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Abstract A novel graph-cuts-based method is proposed
for reconstructing open surfaces from unordered point
sets. Through a boolean operation on the crust around
the data set, the open surface problem is translated
to a watertight surface problem within a restricted re-
gion. Integrating the variational model, Delaunay-based
tetrahedral mesh framework and multi-phase technique,
the proposed method can reconstruct open surfaces ro-
bustly and effectively. Furthermore, a surface recon-
struction method with domain decomposition is pre-
sented, which is based on the new open surface recon-
struction method. This method can handle more gen-
eral surfaces, such as non-orientable surfaces. The algo-
rithm is designed in a parallel-friendly way and neces-
sary measures are taken to eliminate cracks at the in-
terface between the subdomains. Numerical examples
are included to demonstrate the robustness and effec-
tiveness of the proposed method on watertight, open
orientable, open non-orientable surfaces and combina-
tions of such.
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1 Introduction

Reconstructing a surface from an unordered point data
set has been a significant yet challenging problem in
computer graphics for the last decade. Due to the de-
velopment of three dimensional scanners and the in-
creasing demand of computer graphics, extensive re-
search has been conducted in the surface reconstruction
field, much of which was dedicated to the watertight
surface reconstruction for its topological simplicity and
desirable properties. Open surface reconstruction prob-
lems, however, occur often in real applications, such
as incomplete scanned data. As a topic which has been
overlooked, the open surface reconstruction problem, to
some extent, has more significance than the watertight
surface problem for its topological generality.

Most surface reconstruction methods can be cate-
gorized into two groups, explicit methods and implicit
methods. Explicit methods are mainly local geometric
approaches based on Delaunay triangulation and dual
Voronoi diagram such as Alpha shape and CRUST al-
gorithm (Adamy et al, 2000; Amenta et al, 1998, 2000;
Boissonnat and Cazals, 2000; Dey and Goswami, 2003;
Edelsbrunner and Mucke, 1992). One advantage of these
methods is their theoretical guarantee that there exists
a sub-complex of Delaunay triangulation of the data
set, which is homeomorphic to the ground truth sur-
face given a sufficient sampling. Since these methods are
local approaches, the global topological characteristics
such as watertight or open, will not affect their per-
formances. Their target is the potential homeomorphic
sub-complex embedded in the Delaunay triangulation.
The topology of the sub-complex surface does not make
any difference. Hence, the explicit method can handle
quite a number of open surface cases.
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However, the explicit methods are subject to many
reconstruction difficulties such as non-uniformity, un-
dersampling and noises. Hence, during the last decade,
variational models were brought into the reconstruc-
tion field. The reconstruction problem is formulated
as a minimization problem of an energy functional de-
fined over surfaces. To minimize an energy functional
with respect to the surface, a consistent parametriza-
tion of the surface is not always available during the
optimization procedure. As a result, researchers turned
to the implicit methods (Alexa et al, 2001; Curless and
Levoy, 1996; Franchini et al, 2010a,b; Hoppe et al, 1992;
Ohtake et al, 2005; Solem and Heyden, 2004; Solem
and Kahl, 2004, 2005; Solem and Overgaard, 2005; Ye
et al, 2010; Zhao et al, 2001), such as the level set
method, to gain flexibility of representation and math-
ematical facilities. One important such level set ap-
proach to the surface reconstruction problem was pro-
posed by Zhao in (Zhao et al, 2001; Zhao, 2000). Graph
cut is another tool that can minimize energy functions
over implicitly defined surfaces. It has been applied to
the surface reconstruction problem in (Hornung and
Kobbelt, 2006b; Lempitsky and Boykov, 2007; Paris
et al, 2006). The main advantages of graph cuts are
the efficiency and ability to find global minima. How-
ever, the competence of both the level set method and
graph cuts is lost on more general topologies (Osher and
Fedkiw, 2002). One way to handle open surface prob-
lems with implicit methods is the use of multiple level
set functions (Bertalmı́o et al, 1999; Burchard et al,
2001; Cheng et al, 2002; Faugeras and Gomes, 2000;
Smereka, 2000; Solem and Heyden, 2006). Some hier-
archical approaches have been experimented on some
open surface problems (Hornung and Kobbelt, 2006b).
However, these methods for open surfaces lack gener-
ality and robustness. In this article, a novel variational
reconstruction method for open surfaces is proposed.
The variational model, level set function, Delaunay tri-
angulation and graph-cuts are integrated into a method
competent of handling not only open surfaces but also
general surfaces.

In the proposed method, the data set points as well
as the properly generated background points are in-
serted to an unstructured tetrahedral mesh framework
in a Delaunay way. Due to its nearest connection prop-
erty, the Delaunay triangulation combining a sufficient
sampling density provides a theoretic guarantee that
there exists a sub-complex of the Delaunay triangula-
tion such that it is homeomorphic to the ground truth
surface. In the tetrahedral mesh, a crust is established
around the data set. In (Wan et al, to appear), a graph
dual to the whole mesh is built according to the en-
ergy functional and applied with max-flow/min-cut al-

gorithms. Since these algorithms finds a global mini-
mum, it is essential to specify boundary conditions of
the crust. This can only be accomplished under the as-
sumption that the domain can be separated into two or
more subdomains by the watertight crust, which does
not hold any more for an open surface problem. With-
out specifying boundary conditions, the dual graph does
not have valid n-links to both source and sink, resulting
in the minimal cut being trivial.

To tackle this issue, a boolean operation is pro-
posed to restrict the region of interest within a nar-
row band, which can be separated into two or more
subdomains. In the proposed method, two crusts with
different thickness are built around the data set. The
medial axis of the thick crust is to be obtained. One
more crust is then built around the boundary of the
medial axis. Subsequently, the two crusts around the
data set are trimmed by the crust around the bound-
ary. The trimmed thick crust can be separated by the
trimmed thin crust. Hence in the restricted region, i.e.
the trimmed thick crust, the trimmed thin crust is wa-
tertight such that region growing algorithms and graph
cut techniques can be applied. More details and illus-
trations of this series of operations are provided in Sec-
tion 3. The method subsequently constructs a graph
dual to the restricted mesh, applies max-flow/min-cut
algorithms and extracts the surface from the tetrahe-
dral mesh according to the obtained minimal cut. These
stages are the same as those in the watertight surface
reconstruction method described in Section 2.

Furthermore, a surface reconstruction method based
on domain decomposition is presented. The domain de-
composition idea has been applied to computer vision
(Kohlberger et al, 2003, 2004, 2005). Recently it is found
also useful as a robust alternating minimization scheme
between overlapped subspaces (Tai and Duan, 2009;
Tai and Xu, 2002). In the decomposition method, the
whole domain is decomposed into several subdomains.
In each subdomain, a surface reconstruction problem,
input of which is a subset of the whole data points,
is solved. Merging all the surface patches from different
subdomains is the critical task. Such a fix-the-boundary
measure is taken before the graph technique is applied
that potential conflicts and cracks can be eliminated
effectively. The parallel efficiency may be undermined
due to the interaction between subdomains. However, it
can be compensated largely by a proper decomposition
scheme. The method proposed in this article can handle
not only open surfaces but also more general surfaces
such as combinations of open and watertight surfaces.

The remainder of this paper is organized as follows.
In Section 2, a brief review of watertight surface recon-
struction based on delaunay triangulation and graph-
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cuts will be given. Section 3 deals with the open surface
problem. The new method to tackle this problem is pro-
posed and the algorithm is given in details. Section 4
gives an important application of the open surface re-
construction method, the surface reconstruction based
on domain decomposition, which can handle more gen-
eral surfaces. To the best of our knowledge, this is the
first attempt to approach the nonorientable surface re-
construction problem via graph-cuts. In Section 5 var-
ious numerical examples are presented to demonstrate
effectiveness and robustness of the proposed method on
all kinds of surfaces. Finally, Section 6 concludes the ar-
ticle.

2 Graph-cuts Reconstruction of watertight
surface

In the previous work (Wan et al, to appear) a vari-
ational reconstruction method was proposed for wa-
tertight surfaces based on graph-cuts. The cost energy
functional is a generalization from that of the weighted
minimal surface model (Zhao et al, 2001), which is also
related to the minimal surface (Caselles et al, 1997b)
or geodesic active contours (Caselles et al, 1997a) ap-
proaches. This functional is minimized on an unstruc-
tured tetrahedral mesh framework, which provides more
flexibility and effectiveness than structured grids used
in other graph-based methods (Hornung and Kobbelt,
2006a,b; Paris et al, 2006). As a matter of fact, the
Delaunay-based mesh guarantees the existence of a sub-
complex homeomorphic to the ground truth surface given
a sufficient sampling. The method can handle various
reconstruction difficulties such as noise, undersampling
and non-uniformity. By adopting the idea presented in
(Bae and Tai, 2009), the method is able to address two
phase and multi-phase problems in a unified approach.
In addition, an automatic phase detecting method based
on region growing algorithms is developed to minimizes
user intervention. Since the ideas and techniques devel-
oped in (Wan et al, to appear) are the building blocks
of this paper, a brief review will be given in this section.

2.1 Two phase surface reconstruction via graph-cuts

For convenience, this subsection only discusses two phase
problems, in which the ground truth surface S simply
separates the embedding domain X ⊂ R3 into two con-
nected regions, inside and outside. Let P be a point
data set sampled from S in the domain X. Define the
distance function as d(x) = d(x, P ) = infy∈P d(x, y),
where d(x, y) is the Euclidean distance between points
x and y in R3. As in (Wan et al, to appear; Zhao et al,

2001), the following cost energy is proposed for surface
reconstruction,

E(Γ ) =
∫

X

|φΓ (x)− I(x)|β(x)dx

+
∫

Γ

d(x)ds + α

∫

Γ

ds . (1)

The above φΓ (x) is the piecewise constant level set
function same as (Lie et al, 2006) corresponding to the
surface Γ

φΓ (x) =
{

c1 if x inside Γ
c2 if x outside Γ

. (2)

As a consequence, the surface Γ is implicitly repre-
sented as the discontinuities of φΓ (x).

The crust around P is defined as CP
d = {x ∈ X :

d(x, P ) ≤ d}. Given a watertight surface and a rea-
sonably dense sampling, we assume the crust around
the sampling data set is able to partition the whole
domain into two connected regions, i.e. interior and ex-
terior. I(x) is an indicator function which labels these
two subdomains as well as the crust region. Compared
with φΓ (x) which labels the final partitioning , this in-
dicator function serves as an initial labelling.

I(x) =





0 if x in CP
d

c1 if x in the interior part of X\CP
d

c2 if x in the exterior part of X\CP
d

. (3)

In (1), β(x) is a confidence function suggesting the
extent to which the indicator function, the estimate for
the level set function, is faithful. The reconstructed sur-
face is rather unlikely to fall outside the crust region
given a low noise level, which results in the following
specification of β(x).

β(x) =
{

0 if x in CP
d

σ others
, (4)

where σ is a relatively large positive value.
The first term in (1), can be viewed as specify-

ing boundary conditions on φ at the boundary of the
crust. By specifying proper I(x) and β(x), the first term
would constrain the resulting surface within a restricted
region, i.e. CP

d . Otherwise, if there is any disagreement
between φΓ (x) and I(x) out of the crust region where
β(x) = σ, the energy would not be minimized. This
term is important, otherwise the global minimum of
(1) would be the trivial null surface, where φΓ is just a
constant everywhere. The second term is the essential
part in the weighted minimal surface model (Zhao et al,
2001) and the third term is the regularization term con-
cerning the surface area. By tuning the regularization
coefficient α, a compromise between faithfulness and
smoothness can be achieved.

In this method, (1) is discretized on an unstructured
tetrahedral mesh Th instead of structured grids used in
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other graph-based methods. In this article, a mesh and
triangulation are referring to the same thing (George
and Borouchaki, 1998). Generally, a mesh can be de-
fined by a pair (V, C). V is the set of all vertices and C
is a complex consisting of four types of simplexes, i.e.
vertices, edges, triangles, and tetrahedra. For vertices
u, v, w, z, we define {v, u} as the edge between v and
u, {v, u, w} as the triangle with vertices v, u, w, and
{v, u, w, z} as the tetrahedron with vertices v, u, w, z.
{Ki}N

i=1 are used to denote all N tetrahedra in Th. In
our case V is the set of mesh points including data
points and background points P ∪Q.

In a mesh Th, we can define 1-ring neighborhood of a
vertex v as N1

v = {u|{v, u} ∈ C} and M -ring neighbor-
hood in a recursive way NM

v = {u|∃w ∈ NM−1
v , {w, u} ∈

C}. Based on this neighborhood system, the crust around
the data set P can be defined as KP

M = {Ki|∃v ∈
Ki, v ∈ NM

u , u ∈ P}.
In this mesh framework, the surface Γ can be ap-

proximated by Γh, a sub-complex of Th. (Amenta et al,
1998) shows that there exists a sub-complex of the De-
launay triangulation of P , which is homeomorphic to
the ground truth surface S. As a consequence of this
fact and the local property of Delaunay triangulations,
there also exists a homeomorphic-to-S sub-complex of
the Delaunay triangulation of Q∪P given a reasonable
distribution of background points Q.

The first term, the integral over the whole domain
X can be simply discretized as

∫

X

|φΓ (x)− I(x)|β(x)dx

=
N∑

i=1

∫

Ki

|φΓ (x)− I(x)|β(x)dx

≈
N∑

i=1

|φΓh
(Ki)− I(Ki)|β(Ki) . (5)

φΓh
(Ki) =

{
c1 if Ki inside Γh

c2 if Ki outside Γh
, (6)

I(Ki) =





0 if Ki ∈ KP
M

c1 if Ki in the interior
c2 if Ki in the exterior

, (7)

β(Ki) =
{

0 if Ki ∈ KP
M

σ others
, (8)

where σ is a relatively large positive value.
The second and third terms in (1) are integrals over

the surface area. The surface triangulation Γh can be
thought of as the union of the triangular faces shared
by tetrahedra with different level set values.

Γh =
⋃

φΓ (Ki) 6=φΓ (Kj)

Γij ,

Fig. 1 The primal-dual relationship of triangular mesh.

Fig. 2 Illustration of the assignment of graph edge weights.

where Γij = Ki ∩ Kj . Hence combining the result of
(5), (1) can be discretized as follows

E(Γ ) ≈
N∑

i=1

|φΓh
(Ki)− I(Ki)|β(Ki)

+
∑

i,j

(dij + α)Sij1{φΓh
(Ki) 6=φΓh

(Kj)} , (9)

where

dij =

∫
Γij

d(x)ds∫
Γij

ds
, Sij =

∫

Γij

ds . (10)

The energy of E(Γ ) can be minimized very effi-
cienctly by graph-cuts, since this energy functional is
graph representable, which can be verified by the con-
clusion of (Kolmogorov and Zabin, 2004). Graph-cuts
was also used in (Wan et al, to appear) to approach the
energy optimization for watertight surfaces with con-
nected interior and exterior. Therefore, a graph dual to
the primal tetrahedral mesh is constructed, in which
each node corresponds to a tetrahedron in the mesh
and each edge corresponds to a triangular face in mesh.
This primal-dual relationship is illustrated for two di-
mensions in Fig 1.

The edge weights are determined by different terms
in E(Γ ) as shown in Fig 2 and below

si = |I(Ki)− c2|β(Ki) , ti = |I(Ki)− c1|β(Ki) ,
Nij = (dij + α)Sij , Nji = (dij + α)Sij ,

(11)

where c1 and c2 are the piecewise constant level set
function values, standing for the regions inside and out-
side the surface.
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Table 1 Relationship between cut and surface

Cut in dual graph Surface in primal mesh

C =
⋃

xi,xj∈V, φi 6=φj

(xi, xj) Γ =
⋃

Ki,Kj∈Th, φi 6=φj

(Ki ∩Kj)

Fig. 3 Watertight surface reconstruction. Given a data set (a)

sampled from an object surface, proper background points such
as grid points are generated according to the data points distri-
bution. An unstructured tetrahedral mesh (b) is generated in a

Delaunay way and the crust around the data set is established. A
graph dual to the mesh is constructed (c). Graph-cuts are applied

and segmentation on the primal mesh is obtained (d). Extract
the surface from tetrahedral mesh (e), the reconstructed surface

is obtained (f).

After graph construction, max-flow/min-cut algo-
rithms can be applied on the obtained graph. The al-
gorithm in (Boykov and Kolmogorov, 2004) is a good
choice for its empirically good performance. Due to the
primal-dual relationship and its consequence about sur-
face and cut as Table 1, the reconstructed surface can be
directly extracted from the background mesh according

Table 2 Watertight surface reconstruction method

Inputs A data point set P

Algorithm
1. Generate background points Q according to

the density of P
2. Insert P and Q to a tetrahedral mesh Th in a

Delaunay way
3. Establish the crust, KM

P
4. Region growing on the regions outside KM

P
5. Specify the Indicator function according to (3)
6. Construct a graph dual to the mesh

7. Assign edge weights according to (11)

8. Apply the graph-cuts
9. Extract the surface according to the minimal

cut

Outputs The surface triangulation S

to the minimal cut. The whole algorithm is shown in
Table 2 and the flow chart is shown in Fig 3.

2.2 Multi-phase surface reconstruction

We assume now that the interior and exterior of the sur-
face are not connected sets. Such cases can be handled
by introducing more labels. We assume the surface sep-
arates X into M connected regions {Xi}M

i=1. Surfaces of
this kind can be represented in the level set framework
of (Lie et al, 2006) by defining φΓ as φΓ (x) = ci for
x ∈ Xi, i = 1, ..., M . As before, Γ is represented as the
discontinuities of φΓ . The complete energy functional
(1) is therefore given in the discrete setting as

E(Γ ) ≈
N∑

i=1

|φΓh
(Ki)− I(Ki)|β(Ki)

+
∑

i,j

(dij + α)Sij1{φΓh
(Ki) 6=φΓh

(Kj)} (12)

where

dij =

∫
Γij

d(x)ds∫
Γij

ds
, Sij =

∫

Γij

ds . (13)

Minimization problems with multiple phases, or labels,
have been studied previously in image processing. The
work of (Ishikawa, 2003) and a later modification (Bae
and Tai, 2009) presented techniques to efficiently min-
imize certain such multilabel problems by graph cuts.
By making a simplification of the length term in (12),
we can convert the problem (12) to such graph repre-
sentable form. In (Bae and Tai, 2009; Ishikawa, 2003) it
was observed that several surfaces can be represented
by a hyper-surface in a higher dimensional domain.
Hence the multi-way cut problem is equivalent to a bi-
nary cut problem in a multi-layer graph. Therefore, an
extra dimension is introduced to the original graph dual
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(a) two phase segmentation (b) multiphase segmentation

(c) two phase segmentation

result

(d) multiphase segmentation

result

Fig. 4 One dimensional example to illustrate multilayer graph

to the primal mesh. This multi-layer graph idea is illus-
trated in Fig 4.

The multi-layer idea does not change much from im-
age processing to surface reconstruction. As earlier, we
let CP

d denote the crust around the data points P. The
domain X\CP

d now contains several disconnected sub-
domains (instead of just two as in the last subsection).
The indicator function I should be specified such that
it takes different values in different subdomains

I(x) =
{

0 if x in CP
d

ci if x inside the ith subdomain.
. (14)

Once the original graph dual to the primal mesh is con-
structed, it is duplicated M − 1 times if the number of
subdomains is M . More specifically, a graph is created
such that M−1 vertices in the vertex set are associated
to each tetrahedra Ki. The notation vk

i is used for the
vertex corresponding to Ki at level k ∈ {1, ..., M − 1}.
We let c(a, b) denote the cost on the edge between ver-
tex a and b. The edges constituting the data term are
defined by

c(s, v1
i ) = |c1 − I(Ki)|β(Ki) for i = 1, ..., N,

c
(
vk

i , vk+1
i

)
= |ck+1 − I(Ki)|β(Ki) for i = 1, ..., N,
∀k ∈ {1, ..., M − 2},

c
(
vM−1

i , t
)

= |cM − I(Ki)|β(Ki) for i = 1, ..., N.

(15)

The weights on the horizontal edges constituting the
two last terms are defined by

c(vk
i , vk

j ) = (dij + α)Sij , c(vk
j , vk

i ) = (dij + α)Sij , (16)

∀i, j ∈ {1, ..., N}, ∀k ∈ {1, ..., M − 1}.
After finding the minimum cut C on this graph, the
labeling function can be recovered by

φi =





c1 if (s, v1
i ) ∈ C

ck+1 if (vk
i , vk+1

i ) ∈ C, k = 1, ..., M − 2
cM if (vM−1

i , t) ∈ C
. (17)

(a)

(b)

Fig. 5 Illustration on a multi-phase surface problem and the

corresponding multi-layer graph.

As shown in Fig 5, the multi-layer graph idea is il-
lustrated by two intersecting spheres. Fig 5(a) presents
the cut view of the mesh, where red crust separates the
domain into four regions marked with different colors.
The corresponding three layer graph is shown in Fig
5(b), in which I(Ki) = 1, 2, 3, 4 when Ki is blue, green,
purple, or brown. The nodes in the graph correspond
to the tetrahedra with the same color. The weights dis-
tribution among vertical edges depend on I(Ki). It is
worth noticing that some vertical edges vanish as shown
in (b) and the red nodes do not have vertical edges at
all.

In order to determine the number of subdomains M ,
an intelligent method for detecting the number of sub-
domains based on region growing algorithms is applied
after the mesh generation and crust establishment. In
this procedure, the indicator function I(Ki) is speci-
fied automatically. User intervention is optional, but in
most cases unnecessary. As first developed in the im-
age segmentation field, the region growing algorithm
(Adams and Bischof, 1994) mainly consists of the fol-
lowing steps. Firstly, several initial seeds are selected.
Secondly, for each seed, its neighborhood is examined
to decide whether that belongs to the same partition
or not. Based on this idea, a phase detection method is
developed on the tetrahedral mesh, in which the neigh-
borhood of a tetrahedron Ki are four tetrahedra shar-
ing one face with Ki respectively. In this method, the
seeds are not required to be appointed. Instead they
are picked automatically during the algorithm, which
is presented in Table 3 and Table 4.
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Table 3 Phase detecting method based on region growing

Inputs

1. A mesh Th = (P ∪Q, C), {Ki}N
i=1 ∈ C

2. Labelling values ci, i = 1, . . . , M.

Algorithm
1. Construct the crust KM

P
%% Initiate all tetrahedra

2. For i = 1 : N

3. If Ki ∈ KM
P

4. I(Ki) = 0
5. Else

6. I(Ki) = −1

7. End If
8. End For

%% Region growing all tetrahedra out of crust
9. L = 1
10. For i = 1 : N

11. If I(Ki) == −1
12. region growing(Ki, cL)

13. L = L + 1
14. End If
15. End For

%% At the end, all tetrahedra in the same par-
tition are labeled the same value.

Table 4 Region growing function

function region growing(K, l)

Function

%% {Ni}4i=1 are four neighbors of K, and l is

the label value
1. I(K) = l

2. For i=1:4
3. If I(Ni) == −1

4. region growing(Ni, l)

5. End If
6. End For

3 Open Surface Reconstruction via Graph-cuts

The method mentioned in Section 2 can reconstruct
watertight surfaces, which has an interior and exterior
region in R3. The interior region may be disconnected.
In this section we discuss open surfaces, which obvi-
ously does not have a clear interior and exterior. One
critical step of the previous method was the specifica-
tion of the indicator function I(x) as the establishment
of the boundary conditions, which was completed by
the phase detection method based on region growing
algorithms described in Section 2. If the crust around
the data set fails to separate the domain into two or
more partitions as in Fig 3(b), the phase detector would
label all regions out of the crust with the same indica-
tor value. A solid and reasonable boundary condition
is not available and hence the global minimum would
be the trivial null surface. Therefore graph-cuts can not
be conducted properly. Fig 6 illustrates this situation
and the failure of our previous method by an example
in two dimensions.

(a) (b)

Fig. 6 Our previous method’s failure on open cases where the

crust fails to separate the remainder of the domain into two or
more partitions.

Certain interactive specification can be used in this
situation as in Fig 7(a). One spot (small region) on
each side of the potential surface has been assigned
with different indicator values as two ’seeds’. The graph
cut result is shown in Fig 7(b). It can be noticed that
the result has been artificially extended from two ends
of the ground truth curve. This is inevitable since the
minimal cut is required to separate the whole graph,
which corresponds to the whole domain. In addition,
the selection of the “seeds” spot should be rather cau-
tious. Otherwise, improperly small “seeds” as well as
a great regularization coefficient is likely to lead to a
trivial result as shown in Fig 7(c), in which the cut and
the corresponding surface shrink to the boundary of a
“seed” spot. All these disadvantages aside, this interac-
tive method apparently lacks generality to be applied
on more complicated cases such as Fig 7(d). It is in-
triguing for users to select two ’seeds’ in the complex
spiral curve, not to mention that the graph-cuts result
would be ruined by the artificially extended surface.
All above considered, in this article, a more intelligent
and robust reconstruction method for general surfaces,
including open surfaces, watertight surfaces, and com-
binations of such is proposed.

As presented and illustrated above, the gap between
our previous method and the new problem of open sur-
faces is a reasonable partitioning of the region out of
the crust. The proposed method consists of an auto-
matic partitioning procedure followed by all steps con-
tained in Section 2. By defining a boolean operation on
the vicinity of the data set, the region of interest has
been trimmed in such a way that it can be separated
into two or more partitions by a watertight crust. Sub-
sequent phase detection and graph techniques can be
applied on the trimmed region. Detailed description is
as follows.
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(a) (b)

(c) (d)

Fig. 7 An interactive method for open surface and its potential

problems as well as incompetence on a complicated example.

3.1 A description of the method

Given a data point set P in the domain X ⊂ R3, which
is sampled from the surface S. The distance d(x, P ) and
the crust CP

d is defined in the same way as in Section
2. Firstly, two crusts with different thickness parame-
ters d1 < d2 are constructed around P : CP

d1
and CP

d2
.

CP
d2

rather than the whole domain X is the region of
interest. The resulting surface is supposed to lay in CP

d1
.

These two crusts are illustrated in Fig 8(a), in which
the inner crust CP

d1
fails to separate the region CP

d2
and

to create a watertight environment.

Secondly the medial axis M of the boundary of CP
d2

is to be found. As defined in (Amenta et al, 1998), the
medial axis of a manifold Σ ⊂ Rk is the closure of the
set of points in Rk that have at least two closest points
in Σ. Under a noise-free assumption, this medial axis
M itself is a good approximation to the ground truth
surface S. Well approximating as it is, the medial axis
is only an intermediate product of the algorithm. More
steps are required to handle difficulties such as noises
and non-uniformity.

Thirdly Bd, the boundary of M is found, which
well approximates the boundary of the ground truth
surface S. A crust around Bd is constructed: CBd

d3
=

{x ∈ X, : d(x,Bd) ≤ d3}, d3 ≥ d2. Subsequently those
two crusts around P, i.e. CP

d1
and CP

d2
, are trimmed by

the crust around Bd, i.e. CBd
d3

, which can be expressed
as the boolean operation: C̃P

d1
= CP

d1
− (CBd

d3
∩ CP

d1
),

C̃P
d2

= CP
d2
− (CBd

d3
∩ CP

d2
). We can safely assert that

C̃P
d2

can be separated into two or more partitions by

(a) (b)

(c) (d)

Fig. 8 Illustration on the series of crust establishments and
boolean operations.

C̃P
d1

given sufficient sampling and proper d1, d2 and d3.
This procedure is illustrated in Fig 8(b), in which Bd
in two dimensions is the two ends of the curve. Two
red crusts, CP

d1
and CP

d2
, have been trimmed by the

gray circles, i.e. CBd
d3

, and the remaining light red crust
C̃P

d2
is separated by the remaining dark red one C̃P

d1
.

Hence the phase detector can label these disconnected
subdomains with different indicator values and graph-
cuts can be applied to the C̃P

d2
as shown in Fig 8(c),(d).

These two steps are same to those described in Section 2
except that the region of interest is no longer the whole
domain X. As a proof of the effectiveness of the pro-
posed method, the case in Fig 7(d) can be approached
perfectly with the result shown in Fig 9.

It is worth noticing that Bd would be an empty set
if the ground truth surface S is watertight. Therefore
an empty crust CBd

d3
is constructed and no boolean op-

eration is done upon CP
d1

and CP
d2

. Without this boolean
operation, the method in this section has nothing dif-
ferent from the method described in Section 2. In other
words, the method in Section 2 is a special case of
the proposed method. Various types of cases, includ-
ing open, watertight, and hybrid surfaces, can be ap-
proached by a single algorithm without any a priori
knowledge of surface topology or beforehand hole de-
tections.

3.2 The implementation of the method

In this subsection, we provide the discrete versions of
the concepts involved in the above algorithm. This algo-
rithm is implemented upon a tetrahedral mesh based on
these discrete concepts, which is presented in detail in
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(a) (b)

Fig. 9 The case in Fig 7(d) is perfectly approached by the

boolean operation method.

the Table 5. Before presenting these concepts, the estab-
lishment of the mesh framework is briefly introduced.
Given a data point set P , background points Q are gen-
erated according to the local density of P . Usually, uni-
form or adaptive grid points are a good choice. Both P

and Q are inserted into a tetrahedral mesh Th in a De-
launay way. In the mesh Th = (P ∪Q,C), {Ki}N

i=1 ⊂ C
are the tetrahedra and {Fi}L

i=1 ⊂ C triangular faces.
Let the mesh and the crust be defined in the same

way as in Section 2. The discrete distance between vi

and vj is defined as dh(vi, vj) = min
M
{M |vj ∈ NM

vi
}.

Then the discrete distance between a vertex v and a ver-
tex set V can be defined as dh(v, V ) = minx∈V dh(v, x).
Further, given a surface triangulation Σh, the discrete
medial axis can also be defined in two ways. The dis-
crete medial axis in vertices MV = {v|∃u1, u2 ∈ Σh,

dh(v, u1) = dh(v, u2) = dh(v, Σh)}. The discrete medial
axis in triangular faces MF = {Fi = {u, v, w}|u, v, w ∈
MV }.

Based on these definitions in a discrete language,
the proposed algorithm can be effectively implemented
on a tetrahedral mesh as described in Table 5. The
underlying Delaunay-based mesh makes the resulting
surface more likely to be homeomorphic to the ground
truth. More examples are shown in Section 5 to demon-
strate the effectiveness and robustness of the proposed
method.

4 Reconstruction of open surfaces based on
domain decomposition

In Section 3, the open surface reconstruction method
has been proposed, whose effectiveness and robustness
will be shown in Section 5. The good performance on
various kinds of surfaces leads to further consideration
of its applications. One of the most significant applica-
tions is to reconstruct a surface based on domain de-
composition. Domain decomposition has been success-
fully applied on computer vision field for a long time.

Table 5 Open surface reconstruction on a tetrahedral mesh

Inputs A point set P

Algorithm
1. Generate background points Q according to

the density of P
2. Insert P and Q to a tetrahedral mesh Th in a

Delaunay way
3. Build two crusts KP

N1
and KP

N2
4. Find Σ, the boundary triangulation of KP

N2
5. The medial axis of Σ in vertices MV is found

6. The medial axis of Σ in faces MF is found

7. The boundary of MF is found B
8. The vertices on the boundary B is to be found:

Bd = B ∩ (P ∪Q)

9. Build a crust K
Bd
N3

around Bd with N3 > N2

10. Trim the two crusts around P : K̃P
N1

= KP
N1
−

(K
Bd
N3

∩KP
N1

), K̃P
N2

= KP
N2

− (K
Bd
N3

∩KP
N2

)

11. Partition the region K̃P
N2

− K̃P
N1

by region
growing algorithms

12. Construct a graph G dual to K̃P
N2

13. Apply graph-cuts on G and extract the surface

S from the minimal cut

Outputs The surface triangulation S

One option is to use domain decomposition idea as pre-
conditioners to get fast solvers for some related linear
problems (Kohlberger et al, 2003, 2004, 2005). Some re-
cent analysis reveals that domain decomposition can be
used as a robust alternating minimization scheme be-
tween overlapped subspaces, see (Tai and Duan, 2009;
Tai and Xu, 2002). In order to use this idea for surface
reconstruction, the robustness and effectiveness of such
kind of divide-and-conquer algorithms will strongly de-
pend on a good reconstruction method for general sur-
faces, since the surface in a subdomain may be open or
have disconnected interior. Hence, based on the method
proposed in Section 3, we present a reconstruction method
based on domain decomposition (Tai and Duan, 2009;
Tai and Xu, 2002). Since the idea of parallel reconstruc-
tion is also very attractive, the method is designed in
such a way that it can easily be adapted to parallel
machines.

Another motivation is the incompetence of the method
proposed in Section 3 on some special cases. As is known,
all 2-manifolds without boundary in R3, i.e. watertight
surfaces, are orientable. The methods dedicated to wa-
tertight surfaces don’t have to face the difficulty about
non-orientability. However, the 2-manifolds with bound-
aries, i.e. open surfaces, may be nonorientable. This
nonorientable surface problem would be a great chal-
lenge for those methods based on implicit representa-
tions or graph-cuts. Therefore, the method proposed in
Section 3 cannot handle nonorientable surfaces such as
Mobius strip. After the trimming operation, C̃P

d1
may

still fail to separate C̃P
d2

into two or more subdomains. A
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(a) (b)

Fig. 10 Nonoverlapping and overlapping decomposition schemes

surface reconstruction method based on domain decom-
position would be helpful when facing this difficulty.
Once the domain X has been decomposed properly,
each surface piece in each subdomain is orientable, and
can be approached by the method in Section 3. To the
best of our knowledge, this study is the first to recon-
struct non-orientable surfaces via graph-cuts.

4.1 Overlapping domain decomposition scheme

Given a domain X ⊂ R3, a partitioning {Xi}N
i=1 of X

can be obtained according to a decomposition scheme.
In practice, the decomposition scheme can be spatial
oriented, feature oriented or data oriented. In this study,
the most common spatial decomposition scheme is used.
Obviously, any rectangular cuboid B can be decom-
posed into small tessellating rectangular cuboids {Bi}N

i=1

as illustrated in Fig 10(a). In our problem, by choosing
B to be a rectangular cuboid properly bounding X, i.e.
X ⊂ B, {Xi}N

i=1 can be obtained through Xi = X∩Bi.
Notice that ∪N

i=1Xi = X, Xi ∩Xj = ∅.
Provided this partitioning is obtained and a robust

reconstruction method for general surfaces such as de-
scribed in Section 3 is available, the initial idea of re-
constructing surfaces based on domain decomposition is
simple. Decompose the input data set P into the subdo-
mains Xi by Pi = P∩Xi and consider Pi as an indepen-
dent surface reconstruction problem in Xi. A surface
Si is obtained from each Pi. The union of the recon-
structed surface pieces from all subdomains S = ∪N

i=1Si

is taken as the final solution of reconstructing from P .
This primitive divide-and-conquer method is obviously
parallel friendly and easy to be implemented. However
simply collecting all surface pieces from all subdomains
would result in cracks as shown in Fig 11.

Usually the decomposition scheme is modified by
introducing overlapping part to handle this issue. In
this study, we expand cuboid cells {Bi}N

i=1 to a proper
extent and obtain {B′

i}N
i=1 as shown in Fig 10(b). A new

Fig. 11 Without overlapping in domain decomposition, cracks
can be observed on the result surface.

(a) (b)

(c) (d)

Fig. 12 Cracks and conflicts in the overlapping part

partitioning with overlapping {X ′
i} is then obtained.

Process the sub-problem of P
′
i = P ∩X

′
i and take the

union of surfaces from all subdomains S′ = ∪N
i=1S

′
i as

the final result. This manner may eliminate the crack
in Fig 12(a) to obtain (b). However in some cases the
crack still exists in the overlapping part as shown in
Fig 12(c) and sometimes worse cases are observed as
the conflicting surfaces in Fig 12(d).

To tackle the issue of conflicts and cracks in overlap-
ping part, in this study, a sequential fix-the-boundary
method is proposed. As a result, some parallel potential
is lost due to the increasing interaction between neigh-
boring subdomains, which can be compensated in some
degree as explained later in this section.

4.2 Fix-the-boundary reconstruction method

Without loss of generality, it is assumed that the whole
domain is decomposed into only two subdomains, i.e.
Xi and Xj . The partitioning with overlapping is X

′
i and

X
′
j . The overlapping region is Xij = X

′
i∩X

′
j . Both these

two partitioning systems are depicted in Fig 13(a). The
sequential algorithm begins from X

′
i . Once the partial

data set P
′
i = P∩X

′
i is ready, the background points Q

′
i

for this subdomain are generated. Both P
′
i and Q

′
i are

inserted into the tetrahedral mesh Ti. Meanwhile the
background points falling into the overlapping region,
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 A sequential fix-the-boundary method is presented to
tackle cracks and conflicts. In (a), Xi : I + II; Xj : III + IV .

X
′
i : I + II + III; X

′
j : II + III + IV . In (b)-(e), X

′
i : I + II;

X
′
j : II + III; Xij : II. In (f), Xi : I; Xj : II.

i.e. Q
′
i ∩ Xij are stored. The graph-based method is

applied and the reconstruction result S
′
i is obtained as

in Fig 13(b). The reconstructed surface falling into the
overlapping region, i.e. S

′
i∩Xij is also stored for further

use as in Fig 13(c).
When the second subdomain X

′
j is processed, one

measure is taken upon the background points. After
the background points Q

′
j for X

′
j are generated, the

background points falling into the overlapping region
are replaced by those background points stored in the
X
′
i stage: Q

′
j = (Q

′
j − Xij) ∪ (Q

′
i ∩ Xij). This op-

eration ensures that the two subdomains contain the
same background points in the overlapping region, i.e.
Q
′
i ∩Xij = Q

′
j ∩Xij . The same data points and back-

ground points add up to an identical mesh point set in
the overlapping region. Under the assumption of gen-
eral positions, the Delaunay triangulation of a point set
is unique. Combined with the local property of Delau-
nay triangulations, it is safe to assert that the meshes in
the overlapping region from two subdomains are iden-
tical, i.e. Ti ∩ Xij = Tj ∩ Xij , which guarantees that
S
′
i ∩Xij ⊂ Tj ∩Xij .

Following the routine of the graph-based method,
a graph is constructed dual to the mesh Tj . Then we
increase the weights of those edges corresponding to the
stored faces S

′
i∩Xij , to a relatively large value. Through

this adjustment, the surface S
′
j reconstructed in X

′
j is

forced to coincide with S
′
i in the overlapping region, i.e.

S
′
i ∩Xij = S

′
j ∩Xij as in Fig 13(d). The surface in the

overlapping region Xij serves as the boundary of both
S
′
i and S

′
j . In the X

′
i stage, the choice of the boundary

of S
′
i is relaxed. In the X

′
j stage, the boundary of S

′
j , i.e.

S
′
j ∩ Xij , will be fixed through the adjustment on the

edge weight assignment. Hence conflicts and cracks can
be avoided as in Fig 13(e). We refer to this adjustment
of the edge weight as “fix the surface in Xij” for short.

Furthermore, some measures are taken to eliminate
the redundant output of surface. Notice the curve in
the overlapping region in Fig 13(e) has been outputted
twice in two stages. This redundant output is harmless
and can be eliminated by a trimming operation. After
the surface piece S

′
i in each subdomain is obtained, the

non-overlapping decomposition Xi is used to trim the
surface piece, i.e. Si = S

′
i∩Xi. The union of all trimmed

surface pieces S = ∪N
i=1Si is the final result, which is

free of redundant output, cracks or conflicts as in Fig
13(f). The whole divide-and-conquer algorithm is given
in Table 6.

4.3 Parallel efficiency regained

As mentioned, some parallel potential is lost due to the
interaction between subdomains in this method. Two
neighboring subdomains cannot be processed simulta-
neously. As in the example of Fig 13, the subdomain
X
′
j cannot be processed until S

′
i ∩Xij is obtained. To

adapt this method to parallel machines, it would be
helpful to color all subdomains at the beginning so that
no neighboring subdomains have the same color. Then
the group of subdomains sharing the same color can be
processed simultaneously because of the independence
between any two of them. This coloring preprocessing
turns the sequential algorithm in Table 6 to a parallel
algorithm. However the coloring strategy and the num-
ber of colors required determine the parallel efficiency.

In two dimensional problems such as image segmen-
tation (Hodneland et al, 2009), the well known four-
color theorem can limit the number of the colors re-
quired within four. Unfortunately, there is no such the-
oretic bound of the number of colors required in three
dimensions. However, for some special cases, we still can
figure out the number of colors required. For the rect-
angular cuboids decomposition scheme described above
and the underlying 26-neighborhood system, it can eas-
ily be shown that only eight colors are required for a
neighbor-different coloring. An example of 5 × 5 × 5
decomposed cube’s 8 coloring scheme is shown in Fig
14. The parallel efficiency of these decomposition cases
is still high even with the dependence between subdo-
mains.
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Table 6 Algorithm of surface reconstruction based on domain

decomposition

Inputs
1. A point set P

2. Partition of X, {Xi}N
i=1

3. Partition of X with overlapping, {X ′
i }N

i=1
4. Neighi[Ni], i = 1, · · · , N , Ni is the number of

neighbors of Xi, and the array Neighi stores
Ni neighbors.

Algorithm
1 Initialize a flag matrix {Fij} = 0

2 Allocate storage for Qij background points in
Xij

3 Allocate storage for Sij the surface in Xij

4 For i = 1 : N

5 P
′
i = P ∩X

′
i

6 Generate Q
′
i according to P

′
i

7 For k = 1 : Ni

8 j = Neighi[k]
9 if Fij == 1

10 Q
′
i = (Q

′
i −Xij) ∪Qij

11 else

12 Qij = Qji = Q
′
i ∩Xij

13 End if
14 End For

15 Insert P
′
i and Q

′
i to generate the mesh Ti

16 For k = 1 : Ni

17 j = Neighi[k]

18 if Fij == 1
19 Fix all Sij in Xij

20 Fij = Fji = 1

21 End if

22 End For

23 Apply graph-based method and obtain S
′
i

24 Trim the surface piece Si = S
′
i ∩Xi

25 End For

Outputs The surface triangulation S =
N⋃

i=1

Si

(a) (b)

Fig. 14 Eight Coloring Scheme

In this section, a new reconstruction method based
on domain decomposition was proposed. Interaction be-
tween subdomains was introduced to eliminate possible
cracks and conflicts. Though this interaction between
subdomains requires a sequential algorithm, a proper
decomposition manner as well as a coloring preprocess-

(a) (b) (c)

Fig. 15 Julius Caesar

ing allows for parallel algorithms. Some examples ap-
proached by this decomposition based method are in-
cluded in Section 5 to show its robustness and effective-
ness.

5 Examples

In this section, various examples are presented to demon-
strate the efficiency and robustness of our method as
well as the quality and faithfulness of reconstructed sur-
faces. All experiments had been conducted on a desktop
PC with Intel Pentium 4 CPU of 3.2GHz. Most models
were obtained from Stanford 3D Scanning Repository,
Large Geometric Models Archive of Georgia Institute
of Technology and Digital Shape Workbench Project
while the others were synthesized by ourselves. All sur-
faces are rendered by MeshLab. Only points locations
were utilized in the algorithm. Based on the properties
and purposes of theirs, these examples can be catego-
rized into four groups: simple open surfaces, compli-
cated (general) surfaces, watertight surface approached
by domain decomposition, and non-orientable surfaces
approached by domain decomposition.

5.1 Simple open surfaces

Simple open surfaces generally refer to manifolds with
boundaries. As the initial motivation of this study, sev-
eral examples of the simple open surfaces are demon-
strated in Fig 15, 16, and 17 including the data point
sets and the reconstructed surfaces. Two human faces,
one representative category of open surfaces, are faith-
fully reconstructed. The front views show the well-preserved
features and the back or bottom view shows the bound-
aries of reconstructed surfaces. The other example, a
hand is presented as well. All these three examples can
be seen as the application on incomplete data. After
all, it is hardly possible to obtain watertight models of
human body parts by a 3D laser scanner.
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(a) (b) (c)

Fig. 16 Max Planck

(a) (b) (c)

Fig. 17 Oliever’s hand

5.2 Complicated (General) surfaces

Since simple open surface cases can be approached per-
fectly, the proposed method is challenged by some more
complicated examples: multi-phase open surfaces, hy-
brids of open and watertight surfaces, and open surfaces
with noises. To sum up, this subsection presents sur-
face examples which are more general and occur ubiq-
uitously in daily life.

Multi-phase open surfaces do not have to separate
the domain into more than two regions. Multi-phase
means the trimmed crust C̃P

d2
is partitioned by C̃P

d1

into more than two regions. These cases may involve
intersections or not. Multi-phase cases without inter-
sections, i.e. disconnected surface patches, are still 2-
manifolds with boundaries and apparently no challenge
to the proposed method. Furthermore, the approaching
to an example of two intersecting semi-spheres, which
is no longer 2-manifold, is shown in Fig 18, from which
we can see that all features of the intersecting parts are
reconstructed faithfully.

The above example can be seen as a union of two
2-manifolds, both of which have boundaries. Next pre-
sented is a union of two 2-manifolds, one of which has
boundaries while the other has not, i.e. a union of a wa-
ter tight surface and an open one. The reconstruction
result of a rectangle intersecting a sphere is shown in
Fig 19, from which we can see that both the sphere and
the rectangle have been reconstructed faithfully. From

Fig. 18 A multi-phase open surface example: two intersecting
semi-spheres.

Fig. 19 A hybrid of a watertight surface and an open one: a
rectangle intersecting a sphere.

a technical point of view, this example has nothing spe-
cial compared to the one in Fig 18. It becomes, however,
more meaningful after post-processing. The watertight
sphere surface can be thought of as the boundary of
a 3-manifold ball. Once the domain bounded by the
sphere is volumetrically meshed, the union of the 3-
manifold and the 2-manifold can be represented dis-
cretely by a triangular and tetrahedral mixed mesh.
This issue ubiquitously occurs in animations, medical
applications, and CAD industries.

The last example in this subsection is an open sur-
face with noise. The noises in real world may be in-
troduced during the data acquisition procedure. In this
study, the noise is added artificially. The data set in
blue as well as the noise in red is shown in Fig 20(a).
This distinguishing coloring scheme is only for clear
demonstration and the algorithm treats data and noise
in a same manner. Fig 20(b) and (c) show results with
regularization coefficient α = 0 and 0.001 respectively.
The noise removal result with α = 0.001 is zoomed and
shown in Fig 20(d).

5.3 Watertight surfaces approached by domain
decomposition

Surface reconstruction based on domain decomposition
is an important application of the open surface recon-
struction method. In this subsection, some watertight
cases, which had been perfectly approached by previous
graph-cuts methods, are used to test the effectiveness
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(a) (b)

(c) (d)

Fig. 20 The noisy case of a semi-sphere

(a) (b) (c)

Fig. 21 Perforated cubes approached by domain decomposition

of the decomposition based reconstruction method, es-
pecially the overlapping and interface part.

Fig 21 shows that two cube-based objects are re-
constructed in a domain decomposition way. The per-
forated cube in Fig 21(b) is reconstructed in two sub-
domains as different colors indicate. Similarly, two tan-
gling perforated cubes in Fig 21(c) has been approached
in eight subdomains, each of which contains multiple
disconnected surface patches. These are same to the re-
sults obtained by previous methods.

Next three classic examples, armadillo, horse, and
dragon, are shown in Fig 22. The colorfulness of ar-
madillo is used to illustrate the relationship between
the choice of thickness parameters, d1 and d2, and the
multiphase issue. Once we increase the difference be-
tween d1 and d2, the colorfulness disappears gradually
as the phase number decreases, which is shown in the
horse and dragon examples.

(a) (b)

(c) (d)

(e)

(f)

Fig. 22 Three classical examples approached by domain decom-
position
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(a) (b) (c)

(d) (e) (f)

Fig. 23 Three statuettes approached in different decomposition
schemes

At last of this subsection, three statuettes are shown
in Fig 23. From left to right, the statuettes are recon-
structed in four, two and three subdomains respectively.
Through this subsection, the absence of undesirable
conflicts and cracks as Fig 12(c) and (d) proves the
effectiveness of our method.

5.4 Nonorientable Surfaces

As mentioned, when the research area is extended to
the open surfaces, i.e. 2-manifolds with boundaries, the
nonorientable issue becomes a problem for all graph-
based methods. In this subsection, Mobius strip, one
motivation of this decomposition based method, is ap-
proached perfectly with the result shown in Fig 24. An-
other famous nonorientable surface, Klein bottle, is also
presented in Fig 25.

Table 7 gives the sizes of the data sets of several
open surface examples and corresponding CPU time
counted in seconds. The first column gives the exam-
ples’ names. The second column contains the numbers
of data points P . The third column is the mesh genera-
tion time, the fourth the graph construction time, and

(a) (b)

Fig. 24 Mobius strip approached by domain decomposition

method.

(a) (b) (c)

Fig. 25 Klein bottle approached by domain decomposition
method.

Table 7 Statistics of open surface examples

Example
Data

Set

Mesh
Generation

Time

Graph
Built

Time

Graph
Cut

Time

Caesar 387900 248.4952 7.48386 22.3256

Planck 199169 96.7383 5.2332 9.8995

Hand 53054 41.37467 1.16082 8.49171

the fifth the graph cut time. In Table 8 included are
sizes and time of the domain decomposition examples.
Each block contains the statistics of every subdomain
as well as those in total.

6 Conclusion

In this article, a variational reconstruction method for
open surface is proposed based on Delaunay triangu-
lation and graph-cuts. In the proposed method, the
graph is constructed dual to the mesh in a restricted
region obtained after crust establishments and boolean
operations, by which the open surface problem in the
whole domain has been translated to a watertight sur-
face problem in a restricted region. The phase detection
based on region growing algorithms hence can be ap-
plied and so can the graph techniques.

Furthermore, a surface reconstruction method based
on domain decomposition is presented as an important
application of open surface reconstruction. One motiva-
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Table 8 Statistics of domain decomposition examples

Example
Data

Set

Mesh
Generation
Time

Graph
Built
Time

Graph
Cut
Time

Armadillo

Total
172974 191.58093 4.74328 3.936398

Subdomain 1 76525 73.61781 1.78773 3.06553

Subdomain 2 119073 117.96312 2.95555 0.870868

Horse

Total
494195 843.2701 16.12855 12.67107

Subdomain 1 300357 315.7326 7.78682 5.00724

Subdomain 2 299595 527.5375 8.34173 7.66383

Dragon
Total

437645 605.4991 15.40466 2.239658

Subdomain 1 190871 259.2044 4.87826 0.151977

Subdomain 2 265931 346.2947 6.66699 1.9627

Subdomain 3 155873 194.8477 3.85941 0.124981

tion is parallel surface reconstruction. However, over-
lapping regions are introduced and the independence
between subdomains are sacrificed to eliminate the con-
flicts and cracks. This loss of parallel potential may be
largely compensated if we adopt proper decomposition
scheme. By the decomposition scheme in this paper, if
the numbers of processing units and subdomains are
both larger than eight, the parallel efficiency is as high
as a subdomain-independent algorithm. Implementa-
tion of this domain decomposition method and inves-
tigation of its efficiency is one of our future research
interests.
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