4wV L ATW (b — AzR),
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which is one step of SART.
It is easy to verify that

1
EkaH — 2|3 4+ (AxF — b, AxP Yo = (AxP — b, AP o,

which is equivalent to

1
E”xkﬂ —2F|2 4 (Axk — b, AxPT — APy = 0. 9)

In addition, we have

2(Axk — b, AxFtl — Azky,,
=(Az*t — b, AzPT —b)yor — (AT — Ak Agkt — ARy

— (AzF — b, Azk — b)yp-1.
We plug this into equation (9), and we have

2
— [l — b — (A — AP+ (A = bl = (A2 — bl

From the remark after Lemma 4.1, we have ||Az*+1 — Axk”%,v_l < [lakHt — k)2,
Thus, we obtain

2
(= =Dl = 2"} + (| Az = blffy 1 < [ Az = bl

If 0 < w < 2, the residual is decreasing in W ~!-norm. |}

From the above theorem, the residual will decrease in the W~ -norm until z* remains unchanged.
We will show that the sequence z* will converge and converges to the solution of the constraint problem
(3). We show the convergence of z* first. Since

b gk = (1 —wV T ATW L A) (28 — 2R,
denote r* = z**t1 — 2*. It follows that
Virk = Va(l —wV L ATW LAV 2V 3k
— (I —wV 2 ATW AV =5V ah (10)
In order to show the exponential decay of |||y or HV%rkH, we have to show that
0<wV 2ATW LAV "2 < 2] (11)
during the iterations. From Lemma 4.1 we have ATW 1A < V, which is equivalent to
VR ATW AV TE < T

thus for w € (0, 2),
wV s ATW AV T2 < 21
However, V"2 ATW 1AV "2 = 0 is not always true. If A has nontrivial null space N (A), we can
choose nontrivial z such that V=22 € N/ (A) and

2TV 2 ATW-TAV 22 = 0.
5



But in a subset of RV, the image of VféAT, we have V2 ATW 1AV 2 = 0.
From the iteration 2! = zF 4wV ~1ATW (b — Az"), we have

Vark = Vi (@bt — k) = wV 2 ATW 1 (b — AzF).

Thus V3rF is in the image of V_%AT, and V-3 ATW 1AV "3 = 0 is satisfied during the iterations.
Therefore, for w € (0,2), from the exponential decay of ||7*||y; in (10) and (11), there exists a
constant A € (0,1) such that ||zF+1 — 2¥||y, < A||2% — 2%y, < AF||2! — 20||y. Therefore

)\k

Sl =2 (12)

o o
lz* —z|y <Dt =2y <Y Nlz' — a0l =
ik i=k

Theorem 4.3 Assume that x* is the solution of Ax = b with the least |z — 2°||y, and 2% — Z. Then
we have the following estimate:

1
plz — 2% SMllﬂf*—ﬁﬂo\l%ﬂra(f—ﬂfo,w*—E>v- (13)

Proof: From the updating of z*, we have

a2 =P vt ATW T (b — Az
= "2 L wV I ATW (b — AzF72) 4wV T ATW (b — AxFh)

k—1
=-o=a VAT Y (b - Add).
§=0
Since w = ﬁ, we have
k—1 1
ou(z* — 20 = V-1 AT ! C A — Dk — 0y
pla® =2y =V AW Z(b Ax?) a(x x”)
7=0
From the positivity of Bregman distance, we have
2F — 20012 < pllz — 20 — 2ulz* — 2, 2k — 20)y
| VS H v K )
k-1
* 012 * k vr—1 AT —1 j L, k .k _ 0
= pllz* — 2|y — (" — 2", VAW Z(b—Aw7)>v+—<x —a 2" —a)y
j=0 “
k—1 ‘ 1
= il = ¥ = (b= Aak, 3 (b = Ao+~ (@ — b,k — 2Oy
§=0

We will show that ||Az* — b||y;—1 decays exponentially. Then the middle term will vanish when k& — oo
and the result follows.
From the updating of z*, we have

af gk = VL ATW (b — AzF). (14)
Multiply by A and we have
AxF Tl — b= Azk — b —wAV T ATW YAk — b) = (I —wAVTATW 1) Ak — 1),

and similarly to the proof of the convergence of z*, we can show exponential decreasing of || Az* —b|| -1
forw e (0,2). |



Theorem 4.4 zF converges to x*, or T = z*.

Proof: From the proof of the previous theorem, the residual b — Az* decreases exponentially in W ~1-

¥ — Z. In addition, from the assumption that Az* = b, we have A(T —2*) =
S -

0. Furthermore, Z = 2° +wV 'ATW~! 3" (b— Az7), which means that Z—2° is in the image of V"1 AT,
j=0

and (T — 2%, 2* — T)y = 0. Thus the last term in (13) vanishes and ||T — 2°||3, < |jz* — 2°||3,. It follows

that T = 2* because z* is the solution with the least ||z — 2°|y. |

norm. Thus AZ = b since x

From the convergence proof, we can see the importance of the initial guess. If the matrix A does
not have full column rank, SART will converge to a solution of the system having the shortest distance
to the initial guess 2° in V-norm. This will be also seen in numerical experiments.

5 Dual Gradient Descent

The connection of linearized Bregman iteration for compressive sensing and gradient descent with unit
step for dual problem is shown in [25] by Yin. Here we can also derive the convergence by considering
the gradient descent method of the dual problem. Assume that the primal problem is

o 1 02
minimize 30z — 277,
. _1 _1
subject to W 2Ax =W ™20,

which is equivalent to the constraint problem (3).
The Lagrangian function [4] is

1 _1
L(z,y) = g—lle =2} +y" W2 (Az - b),

with y being the Lagrangian coefficient corresponding to the equality constraints W3 Az = W3b.
Minimizing L(x,y) with respect to x only provides the optimal solution

z=2"— wVflATWféy.
Plugging this into the Lagrangian function, we have
mljn L(z,y) = %HVAATW*%yH%/ - yTWfé(wAvflATWféy +b— AzY)
= —yTW (b= Aa®) — SV AT By}
Therefore, the dual problem is

minimize F(y) = yTW_%(b — Az0) + %HV_lATW_%yH%/,
y

and this is an unconstrained problem. This can be solved by many methods for unconstrained opti-
mization problems.

First of all, we look at the gradient descent method for this problem and we will see the connection
with SART. The gradient of F(y) is

VF(y) =W 2(b— A2®) + wiW 2 AV AT 2y,
The gradient descent with unit step is
Y gk = VR = W2 (b — A2®) — w2 AV AT T2y
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Multiply by —wV_lATWfé, and we have
(2P — 20) — (2% — 20) = wVTATW L (b — A20) —wV AT W L A2k — 29)
= wV 1ATW (b — Az¥),
which is again exactly the SART method. Therefore, the SART method is equivalent to the gradient

descent method with unit step for the dual problem.
The convergence can be derived from gradient descent. Since

_1 _ _1
IVE®y") — VE@?)|| = w|W 2 AV ATW 2 (y' — ?)|| < wlly* — 2|,

we have
w

2

w 1
= F(y*) + (— - ;) [yF Tt — ¥ 12

Fy*h < FiF) + " — oF VEWY)) + < lly* T — oF|)?

F(y*) will decreasing until * remain unchanged. In addition, we have
Ptk = (1 - wW*%AVﬂATI/V*%)(yk — ).

— || and ||y* — y*|| with y* being the optimal
z*||y and ||z — 2* |y, since

Similarly, we can show the exponential decay of ||yy**!
solution, therefore the exponential decay of ||z*+!1 —

1 _1 -1
254 — 2y = wl[ VAT S (R =) =l AT (R

_1
<w|W 2 (y" = yF)lw = [lyF = .

Thus, the gradient descent is convergent given the step size (here is 1) is less than 2/w, which is 1 < 2/w
or w < 2.

Remark: All the above proofs depend on Lemma 4.1. If we can choose different combinations of V'
and W to make the lemma valid, the analysis remains the same. Thus, we can choose other different
matrices V and W to obtain new algorithms. Actually, there are several methods with different
combinations of V and W. Two examples are Cimmino’s algorithm and component averaging. Their
convergence proofs can be found in [11], different from the present ones.

Cimmino’s algorithm [8]: We can choose V' = I and W to be the diagonal matrix with diagonal
elements M| A;||?, where ||A4; .|| is the lp-norm of the i*" row.

Component averaging (CAV) [6, 7]: CAV is a novel method based on diagonal weighting and
utilizing the sparsity of the matrix A. Denote s; to be the number of nonzero elements in the gth
column of matrix A. Again we can choose V = I, and the matrix W is the diagonal matrix with

N
diagonal elements > s;A? ;- 1f all elements of A are nonzero, CAV is exactly the same as Cimmino’s
1 ’

J
algorithm.

6 Noisy Case

In previous sections, we considered the system of linear equations without noise, which is the ideal
case. However, noise is unavoidable in applications. In this section, we will consider the noisy problem.
The problem is to find x such that

Ax+e=b
8



with e being the unknown noise. Assume that it is a Gaussian noise with different variances for different
components. Then the probability based on Gaussian probability distribution function is

2
(bj—ajz)
240+

M
1
= —— A s
) 21;[1 \/ 27'('142‘74_

where a; is the i row of A. In the case of computed tomography reconstruction (CT), if A; 4 (the
length of intersection of X-ray with the domain) is large, the variance of the noise will also be large.

Thus, we can consider to find = such that the probability is largest. Instead of maximizing the
probability, we minimize

P(b|Ax

M
—log P(b|Ax) = Z A;}_(aix — b;)? 4 constant = || Az — b||yy -1 + constant.
1=1

Using steepest descent method, we recover the SART iteration
2" =g — VT ATW T (A2 — D).

Again, we assume that the true solution is x*, and the result obtained by SART is Z. If b is in the
range of A, we have AT = b, and the following lower bound holds

[ — 2%y > |47 — Az™[[w -1 = |lellw-1-

It is easy to check that Theorem 4.2 is still true for the noisy case, and the residual will decrease in
W~l-norm until 2* remains unchanged. From the SART iteration 2! = 2" —wV ' ATW ~1(A2" —b),
in order to obtain z**1 = 2%, we have V=1/2ATW~1(Az* — b) = 0.

For finding the upper bound, we first consider a special case when A has full column rank.
Then z*F will converge to T = (ATW1A)"TATW~1b. Denote ||[(WY2AV-Y2)"Y| = inf{M :
M||W=Y2AV-2z| > ||z||}. Then, we have

1z —a*|lv = V2@ = 2*)|| < [(WPAV 27| w2 AT — o)
= (WA - | AT — Az ||y,

We have to estimate ||AZ — Az*||y—1. From ATW~=1(AZ —b) = 0, we have (AT — Ax*, AT — b)yy 1 = 0,
and

lelZy—1 = 16— Az* [Zyos = [b— AT + AT — Ac*|Zyos = [ AT — by + | AT — A" |5-1.

Therefore,

|AT — Ax* [l = \/lelZ—s = 14T = b3,y < llellw-1.

Theorem 6.1 If A has full column rank, then we have the following estimate
17— 2 v < W24V Y21 - fellyr.

Therefore, combining (12) we have the estimate for error at each iteration,

k

Tl =2t + IW = 2AV =27 el

lz* — 2|y < ||z ~Zlly + |7 — 2*[lv <

However, when A does not have full column rank, the solution will again depend on the initial
guess 20, From ATW=Y(Ax — b) = 0, we have ATW 1Az = ATW~1b. If 7 is the solution with initial
guess ¥ = 0, then all the solutions are {# + y} with Ay = 0. Furthermore & and y are orthogonal

9



with respect to V-norm because when z° = 0, all the iterations z* and # will remain in the range of
V~LAT. For other initial guess 2° # 0 having the decomposition 2° = y + 2/, where Ay = 0 and 2/ is
in the range of V"1A” then it is easy to check that the result Z will be & + y.

7 Numerical Experiments

In this section, we provide several numerical experiments to illustrate the convergence of SART, Cim-
mino’s algorithm and CAV for both noise free and noisy cases. All numerical experiments are based
on fan-beam computed tomography image reconstruction, and the matrix A representing the discrete
Radon transform is constructed by Siddon’s algorithm [22]. The problem is to reconstruct the image
x from the measurements b, which is equivalent with solving Az = b.

For the first experiment, we consider the noise free case to show the convergence of SART, Cimmino’s
algorithm and CAV, and compare this with the analysis provided above. We choose a small 32x32
phantom image, and for the measurements, we take views for every 6 degrees, and 60 views totally. For
each view, there are 61 measurements, which is enough to make sure that the solution to the system is
unique.

First, let w = 1 fixed, and we solve Ax = b using these three methods for 1000 iterations. From the
convergence analysis, we know that the residual b — Az*, the norm difference between two iterations

k k k

¥ — 21 and the error 2* — 2* are exponential decreasing in W~!-norm , V-norm and V-norm

respectively. The numerical results are in Figure 1.

—SART —SART —SART

R - - CAV N - - CAV - - CAV
B - - -Cimmino 10 - - -Cimmino - - -Cimmino

4 -4 Tl -
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration

Figure 1: Decay of residual, of the norm difference between two iterations and error in corresponding
ellipsoidal norms.

From Figure 1, we can easily see the exponential decay of the residual, of the difference between two
iterations and of the error in ellipsoidal norms for these three methods. Since for these three methods,
the ellipsoidal norms are different, we also show the error in lo-norm for these methods at each iteration
in the following Figure 2.

Comparing the decays of these three methods, we find that the convergences of SART and CAV are
much faster than of Cimmino’s algorithm for this special w = 1. Then we perform the same numerical
experiment with different w for different methods. Though we only show the convergence for w € (0,2),
we choose w = 2,2.35, 50 for SART, CAV and Cimmino’s algorithm respectively. The decay of residual,
difference between two iterations and error in corresponding ellipsoidal norms are shown in Figure 3.
The error in ls-norm is in Figures 4.

These figures show that Cimmino’s algorithm and CAV will converge even when w > 2, while for
SART, the convergence works only for w € (0,2). In addition, we have the reconstruction results for
these three methods in Figure 5.

From these results, we can see that the reconstructions by these three methods are quit close to the
original true image if we don’t consider the color bar at the bottom. In fact, the range result of SART
is moved by a constant ~ —0.1280. From the remark after Lemma 4.1, we know that x with constant
value for each component is in the null space of V. — ATW~1A. Thus, if ¥ ~ z* + ¢, with ¢ being a

10
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Figure 2: Decay of error in lo-norm for three methods
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Figure 3: Decay of residual, difference between two iterations and error in ellipsoidal norms
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Figure 4: Decay of error in [2-norm for three methods

vector with the same value for each component, we will have

Pt =gk v IATW L (Azk —b) m a* +c— 2V TATW T Ac = oF — ¢
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original SART(w=1) SART(W=2) CAV(w=2.35) Cimmino(w=50)

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

0.40.60.8 1 1.2
Figure 5: Reconstruction results of a 32x32 image with w = 1,2,2.35,50 for SART, CAV, Cimmino’s
algorithm respectively.

Therefore zFt2 ~ 2! + 2¢ ~ z¥, and this explains why the residual,the difference between two
iterations and the error do not decay in corresponding norms, and the image reconstructed using
SART is shifted by a constant.

However, CAV and Cimmino’s algorithm will still converge even when w > 2, because we have the
following more accurate constraint for w with any pair V and W, 0 < w < 2/p(V7%ATW_1AV7%),
where p(G) is the largest eigenvalue of the matrix G. For SART, p(VféATW_lAVfé) = 1 and we
have the constraint 0 < w < 2, while for CAV and Cimmino’s algorithm, the upperbound depends on
the matrix A. For this special A in the numerical experiment, p(VféATW_lAVfé) < 1 for CAV and
Cimmino’s algorithm, thus from the figures, we can see the residual, difference between two iterations
and error still decrease exponentially in corresponding ellipsoidal norm. For convergence of SART with
different relaxation coefficents in different steps, see [19].

If the measurements are not sufficient to insure that the solution to the system is unique, the result
will depend on the initial guess. If we choose only 15 views, one for 24 degrees, then the number
of measurements is only 915 while the number of pixels is 1024. This is a underdetermined system,
having infinite many solutions. In the following Figure 6 we can find the result with three different
initial guesses.

original SART(x’=0) SART(x’=100*rand(1024,1))SART(x’=randn(1024,1))

H |

0 0.5 1 -0.2 0 0.20.40.60.8 -40 -20 0 20 40

Figure 6: Reconstruction results of a 32x32 image with different initial guesses.

For a larger 256x256 image, if we choose 180 views with 301 measurements in each view,it still leads
to an underdetermined system. We choose three different initial guesses and we repeat the experiment.
The reconstructed results after 1000 iterations are in Figure 7.

If the initial guess is not chosen properly, we will not obtain something useful, as the third one
(% = 100 * rand(1024,1)) in Figure 6. In another way, if there is a way to choose a better initial guess,

12



original SART(xO=0) SART(x0=rand(2562,1)) SART(x0=randn(2562,1))

D D J
B | BB
0 0.5 1 0 0.5 1

H |

-05 0 05 1 15 -2 0 2

Figure 7: Reconstruction results of a 256x256 image with different initial guesses.

the result will be improved. From these two figures, we can see that 20 = 0 is a better guess comparing
with other two guesses. However, 20 = 0 is not the best one and how to choose a good initial guess is
still a difficult problem.

The last two experiments with insufficient measurements show that we can not reconstruct the
original image without any prior knowledge about it even in the noise free case, because there are
many solutions for the problem and SART only provides us one solution, which depends on the initial
guess. Thus for the insufficient measurements case, we have to use some regularization method such
as total variation (TV) minimization and compressed sensing. Some methods combining SART and
compressed sensing (CS) or TV [18, 23, 27] are proposed for CT reconstruction to reduce the number
of measurements further more.

We will consider the noisy case and the system to be solved is

Ax +e=0b.

Here, we choose the small 32x32 image again. Assume that e is the additive Gaussian noise with zero
means and different variances. We choose the variances increasing equally from 0.01 to 1 and show the
V-norm of the error, comparing with the bound given in the last section. As is shown in Figure 8, the
error is quite close to the bound.

100

——error
—bound

err in V=norm

0 20 40 60 80 100
trials

Figure 8: Error of the results with different noise.
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8 Conclusion and Remarks

In this paper, we proposed two novel approaches for the convergence of the SART method and extended
the analysis to two other Landweber-like schemes. One approach uses the linearized Bregman iteration
for the primal problem, and the other one is derived from the gradient descent for the dual problem. In
addition, the exponential decay of residual and error in corresponding ellipsoidal norms is given. Also
we provide an error bound for the result when there is noise in the measurements.

If some or all elements of the matrix A are negative, we can also obtain the same results, except
that in the definition of A; ;. and A, ;, we have to use the summation of the absolute value of elements
in rows and columns, which is the /1 norm of the rows and columns. Numerical results in computed
tomography have been presented, to better illustrate the theoretical results.
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