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Abstract

In this paper, we propose a general form of TV-Stokes models and provide an efficient and
fast numerical algorithm based on the augmented Lagrangian method. The proposed model
and numerical algorithm can be used for a number of applications such as image inpainting, im-
age decomposition, surface reconstruction from sparse gradient, direction denoising, and image
denoising. Comparing with properties of different norms in regularity term and fidelity term,
various results are investigated in applications. We numerically show that the proposed model
recovers jump discontinuities of a data and discontinuities of the data gradient while reducing
stair-case effect.
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1 Introduction

In image denoising and image inpainting, one of main goals is to recover local structures in an
original image. Even though there are no certain hierarchical local structures which decide the visual
quality of recovered image, human vision easily tends to detect edges, ridges or valleys, and smooth
regions [1]. We regard these features as jump discontinuities of a data which are considered as edges
in an image, discontinuities of the data gradient which are possibly interpreted as sharp ridges or
sharp valleys, and smooth changes of the data where its gradient field is smooth. In this paper, we
explain that the proposed general form of TV-Stokes model reconstructs these local features and
provide an efficient and fast numerical algorithm to solve the proposed model via the augmented
Lagrangian method. We also show that the proposed model and numerical algorithm can be used
for a number of applications.

The Rudin-Osher-Fatemi (ROF) model [2] has been a framework in variational image denoising.
We also call this model as the TV-L2 model. Since the TV regularization reduces oscillatory features
while allowing jump discontinuities of an image, the ROF model is suitable to denoise piecewise
constant images and has been used for many applications [3–5]. Some drawbacks in the ROF model
were noticed such as reduction of contrast and stair-case effect [6–10]. The authors [9] showed that
the TV-L2 model never recover the same contrast in case of a simple disk shape no matter how
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large the fidelity constant is used. In order to preserve the contrast of an image, the L1 fidelity
was proposed by Alliney for a discrete one dimensional data [11]. In [12], Nikolova pointed out that
the TV-L1 model yields the minimizer which has exactly same values as a given image at some
pixels and the analysis was applied to more general fidelity terms. In [10], the authors addressed
the continuous analogues to the discrete version of the TV-L1 model [11–13]. In order to reduce
stair-case effect in image denoising, the energy functional involving higher order derivatives was
introduced in [7,14–19]. The Euler-Lagrange equation is a nonlinear fourth-order partial differential
equation (PDE) and the minimizer allows discontinuities of an image and its gradients. There are
other fourth-order models from a PDE-based approach [17,20] and hybrid models with a filter-based
approach [21, 22]. In [23], stair-case effect in the Perona-Malik model [24] is also removed by a
modification of the neighborhood filter which is a linear regression correction.

Recently, there have been many researches for fast and accurate algorithms to obtain a minimizer
of energy functional with TV regularization and Lp fidelity (p = 1 or 2) such as the dual methods [5,
25–30], Bregman iterative algorithm [31], split Bregman iteration [32, 33], alternating minimization
algorithm [34–36], Douglas-Rachford splitting [37, 38], and the references therein. The augmented
Lagrangian method [39–41] is used for more general models, such as the vectorial TV model, the
higher order model, and the TV-Lp (p ≥ 1) model. In [42], the Uzawa block relaxation methods
to the corresponding augmented Lagrangian functional of a weighted TV regularization model were
addressed to solve a geometric filtering of the image components. Many fast algorithms and general
framework for first order primal-dual algorithms for TV regularization are well explored in [29,43,44].
The dual formulation of the TV-Stokes model [45] is also proposed for image denoising [46].

In image inpainting, the Masnou and Morel (MM) model [47] and Bertalmio-Sapiro-Caselles-
Ballester (BSCB) model [48], indicate that it is difficult to obtain some pleasant inpainted results
from second order PDEs. The authors in [47] proposed an energy functional which minimizes the
length of the level lines and the angle total variation. The Euler-Lagrange equation is a nonlinear
fourth order PDE and the level curves are linearly connected from the outside of the inpainting
domains. The BSCB model was designed by a transportation phenomenon written as a nonlinear
third order PDE. The property of total variation inpainting, which yields the Euler-Lagrangian equa-
tion as a nonlinear second order PDE, is mathematically studied and compared with the harmonic
inpainting in [49]. The authors [50] proposed an approach to estimate the direction of extended
level lines and the other and to reconstruct the image whose gradient direction fits to the estimated
one. In [51], an analogy to fluid dynamics is used. If the stream function is an image I, the fluid
velocity in the incompressible Newtonian fluids is ∇⊥I. The inpainting process can be considered as
transporting the vorticity into the inpainting regions with the anisotropic diffusion and then recon-
structing the image via the Poisson equation. The generalization of the MM model was introduced
via Euler’s elastica curve in [52]. The Euler-Lagrange equation includes two crucial processes in
image inpainting, transportation [48] and diffusion [53], which yield excellent results in many chal-
lenging inpainting regions such as a smooth connection of level lines over a large inpainting domain.
The PDE-based approach to overcome the long connectivity is also introduced in [54,55].

The Lysaker-Osher-Tai (LOT) model [56] consists of two steps in image denoising. The unit
gradient vector field is regularized via the TV norm in the first step and then a denoised image is
reconstructed by fitting the image gradient into the regularized vector. The method outperforms
the ROF model [2] and the Lysaker-Lundervold-Tai (LLT) model [16]. Recently, the authors [57]
improved the LOT model by regularizing angle instead of vectors and using an edge indicator as
an extra weight. In image inpainting, the two-step method in the LOT model is improved with
the divergence free constraint [58]. The authors proposed the incompressibility condition inspired
by an analogy between incompressible Navier-Stokes equations and image inpainting in [51]. The
incompressibility condition enforces a propagation of tangential vectors over large inpainting regions.
The compatible condition to the normal vector field is called as the integrability condition and it
has been extensively used in surface reconstruction from a dense normal field in computer vision;
see [59–62] and references therein. In [45], the same incompressibility condition is used in image
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denoising and the authors numerically showed that the TV-Stokes method is good for preserving
edges while reducing stair-case effect. Some mathematical properties of TV-Stokes method with
the anisotropic TV-norm were recently studied in [63]. The authors point out that the energy
functional in the reconstruction step in [56] does not make sense in the bounded variation (BV)
space if the regularized vector field is not smooth. They proposed a mathematically sound energy
functional in surface reconstruction and the existence and the uniqueness of the minimizer were
proved. We would like to mention that two separate procedures, estimating derivatives of a surface
and reconstructing a surface whose derivatives fit to the estimated ones, are already well-known
methods in computer vision such as shape from shading [64], mesh regularization [65], computer
graphics [66–69], photometric stereo [61], and single view modeling [70,71].

Contemporary TV-Stokes models consist of two steps: the first step is to regularize the tangential
vector field to the level curves of the image and the second step is to reconstruct the image whose
gradient fits in the regularized normal vector obtained in the first step. In this paper, we generalize
the first step in [45,58] and the second step in the modified TV-Stokes model [63]. The generalized
form uses TV or H1 regularization, the Lp fidelity (p ≥ 1), and the arbitrary integration domain in
the fidelity term. Note that the integration domain can be extended to include open or closed curves.
This extension makes it possible to use the proposed model to find a surface from sparse gradient,
which is a well-known problem in computer vision [61, 64, 70] and computer graphics [67–69]. One
of main focus in this paper is to provide an efficient and fast numerical algorithm in order to solve
the generalized models based on the augmented Lagrangian method. We also explain a property
of the generalized TV-Stokes model which is to decompose an image into jump discontinuities of
a data and discontinuities of the data gradient or smooth regions. The generalized model can be
used a number of applications such as image inpainting, image decomposition, surface reconstruction
from sparse gradient, direction denoising, and image denoising. We investigate the various effects
using different norms via many examples in applications and numerically show that the proposed
model recovers jump discontinuities of a data and discontinuities of the data gradient while reducing
stair-case effect.

The paper is organized as follows. In Section 2, we propose the general form of TV-Stokes models
and explain some basic properties of the proposed model. In Section 3, the augmented Lagrangian
method is used to solve the proposed general model. We present numerical examples in Section 4.
The paper concludes in Section 5.

2 Generalized TV-Stokes model

In this section, we propose a generalized TV-Stokes model in Section 2.1 and show relation to
previous models in Section 2.2. Some basic properties of the proposed functional are explained in
Section 2.3.

2.1 Proposed model

First of all, we would like to introduce a very simple model which consists of two steps in image
denoising with Gaussian white noise. The two procedures are regularization of image derivative and
then reconstruction of denoised image from the regularized image derivative. This separate procedure
is based on a very naive concept - “more accurate image gradient makes better reconstruction”.
In image denoising, the Perona-Malik (PM) model [24, 72] uses estimation of image gradient as
derivative of the convolution of image with the two-dimensional Gaussian kernel. The coherence-
enhancing diffusion [73] uses more accurate derivative estimation from the structure tensor. The
derivative estimation in [73] makes it possible to denoise flow-like images which are difficult to be
denoised by the PM model.

We denote Ω as a rectangular domain. Let us consider an image I : Ω ⊂ R2 → [0, 1]. The normal
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and tangential vectors of the level curves of the image are given by

n = ∇I = (∂1I, ∂2I)T and t = ∇⊥I = (∂2I,−∂1I)T.

These vector fields satisfy the irrotational condition and the incompressible condition almost every-
where in Ω:

∇× n = 0 and ∇ · t = 0. (2.1)

A general type of vector field does not need to satisfy the condition (2.1). However, if we regularize
a vector field n (or t) and we use n (or t) to find a function g such that ∇g = n (or ∇⊥g = t), then
the condition ∇× n = 0 (or ∇ · t = 0) is necessary. Since the conditions are violated on edges and
ridges or valleys in an image I, it is difficult to impose the conditions pointwisely.

Now, we introduce a very simple TV-Stokes model which consists of two steps in image denoising.
From a noisy image I∗, we have a noisy vector field t∗ = ∇⊥I∗. In the first step, we obtain a
regularized vector field t = (t1, t2)T via an energy functional minimization:

min
∇·t=0

∫
Ω

|∇t|+ η

∫
Ω

|t− t∗|, (2.2)

where

|∇t|2 = (∂1t1)2 + (∂2t1)2 + (∂1t2)2 + (∂2t2)2.

The TV regularization preserves discontinuities in regularized derivative and it will help to preserve
sharp ridges or valleys in image denoising. The divergence free constraint is reasonable because we
regularize vector field t from t∗ = ∇⊥I∗. In the second step, we integrate the regularized normal
vector field n = t⊥ obtained by (2.2) to reconstruct a denoised image via an energy functional
minimization:

min
I

∫
Ω

|∇I − n|+ ξ

2

∫
Ω

|I − I∗|2. (2.3)

A denoised image is obtained by minimizing a difference between image gradient and the regularized
normal vector field from the first step. Note that the second step is exactly the same as the TV-
L2 model [2] when n = 0. We expect that the TV type regularization in (2.3) preserves jump
discontinuities in a denoised image. We shall carefully investigate two models (2.2) and (2.3) through
many examples.

The reason we use the L1 fidelity in (2.2) is a compatibility between two norms: the fidelity term
in (2.2) and the regularization term in (2.3). Since t is the regularized vector field of t∗ = ∇⊥I∗,
the fidelity term in (2.2) measures the difference of image gradient. Moreover, the regularization
term in (2.3) also has the same meaning. That is, it would be desirable to use same norms for these
quantities. Since the TV regularization should be used in the second step in order to reconstruct
jump discontinuities in a denoised image, the compatible and reasonable choice of fidelity in the first
step is the L1 fidelity. In Section 4, we numerically show the advantage of L1 fidelity in (2.2) in
some applications.

In this paper, we would like to extend the use of TV-Stokes model (2.2) and (2.3) into many other
applications such as image inpainting, image decomposition, and surface reconstruction from sparse
gradient. Moreover, we want to numerically investigate the various effects of different regularizations
and fidelities in (2.2) and (2.3). For this purpose, we propose a generalized form of TV-Stokes
model (2.2) and (2.3). The generalized model also consists of two steps: regularization of data
derivative in the first step and then reconstruction of data in the second step based on the regularized
derivative. The model can be considered as the generalized form of the first step in [45,58] and the
second step in [63]. The general form uses TV or H1 regularization, the Lp fidelity (p ≥ 1), and the
arbitrary integration domain in the fidelity term.
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We consider a data I∗ : Γ ⊂ Ω → [0, 1] and its tangential vector field t∗ = ∇⊥I∗ on Γ. In the
first step of the general model, we obtain a regularized tangential vector field t from a given vector
field t∗ on Γ ⊂ Ω via the following energy functional minimization:

min
t

∫
Ω

|∇t|q +
η

p

∫
Γ

|t− t∗|p, subject to F (t) = 0, (2.4)

where p ≥ 1, q = 1 or 2, and η > 0. The function F represents the extra constraint of the vector
field such as the incompressibility condition.

The choice of t∗ and Γ depends on applications. In image denoising and image decomposition,
I∗ and t∗ = ∇⊥I∗ are noisy data and Γ = Ω is the domain of image I∗. In image inpainting, we
have inpainting regions R and then Γ = Ω \ R and t∗ = ∇⊥I∗ are used. I∗ on the boundary of
R has the information to be inpainted on R. Since we have no restriction to choose Γ ⊂ Ω, the
integration domain Γ of the fidelity term in (2.4) can have not only regions but also closed or open
curves. In case of surface reconstruction from sparse gradient, Γ is a collection of curves to indicate
the location of the given gradient vectors n∗ and (t∗)⊥ = n∗; see Figure 4.5. In direction denoising,
Γ = Ω is the domain of noisy vector data t∗ and F ≡ 0. In these applications, we consider four
different cases to obtain a regularized vector field and the following abbreviations are used to denote
different minimization:

• F = ∇· and q = 1 : TV-Stokes minimization with Lp fidelity (TVS-Lp).

• F = ∇· and q = 2 : H1-Stokes minimization with Lp fidelity (H1S-Lp).

• F ≡ 0 and q = 1 : vectorial TV minimization with Lp fidelity (VTV-Lp).

• F ≡ 0 and q = 2 : vectorial H1 minimization with Lp fidelity (VH1-Lp).

In the second step, we already have the regularized normal vector field n = t⊥ from the first step.
We use another general model to reconstruct a data via the following energy functional minimization:

min
I

∫
Ω

|∇I − n|q +
ξ

p

∫
Γ

|I − I∗|p, (2.5)

where p ≥ 1, q = 1 or 2, ξ > 0. Note that p and q can be different from (2.4). We also use the
following abbreviations to indicate different models:

• q = 1 : TVn minimization with Lp fidelity (TVn-Lp).

• q = 2 : H1n minimization with Lp fidelity (H1n-Lp).

If we need to indicate a model which consists of H1-Stokes minimization with the L2 fidelity for
regularizing a vector field and TVn minimization with the L1 fidelity for reconstructing an image,
we simply use the abbreviation as H1S-L2+TVn-L1. In case that there is no prior data I∗ in (2.5),
we use ξ = 0 and fix a data value as zero at a point in Ω. We denote this model as TVn (q = 1) and
H1n (q = 2) in (2.5). These models are used in image decomposition and surface reconstruction
from sparse gradient.

In the rest of this paper, our main focus is to provide a fast and efficient algorithm to mini-
mize (2.4) and (2.5) based on the augmented Lagrangian method in Section 3. We also investigate
various effects of different norms via many examples in Section 4. As the TV regularization preserves
discontinuities of data and the H1 regularization enforces the continuity of data, we will observe
similar phenomena when a tangential vector field is regularized in (2.4) and a data is reconstructed
in (2.5). Moreover, we will see the effect of L1 or L2 fidelity in (2.4) via different applications.
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2.2 Relation to previous models

The basic TV-Stokes model (2.2) and (2.3) which we generalize in this paper are related with
previous works. The authors [56] used a regularization of normal vector field with the unit length
constraint and a denoised image is recovered by fitting the image gradient into the regularized normal
vector field:

min
|n|=1

∫
Ω

|∇n|+ η

2

∫
Ω

|n− n∗|2, (2.6)

min
I

∫
Ω

(|∇I| − ∇I · n) +
ξ

2

∫
Ω

|I − I∗|2, (2.7)

where I∗ is a noisy image and n∗ = ∇I∗/|∇I∗|. In [50], the regularizer in (2.7) is used in image in-
painting. The continuation of image gradient is considered and an image is simultaneously recovered
by an energy functional minimization:

min
n,I

(∫
R
|∇ · n|p (c1 + c2|∇k ∗ I|) + ζ

∫
R

(|∇I| − ∇I · n)
)

, (2.8)

where k denotes a regularizing kernel, R is an inpainting domain, and the detail admissible sets and
other variables are explained in [50]. In image inpainting, the LOT model in [56] is improved with
the divergence free constraint. The authors [58] proposed a minimization model:

min
∇·t=0

∫
R
|∇t| dp, with t = t∗ on ∂R. (2.9)

min
I

∫
R

(
|∇I| − ∇I · n

|n|

)
dp, with I = I∗ on ∂R. (2.10)

Instead of regularizing normal vector field with unit length constraint in (2.6), the incompressible
condition of tangential vector field enforces the propagation of vector field into a large inpainting
domain. In [45], the same method is used in image denoising. In [63], the authors point out that
the energy functional in (2.7) does not make sense in the BV space if the regularized vector field n
is not smooth. They used a different reconstruction step in image denoising:

min
∇·t=0

∫
Ω

2∑
l=1

|∇tl|+
η

2

∫
Ω

|t− t∗|2, (2.11)

min
I

∫
Ω

|∇I − n|+ ξ

2

∫
Ω

|I − I∗|2, (2.12)

where t = (t1, t2). The basic models (2.2) and (2.3) are very similar to the above model except the
isotropic TV regularization and the L1 fidelity in the first step.

The variational model to recover jump discontinuities in an image and discontinuities of the image
gradient in image denoising was introduced in [14]. The authors regarded an image as I = u1 + u2,
where u1 ∈ BV(Ω) and u2 ∈ H1 with ∇u2 ∈ BV(Ω,R2) and then proposed to denoise an image
from a noisy data I∗ via the minimization:

min
u1,u2

∫
Ω

|∇u1|+ α

∫
Ω

|∇2u2|+ λ

∫
Ω

(u1 + u2 − I∗)2

= min
I,h

∫
Ω

|∇I −∇h|+ α

∫
Ω

|∇2h|+ λ

∫
Ω

(I − I∗)2 ,

(2.13)

where |∇2h|2 = |∇(∂1h)|2 + |∇(∂2h)|2 and α and λ are positive constants. Introducing n = ∇h and
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using |∇n| = |∇t| = |∇2h|, the minimization (2.13) can be written as follows:

min
n=∇h

∫
Ω

|∇I − n|+ α

∫
Ω

|∇n|+ λ

∫
Ω

(I − I∗)2 ,

= min
∇×n=0

∫
Ω

|∇I − n|+ α

∫
Ω

|∇n|+ λ

∫
Ω

(I − I∗)2 ,

= min
∇·t=0

∫
Ω

|∇I − n|+ α

∫
Ω

|∇t|+ λ

∫
Ω

(I − I∗)2 ,

where n = t⊥ and t∗ = ∇⊥I∗. Inspired by the last minimization, we introduced the first step (2.2) in
order to regularize the tangential vector field under the TV norm and the divergence free constraint.
Since the tangential vector field is regularized independently, a fidelity term is necessary in the first
step. After a regularized tangential vector field is obtained, an image is recovered by the second step
in (2.3) which is the same method as (2.12).

In this paper, we generalize the basic TV-Stokes model (2.2) and (2.3). We shall show that the
proposed general model can be used for many applications and investigate various effects of different
regularizations and fidelities via many examples in Section 4.

2.3 Properties of the proposed model

Before we close Section 2, we would like to explain some properties of proposed general model.
As many higher models [7,14–16,18,19] achieved to obtain edges, sharp ridges or valleys, and smooth
regions, the proposed TVS-Lp1+TVn-Lp2 model (p1, p2 ≥ 1) also preserves these local structures
very well.

First of all, the TV regularization in the TVS-Lp1 model is the same as the total variation of
image gradient shown in many higher order models. Since the TV regularization of image gradient
allows discontinuities in image gradient, the regularized vector field in the TVS-Lp1 model also
preserves such discontinuities. Moreover, as the authors in [56, 74] mentioned, the first step in the
TVS-Lp1+TVn-Lp2 model minimizes the same regularity in the LLT model [16]. The regularized
vector field t in the TVS-Lp1 model is observed to have the same advantage in the LLT model, which
is to preserve discontinuities of the image gradient and to reduce stair-case effect on smooth regions.

To complete two-step method of TVS-Lp1+TVn-Lp2 model, the TVn-Lp2 model should be solved
in the second step. We expect that jump discontinuities of the image are going to be recovered in
this step. Since we penalize the divergence free condition in the first step, there exists an image g
such that

∇g = n. (2.14)

Then, the TVn-Lp2 model is written as

min
I

∫
Ω

|∇I − n|+ ξ

2

∫
Ω

|I − I∗|p2

= min
I

∫
Ω

|∇I −∇g|+ ξ

2

∫
Ω

|(I − g)− (I∗ − g)|p2

= min
f

∫
Ω

|∇f |+ ξ

2

∫
Ω

|f − f∗|p2 ,

(2.15)

where f∗ = I∗ − g. From the minimizer f , the image is reconstructed by

I = f + g. (2.16)

Therefore, the image f preserves discontinuities of an image as the ROF model (p2 = 2) does and
the image g preserves discontinuities of the image gradient and smooth regions of the image as the
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LLT model does. Note that the function g in (2.14) is numerically obtained by the TVn model with
ξ = 0 in (2.5).

As Chambolle and Lions [14] proposed the decomposition of an image u = u1 + u2 in (2.13), we
also have such a decomposition property in the proposed general model. More precisely, the TVS-
L1+TVn-L2 model decomposes an image into jump discontinuities of an image and discontinuities
of the image gradient or smooth regions; see more details in Section 4.2. Note that the difference
between (2.13) and the TVS-L1+TVn-L2 model is the use of L1 fidelity. We also emphasize the
advantage of the divergence free constraint in image inpainting in Section 4.1.

3 Augmented Lagrangian Method

In this section, we explain the detail algorithms to solve the proposed general model based on
the augmented Lagrangian method. In subsection 3.1, we introduce some notations. The proposed
algorithms of the first step (2.4) and the second step (2.5) are shown in subsection 3.2 and subsec-
tion 3.3, respectively. We mainly show how to incorporate the augmented Lagrangian method with
the staggered grid system and how to solve coupled PDEs caused by the incompressibility condition.

3.1 Notation

Let Ω = [1, N1]× [1, N2] be a set of N1N2 points in R2. For the simplicity, we denote four inner
product vector spaces:

X = RN1N2 , X = X × · · · ×X︸ ︷︷ ︸
k

,

Y = X ×X, Y = Y × · · · × Y︸ ︷︷ ︸
k

.

As the coordinate (i, j) denotes,

u ∈ X, u(i, j) ∈ R,

p ∈ Y, p(i, j) = (p1(i, j), p2(i, j)) ∈ R2,

u ∈ X, u(i, j) = (u1(i, j), . . . , uk(i, j)) ∈ Rk,

p ∈ Y, p(i, j) = (p1(i, j), . . . , pk(i, j)) ∈ R2 × · · · ×R2︸ ︷︷ ︸
k

,

we equip the standard Euclidean inner products as follows:

(u, v)X ≡
∑
i,j

u(i, j)v(i, j), (u,v)X ≡
k∑

l=1

(ul, vl)X ,

(p, q)Y ≡ (p1, q1)X + (p2, q2)X , (p,q)Y ≡
k∑

l=1

(pl, ql)Y .

Note that the induced norms || · ||V are the `2-norm on vector spaces V = X, Y , X, and Y. We
denote the absolute value as the Euclidean distance.

The discrete backward and forward differential operators for u ∈ X are defined with the periodic
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boundary condition:

∂−1 u(i, j) ≡

{
u(i, j)− u(i− 1, j), 1 < i ≤ N1,

u(1, j)− u(N1, j), i = 1,

∂−2 u(i, j) ≡

{
u(i, j)− u(i, j − 1), 1 < j ≤ N2,

u(i, 1)− u(i, N2), j = 1,

∂+
1 u(i, j) ≡

{
u(i + 1, j)− u(i, j), 1 ≤ i < N1,

u(1, j)− u(N1, j), i = N1,

∂+
2 u(i, j) ≡

{
u(i, j + 1)− u(i, j), 1 ≤ j < N2,

u(i, 1)− u(i, N2), j = N2.

We also define the discrete forward(+) and backward(−) gradient operator ∇± : X → Y :

∇±u(i, j) ≡
(
∂±1 u(i, j), ∂±2 u(i, j)

)
.

Considering inner products on X and Y , the corresponding discrete backward(−) and forward(+)
adjoint operator div∓ : Y → X of −∇± is obtained:

div∓ p(i, j) ≡ ∂∓1 p1(i, j) + ∂∓2 p2(i, j).

These operators are naturally extended on X and Y.

∇± : X → Y by ∇u = (∇±u1, . . . ,∇±uk),

div± : Y → X by div± p = (div± p1, . . . ,div± pk).

Note that we have (p,−∇±u)Y = (div∓ p,u)X. In the rest of paper, k = 2 is fixed.

3.2 Algorithm for the first step (2.4)

In the first step (2.4), we have four models: TVS-Lp, H1S-Lp, VTV-Lp, and VH1-Lp (p ≥ 1).
First of all, we introduce our algorithm for solving the TVS-Lp model. Since the H1 regularization
or the absence of divergence free constraint in the general model (2.4) are easily handled with
reduced number of Lagrangian multipliers in the proposed algorithm, it is redundant to present the
algorithms for the H1S-Lp, VTV-Lp, and VH1-Lp models.

In a discrete domain Ω = [1, N1]× [1, N2], the TVS-Lp model is represented:

min
t∈X

div+ t=0

TV(t) +
η

p
||t− t∗||pΓ,X, (3.1)

where

TV(t) ≡
∑

(i,j)∈Ω

(
|∇−t1(i, j)|2 + |∇−t2(i, j)|2

) 1
2 ,

||t− t∗||pΓ,X ≡
∑

(i,j)∈Γ

(|t1(i, j)− t∗1(i, j)|p + |t2(i, j)− t∗2(i, j)|p) .

The choice of Γ depends on applications. We use Γ = Ω in image denoising, direction denoising, and
image decomposition. In image inpainting, Γ = Ω \R is used where R is the inpainting domain. In
surface reconstruction from sparse gradient, Γ indicates the location of given vector field t∗.

9



(a) (b)

Figure 3.1: (a) is the rule of indexing variables, p, t, s, λr, λd, and λf in the augmented Lagrangian
functional (3.2). (b) is an example of computational domain whose size is 5 × 4. Note that the
•-nodes indicate the center of pixels of an image in image denoising and image inpainting.

In order to efficiently solve (3.1), we change it into a constraint minimization problem by intro-
ducing a new variable p and employing an operator splitting technique which is realized by a new
variable s:

min

 ∑
(i,j)∈Ω

|p(i, j)|+ η

p
||s− t∗||pΓ,X

∣∣∣∣∣∣ p = ∇−t, s = t, div+ t = 0

 .

Now, we use the augmented Lagrangian method [39,75] to solve the constraint minimization problem.
We firstly defined the augmented Lagrangian functional:

L(t,p, s;λr, λd, λf ) ≡
∑

(i,j)∈Ω

|p(i, j)|+ (λr,p−∇−t)Y +
cr

2
||p−∇−t||2Y

+
η

p
||s− t∗||pΓ,X + (λf , s− t)X +

cf

2
||s− t||2X

+ (λd,div+ t)X +
cd

2
||div+ t||2X ,

(3.2)

where cr, cf , and cd are positive penalty parameters and λr ∈ Y, λf ∈ X, and λd ∈ X are the
Lagrangian multipliers. We apply an algorithm in [39, 75] to solve the saddle-point problem of the
augmented Lagrangian functional (3.2):

Step I-a. Initialize t(0), p(0), s(0), λ
(0)
r , λ

(0)
d , and λ

(0)
f .

Step I-b. For n ≥ 0, find (t(n),p(n), s(n)) ' arg min
(t,p,s)∈X×Y×X

L(t,p, s;λ(n)
r , λ

(n)
d , λ

(n)
f ).

Step I-c. Update λ
(n+1)
r , λ

(n+1)
d , and λ

(n+1)
f as follows:

λ
(n+1)
r = λ

(n)
r + cr(p(n) −∇−t(n)),

λ
(n+1)
d = λ

(n)
d + cd(div+ t(n)),

λ
(n+1)
f = λ

(n)
f + cf (s(n) − t(n)).

A detail discretization of each step is done on the staggered grid system in Figure 3.1. The
variables, p, t, s, λr, λd, and λf in the augmented Lagrangian functional (3.2) are defined on

10



Ω = [1, N1] × [1, N2]. In the staggered grid system, we use physically different location to evaluate
the value of variables. That is, the first and second component of t, s, and λf are defined at � and
◦, respectively, in Figure 3.1-(a). p2

1, p1
2, λr

2
1, and λr

1
2 are defined at •. Note that •-nodes represent

positions of pixels in an image. The other variables are defined at M, but the coordinate (i, j)
indicates different position. More precisely, λd(i, j) is at the green triangle, p1

1(i, j) and λr
1
1(i, j) are

at the red triangle, and p2
2(i, j) and λr

2
2(i, j) are at the blue triangle. These rules of indexing will be

more reasonable when the Euler-Lagrange equations are discretized in Section 3.2.1. The periodic
boundary condition is used for all variables. An example whose discrete domain is [1, 5] × [1, 4] is
shown in Figure 3.1-(b).

All variables, t(0), p(0), s(0), λ
(0)
r , λ

(0)
d , and λ

(0)
f are initialized to be zero on the computational

domain. In case of surface reconstruction from a spare gradient, since a given vector field t∗ is
defined on a piecewise smooth curve γ in R2, the grid points whose location indicate the curve γ
and t(0)|γ should be approximately assigned. We find the nearest grid point from a given curve and
copy the same vector from t∗ on the curve.

In the Step I-b, we need to find the minimizers t(n), p(n), and s(n) of the functional L with the
fixed variables λ

(n)
r , λ

(n)
d , and λ

(n)
f (n ≥ 0). They are approximately obtained by the alternating

minimization method which consists of three sub-steps as follows:

Step I-b-1. For fixed p and s, solve the minimization problem, min
t∈X

Ep,s(t), where

Ep,s(t) ≡ (λ(n)
r ,−∇−t)Y + (λ(n)

d ,div+ t)X + (λ(n)
f ,−t)X

+
cr

2
||p−∇−t||2Y +

cd

2
||div+ t||2X +

cf

2
||s− t||2X.

(3.3)

Step I-b-2. For fixed p and t, solve the minimization problem, min
s∈X

Ep,t(s), where

Ep,t(s) ≡
η

p
||s− t∗||pΓ,X + (λ(n)

f , s)X +
cf

2
||s− t||2X. (3.4)

Step I-b-3. For fixed s and t, solve the minimization problem, min
p∈Y

Es,t(p), where

Es,t(p) ≡
∑

(i,j)∈Ω

|p(i, j)|+ (λ(n)
r ,p)Y +

cr

2
||p−∇−t||2Y. (3.5)

The periodic boundary condition is enforced in the variables t, p, and s after each step and the
updated variable is used in the next step. We numerically observe that a single iteration of the
alternating minimization scheme is enough to solve the saddle-point problem of the augmented
Lagrangian functional (3.2). In [39,40], it is mathematically proved that a single iteration is enough
to generate a convergent sequence in the ROF model, the vectorial TV model, and high order models.
In every iteration in Step I, the relative L1 errors of each component of all Lagrangian multipliers
are measured. If all errors are less than a given error bound ε1, we stop the iteration.

In the rest of subsection, we explain the detail algorithm to find the minimizers in (3.3), (3.4),
and (3.5) on the staggered grid system.

3.2.1 Step I-b-1: Minimization of the energy Ep,s(·)

For the fixed variables p and s, we obtain the minimizer of the energy functional (3.3). The
Euler-Lagrange equation of Ep,s(·) yields coupled PDEs:

div+ λ(n)
r −∇−λ

(n)
d − λ

(n)
f + cr div+(p−∇−t)− cd∇−(div+ t)− cf (s− t) = 0.

11



Using the notation in Section 3.1, the above PDEs are written as

−(cr + cd)∂+
1 ∂−1 t1 − cr∂

+
2 ∂−2 t1 − cd∂

−
1 ∂+

2 t2 + cf t1 =

− ∂+
1 λ(n)

r
1
1 − ∂+

2 λ(n)
r

1
2 + ∂−1 λ

(n)
d + λ

(n)
f1 − cr∂

+
1 p1

1 − cr∂
+
2 p1

2 + cfs1,
(3.6)

−(cr + cd)∂+
2 ∂−2 t2 − cr∂

+
1 ∂−1 t2 − cd∂

−
2 ∂+

1 t1 + cf t2 =

− ∂+
1 λ(n)

r
2
1 − ∂+

2 λ(n)
r

2
2 + ∂−2 λ

(n)
d + λ

(n)
f2 − cr∂

+
1 p2

1 − cr∂
+
2 p2

2 + cfs2.
(3.7)

We use the rule of indexing variables in Figure 3.1. Introducing the identity operator If(i, j) =
f(i, j) and shifting operators,

S±1 f(i, j) = f(i± 1, j) and S±2 f(i, j) = f(i, j ± 1),

the discretization of (3.6) at �-nodes and (3.7) at ◦-nodes is written as(
−(cr + cd)

(
S+

1 − 2I + S−1
)
− cr

(
S+

2 − 2I + S−2
)

+ cfI
)
t1(i, j)

− cd

(
S+

2 − I − S−1 S
+
2 + S−1

)
t2(i, j) = f1(i, j),

(3.8)

where

f1(i, j) =−
[(
S+

1 − I
) (

λ(n)
r

1
1 + crp

1
1

)
+
(
S+

2 − I
) (

λ(n)
r

1
2 + crp

1
2

)]
(i, j)

+
[(
I − S−1

)
λ

(n)
d + λ

(n)
f1 − cr

(
S+

2 − I
)
p1
2 + cfs1

]
(i, j)

and (
−(cr + cd)

(
S+

2 − 2I + S−2
)
− cr

(
S+

1 − 2I + S−1
)

+ cfI
)
t2(i, j)

− cd

(
S+

1 − S+
1 S

−
2 − I + S−2

)
t1(i, j) = f2(i, j),

(3.9)

where

f2(i, j) =−
[(
S+

2 − I
) (

λ(n)
r

2
2 + crp

2
2

)
+
(
S+

1 − I
) (

λ(n)
r

2
1 + crp

2
1

)]
(i, j)

+
[(
I − S−2

)
λ

(n)
d + λ

(n)
f2 − cr

(
S+

1 − I
)
p1
2 + cfs1

]
(i, j).

Since the variable t is periodically extended, we apply the discrete Fourier transform F to
solve (3.8) and (3.9). The shifting operators are essentially discrete convolutions and then their
discrete Fourier transforms are the componentwise multiplication in the frequency domain. For
representing discrete frequency, ui and uj , we have

FS±1 f(ui, uj) = e±
√
−1viFf(ui, uj) FS±2 f(ui, uj) = e±

√
−1vjFf(ui, uj)

where

vi =
2π

N1
ui, ui = 1, · · · , N1, and vj =

2π

N2
uj , uj = 1, · · · , N2,

It yields a system of linear equations:(
a11 a12

a21 a22

)(
Ft1(ui, uj)
Ft2(ui, uj)

)
=
(
Ff1(ui, uj)
Ff2(ui, uj)

)
,

where the coefficients are

a11 = −2(cr + cd) (cos vi − 1)− 2cr (cos vj − 1) + cf ,

a12 = −cd

(
1− cos vj +

√
−1 sin vj

) (
cos vi − 1 +

√
−1 sin vi

)
,

a21 = −cd

(
1− cos vi +

√
−1 sin vi

) (
cos vj − 1 +

√
−1 sin vj

)
,

a22 = −2cr (cos vi − 1)− 2(cr + cd) (cos vj − 1) + cf .
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Now, we have N1N2 numbers of 2 × 2 systems. The determinant of the coefficients matrix for all
discrete frequencies is not zero because the penalty parameters cr, cd, and cf are positive:

D ≡ det
(

a11 a12

a21 a22

)
= (2cr(cos vi + cos vj − 2)− cf )(2(cr + cd)(cos vi + cos vj − 2)− cf ).

After the systems of linear equations are solved for each frequency, we use the discrete inverse Fourier
transform to obtain t1 and t2:

t1 = <
(
F−1

(
a22Ff1 − a12Ff2

D

))
, t2 = <

(
F−1

(
−a21Ff1 + a11Ff2

D

))
,

where <(·) is the real part of a complex number.

3.2.2 Step I-b-2: Minimization of the energy Ep,t(·)

In order to obtain the minimizer of energy functional (3.4), we divide Ep,t(·) into two parts:

Ep,t(s) = EΩ\Γ(s) + EΓ(s),

where

EΩ\Γ(s) ≡
∑

(i,j)∈Ω\Γ

2∑
l=1

(
λ

(n)
fl (i, j)sl(i, j) +

cf

2
|sl(i, j)− tl(i, j)|2

)
,

EΓ(s) ≡
∑

(i,j)∈Γ

2∑
l=1

(
η

p
|sl(i, j)− t∗l (i, j)|p + λ

(n)
fl (i, j)sl(i, j) +

cf

2
|sl(i, j)− tl(i, j)|2

)
.

The minimizer in the first energy functional EΩ\Γ(·) is easily obtained because it is a quadratic
polynomial for each coordinate (i, j). For the second energy functional, we reformulate it as follows:

EΓ(s) ≡
∑

(i,j)∈Γ

2∑
l=1

(
η

p
|sl(i, j)− t∗l (i, j)|p +

cf

2

∣∣∣∣sl(i, j)− tl(i, j) +
1
cf

λ
(n)
fl (i, j)

∣∣∣∣2
)

+ C,

where C does not count on the minimization. For each coordinate (i, j) ∈ Γ and the index l = 1
and 2, letting

x(i, j) = sl(i, j)− t∗l (i, j) and x0(i, j) = −t∗l (i, j) + tl(i, j)−
1
cf

λ
(n)
fl (i, j),

the problem of finding the minimizer in EΓ(·) is changed to find the minimizer of the function

f(x) =
η

p
|x|p +

cf

2
|x− x0|2.

By using the fixed point theorem to f ′(x), it is straightforward to prove that the minimizer assumes
x = αx0, 0 ≤ α ≤ 1. Now, we find α such that f(αx0) is minimized. It yields a problem of finding
a minimizer of a radical function g(α) = η

p |x0|pαp + cf

2 |x0|2(α− 1)2. When p > 1 and p 6= 2, we use
the fixed point theorem to find a root of g′(α) = 0. When p = 2, we have the analytical solution of
α(i, j) = cf

η+cf
. When p = 1, we have α(i, j) = max

(
0, 1− η

cf |x0(i,j)|

)
because α ≥ 0; see also [41].

Therefore, the minimizer of Ep,t(s) is represented by

(i, j) /∈ Γ ⇒ sl(i, j) = tl(i, j)−
1
cf

λ
(n)
fl (i, j),

(i, j) ∈ Γ ⇒ sl(i, j) = t∗l (i, j) + α(i, j)x0(i, j),

where l = 1 and 2.
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3.2.3 Step I-b-3: Minimization of the energy Es,t(·)

We apply the same approach in [41] to find the closed form of the minimizer of the functional (3.5).
By completing the square, the energy functional Es,t(·) in (3.5) can be written as:

Es,t(p) =
∑

(i,j)∈Ω

|p(i, j)|+ cr

2

∣∣∣∣∣∣∣∣p− (∇−t− 1
cr

λr
(n)

)∣∣∣∣∣∣∣∣2
Y

+ C,

where C does not count on the minimization. The close form solution is obtained by

p(i, j) = max
{

0, 1− 1
cr|w(i, j)|

}
w(i, j),

where

w = ∇−t− 1
cr

λr
(n).

More details are shown in [41].

3.3 Algorithm for the second step (2.5)

After the regularized tangent vector field t is obtained from the first step, the regularized normal
vector field n is defined by t⊥. In the second step (2.5), we have two models: TVn-Lp and H1n-
Lp (p ≥ 1). We introduce the algorithm for solving the TVn-Lp model. The algorithm for the
H1n-Lp is easily obtained with reduced number of Lagrangian multipliers from the algorithm in this
subsection. Note that we do not need to use the augmented Lagrangian method to solve the H1n-L2

model with Γ = Ω. However, we still need to use the proposed algorithm to solve the H1n-L2 model
with Γ ( Ω.

In the discrete domain Ω = [1, N1]× [1, N2], the TVn-Lp model (p ≥ 1) is represented to find a
minimizer in X:

min
I∈X

TVn(I) +
ξ

p
||I − I∗||pΓ,X, (3.10)

where

TVn(I) ≡
∑

(i,j)∈Ω

|∇+I(i, j)− n(i, j)|,

||I − I∗||pΓ,X ≡
∑

(i,j)∈Γ

|I(i, j)− I∗(i, j)|p.

In order to efficiently solve (3.10), we change it into a constraint minimization problem by introducing
a new variable p and employing an operator splitting technique which is realized by a new variable J :

min

 ∑
(i,j)∈Ω

|p(i, j)− n(i, j)|+ ξ

p
||J − I∗||pΓ,X

∣∣∣∣∣∣ p = ∇+I, J = I

 .

Now, we use the augmented Lagrangian method [39,75] to solve the constraint minimization problem
via the augmented Lagrangian functional:

L(p, I, J ;λr, λf ) ≡
∑

(i,j)∈Ω

|p(i, j)− n(i, j)|+ ξ

p
||J − I∗||pΓ,X

+ (λr,p−∇+I)Y + (λf , J − I)X +
cr

2
||p−∇+I||2Y +

cf

2
||J − I||2X ,

(3.11)
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where cr and cf are positive penalty parameters and λr ∈ Y and λf ∈ X are the Lagrangian
multipliers. Note that, even though p = 2, the auxiliary variable J should be used in image inpainting
and surface reconstruction from sparse gradient because Γ is a proper subset of Ω. We apply an
algorithm in [39,75] to solve the saddle-point problem of the augmented Lagrangian functional (3.11):

Step II-a. Initialize p(0), I(0), J (0), λr
(0), and λf

(0).

Step II-b. For n ≥ 0, find (p(n), I(n), J (n)) ' arg min
(p,I,J)

L(p, I, J ;λr
(n), λf

(n)).

Step II-c. Update λr
(n+1) and λf

(n+1) as follows:{
λr

(n+1) = λr
(n) + cr(pn −∇+I(n)),

λf
(n+1) = λf

(n) + cd(J (n) − I(n)).

In the Step II-b, we approximately obtain the minimizer (p(n), I(n), J (n)) in the functional L by
using the alternating minimization method as follows:

Step II-b-1. For fixed p and J , solve the minimization problem, min
I∈X

Ep,J(I), where

Ep,J(I) ≡ (λr
(n),−∇+I)Y + (λf

(n),−I)X +
cr

2
||p−∇+I||2Y +

cf

2
||J − I||2X . (3.12)

Step II-b-2. For fixed p and I, solve the minimization problem, min
J∈X

Ep,I(J), where

Ep,I(J) ≡ η

p
||J − I∗||pΓ,X + (λf

(n), J)X +
cf

2
||J − I||2X . (3.13)

Step II-b-3. For fixed I and J , solve the minimization problem, min
p∈Y

EI,J(p), where

EI,J(p) ≡
∑

(i,j)∈Ω

|p(i, j)− n(i, j)|+ (λr,p)Y +
cr

2
||p−∇+I||2Y . (3.14)

The periodic boundary condition is enforced in the variables p, I, and J after each step and the
updated variable is used in the next step. We numerically observe that a single iteration of the
alternating minimization scheme is enough to solve the saddle-point problem of the augmented
Lagrangian functional (3.11). In every iteration in Step II, the relative L1 errors of each component
of all Lagrangian multipliers are measured. If all errors are less than a given error bound ε2, we stop
the iteration.

The detail algorithms to find the minimizer in the functionals (3.12), (3.13), and (3.14) are
straightforward. In Step II-b-1, the Euler-Lagrange equation of the energy functional (3.12) is

div− λr
(n) − λf

(n) + cr div−(p−∇+I)− cf (J − I) = 0.

It can be solved by the discrete Fourier transform in a similar way in Step I-b-1. The minimizers in
Step II-b-2 and Step II-b-3 are obtained by using the same methods in Step I-b-2 and Step I-b-3.

3.4 Computational time

The computational time of the proposed augmented Lagrangian method (ALM) is compared
with the dual formulation (DUAL) of TV-Stokes equation for image denoising in [26, 46] and the
additive operator splitting (AOS) scheme for image inpainting in [74,76]
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(a) (b)

image size first step second step

ALM AOS ALM AOS

(a) 3711 1.70 44.80 0.96 26.69
(b) 14258 37.64 756.72 9.23 409.58

Table 3.1: The computational time in seconds of the proposed ALM is compared with the AOS
scheme for image inpainting in [74]. The size indicates the number of pixels in inpainting domain
which is the red region in the left side of (a) and (b). The right side of (a) and (b) is the result of
the TVS-L1+TVn-L2 model for image inpainting.

In Table 3.1, the computational time of the proposed ALM is compared with the AOS scheme
for same examples in image inpainting in [74]. We use the TVS-L1+TVn-L2 model and the results
are shown above the table. Even though the model has a nonlinearity of the fidelity term in the first
step, the computational time of the proposed ALM is much smaller than the AOS scheme. The test
system is Intel(R) Core(TM)2 Duo CPU P8600 2.4GHz 32-bit processor and 3GB RAM. The same
parameters in [74] are used for the AOS scheme. In (a) and (b), we use cr = 10, cd = 1, cf = 1,
and η = 1 and ε1 = 10−2 for the TVS-L1 model and cr = 10, cf = 1, ξ = 1 and ε2 = 10−2 for the
TVn-L2 model.

In Table 3.2, the proposed method is compared with the dual formulation of TV-Stokes equations
for image denoising [46]. We take their computational time in the table and the test system used
in [46] is a 2 Opteron 270 dualcore 64-bit processor and 8GB RAM. We use TVS-L2+TVn-L2 model
and the results are shown above the table. In (a), we use cr = 10, cd = 1, cf = 1, η = 10 and
ε1 = 10−2 for the TVS-L2 model and cr = 10, ξ = 10 and ε2 = 10−2 for the TVn-L2 model. In
(b), we use cr = 1, cd = 10−2, cf = 1, η = 15, and ε1 = 10−2 for the TVS-L2 model and cr = 1,
ξ = 15, and ε2 = 10−2 for the TVn-L2 model. Through a discussion with the authors in [46], we
figure out that a single thread in the Opteron system is used. We expect that the computational
cost between the dual formulation and the proposed algorithm for the TV-Stokes equation may not
be quite different under the same system.

4 Applications

In this section, we show the proposed model can be used for a number of applications: image
inpainting, image decomposition, surface reconstruction from sparse gradient, direction denoising,
and image denoising. Moreover, we numerically investigate various effects of different norms in the
proposed general models: the first step (2.4) and the second step (2.5).

The effects of different norms which we want to show via many examples are very straightforward.
That is, the TV regularization preserves discontinuities of data and the H1 regularization enforces
continuities of data. Since the data in the first step is different from the data in second step, the
comparison of norms in each step should be carefully done. We also illustrate the role of divergence
free constraint in image inpainting. The difference of L1 and L2 fidelities in (2.4) is shown in image
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(a) (b)

image size first step second step

ALM DUAL ALM DUAL

(a) 2562 4.15 17.4 0.98 2.2
(b) 5122 36.49 128.2 5.48 20.7

Table 3.2: The computational time in seconds of the proposed ALM is compared with the dual
formulation for the TV-Stokes denoising algorithm in [46]. The right side of (a) and (b) is the result
of the TVS-L2+TVn-L2 model for image denoising. The left side of (a) and (b) is the noisy image
which is directly taken from [46].

decomposition and direction denoising.
We use the standard hue-saturation-value (HSV) map to represent a vector field. Since every

vector field in this paper is defined on two dimensional space, the value in the HSV map is fixed
to 1. For example, the white color in the HSV map presents the zero vector.

4.1 Image inpainting

In image inpainting, we recover degraded or missing parts R in an image domain Ω. We denote
inpainting regions R as the red color; see Figure 4.1-(a1). A given image I∗ is defined on Γ = Ω\R.
In order to interpolate image values I∗ on the boundary of R, we use the proposed two-step method.
More precisely, a tangential vector field is interpolated by (2.4) in the first step. An inpainted image
is recovered by (2.5) in the second step with the regularized normal vector field from the first step.
In this subsection, we observe that the divergence free constraint is crucial and various effects of
different regularizations are shown.

First of all, we show the advantage of using the divergence free constraint in image inpainting.
The comparison between TV and H1 regularization in the first step (2.4) is also illustrated. For this
purpose, we numerically compare four different methods to regularize a given tangential vector field
in image inpainting via different regularization and constraint:

TVS-L1, H1S-L1, VTV-L1, and VH1-L1. (4.1)

In Figure 4.1, we fix the second step as the TVn-L2 model for the fair comparison. The red regions
in (a1) are inpainting domains and (b1) is the original image. (a2) and (b2) are the tangential
vector field of (a1) and (b1), respectively, rendered by the HSV color map. From (c2), (d2), (e2),
and (f2), we show results obtained by different regularization in (4.1). (c1), (d1), (e1), and (f1) are
obtained by the TVn-L2 model with different regularized vector fields n in (c2), (d2), (e2), and (f2),
respectively. The error bound is ε1 = 10−2 in the first step and ε2 = 10−3 in the second step. In
(c2), we use cr = 10, cd = 10, cf = 1, and η = 10 for the TVS-L1 model. In (d2), we use cf = 1 and
η = 10. In (e2), we use cr = 10, cf = 1, and η = 10. In (f2), we use cf = 1 and η = 10. In order to
reconstruct the inpainted images from the regularized vector fields, we use the TVn-L2 model with
cr = 10, cf = 1, and ξ = 10, in (c1), (d1), (e1), and (f1).
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(a1) (b1) (c1)

(a2) (b2) (c2) TVS-L1

(d1) (e1) (f1)

(d2) H1S-L1 (e2) VTV-L1 (f2) VH1-L1

Figure 4.1: The comparison of different regularization in (4.1): the red regions in (a1) are inpainting
domains and (b1) is the original image. (a2) and (b2) are the tangential vector field of (a1) and
(b1), respectively, rendered by the HSV color map. Inpainting results are shown in (c1), (d1), (e1),
and (f1). They are obtained by the different inpainted tangential vector fields in (c2), (d2), (e2), and
(f2), respectively. From (c2) and (e2), we show the advantage of using the divergence free constraint.
From (c2) and (d2), we show that the TV norm in (4.1) preserves the discontinuities of the image
gradient but the H1 norm smears them out.
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In (c2) and (d2), the divergence free constraint in TVS-L1 model and H1S-L1 model shows the
advantage for propagating the vectors on the boundary of R into the large inpainting domains. Since
the inpainting regions on the left top in (a1) are intentionally drawn to be thicker than the width of
strip in (a2), the results of VTV-L1 model shown in (e2) and VH1-L1 model shown in (f2) does not
recover a correct tangential vector field on these regions because the divergence free constraint is
not imposed. Even though the divergence free constraint is good for a large inpainting domain, we
notice that the proposed model can not outperform the Euler’s elastica model [47, 52] in the sense
of long connectivity.

The difference between TV and H1 regularization in (4.1) is easily observed in Figure 4.1. In
case of the H1 norm, jump discontinuities in the image gradient are not allowed in the minimizer
of (2.4) since the Euler-Lagrangian equation of each component of the vector is a Poisson equation.
However, the TV norm allows such jump discontinuities in the regularized tangential vector field.
These phenomena are shown in (c2) and (d2). Since the discontinuities of image gradient reflect
sharp ridges or valleys, we can see a good reconstruction of ridges and valleys in (c1) but they are
smeared out in (d1).

Now, we show the different effect of TV and H1 regularization in the second step (2.5). For this
purpose, we numerically compare two methods to reconstruct an image via different regularization:

TVn-L2 and H1n-L2. (4.2)

In Figures 4.2-(c) and 4.2-(e), we fix the first step as the TVS-L1 model to obtain a regularized vector
field n for the fair comparison. The inpainting domain in (a) includes jump discontinuities of the
image and discontinuities of the image gradient. As we have seen the preservation of discontinuities
of image gradient under the TVS-L1 model in Figure 4.1, the information of sharp ridges or valleys
are well preserved in the regularized vector field n. Therefore, ridges and valleys are well recovered
by two models in (4.2). The difference between the TV and H1 norm in the second step (4.2)
is shown in (c) and (e) or (f). Since the H1 norm enforces the surface continuity in the surface
reconstruction step, the edges in (e) can not be restored. The image in (f) is an extreme case. Even
though we use the normal vector field n = ∇I of the original image I in the H1n-L2 model, the
edges in (f) can not be reconstructed. In (c), the TVn-L2 model reconstructs sharp edges because
of the TV regularization. The TV-L2 inpainting model in (d) is good for reconstructing edges but
it can not recover ridges or valleys because the TV-L2 model is the case of n = 0 in the TVn-L2

model. We use cr = 10, cd = 10−3, cf = 1, η = 10, and ε1 = 5 · 10−3 for the TVS-L1 model in (c)
and (e). The surface reconstruction in (c) and (e) uses the TVn-L2 model with cr = 10, cf = 1,
ξ = 10, and ε2 = 10−3 and the H1S-L2 model with cf = 1, ξ = 103, and ε2 = 10−8. In (f), we
use cf = 1, ξ = 10, and ε2 = 10−5 for the H1S-L2 model. In (d), we use cr = 10, ξ = 103, and
ε2 = 10−5.

4.2 Image decomposition

In this subsection, we show that one of generalized TV-stokes models can be applied to image
decomposition introduced in [14]. The conventional meaning of image decomposition is to separate
an image into a cartoon part and a texture part or a noise part [77–79]. Here, we refer to a different
meaning which is a separation of jump discontinuities of an image and discontinuities of the image
gradient or smooth regions. Note that we do not separately obtain texture parts from an image.

In the generalized TV-Stokes model, we use the L1 fidelity in the first step (2.4) to show a
decomposition property. More specifically, the TVS-L1+TVn-L2 model decomposes an image I
into two functions I = f + g in (2.16): the function f has jump discontinuities of the image and
the function g has discontinuities of the image gradient or smooth regions of the image. From
a given image I∗, we obtain the regularized normal vector field n from the TVS-L1 model. The
functions g (2.14) and f (2.15) are obtained by the TVn model and the ROF model, respectively.
The main focus in this subsection is that the TVS-L2 model does not make a decomposition property
introduced in [14] because of the L2 fidelity

19



(a) (b) (c) TVS-L1+TVn-L2

(d) TV-L2 (e) TVS-L1+H1n-L2 (f)

Figure 4.2: The comparison of different regularization in (2.5): the red region in (a) is an inpainting
domain and (b) is the original image. In (c), the proposed model shows a proper reconstruction for
both edges and ridges or valleys. Note that the image in (f) is reconstructed by H1n-L2 with the
exact normal vector field n = ∇I of the original image.
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(a) (a1) (b) (b1)

(c) (c1) I = f + g (c2) f (c3) g

(d) (d1) I = f + g (d2) f (d3) g

Figure 4.3: (a) is the original image and the Gaussian white noise with the standard deviation 10 is
added in (b). (a1), (b1), (c1), and (d1) are the graph of the left image. (c1) is the sum of (c2) and
(c3) which are the decomposition from the TVS-L2+TVn-L2 model. (d1) is the sum of (d2) and (d3)
which are the decomposition from the TVS-L1+TVn-L2 model. In (d2) and (d3), we show image
decomposition of an image into two parts: f in (2.15) which preserves the jump discontinuities and
g in (2.14) which preserves the discontinuities of the image gradient or smooth regions. However, g
in (c3) still has the jump discontinuities.
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First of all, we observe that the L1 and L2 fidelity in the TVS-Lp model generates two distinctive
regularized vector fields. In order to understand the different features, we need to observe the
difference between L1 and L2 fidelity in TV-Lp model for image denoising [12, 13]. The TV-L1

model outperforms the TV-L2 model to remove the salt-and-pepper noise because the noise is
considered as a large variation. The TV-L2 model is suitable for eliminating a small variation of an
image. Likewise, the TVS-L1 model easily suppresses the salt-and-pepper type noise which can be
considered as a large variation in a given vector data t∗ = ∇⊥I∗. If we have a piecewise constant
image I∗, such a large variation in t∗ happens at the jump discontinuities in the image. That is, the
TVS-L1 model easily suppresses the derivatives of jump discontinuities because they are considered
as outliers in a given vector data t∗ = ∇⊥I∗. The TVS-L2 model effectively works for denoising
a small variation of the tangential vector field but it may not suppresses the derivative of jump
discontinuities. Two distinctive regularized vector fields from the L1 and L2 fidelity in the TVS-Lp

model are clearly shown in Figures 4.3-(c3) and 4.3-(d3).
In Figure 4.3, we show examples of image decomposition in the TVS-Lp+TVn-L2 model as we

explained in Section 2.3. The different decompositions are expected from L1 and L2 fidelity in the
first step. Generally, image decomposition from the TVS-Lp+TVn-L2 model is obtained as follows.
First of all, we regularize tangential vector fields n from the TVS-Lp model. The function g in (2.14)
is obtained by the TVn model and then the function f in (2.15) is obtained by the ROF model. From
a noisy image I∗ shown in (b), we obtain two regularized vector fields: one is n2 from the TVS-L2

model and the other is n1 from the TVS-L1 model. The surfaces in (c3) and (d3) are reconstructed
by the TVn2 model and the TVn1 model, respectively. Since the TVS-L1 model easily suppresses
the derivatives of jump discontinuities in a given vector field, the surface (d3) does not have any
jump discontinuities. However, the surface (c3) still has edges because of the L2 fidelity. (c1) is the
sum of f in (c2) and g in (c3) which are the decomposition from the TVS-L2+TVn-L2 model. (d1)
is the sum of f in (d2) and g in (d3) which are the decomposition from the TVS-L1+TVn-L2 model.
Even the final results in (c) and (d) are well recovered in the sense of image denoising, (c1) and (c2)
are a correct decomposition because the image (c2) does not have jump discontinuities. Note that
the function g in (2.14), shown in (c3) and (d3), is numerically obtained by the TVn model with
cr = 1 and ε2 = 10−2. In (c), we use cr = 1, cd = 1, η = 10, and ε1 = 10−3 for the TVS-L2. In
(c2), we use cr = 1, ξ = 20, and ε2 = 10−3 for finding a minimizer in (2.15). In (d), we use cr = 1,
cd = 1, cf = 1, η = 1, and ε1 = 10−3 for the TVS-L1. In (d2), we use cr = 1, ξ = 5, and ε2 = 10−3

for finding a minimizer in (2.15).
In Figure 4.4, a real example of image decomposition is shown. (a) is not a direct result of the

TVS-L1+TVn-L2 model in image denoising but the sum in (2.16) of two parts which are decomposed
by the model. (d) is the result of the TV-L2 model. In (d1), two blue regions in the result are
magnified to show where sharp ridges or valleys are not preserved and stair-case effect happens. In
(a2) and (a3), we show the results of image decomposition from the TVS-L1+TVn-L2 model. Jump
discontinuities and discontinuities of the image gradient or smooth regions are well decomposed and
preserved. In (d), we use cr = 1, ξ = 15, and ε2 = 10−3. In (a), we use the TVS-L1 model to obtain
the regularized vector field n with cr = 1, cd = 1, cf = 1, η = 1, and ε1 = 10−3 and then we use
the TVn model to obtain g with cr = 1 and 10−2. In order to obtain f in (2.15), we use cr = 1,
ξ = 102, and ε2 = 10−2.

4.3 Surface reconstruction from sparse gradient

We present a reconstruction method of height function z = I(x, y) on Ω ⊂ R2 from a piecewise
smooth gradient vector field on sparsely located curves Γ ( Ω. The method called by surface
reconstruction from sparse gradient is introduced in single view modeling [67–71]. From a given
vector field n∗ on sparsely located curves Γ in the domain Ω, an interpolated normal vector n is
obtained over the whole domain by a PDE-based propagation [66] or a minimization method [68].
After that, surface-from-gradient methods [59,80] are used to reconstruct a surface from the vector
field n.
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(a) (b) (c) (d)

(a1) I = f + g (a2) f (a3) g (d1) TV-L2

Figure 4.4: (a) is not a direct result of the TVS-L1+TVn-L2 model in image denoising but the
sum in (2.16) of two parts which are decomposed by the model. (b) is the original image and the
Gaussian white noise with the standard deviation 10 is added in (c). (d) is the results of the TV-L2

model. Blue regions in (c) are magnified in the second row and the third row. They are shown by a
surface rendering from the top view. (a2) and (a3) are the decomposition from the TVS-L1+TVn-
L2 model. In (a2) and (a3), f in (2.15) preserves the jump discontinuities and g in (2.14) preserves
discontinuities of the image gradient or smooth regions.
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(a) (b) (c) (d)

Figure 4.5: The procedure to reconstruct a surface from sparse gradient: (a) is a basic drawings to
indicate curves Γ. (b) is an assigned vector field n∗ on Γ. (c) is an inpainted vector field n by the
H1S-L1 model rendered by the HSV color map. (d) is a reconstructed surface by the TVn model.

In this subsection, we apply the proposed models (2.4) and (2.5) to surface reconstruction from
sparse gradient. The procedure is illustrated in Figure 4.5. From a given vector field n∗ in (b) on
curves Γ in (a), we use the following models to obtain an inpainted vector field on Ω:

TVS-L1 or H1S-L1, (4.3)

where (t∗)⊥ = n∗. For instance, (c) is an inpainted vector field by the H1S-L1 model rendered
by the HSV color map. After the inpainted vector field is obtained, we use the TVn model to
reconstruct a height function in (d). In this case, a height value is arbitrarily fixed at a point
because a minimizer in the TVn model is obtained up to constants. If there is a prior information
of height, the TVn-Lp (p ≥ 1) model also can be used. Since the divergence free constraint in (4.3)
is crucial to inpaint tangential vectors over large regions as we observed in Figure 4.1, it is not
necessary to consider VTV-L1 and VH1-L1 model in this application. Note that the corresponding
constraint to divergence free condition in the normal vectors is called as the integrability condition.
It has been used in many literatures of surface reconstruction; see [59–62] and references therein.

We initially set up vectors n∗ on given sparse curves Γ as perpendicular to the curves. A default
magnitude of vectors n∗ is a constant value on all curves. Since we assume the assigned vectors n∗

as a projection of 3D surface normal vectors on the domain Ω, the height of reconstructed surface is
decreasing along the direction of vector and larger magnitude of vectors reconstruct steeper surface.
So, we can adjust the vectors n∗ on Γ in order to reconstruct a desired surface.

The main focus in this subsection is to observe effects of TV and H1 regularization in (4.3) in
terms of surface reconstruction. As we have observed in Section 4.1, the TV regularization preserves
discontinuities in the inpainted vector field and the H1 regularization smears them out. It means
that the TV regularization reconstructs sharp ridges or valleys from discontinuities in the given
vector field n∗ on Γ and the H1 regularization can not recover sharp ridges or valleys. In Figure 4.6,
we illustrate such a difference. (a1) and (b1) are initial drawings to indicate Γ in (2.4) and (a2)
and (b2) are the initial vector field t∗ on Γ presented by the HSV color map. Discontinuities in the
vector field t∗ on Γ are easily seen because of sudden color changes in the HSV color map. There are
four discontinuous points at the corners of the outer square. In (a2), there is another discontinuous
point located at the junction of the cross shape. In (b2), there are three more discontinuous points
on the cross shape. In (c) and (d), we observe that these discontinuities are well propagated into
the domain under the TV regularization. However, these discontinuities in (e) and (f) are smeared
out because of the H1 regularization. In Figure 4.6, we fix the error bounds ε1 = ε2 = 10−3 and we
use cr = 10−2, cf = 1, and ε2 = 10−3 for the TVn model. In (c) and (d), we use cr = 10, cd = 1,
cf = 1, and η = 100 for the TVS-L1 model. In (e) and (f), we use cd = 1, cf = 1, and η = 100.

In Figure 4.7, we use an example drawn by an artist. (a) is a basic sketch of curves and (b)
is the assigned vector field on the curves. (c1) and (d1) are the results from TVS-L1 model and
H1S-L1 model, respectively, presented by the HSV color map. After we obtain inpainted vector
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(a1) (a2) (b1) (b2)

(c) TVS-L1+TVn (d) TVS-L1+TVn

(e) H1S-L1+TVn (f) H1S-L1+TVn

Figure 4.6: The comparison between TVS-L1 model and H1S-L1 model: (a1) and (b1) are initial
drawings to indicate Γ in (2.4) and (a2) and (b2) are the initial vector field t∗ on Γ presented by
the HSV color map. The image on the left of each surface is the HSV color map of result from the
inpainted vector field. In (c) and (d), since the TV norm preserves discontinuities in the vector field,
the crease structure is well propagated from the singular points in a given vector field on Γ. The
crease structure is smeared out under the H1 norm shown in (e) and (f).
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(a) (c1) (c2) (c3)

(b) (d1) (d2) (d3)

Figure 4.7: (a) is the curves Γ drawn by an artist. (b) is the assigned vector field t∗ on the curves and
(c1) and (d1) are the result from TVS-L1 model and H1S-L1 model, respectively, presented by the
HSV color map. (c2) and (d2) are the scaled height map obtained from (c1) and (d1), respectively,
via the TVn model. (c3) and (d3) are reconstructed surfaces. The different shapes between (c3)
and (d3) are caused by the different norms.

(a) (b) (c)

(d) (e) (f)

Figure 4.8: (a) is the curves Γ drawn by an artist. (b) is the assigned vector field t∗ on the curves
and (c) is the result from the H1S-L1 model presented by the HSV color map. (d) is the scaled
height map obtained by the TVn model. (e) and (f) are two views of the reconstructed surface.
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(a) (b) TVn (c) H1n

Figure 4.9: The comparison between TVn model and H1n model from the dense normal vector
field: (a) shows how the vector field n is defined. n = 0 is used except on the green curves. The
magnitude of n is a constant on the curves and the direction is the outward normal to the curves.
The result in the H1n model has oscillatory artifacts in the height field along the curves but the
TVn model reconstructs jump discontinuities.

fields n in (c1) and (d1), the TVn model reconstructs surfaces in (c3) and (d3), respectively. They
are clearly different shapes because of different norms in the regularization term. In Figure 4.8,
more complicated curves are used. In this case, it seems to be difficult to initially assign a proper
vector field on given curves in order to reconstruct a desired surface. The authors [68] used a 3D
reference model to intuitively assign suitable vectors on the curves. In this paper, we simply use
the perpendicular direction to the given curves. We also modulate the magnitude of vectors to
change the steepness of surface. The magnitude of some vectors at the T junction is gradually
decreased to reduce artifacts in the surface. In Figures 4.7 and 4.8, we use the same parameters for
the TVS-L1+TVn model and the H1S-L1+TVn model as in Figure 4.6.

The TVn model plays an important role to reconstruct jump discontinuities in a height map
if the vector field n has the discrete derivative information of the jump. The H1n model can not
recover jump discontinuities because the minimizer should be in the H1 space. In Figure 4.9, we
make an extreme case that the vector field n = 0 is used except on the green curves in (a), the
magnitude of n is a constant on the curves, and the direction is the outward normal to the curves.
The result in the H1n model has oscillatory artifacts in the height field along the curves but the
TVn model reconstructs jump discontinuities. Usually, these artifacts have been partially removed
by approximating the locations of jump discontinuities. The approximate positions are used as
a weight function to reduce overshooting or undershooting artifacts. The issue in Figure 4.9 is
that such an extra approximation is certainly unnecessary if we use the TVn model for surface
reconstruction.

4.4 Direction denoising

Direction denoising is an application of regularizing a given noisy vector field. That is, we do not
need to use the second step (2.5) in direction denoising. Since a general vector field does not satisfy
the divergence free constraint, we do not consider the constraint in this application. Even though
direction denoising is not related to two-step methods, the main reason we present this application is
to compare effect of L1 and L2 fidelity in the first step (2.4). For this purpose, we use the following
two models in (2.4):

VTV-Lp and VH1-Lp, (4.4)

where p = 1 or 2.
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In order to understand the different features between L1 and L2 fidelity in (4.4), we need to
observe the difference between TV-L1 and TV-L2 model for image denoising [10]. The L2 fidelity
in TV-L2 model makes contrast reduction effect in image denoising [9]. However, the L1 fidelity is
shown to preserve the contrast of an image [10–13]. Likewise, we would like to observe the contrast
reduction effect in a denoised vector field with the L2 fidelity in (4.4). Also, we numerically observe
whether the L1 fidelity prevents the contrast reduction effect or not.

The contrast reduction in direction denoising is not only the reduction of magnitude of vectors
but also the reduction of direction; see Figure 4.10. (a) shows the HSV color map of an original
unit vector field. The size of domain is 128 × 128. In (c) and (d), the Gaussian white noise with
a standard deviation 30 and the salt-and-pepper noise with a noise density 0.3 are added into the
angles of vectors in (a), respectively. Note that the salt-and-pepper noise of the angles of vectors is
considered as flipping the direction of the vectors oppositely. In order to observe the quality of a
regularized vector field t from different models in (4.4), we compute the integral curves:

d

dτ
x(τ) = t (x(τ)) , (4.5)

where the initial points x(0) = (16, 68), (32, 68), and (64, 68) are used and they are shown in red,
blue, and green curves, respectively. The black dotted integral curves in (b) are obtained in the
original vector field. The above equation is solved by the algorithm stream2 in the MATLAB with
the time step 10−4. The images in the second row and the fourth row are the regularized vector
fields from different models in (4.4) rendered by the HSV color map. In the third row and the fifth
row, we show the integral curves in the above denoised vector field.

In Figures 4.10-(c3), 4.10-(c4), 4.10-(d3), and 4.10-(d4), we use VTV-L2 or VH1-L2 models to
denoise given vector fields in (c) and (d). The L2 fidelity causes the reduction of magnitude and
direction in denoised vectors. The magnitude reduction is shown as changing of saturation in the
HSV color map on the second column and the fourth column. The direction reduction is shown in
the corresponding integral curves. That is, the slope of all curves in (c3), (c4), (d3), and (d4) is
reduced starting from the initial points of integral curves. We show the results from VTV-L1 or
VH1-L1 models in (c1), (c2), (d1), and (d2). Compared to the L2 fidelity, the L1 fidelity shows
better performance on preserving magnitude and direction in denoised vectors. In Figure 4.10, we
use error bound ε1 = 10−3. In (c1), cr = 10, cf = 0.4, and η = 0.7 are used. In (c2), cf = 1 and
η = 0.1 are used. In (c3), cr = 1 and η = 0.7 are used. In (c4), η = 5 · 10−2 is used. In (d1), cr = 1,
cf = 1, and η = 0.8 are used. In (d2), cf = 1 and η = 0.5 are used. used. In (d3), cr = 102 and
η = 0.8 are used. In (d4), η = 0.1 is used.

The VTV-L1 model is used to denoise of a real diffusion tensor imaging data in Figure 4.11. In
the second row, the major stream is preserved while the noisy directions are rearranged into the
stream. In this example, cr = 102, cf = 1, η = 1.5, and ε1 = 10−3 are used.

If each component of t in (2.4) presents each RGB channel of a color image I : Ω → R3, the
proposed general form (2.4) with F = 0 is the same as the vectorial TV-Lp model (p ≥ 1) which
has been shown as a model to denoise a color image; see [5] and references therein. In Figures 4.12
and 4.13, we show the examples of using the L1 fidelity to denoise the salt-and-pepper noise with a
noise density 0.5. As we have observed that the L1 fidelity is better than the L2 fidelity in terms of a
contrast preservation in direction denoising in Figure 4.10, the RGB color vectors in Figures 4.12-(c)
and 4.13-(c) are well recovered as the original colors. The images in Figures 4.12-(d) and 4.13-(d) are
obtained by the command medfilt2(I,[3 3]) in the MATLAB. In Figure 4.12-(c), we use cr = 10,
cf = 0.2, ξ = 0.7, and ε2 = 10−2. In Figure 4.13-(c), we use cr = 1, cf = 0.4, ξ = 0.7, and ε2 = 10−2.

4.5 Image denoising

The two-step methods for image denoising in [56, 57, 63] recover jump discontinuities of image
and discontinuities of image gradient while reducing stair-case effect. In this subsection, we show
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(a) (b)

(c) (c1) VTV-L1 (c2) VH1-L1 (c3) VTV-L2 (c4) VH1-L2

(d) (d1) VTV-L1 (d2) VH1-L1 (d3) VTV-L2 (d4) VH1-L2

Figure 4.10: (a) shows the HSV color map of the original unit vector field. The black dotted curves
are obtained by (4.5) in the original vector field. The other curves are obtained in the regularized
vector field. In (c) and (d), the Gaussian white noise with a standard deviation 30 and the salt-and-
pepper noise with a noise density 0.3 are added into the angles of vectors in (a), respectively. The
TV regularization preserves sudden directional changes. The L1 fidelity makes smaller amount of
contrast reduction in the vector field than the L2 fidelity.
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Figure 4.11: The result of the VTV-L1 model for denoising direction of a real DTI data: the left
images are a given data and the right images are the result of the VTV-L1 model. Vectors are
rendered by the HSV color map. The second row is the part on a small blue region. The major
stream is preserved while the noisy directions are rearranged into the steam.

(a) (b) (c) (d)

Figure 4.12: In (a), the salt-and-pepper noise with a noise density 0.5 is added in the synthetic image
(b). (c) is the result of vectorial color TV model with the L1 fidelity. (d) is the result of a median
filter in each RGB channel. As the VTV-L1 model preserves the orientation and the magnitude of
vectors in Figure 4.10, the result in (c) preserves the original color very well.
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(a) (b) (c) (d)

Figure 4.13: In (a), the salt-and-pepper noise with a noise density 0.5 is added in the real image
(b). (c) is the result of vectorial color TV model with the L1 fidelity. (d) is the result of a median
filter in each RGB channel. The VTV-L1 model preserves the color very well.
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(a) (b) (c) SNR: 26.72 (d) SNR: 26.44 (e) SNR: 23.49

Figure 4.14: In (a), we add the Gaussian white noise with a standard deviation 10 in the synthetic
original image (b). (c), (d), and (e) are results of the TVS-L1+TVn-L2 model, the TVS-L2+TVn-
L2, and the TV-L2 model, respectively. The second row is a isocontour plot of the corresponding
images in the first row. Stair-case effect is easily observed in the TV-L2 model. However, the
TV-Stokes equation reconstructs smooth structures as well as sharp changes in the image gradient.

these properties in the proposed general TV-Stokes model:

TVS-Lp1 + TVn-Lp2 . (4.6)

Let us discuss about the choice of p1 and p2 depending on types of noise. In the second step
TVn-Lp2 , it is reasonable to use p2 = 1 for the salt-and-pepper noise and p2 = 2 for the Gaussian
white noise. We suggest to use p1 = 1 in the first step TVS-Lp1 . In the presence of the outliers in an
image, its discrete derivatives t∗ also have outliers and then p1 = 1 should be used. The L2 fidelity
is efficient to denoise a small variation of data, but it makes a contrast reduction in general. That is,
the use of p1 = 2 in the first step changes the magnitude or direction of tangential vectors and then
it affects the reduction of tangent in the image. Note that the magnitude reduction of regularized
vectors is also observed in Section 4.4. Even though the effect of reduction in a regularized vector
field is not substantial in image denoising, it is desirable to use p1 = 1 because of the compatibility
of norms between the fidelity in the TVS-Lp1 model and the regularization in the TVn-Lp2 model;
see more details in Section 2.1. The choice of p1 = 1 will be verified in the examples shown in
Figures 4.14 and 4.15.

In Figure 4.14, we show an effect of L1 and L2 fidelity in TVS-Lp1 model under the Gaussian
white noise. For fair comparison, the TVn-L2 model is fixed in the second step. In (a), we add
the Gaussian white noise with a standard deviation 10 in the synthetic original image (b). (c) and
(d) are results of TVS-L1+TVn-L2 model and the TVS-L2+TVn-L2, respectively. Even though
the effect of contrast reduction in the regularized vector field is caused by the L2 norm in the first
step, the reduction of tangent in a denoised image is not severely noticeable in (c) and (d). In (e),
stair-case effect is easily observed in the TV-L2 model. From the isocontour plot in the result of
the TVS-Lp+TVn-L2 (p = 1 or 2), one can see that the TV-Stokes equation reconstructs smooth
structures as well as sharp changes in the image gradient. In (c), we use cr = 102, cd = 1, cf = 1,
η = 1, and ε1 = 10−2 for the TVS-L1 model and cr = 1, ξ = 28, and ε2 = 10−2 for the TVn-L2

model. In (d), we use cr = 1, cd = 1, η = 18, and ε1 = 10−2 for the TVS-L2 model and cr = 1,
ξ = 18, and ε2 = 10−2 for the TVn-L2 model. In (e), cr = 1, ξ = 25, and ε2 = 10−2 are used for the
TV-L2 model.

In Figure 4.15, we show an effect of L1 and L2 fidelity in TVS-Lp1 model under the salt-and-
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(a) (b) (c) SNR: 23.66 (d) SNR: 18.51 (e) SNR: 19.21

Figure 4.15: In (a), we add the salt-and-pepper noise with a noise density 0.3 in the synthetic original
image (b). (c), (d), and (e) are the results of the TVS-L1+TVn-L1 model, the TVS-L2+TVn-L1

model, and the TV-L1 model, respectively. The second row is a isocontour plot of the corresponding
images in the first row. The TV-Stokes equation reconstructs smooth structures as well as sharp
changes in the image gradient.

pepper noise. For fair comparison, the TVn-L2 model is fixed in the second step. In (a), we add the
salt-and-pepper noise with a noise density 0.3 in the original image (b). (c) and (d) are results of
TVS-L1+TVn-L1 model and the TVS-L2+TVn-L1, respectively. Since the TVS-L2 model does not
effectively surpass the outliers in the noisy tangential vector field, the result of the TVS-L2+TVn-L1

model still has some noisy features in (d). However, the TVS-L1 model in the first step efficiently
eliminates the salt-and-pepper noise in a regularized tangential vector field. In (c), combining with
the TVn-L1 model in the second step, discontinuities of the image gradient and jump discontinuities
of image are well preserved while reducing stair-case effect. In (e), the TV-L1 model is also able to
denoise the salt-and-pepper noise, but it does not preserve discontinuities of the image gradient and
stair-case effect is observed. In (c), we use cr = 1, cd = 1, cf = 1, η = 0.8, and ε1 = 10−2 for the
TVS-L1 model and cr = 1, cf = 1, ξ = 0.8, and ε2 = 10−2 for the TVn-L1 model. In (d), we use
cr = 102, cd = 1, η = 2.6, and ε1 = 10−2 for the TVS-L2 model and cr = 1, ξ = 1, and ε2 = 10−2

for the TVn-L2 model. In (e), cr = 1, cf = 1, ξ = 1, and ε2 = 10−2 are used for the TV-L1 model.
In Figure 4.16, we use the TVS-L1+TVn-L1 model to remove the salt-and-pepper noise with a

noise density 0.3 in a real image. The second row and the third row are the contour plots in the
blue regions. (a), (b), and (c) are the contour plot from the result of TV-L1, original image, and
the result of TVS-L1+TVn-L1, respectively. From the comparison with the TV-L1 model in the
contour plots, we observe that the TVS-L1+TVn-L1 model preserves jump discontinuities, smooth
regions, and discontinuities of the image gradient. We use cr = 10, cd = 1, cf = 1, η = 0.8, and
ε1 = 10−2 in the first step and cr = 1, cf = 1, ξ = 0.8, and ε2 = 10−2 in the second step. For the
TV-L1 model, we use cr = 1, cf = 1, ξ = 0.8, and ε2 = 10−2.

5 Conclusion

In this paper, we generalize the basic TV-Stokes model (2.2) and (2.3), provide an efficient and
fast numerical algorithm based on the augmented Lagrangian method, and show that the proposed
general form can be used for a number of applications. We generalize the first step in [45, 58]
and the second step in [63]. The generalized form uses TV or H1 regularization, the Lp norm
(p ≥ 1) in the fidelity term, and the arbitrary integration domain in the fidelity term. The use of
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noisy image Original image TVS-L1+TVn-L1

(a) TV-L1 (b) Original (c) TVS-L1+TVn-L1

SNR: 30.60 SNR: 31.54

Figure 4.16: We use the TVS-L1+TVn-L1 model to remove the salt-and-pepper noise with a noise
density 0.3 in the real image. From the left in the first row, noisy image, original image, and the
result of TVS-L1+TVn-L1 are illustrated. The second row and the third row are the contour plots
in the blue regions. (a), (b), and (c) are the contour plot from the result of TV-L1, original image,
and the result of TVS-L1+TVn-L1, respectively. The contour plot shows that the TVS-L1+TVn-L1

model clearly eliminates the salt-and-pepper noise and preserve discontinuities of the image gradient
while reducing stair-case effect.
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arbitrary integration domain makes it possible to reconstruct a surface from sparse gradient. We
illuminate a property of the generalized TV-Stokes model which is to decompose an image into jump
discontinuities of a data and discontinuities of the data gradient or smooth regions. The proposed
model can be applied to many applications such as image inpainting, image decomposition, surface
reconstruction from sparse gradient, direction denoising, and image denoising. We investigate the
various effects from using different norms via many examples in applications. Numerical experiments
demonstrate that the proposed model recovers jump discontinuities of a data and discontinuities of
the data gradient while reducing stair-case effect.
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