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Graph Cuts for Curvature based Image

Denoising
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Abstract

Minimization of total variation (TV) is a well known method for image denoising. Recently, the

relationship between TV minimization problems and binary MRF models has been much explored.

This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization

problem in the discrete setting via graph cuts. To overcome limitations such as staircasing effects of the

relatively simple TV model, variational models based on higher order derivatives have been proposed.

The Euler’s elastica model is one such higher order model of central importance, which minimizes the

curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in

such higher order models are complicated and computationally complex. In this work we will present an

efficient minimization algorithm based on graph cuts for minimizing the energy in the Euler’s elastica

model, by simplifying the problem to that of solving a sequence of easy graph representable problems.

This sequence has connections to the gradient flow of the energy function, and converges to a minimum

point. The numerical experiments show that our new approach is more effective in maintaining smooth

visual results while preserving sharp features better than TV models.
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I. INTRODUCTION

Image denoising is the problem of recovering a true image u from an observed noisy image

u0. In this work, we assume the original image u has been perturbed by additive gaussian noise

η:

u0 = u + η.

The variational approach is an important paradigm for solving image denoising problems when

the image is defined on the continuous domain. Total variation is a powerful notion in such

variational problems. The ROF (Rudin-Osher-Fatemi) model was the first image denoising model

for 2D-noisy images with additive gaussian white noise using total variation as a regularization

term [26]. The main advantage of total variation is the ability to preserve discontinuities. Several

numerical methods have been developed for minimizing the energy in such TV-based models, and

most of them are based on solving the corresponding Euler-Lagrange equations in the continuous

setting. Recently, an equivalence between the anisotropic total variation denoising model and a

class of binary second order MRF (markov random field) models has been established in the

discrete and quantized setting[8], [9], [4], which has resulted in some very efficient algorithms.

In case of L gray values, an optimum can be obtained by solving log2(L) − 1 binary second

order MRFs independently. Such binary MRFs have been studied extensively in computer vision

and it is well known that they can be solved very efficiently by graph cuts. As a result, graph

cuts based algorithms can be used to efficiently find exact global minima of TV models in the

discrete setting.

In spite of the simplicity of TV-based models, they have some disadvantages. Most notably

is the so called staircasing effect: piecewise constant images are favored over piecewise smooth

images. To counteract these disadvantages, more sophisticated models have recently been de-

veloped, where the energy functionals depend on higher order derivatives; see [30], [19], [21],

[23], [22], [7], [6], [32], [31], etc. Models that minimize curvature based functionals have been

demonstrated to perform particularly well. Of central importance is the Euler’s elastica model

[23], [22], [7]. In contrast to the total variation model, which minimizes the length of each level

line in the image, Euler’s elastica minimizes the total curvature of each level line in the image.

The Euler’s elastica model can also preserve discontinuities.

The main disadvantage of such higher order methods is the difficulty and complexity of
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computation. Traditionally the Euler-Lagrange or gradient descent equations are derived. These

are nonlinear partial differential equations (PDEs) of order four or even higher. Numerically

solving these equations is a time consuming process. Another disadvantage of these methods is

the possibility of getting stuck in a local minimum, since the curvature based functionals are not

convex. For the denoising application this is not such a big drawback since a good initialization,

the noisy input image, is always available.

In this work we will propose an algorithm based on graph cuts for efficiently minimizing the

energy in the Euler’s elastica model. In the discrete setting, this model has the form of a higher

order MRF. In contrast to second order MRFs, these are NP-hard and can generally not be solved

exactly. Not much work has been devoted to higher order MRFs so far, however in the last few

years some work has appeared much of which was developed simultaneously with ours. Some

recent work can be found in [13], [25], [14]. Very recently a technique was also proposed in

[17] based on dual decomposition and message passing [18]. This method will in general find an

approximate solution by solving a simpler relaxed problem. However, the curvature based models

we study do not fit directly into their framework. A linear relaxation approach for region based

segmentation models with curvature regularity was proposed in [28]. This approach will also

find an approximate solution by solving a simpler linear programming relaxation. This approach

could potentially be adapted to denoising by increasing the size of the linear program (L-times

as large in case of L gray levels). However, the computational complexity would be quite heavy

compared to ours, due to the size of the linear program. The same authors also presented an

interesting technique for globally optimizing functions of curvature of a curve in case there are

no data term (e.g. for edge based segmentation models in 2D) by minimum ratio cycles [27].

However, this result does not apply for energy functionals with a separate data fitting term.

The curvature based models we study do not directly fit into the framework of [17]. One

reason for this is that in the discrete setting, the interaction term in the Euler’s elastica model

consists of a multiplication of one higher order factor and one second order factor. Curvature is

also very complex and nonlinear in the discrete setting. Our approach is different, we instead

show that the problem can be simplified to that of solving a sequence of much easier problems,

in the form of second order MRFs. The sequence of solutions to these simpler problems has

connections to the gradient flow of the energy function and will converge to a local minimum.

We claim our approach to be more efficient than previous approaches like [17], [28] due to the
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underlying graph cuts minimization technique and logarithmic complexity in the number of gray

values.

Like all other curvature based approaches, ours cannot be guaranteed to find a global minimum.

The solution may to some extent depend on the initialization. However, for the denoising

application, the noisy input image is available as a good initialization. Furthermore, numerical

experiments indicate that our algorithm for the Euler’s elastica model is rather robust to initial-

ization. Our numerical results also show that the minimization of functionals related to curvature

prevents shrinking effects and staircasing effects while keeping sharp edges and smooth interior,

compared to the total variation denoising model. Restoration results are generated with higher

Peak Signal to Noise Ratio (PSNR) values than the ROF model.

The rest of the paper is organized as follows: In section II we review total variation and graph

representable energy functions. We show how graph cuts can be used to efficiently minimize

these energy functions. In section III we propose an algorithm for minimizing the Euler’s elastica

model. Based on our general formulation of energy functional, we can make use of the connection

between minimization problems and binary MRFs, and solve the problem via graph cuts. In

section IV, we carry out numerical experiments with our method, and compare them to the

results of TV in several aspects such as Peak Signal to Noise Ratio (PSNR) values, residual

images and visual effects.

II. TOTAL VARIATION AND GRAPH REPRESENTABLE ENERGY FUNCTIONALS

In this section we discuss algorithms for total variation and graph representable second order

MRFs, that will be used as substeps in our algorithm for minimizing higher order MRFs.

Assume the input image u0 is defined on a continuous domain Ω. In this work we focus on

two dimensional problems where x = (x, y) ∈ R2, but our algorithms and results can easily

be generalized to higher dimensions. To recover a denoised image u, can be formulated as a

minimization problem with constraints such as
∫

Ω
(u(x)− u0(x))2dx ≤ σ2|Ω|, where σ2 denotes

a bound on the noise variance and |Ω| is the area of image domain. The total variation functional

of u, defined as TV (u) =
∫

Ω
|∇u|, was first used as a regularization term for image denoising

in the ROF model taking the form

min
u∈BV(Ω)

ETV (u) = a

∫
Ω

| ∇u(x) |+
∫

Ω

(u(x)− u0(x))2dx. (1)
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The parameter a > 0 balances the TV regularization term and the fitting term. The space BV of

functions of bounded variation is defined as BV (Ω) = {u ∈ L1(Ω) : TV (u) < ∞}. There are

two variants of the total variation term, the anisotropic variant:

TV1(u) =

∫
Ω

|∇u|1 =

∫
Ω

|ux|+ |uy| dx,

and the isotropic variant:

TV2(u) =

∫
Ω

|∇u|2 =

∫
Ω

√
u2

x + u2
y dx.

The anisotropic variant is graph representable and can be efficiently minimized by graph cuts

as explained later. However, TV1(u) has the disadvantage of penalizing stronger in horizontal

and vertical directions, i.e. it is not rotationally invariant. This may lead to some blocky artifacts

in the processed image, which are often called metrication errors in the discrete setting.

Both TV1(u) and TV2(u) satisfy coarea formulae, which will be used extensively in the

following sections. For a positive function u of bounded variation, we define the functions of

upper level sets:

θ` =

 1 if u ≥ `,

0 else.
(2)

The coarea formula is given by∫
Ω

|∇u(x)|dx =

∫ L

`=0

∫
Ω

|∇θ`(x)| dx d`, (3)

where the image u(x) is a positive function and L is the maximum value of u.

Let us also mention a generalization of the above functional which is graph representable and

will be used in later sections

ETV g(u) =

∫
Ω

f 1(x)|ux|+ f 2(x)|uy| dx +

∫
Ω

g(u(x),x)dx, (4)

where f 1, f2 : Ω 7→ R are any positive functions and g : Ω × R 7→ R is a convex function in

u. In case f 1 = f 2 = a and g(u(x),x) = |u(x) − u0(x)|2, (4) reduces to the anisotropic TV

denoising model. The coarea formula for this general functional is given by∫
Ω

f 1(x)|ux|+ f 2(x)|uy| dx =

∫ L

`=0

∫
Ω

f 1(x)|θ`
x|+ f 2(x)|θ`

y| dx d`, (5)

where L is the maximum value of u.
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A. Discretization of Energy Functional

We now consider the discrete and quantized versions of (1) and (4). To this end, define the

uniform grid

Ωd = {(i, j) : i = 1, ..., N, j = 1, ...,M}, (6)

and let the discrete functions ui,j : Ωd 7→ {0, ..., L− 1} and u0
i,j : Ω 7→ {0, ..., L− 1} be defined

on this grid. {0, ..., L− 1} is the set of gray values. In Fig. 1, Ωd is depicted as the set of filled

circles.

The anisotropic total variation model can be written as

ETV
d (u) =

∑
(i,j)∈Ωd

|ui,j − u0
i,j|2 + a

∑
(i,j)∈Ωd

|ui+1,j − ui,j|+ |ui,j+1 − ui,j|. (7)

Let us now focus on the generalized model (4). To express the discrete version of this model it

will be useful to define two new sets of grid points

Ωx
d = {(i +

1

2
, j) : i = 1, ..., N, j = 1, ...,M},

and

Ωy
d = {(i, j +

1

2
) : i = 1, ..., N, j = 1, ...,M}.

In Fig. 1, Ωx
d is depicted as the set of squares and Ωy

d is depicted as the set of empty circles.

In the discrete setting, the functions f 1 : Ωx
d 7→ R and f 2 : Ωy

d 7→ R are defined on Ωx
d and Ωy

d

respectively and the function g : Ωd 7→ R is defined on Ωd. The discrete version of (4) can now

be written

ETV g
d (u) =

∑
i,j

gi,j(ui,j) +
∑
i,j

f 1
i+ 1

2
,j
|ui+1,j − ui,j|+ f 2

i,j+ 1
2
|ui,j+1 − ui,j|. (8)

Both the models (7) and (8) are anisotropic and use a 4-neighborhood system for the regular-

ization term. It is possible to create ”more” isotropic versions by using a larger neighborhood

systems, and hence reduce metrication errors in the solutions. However, for simplicity we stick

to 4-neighborhood systems in this work.
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Fig. 1. Grid Definition

B. Equivalent Representation as Set of Binary MRFs

In this section we show how (7) and (8) can be minimized by graph cuts using an algorithm

which has a logarithmic complexity in the number of gray values L. In order to simplify notation,

we construct an equivalent representation of (8). For each p = (i, j) ∈ Ωd, we define the

neighborhood system

N 4
p = {(i± 1, j), (i, j ± 1)} ∩ Ωd.

For p ∈ Ωd and q ∈ N 4
p the discrete total variation model (7) can be written more compactly

using the 4 neighborhood system as

ETV
d (u) =

∑
p∈Ωd

|up − u0
p|2 +

∑
p∈Ωd

∑
q∈N 4

p

1

2
wpq|up − uq|. (9)

The weights wpq are simply set to a for all neighbors p and q. Using larger neighborhood can

generate results that are more isotropic.

For the more general form (8), the notations p1, p2 and q1, q2 represent the first and second

component of p and q respectively. Then (8) can be rewritten as:

ETV g
d (u) =

∑
p∈Ωd

g(up) +
∑
p∈Ωd

∑
q∈N k

p

wpq|up − uq|, (10)

with the weights wpq given as follows:

wpq =


f 1

p1+q1

2
, p2+q2

2

if p2 = q2,

f 2
p1+q1

2
, p2+q2

2

if p1 = q1.
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Darbon et. al. [8], [9] and Chambolle [4] showed independently that the discrete TV model

(7) and (9) could be very efficiently minimized via graph cuts, provided the input image is

quantized. The same result can also be adapted to the generalized model (8) and (10). In the

quantized and discretized case it is assumed that u : Ωd 7→ [0, 1, ..., L− 1]. In this case there are

L− 1 distinct functions of upper level sets ` = 0, ..., L− 1, which are point-wise given by

θ`
p =

 1 if up ≥ `,

0 else.
(11)

In the discrete setting the coarea formula can be written∑
p∈Ωd

∑
q∈N k

p

wpq|up − uq| =
L−1∑
`=0

∑
p∈Ωd

∑
q∈N k

p

wpq|θ`
p − θ`

q|, (12)

where the weights wpq can be derived e.g. by the Cauchy Crofton formula [1]. In this way, the

cut based length on the grid graph is close to the Euclidean length of curve, i.e,∫
Ω

|∇θ`(x)| dx d` =
∑
p∈Ωd

∑
q∈N k

p

wpq|θ`
p − θ`

q|.

If u is a function, it must be single valued at each point p ∈ Ωd. In that case the family

{θ`}L−2
`=0 is monotonically decreasing: θ`+1 ≤ θ`, ∀ ` = 0, ..., L − 2. For any such family of

monotonically decreasing binary functions, the function u can be recovered by the formula

up = max{` : θ`
p = 1}.

Using these facts it was shown in [4], [8], [9] and [11] that (9) can be written
L−2∑
`=0

E`(θ`) +
∑
p∈Ωd

|u0
p|,

where

E`(θ`) =
∑
p∈Ωd

∑
q∈N k

p

wpq|θ`
p − θ`

q|+
∑
p∈Ωd

(|` + 1− u0
p|2 − |`− u0

p|2)(1− θ`
p)

=
∑
p∈Ωd

∑
q∈N k

p

wpq|θ`
p − θ`

q|+
∑
p∈Ωd

wp(1− θ`
p). (13)

The minimization problem can therefore be written in terms of θ` as

min
{θ`}L−2

`=0

L−2∑
`=0

E`(θ`), (14)
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under the constraints θ`+1 ≤ θ`,∀ ` = 0, ..., L − 2. It was shown in [4] that by minimizing

each E`(θ`) independently, these constraints were automatically satisfied. Furthermore, it was

observed that each E`(θ`) has the form of a binary MRF, and could be efficiently minimized

via graph cuts as was shown by Greig et. al in 1989 [12]. This leads to several algorithms.

Since there is a lot of redundancy between the problems E`(θ`), it is not necessary to solve

the problems sequentially. That would yield an algorithm of linear complexity in the number

of gray values. Instead, a dyadic algorithm was proposed in [4], [8], which has a logarithmic

complexity in the number of gray values, i.e. at most log2(L) binary MRFs had to be solved.

C. Graph Cuts Procedure

Graph cuts has been used in vision problems for a long time. We will briefly review the

concept and show how it can be used to efficiently solve binary problems of the form (13). It

was first observed in [12] that binary energy functions of the form (10), can be represented on a

graph and minimized by max-flow/min-cut algorithms. This construction was also later studied

in [2] and [16].

A directed graph G = (V , E) is defined as a set of nodes V and a set of directed edges E that

connect all the nodes. For 2D grids of the form (6), the set of vertices V is defined as

V = {νp| p ∈ Ωd} ∪ {s} ∪ {t},

where the two distinguished vertices in V , s and t are called the source and the sink. Then the

”cut” (Vs,Vt) of the graph is a partition of V into two sets with s ∈ Vs and t ∈ Vt. The set of

edges E is defined by:

E = {(νp, νq)| p ∈ Ωd, q ∈ N k
p } ∪ {(s, νp)| ∀p ∈ Ωd} ∪ {(νp, t)| ∀p ∈ Ωd}.

e ∈ E denotes an edge in E , and let c(e) denote the ”capacity”. For a given cut, the set of

severed edges C is defined as:

C = {(a, b) ∈ E| a ∈ Vs, b ∈ Vt}.

The cost of the cut is the energy of this partition as following:

E(Vs,Vt) =
∑
e∈C

c(e).
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Based on the energy functionals (10) and (13), the costs on the edges from source to every

vertex are c(s, νp) = max(wp, 0) and the costs from every vertex to the sink are c(νp, t) =

max(−wp, 0); the costs added on edges between vertices corresponding to neighboring grid points

are c(νp, νq) = w p1+q1

2
, p2+q2

2

. The minimum cut on G is a minimizer of the energy functional and

equals the maximum flow value due to the duality theorem of Ford and Fulkerson [10]. Hence

max-flow algorithms can be used to minimize energy functionals of the form (13). In image

processing applications such max-flow algorithms have been shown to be extremely efficient

[2].

III. MINIMIZATION OF HIGHER ORDER ENERGY FUNCTIONALS INVOLVING CURVATURE

Recently, there have been developed several variational image processing models based on

higher order derivatives. Some fourth order PDEs [6], [7], [19], [21] , [31] and [32] are especially

important. The motivation is to overcome limitations of second order models like total variation.

Typically, minimization methods for these models are based on solving their corresponding Euler-

Lagrange equations. These equations get increasingly complicated, and numerical solutions are

usually rather inefficient. In this work, we make use of graph cuts as a minimization technique.

Unfortunately, discretizing the higher order energy functional directly will yield a very difficult

combinatorial optimization problem, which is an example of an NP-hard higher order MRF. There

has been little work on tackling such higher order MRFs. The recent work of [17] gives details

on how to compute approximate solutions to such NP-hard higher order MRFs by using dual

decomposition [18]. The idea is to decompose the difficult MRF problem into easier subproblems.

Typically each subproblem itself is a higher order mrf over a much smaller graph, even just over

one single clique. The subproblems are solved independently. Based on the solutions a master

assigns new parameters to each subproblem and they are solved independently over again. This

process iterated until convergence.

We show that by instead introducing an artificial time variable, the energy functional can

be converted to the graph representable form (8) considered in section II-A. It can therefore be

efficiently minimized by graph cuts, as explained in section II-B. Similarly as [17], this approach

also simplifies the difficult problem into easier subproblems which are solved iteratively until

convergence. We claim our approach is more efficient, mainly because our subproblems can be

solved by an algorithm which has a logarithmic complexity in the number of labels. Furthermore,
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the underlying graph cut optimization technique has proven to be extremely efficient for practical

image processing problems. The complexity of solving the subproblems in [17] is at least linear

in the number of labels. Our approach can handle curvature based energy functionals that do

not fit into the framework of [17].

The higher order models that minimize some functionals of the curvature of the image [7],

[27], [29] and [32] are especially important. Euler’s elastica is an important such curvature based

model which was first introduced in image processing in [23]. It was studied further in [22], [7],

where PDE based optimization methods were developed. In image processing the model can be

formulated as the minimization of Euler’s elastica of all level curves of the image. The Euler’s

elastica of a curve Γ is given by the energy

E(Γ) =

∫
Γ

(a + b · |k|β(s))ds, (15)

where a and b are two parameters and k is the curvature of Γ at position s. By setting b = 0,

E(Γ) measures the total length of the curve. If a = 0, E(Γ) measures the total curvature of the

curve. Therefore, the Euler’s elastica of all level curves of an image u can be written as:∫ L

`=0

∫
γ`:u=`

(a + b · |k|β(s))dsd`. (16)

The power β can be set to β = 1 as in [22], or β = 2 as in [7]. The choice of β = 1 allows

cracks (sharp corners) of the level curves. By setting β = 2 differentiation is much easier, such

that the Euler-Lagrange equations do not get too complicated. Our approach can handle any

choice of β with equal difficulty. For the denoising application we found that β = 1 tends to

give best results. Note that the curvature of the level curve can be expressed as a function of u

by

k(u) = ∇ ·
(
∇u

|∇u|

)
. (17)

Using this fact (16) can be expressed more simply as

∫
Ω

(
a + b

∣∣∣∣∇ · ∇u

|∇u|

∣∣∣∣β
)
|∇u| dx. (18)

Euler’s elastica can be used as either an image inpaining model or an image denoising model.

In the inpainting application, we assume Ω̃ ⊂ Ω is the domain of missing information. The
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model is then formulated as

min
u

∫
Ω̃

(
a + b

∣∣∣∣∇ · ∇u

|∇u|

∣∣∣∣β
)
|∇u| dx (19)

s.t.u = u0 on ∂Ω̃,

where ∂Ω̃ denotes the boundary of Ω̃.

In this work our emphasis is instead on image denoising, in which case the complete energy

functional can be written as

min
u

EEL(u) =

∫
Ω

|u− u0|2 dx +

∫
Ω

(
a + b

∣∣∣∣∇ · ∇u

|∇u|

∣∣∣∣β
)
|∇u|dx. (20)

If the parameter b is set to b = 0, this model reduces to the usual total variation denoising model,

which in view of the discussion above minimizes the total length of all the level lines in the

image. If a = 0 (20) minimizes the total curvature of all the level lines in the image. Euler’s

elastica is therefore obviously more sophisticated than total variation, as the resulting level lines

will have a more natural appearance. Theoretically, Euler’s elastica may also suffer from the

staircasing effect, just like total variation, however we found that this model generally gives

smoother results. Just as in the TV model, there are anisotropic and isotropic variants of (20)

depending on the choice on whether one uses the 1-norm or 2-norm to measure the magnitude

of the gradient ∇u. Our algorithm allows to use a mixture with 1-norm in the nominator and

2-norm in the denominator

min
u

EEL(u) =

∫
Ω

|u− u0|2 dx +

∫
Ω

(
a + b

∣∣∣∣∇ · ∇u

|∇u|2

∣∣∣∣β
)
|∇u|1dx.

In this work we will develop graph cuts based methods for minimizing the energy in the

models (19) and (20). Neither of these models have the graph representable form considered in

Section II. However, by introducing an artificial discrete time variable, we show that a minimum

can be obtained by solving a sequence of much easier graph representable problems. Instead of

deriving and discretizing the Euler-Lagrange equations or gradient descent equations, we start

by discretizing the energy functional itself.

A. Discretization of Curvature based Energy Functionals

The energy functionals (19) and (20) are discretized on the domain Ωd. We assume further

that u and u0 are quantized, i.e. their function values are constrained to a finite set u, u0 : Ωd 7→
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[0, 1, ..., L− 1]. The discrete gradient ∇u is given by the forward difference scheme:

∇u = (ux, uy),

ux
i+ 1

2
,j

= ui+1,j − ui,j,

uy

i,j+ 1
2

= ui,j+1 − ui,j,

(21)

where ux : Ωx
d 7→ R and uy : Ωy

d 7→ R. Alternatively, the central difference scheme can be used

as a rougher approximation on Ωd

∇u = (ux, uy),

ux
i,j = (ui+1,j − ui−1,j)/2,

uy
i,j = (ui,j+1 − ui,j−1)/2.

(22)

The second order derivatives are discretized as

uxx
i,j = ui+1,j − 2ui,j + ui−1,j,

uyy
i,j = ui,j+1 − 2ui,j + ui,j−1,

(23)

where uxx : Ωd 7→ R and uyy : Ωd 7→ R.

The curvature k is either discretized with forward difference gradients as

k = (
ux√

(ux)2 + (uy)2
)x + (

uy√
(ux)2 + (uy)2

)y, (24)

or with central difference gradients as

k =
uxx(uy)2 − 2uxuyuxy + uyy(ux)2

((ux)2 + (uy)2)
3
2

. (25)

Hence k : Ωd 7→ R is defined on Ωd. In order to define k on Ωx
d and Ωy

d there are several

options. One way is to use linear interpolation

ki+ 1
2
,j =

ki+1,j + ki,j

2
: Ωx

d 7→ R,

ki,j+ 1
2

=
ki,j+1 + ki,j

2
: Ωy

d 7→ R,
(26)

however, this may result in some blurring around the edges. Another option, which is often used

in numerical solutions of PDEs involving curvature is the min-mod [24] discretization

ki+ 1
2
,j = minmod(ki+1,j, ki,j) : Ωx

d 7→ R,

ki,j+ 1
2

= minmod(ki,j+1, ki,j) : Ωy
d 7→ R.

minmod(A, B) = sign(A)+sign(B)
2

min(|A|, |B|).

(27)
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For this discretization to be valid it is required that the time-step in the PDE is set quite low.

We therefore experienced this discretization was not very suitable in our algorithm. We instead

found the following modification of the min-mod to be more suitable

minmod(A, B) =

 |A + B|/2 if sign(A) 6= sign(B),

sign(A)+sign(B)
2

min(|A|, |B|) otherwise.
(28)

In our experience, the best results were obtained by central difference gradient and average

operator to define k on the middle points.

The discrete version of the Euler’s elastica denoising model (20) can then be written with any

of the discretizations of k as

min
u

EEL
d (u) =

∑
(i,j)∈Ωd

(
a + b · |ki+ 1

2
,j|β
) ∣∣∣ux

i+ 1
2
,j

∣∣∣+(a + b · |ki,j+ 1
2
|β
) ∣∣∣uy

i,j+ 1
2

∣∣∣+ ∑
(i,j)∈Ωd

∣∣ui,j − u0
i,j

∣∣2 .

(29)

Note that the anisotropic gradient factor is discretized with a 4-neighborhood system. A more

isotropic version of the elastica model could be derived by using a larger neighborhood system

(e.g. 8 neighbors), but for simplicity we stick to 4 neighborhood systems in the work.

We will now define the discrete version of the Euler’s elastica inpainting model. Let Ω̃d ⊂ Ωd

denote the discrete inpainting domain, the discrete version the inpainting model (19) can then

be written ∑
(i,j)∈Ω̃d

(
a + b · |ki+ 1

2
,j|β
) ∣∣∣ux

i+ 1
2
,j

∣∣∣+ (a + b · |ki,j+ 1
2
|β
) ∣∣∣uy

i,j+ 1
2

∣∣∣ (30)

s.t. u = u0 on ∂Ω̃d.

In order to fit the framework of our algorithm, the side constraint must be replaced by a convex

data term. Since u is assumed quantized, it is easily seen that (30) can be equivalently rewritten

as

min
u

EELi
d (u) =

∑
(i,j)∈Ω̃d

(
a + b · |ki+ 1

2
,j|β
) ∣∣∣ux

i+ 1
2
,j

∣∣∣+(a + b · |ki,j+ 1
2
|β
) ∣∣∣uy

i,j+ 1
2

∣∣∣+λ
∑

(i,j)∈Ωd\Ω̃d

|ui,j−u0
i,j|2,

(31)

provided the parameter λ is sufficiently large compared to a and b.

The discrete models (29) and (31) are now combinatorial optimization problems.
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B. Minimization based on Iterative Graph Cuts

It is no doubt the optimization problems (29) and (31) are very complex and difficult to solve

exactly, since they do not have the form considered in (8). Furthermore, (29) and (31) do not

fit into the framework of [17], because of the nonlinear mixture of pairwise and higher order

factors. We will show that the problem can be simplified by introducing an artificial discrete time

variable. This is related to the work of [3], [5], where gradient flows of interphases were studied

in an integral framework, in case the original energy functional is graph representable in the

discrete setting. Our work differs in two main directions: we study images instead of interphases,

and we do not require the original energy functional to be graph representable, i.e. we allow

more complicated energy functionals involving curvature. Furthermore, we are interested in the

final steady state solution, not the evolution sequence itself. We start by the first generalization:

let E be a graph representable energy functional of the form (4), depending on images u. The

gradient flow of E can be regarded as an infinitesimal sequence of images ut such that

ut+dt = arg min
u:||u−ut||<ε(dt)

E(u).

where ε(dt) → 0 as dt → 0. Choosing the L2 norm ||u||22 =
∫

Ω
|u|2 dx in the constraint set

above will have nice properties, which will soon become apparent. By adding the constraint as

a penalty term, this can equivalently be formulated as

ut+dt = arg min
u

E(u) + γ(dt)||u− ut||,

where γ(dt) →∞ as dt → 0, e.g. γ(dt) = 1
dt

.

We can now state and prove the following theorem, which is the image counterpart of Theorem

1 given in [3] for interphases.

Theorem 3.1: Given time t0, let ut be the solution of

ut = arg min
u

E(u) +
1

2(t− t0)
||u− ut0||22, (32)

where ||u− ut0||22 =
∫

Ω
|u− ut0 |2 dx. Then, as t → t0

ut = ut0 − dE

du
(ut)(t− t0) + o(∆t), (33)

i.e.
∂ut

∂t
= −dE

du
(ut), (34)
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where dE
du

is the gradient of E with respect to the L2 inner product.

Proof: Since ut minimizes (32)

0 =
d

du

{
E(u) +

1

2(t− t0)
||u− ut0||2

}
(ut) =

dE

du
(ut) +

1

(t− t0)
(ut − ut0).

By rearranging we get
ut − ut0

t− t0
= −dE

du
(ut),

or, as t → t0
∂ut

∂t
= −dE

du
(ut)

In the time discrete setting we let ∆t denote the step size and un ≈ ut0+n∆t denote the function

u at time step n. Then un+1 is given by

un+1 = arg min
u

E(u) +
1

2∆t
||un+1 − un||2 (35)

and the discrete gradient flow can then be written

un+1 = un +
1

2∆t

∂E(un+1)

∂u
,

This can therefore be seen as a fully implicit time discretization, where all the factors in ∂E
∂u

are

evaluated at the unknown un+1.

We will now consider problems of the form (29) where the energy functional E itself is not

graph representable. By instead making an appropriate semi-implicit time discretization (some

factors are handled implicitly and some explicitly), the gradient flow can be approximated by

efficiently solving a problem of the form (10) to get from one time step to the next. We also

directly move to the spatially discretized models from now on.

We start by considering (18), which is simplest. Letting u1 be some initial guess and u0 the

input image, we propose the following scheme for minimizing (29): for n = 1, ..., solve

min
un+1

∑
(i,j)∈Ωd

(
a + b · |kn

i+ 1
2
,j
|β
) ∣∣∣(ux

i+ 1
2
,j
)n+1

∣∣∣+ (a + b · |kn
i,j+ 1

2
|β
) ∣∣∣(uy

i,j+ 1
2

)n+1
∣∣∣

+
∑

(i,j)∈Ωd

∣∣un+1
i,j − u0

i,j

∣∣2 +
1

2∆t

∑
(i,j)∈Ωd

∣∣un+1
i,j − un

i,j

∣∣2 , (36)

The same scheme also applies to the inpainting model (31) by replacing the data term with

λ
∑

(i,j)∈Ωd\Ω̃d
|ui,j − u0

i,j|2.
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Observe that if un and kn at time step n are known, this is an optimization problem of the

same form as (8) for the unknown un+1, with f 1, f2 and g chosen as

f 1
i+ 1

2
,j

= a + b · |kn
i+ 1

2
,j
|β : Ωx

d → R,

f 2
i,j+ 1

2
= a + b · |kn

i,j+ 1
2
|β : Ωy

d → R,

gi,j = |un+1
i,j − u0

i,j|2 +
1

2∆t

∣∣un+1
i,j − un

i,j

∣∣2 : Ωd → R.

(37)

The function gi,j is convex in un+1
i,j as required, being a sum of two convex functions. Therefore, in

the spatially discrete setting one can get from one time step to the next by efficiently minimizing

log2(L)− 1 binary MRFs by graph cuts as described in section II-B.

The penality term of (36) 1
2∆t

∑
i,j

∣∣un+1
i,j − un

i,j

∣∣2 is essential for ensuring convergence of the

algorithm. Without this term, the algorithm would alternate. As we see, it is incorporated in the

algorithm directly in the data term of the second order MRF subproblem. If ∆t is low the penalty

term is large, therefore the solution u is not allowed make a large displacement from each time

step to the next. The relation to the gradient flow holds if the time step ∆t is chosen sufficiently

small. However, we experienced that the algorithm still converges to the same solutions even if

the time step is set quite large. On the other hand, a large choice of ∆t may result in oscillations

as the sequence un+1 reaches a stationary point. As a compromise, we found it useful to choose

a large ∆t in the beginning (e.g. first 10-15 iterations) and set ∆t lower in the final iterations.

It is difficult to find a ∆t which completely prevents small oscillations around the stationary

point. A useful technique is to add artificial intermediate gray values in the computation, i.e. to

compute on a finer label scale. For instance, if an output of 256 gray values is required (i.e. label

set: {0, 1, ..., 255}), 1024 gray values can be used in the computation (label set in computation:

{0, 0.25, 0.5, ...., 254.75, 255}). In this case there are 3 artificial gray levels between each true

gray value. This strategy aims to force most of the oscillations to occur at the fine scale (adding

3 such artificial labels seems to be sufficient). In the end, the solution is converted to 256

gray values by rounding. This approach will not add much to the cost of the algorithm, since

computation with 1024 gray values instead of 256 requires to solve 9 = log2(1024)− 1 binary

problems instead of 7 = log2(256)− 1 in each iteration.

To summarize, algorithm 1 iteratively solves a sequence of second order MRF problems until

convergence. Each of these MRF problems are converted to log2(L)− 1 binary MRF problems,

where L is the number of gray values, each of which are solved efficiently by graph cuts.
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Algorithm 1 Algorithm for Euler’s Elastica Model
• Step1: Input image u0, set u1 = u0;

• Step2: For n = 1, 2, 3... until converge,

find un+1 by solving (36) with u0 and un as fixed inputs. This subproblem is a second order

MRF with parameters from (37), and is solved via graph cuts by as described in section

II-B and II-C;

• Step3: Output un+1.

Therefore the complexity is logarithmic in the number of gray values. The approach of [17]

is also based on iteratively solving a sequence of simpler problems until convergence to an

approximate solution of the original problem. However, the complexity of solving the simpler

problems increases at least linearly with L as far as we can see.

IV. NUMERICAL EXPERIMENTS

In this section, the algorithm is tested numerically and the results are compared to anisotropic

total variation generated by graph cuts. The codes are implemented in C++. For max-flow

computation, we have used the implementation of Boykov et. al. reported in [2]. The numerical

experiments were performed on an HP laptop with an Intel(R) Core(TM) 2 Duo CPU T7500 @

2.19GHz, and 2.00GB of RAM. The results are compared visually and by measuring the Peak

Signal to Noise Ratio (PSNR) between the ground truth and the output of different methods.

The PSNR is defined as:

PSNR(u, v) = 10log10

2552

1
MN

∑
i,j (ui,j − vi,j)2

,

where ui,j and vi,j denote the pixel values of initial ground truth images and restored images

respectively. In addition, the residual image r = u0 − v where u0 is the noisy input image and

v is the restored output image is shown for some of the experiments.

We start by giving illustrative inpainting examples in Figure 2 which clearly show the advan-

tage of using curvature information over total variation. The inpainting domain Ω̃ consists of the

noisy regions. Random noise has been added in the inpainting domain such that an initialization

is available for our method. The same result was also obtained by initializing u1 = 255 (all

white) in the inpainting domain. As we see, our algorithm for minimization of Euler’s elastica
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perfectly connects the level lines such that the missing region is inpainted in the visually most

logical manner. Total variation on the other hand, just minimizes the total length of the level

lines, which leads to much less reasonable results. The sudden turns in the level lines are not

penalized by TV.

Figure 3 also shows the same effect on a more realistic image denoising example. The thin

elongated structures are better preserved by the Euler’s elastica model. Furthermore, the level

lines have a smoother, more natural appearance. Figure 3 (d) and (e) show the set of pixels

where the gradient of the image is nonzero, i.e the set of all level lines. The reconstructed

image is constant in each white region. As we see, total variation favors solutions that are

piecewise constant to a larger degree than Euler’s elastica, the so called staircasing effect. In all

the examples so far we used central difference gradient in the curvature discretization and the

average operation to define the curvature on the middle points (short: central, average in Table

1). The power in the Euler’s elastica model is set to β = 1.

For Lena (512 × 512) and Pepper(512 × 512) presented in Figure 5-9, gaussian noise with

a variance of σ2 = 0.01 was added. In these experiments we have selected the regularization

parameters in TV and the curvature based model to optimize results visually. In the Euler’s

elastica model (Algorithm 1) we set a = 0, b = 90 and β = 1, so that the curvature term does

all the regularization. The case that a > 0 is not so interesting, since that would be a balancing

of TV and curvature regularization. Subfigures (d) and (e) show the Euler elastica result with

forward discretization of the gradient in the curvature. To define the curvature on the middle

points minmod is used in (d) and average is used in (e). In subfigure (f), central difference

discretization of the curvature is used together with average operation to define curvature on

the middle points. Because of the high resolution, the difference will be more obvious in the

electronic version.

In all these experiments we observe that the algorithm for Euler’s elastica yields smoother

results than total variation. In all the TV results one can clearly notice the staircasing effect:

piecewise constant image are favored. The Euler’s elastica model may also suffer from the

staircasing effect, but to a less degree than TV.

The results are also compared by measuring the Peak Signal to Noise Ratio (PSNR) in Table1,

which shows that the curvature based methods clearly perform best for all the experiments. The

residual images for the curvature based methods also include less signal information than total
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variation .

We found that Algorithm 1 for Euler’s elastica converged in around 30-40 iterations. This

can also be seen from the graphs in Figure 4 where we have plotted the energy EEL(un) as a

function of the iteration count n for the two images Lena and Pepper. The graphs also show

that results generated by Algorithm 1 are quite insensitive to initialization. The red curve depicts

energies after initialization with the noisy image u1 = u0, while the blue curve depicts energies

after initialization with the constant image u1 = 155. They both converge to solutions of almost

the same energy. For initializations with the noisy image u0, most of the change happen during

the first 5-10 iterations. The cpu time for our implementation is around 6 seconds per iteration

for the lena and pepper image (size 512× 512) with 1024 labels, if the max-flow problems are

solved from scratch in each iteration. However, since the edge weights only change a little from

each iteration to the next one should in practice reuse flow from the previous iteration to get a

much faster algorithm. For instance, the work of Kohli et. al. [15] presented such a max-flow

algorithm for dynamically changing MRF models. When the changes in the weights are small

this algorithm is shown to be significantly faster than traditional max-flow algorithms. However,

a careful implementation of such methods is out of the scope of this paper.

Img. Table1: PSNR results comparison (σ2 = 0.01)

No. Name TV Euler’s Elastica, Euler’s Elastica,

forward, average central, average

Fig. 5 Lena(512× 512) 21.86dB 23.46dB 26.59dB

Fig. 8 Pepper(512× 512) 24.86dB 26.80dB 28.07dB

Fig. 3 Dragonfly(480× 320) 15.71dB - 18.87dB

V. CONCLUSIONS

In this work we proposed simple and effective algorithms based on graph cuts, which can

minimize the energy in the Euler’s elastica model. Based on the connection between TV mini-

mization and binary MRFs, our approach simplifies the minimization problems to that of solving

a sequence of simpler problems. The sequence of solutions to these problems converges to a

minimum point. Experiments show that shrinking and staircasing effects are prevented in the

results generated by our methods. We will apply dynamic max-flow algorithms which reuses
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(a) Input (b) Inpainting domain (c) TV (d) Euler’s elastica

(e) Input (f) Inpainting domain (g) TV (h) Euler’s elastica

Fig. 2. Inpainting example: The region with random noise denotes the inpainting domain. By minimizing the total curvature

of the level lines, our method can fill in the missing regions appropriately. The data term is set to zero in the inpainting domain

(the noisy regions). Figure (c) and (g) shows the result of total variation, which minimizes the total length of the level lines.

Figure (d) and (h) shows our result of minimizing Euler’s elastica with a = 0 and using the noisy image as initialization. Some

artifacts can be observed due to the simple 4-neighborhood implementation.

flow from each iteration to the next in a future work.
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Pepper image (b). Red: noisy image u1 = u0 used as initialization. Blue: constant image u1 = 155 used as initialization.
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Fig. 5. Denoising results for Lena(512× 512) with σ2 = 0.01. (a) original image, (b) input noisy image, (c) recovered image

by TV, (d) recovered image by Euler’s elastica min-mod forward discretization, (e) recovered image by Euler’s elastica average

forward discretization, (f) recovered image by Euler’s elastica central difference gradient.
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(e) (f)

Fig. 6. Denoising results for part of Lena with σ2 = 0.01.(a) original image, (b) input noisy image, (c) recovered image by

TV, (d) recovered image by Euler’s elastica min-mod forward discretization, (e) recovered image by Euler’s elastica average

forward discretization, (f) recovered image by Euler’s elastica central difference gradient.
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Fig. 7. Difference between reconstructed image and noisy image for part of Lena. (a) TV, (b) Euler’s elastica min-mod forward

discretization, (c) Euler’s elastica average forward discretization, (d) Euler’s elastica central difference gradient.
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Fig. 8. Denoising results for Pepper(512 × 512) with σ2 = 0.01. (a) original image, (b) input noisy image, (c) recovered

image by TV, (d) recovered image by Euler’s elastica min-mod forward discretization, (e) recovered image by Euler’s elastica

average forward discretization, (f) recovered image by Euler’s elastica central difference gradient.
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(c) (d)

(e) (f)

Fig. 9. Denoising results for part of Pepper with σ2 = 0.01. a) original image, (b) input noisy image, (c) recovered image

by TV, (d) recovered image by Euler’s elastica min-mod forward discretization, (e) recovered image by Euler’s elastica average

forward discretization, (f) recovered image by Euler’s elastica central difference gradient.
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Fig. 10. Set of pixels with nonzero gradient (level lines). (a) Lena reconstructed by TV (from Fig. 5 c), (b) Lena reconstructed

by Euler’s elastica with central difference gradient (from Fig. 5 f), (c) Pepper reconstructed by TV (from Fig. 8 c), (d) Pepper

reconstructed by Euler’s elastica with central difference gradient (from Fig. 8 f). The reconstructed image is constant in the

white regions, observe that TV favors piecewise constant images to a larger degree than Euler’s elastica.
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