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Abstract of the Dissertation

Primal Dual Algorithms for Convex Models and

Applications to Image Restoration, Registration

and Nonlocal Inpainting

by

John Ernest Esser

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2010

Professor Tony F. Chan, Chair

The main subject of this dissertation is a class of practical algorithms for

minimizing convex non-differentiable functionals coming from image processing

problems defined as variational models. This work builds largely on the work of

Goldstein and Osher [GO09] and Zhu and Chan [ZC08] who proposed respectively

the split Bregman and the primal dual hybrid gradient (PDHG) methods for total

variation (TV) image restoration. We relate these algorithms to classical methods

and generalize their applicability. We also propose new convex variational models

for image registration and patch-based nonlocal inpainting and solve them with

a variant of the PDHG method.

We draw connections between popular methods for convex optimization in

image processing by putting them in a general framework of Lagrangian-based al-

ternating direction methods. Furthermore, operator splitting and decomposition

techniques are used to generalize their application to a large class of problems,

namely minimizing sums of convex functions composed with linear operators and

subject to convex constraints. Numerous problems in image and signal process-

xiv



ing such as denoising, deblurring, basis pursuit, segmentation, inpainting and

many more can be modeled as minimizing exactly such functionals. Numerical

examples focus especially on when it is possible to minimize such functionals by

solving a sequence of simple convex minimization problems with explicit formulas

for their solutions.

In the case of the split Bregman method, we point out an equivalence to

the classical alternating direction method of multipliers (ADMM) and Douglas

Rachford splitting methods. Existing convergence arguments and some minor

extensions justify application to common image processing problems.

In the case of PDHG, its general convergence is still an open problem, but in

joint work with Xiaoqun Zhang and Tony Chan we propose a simple modification

that guarantees convergence. We also show convergence of some special cases

of the original method. Numerical examples show PDHG and its variants to

be especially well suited for large scale problems because their simple, explicit

iterations can be constructed to avoid the need to invert large matrices at each

iteration.

The two proposed convex variational models for image registration and non-

local inpainting are novel because most existing variational approaches require

minimizing nonconvex functionals.

xv



CHAPTER 1

Introduction

An important class of problems in image processing, and now also compressive

sensing, is convex programs involving l1 or total variation (TV) minimization.

The use of l1 and TV regularizers has been shown to be very effective in regulariz-

ing inverse problems where one expects the recovered image or signal to be sparse

or piecewise constant. The l1 norm encourages sparsity of the signal while the

TV seminorm encourages sparsity of the gradient. Illustrative examples include

ROF denoising [ROF92] and basis pursuit [CDS98]. A lack of differentiability

makes minimizing such functionals computationally challenging, and so there is

considerable interest in efficient algorithms, especially for large scale problems.

There is an additional need for algorithms that can efficiently take advantage of

the separable structure of more complicated models consisting of sums of convex

functionals composed with linear operators and subject to convex constraints. Al-

gorithms such as split Bregman [GO09], the split Inexact Uzawa method [ZBO09]

and the primal dual hybrid gradient (PDHG) method [ZC08] have been shown

to yield simple, fast and effective algorithms for these types of problems. These

recent algorithms also have many interesting connections to classical Lagrangian

methods for the general problem of minimizing sums of convex functionals subject

to linear equality constraints. There are close connections for example to the al-

ternating direction method of multipliers (ADMM) [BT89, EB92, GM76, GM75]

and the alternating minimization algorithm (AMA) of [Tse91]. These algorithms
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can be especially effective when the convex functionals are based on l2 and l1-like

norms. Connections between these algorithms as well as the operator splitting

techniques that allow them to be effectively applied are discussed in Chapters 2

and 3.

Chapter 2 is based largely on the paper, Applications of Lagrangian-Based Al-

ternating Direction Methods and Connections to Split Bregman [Ess09]. We show

that analogous to the connection between Bregman iteration and the method of

multipliers [Hes69, Pop80] that was pointed out in [YOG08], a similar connec-

tion can be made between the split Bregman algorithm and ADMM. Existing

convergence theory for ADMM [EB92] can therefore be used to justify both

the alternating step and inexact minimizations used in split Bregman for the

cases in which the algorithms are equivalent. Application of these algorithms

to different image processing problems is simplified by rewriting these problems

in a general form that still includes constrained and unconstrained TV and l1

minimization as was investigated in [GO09]. Numerical results for the applica-

tion to TV-l1 minimization [CEN06] are presented. The dual interpretation of

ADMM as Douglas Rachford splitting applied to a dual problem is well studied

[Gab83, GT89, Eck89, EB92, LM79], and we examine this dual interpretation in

some special cases. We also discuss applications of several related methods includ-

ing AMA and the split inexact Uzawa method of [ZBO09], which are sometimes

better suited for problems where further decoupling of variables is useful.

Chapter 3 is based on the paper, A General Framework for a Class of First

Order Primal-Dual Algorithms for TV Minimization [EZC09], which represents

joint work with Xiaoqun Zhang and Tony Chan. We generalize the primal-dual

hybrid gradient (PDHG) algorithm proposed by Zhu and Chan in [ZC08], draw

connections to similar methods and discuss convergence of several special cases

2



and modifications. In particular, we point out a convergence result for a mod-

ified version of PDHG that has a similarly good empirical convergence rate for

total variation minimization problems. Its convergence follows from interpret-

ing it as the split inexact Uzawa method discussed in [ZBO09]. We also prove

a convergence result for PDHG applied to TV denoising with some restrictions

on the PDHG step size parameters. It is shown how to interpret this special

case as a projected averaged gradient method applied to the dual functional. We

discuss the range of parameters for which the inexact Uzawa method and the pro-

jected averaged gradient method can be shown to converge. We also present some

numerical results for these algorithms applied to TV denoising, TV deblurring,

constrained l1 minimization and multiphase segmentation problems. The effec-

tiveness of the modified PDHG method for large scale, non-differentiable convex

problems is further demonstrated in Chapters 4 and 5 where it is successfully

applied to convex models for image registration and nonlocal inpainting.

Chapter 4 is based on the paper, A Convex Model for Image Registration

[Ess10]. Variational methods for image registration generally involve minimizing

a nonconvex functional with respect to the unknown displacement between two

given images. A linear approximation of the image intensities is often used to

obtain a convex approximation to the model, but it is only valid for small defor-

mations. Algorithms such as gradient descent can get stuck in undesirable local

minima of the nonconvex functional. Here, instead of seeking a global minimum of

a nonconvex functional, and without making a small deformation assumption, we

introduce and work with a different, convex model for the registration problem.

In particular we consider a graph-based formulation that requires minimizing a

convex function on the edges of the graph instead of working directly with the

displacement field. The corresponding displacement can be inferred from the

edge function. The convex model generally involves many more variables, but its

3



global minimum can be a better solution than a local minimum of the nonconvex

model. We use a convergent variant of the PDHG algorithm for the numerical

examples.

In Chapter 5 we propose a convex variational model for nonlocal image in-

painting that uses nonlocal image patches to fill in a large missing region in a

manner consistent with its boundary. Existing convex inpainting models, such

as TV inpainting [CS05] tend to be based on propagating local information into

the unknown region and therefore aren’t always well suited for filling in areas

far from the boundary. Usually greedy approaches are employed for exemplar-

based inpainting similar to the texture synthesis technique of [EL99]. Previ-

ous variational methods for nonlocal texture inpainting have also been proposed

[DSC03, ALM08, ACS09, ZC09], but they are all based on nonconvex models.

Convexity in the proposed model is achieved by allowing unknown patches over-

lapping the inpainting region to be weighted averages of known image patches.

It’s possible to express the proposed functional solely in terms of these weights.

The functional consists of a data fidelity term that encourages the unknown

patches to agree with known boundary data and other patches that they over-

lap and a regularizing term to encourage spatial correspondence between the

unknown patches and the known patches they are weighted averages of. A non-

convex modification to the functional is also proposed to promote greater sparsity

of the weights when needed. Again we use a variant of PDHG to compute the

numerical examples.

The main contributions of this dissertation are summarized in the following

list:

4



• Described a general framework for a class of primal-dual algorithms that

explains the connections between PDHG, ADMM, Douglas Rachford split-

ting, AMA, proximal forward backward splitting and split inexact Uzawa

methods (Chapter 3, Figure 3.1)

• Clarified the convergence of split Bregman via its connection to ADMM

(Section 2.3.2.3)

• Proposed a modification of the PDHG algorithm that converges by an equiv-

alence to the split inexact Uzawa method (Section 3.4.2.4)

• Discussed operator splitting techniques for applying ADMM, PDHG and

their variants to a large class of convex models (Sections 2.1 and 3.6.1)

• Used a generalized Moreau decomposition to explain the dual interpreta-

tions of ADMM, AMA and split inexact Uzawa (Sections 2.3.2.2, 3.4.2.1

and 3.4.2.4)

• Explained both primal and dual derivations for general shrinkage (soft

thresholding) formulas (Section 2.4.2)

• Proposed a convex model for image registration (Chapter 4)

• Proposed a convex model for nonlocal patch-based image inpainting (Chap-

ter 5)

• Demonstrated the successful application of ADMM and PDHG variants to

image restoration, multiphase segmentation and the proposed registration

and nonlocal inpainting models

Table 1.1: Summary of contributions

5



CHAPTER 2

Connection Between Split Bregman and

ADMM and Applications to Convex Programs

with Separable Structure

2.1 Introduction

There is extensive literature in convex optimization and numerical analysis about

splitting methods for minimizing a sum of two convex functions subject to linear

equality constraints. A general form of such a problem is

min

z ∈ R
n, u ∈ R

m

Bz + Au = b

F (z) +H(u), (P0)

where F : R
n → (−∞,∞] and H : R

m → (−∞,∞] are closed proper convex

functions, A is a d×m matrix, B is a d×n matrix and b ∈ R
d. Many variational

models in image processing consist of minimizing sums of convex functionals

composed with linear operators and subject to convex constraints. Such problems

often have the form

min

u ∈ R
m

Ku = f

J(u), (2.1)

6



where J(u) has separable structure in the sense that it can be written as a sum

of closed proper convex functions H and Gi,

J(u) = H(u) +
N∑

i=1

Gi(Aiu+ bi).

Additional convex constraints besides linear equality constraints can be incorpo-

rated into the functional by way of convex indicator functions. For example, to

constrain u to a convex set S, one could define H or one of the Gi terms to equal

the convex indicator function gS for S defined by

gS(u) =





0 if u ∈ S

∞ otherwise.

The separable structure of the convex program in (2.1) allows it to be written in

the form of (P0). To see how, suppose Gi : R
ni → (−∞,∞], f ∈ R

s, bi ∈ R
ni,

each Ai is a ni×mmatrix andK is a s×mmatrix. An equivalent formulation that

decouples the Gi is obtained by introducing new variables zi and constraints zi =

Aiu+ bi. This can be written in the form of (P0) by letting F (z) =
∑N

i=1Gi(zi),

n =
∑N

i=1 ni, z =




z1
...

zN


, B =


−I

0


, A =




A1

...

AN

K




, and b =




−b1
...

−bN
f




. Letting

d = n+ s, note that A is a d×m matrix, B is a d× n matrix and b ∈ R
d.

By the above equivalence, classical splitting methods for solving P0 can be

straightforwardly applied to problems of the form (2.1). Similar decomposition

strategies are discussed for example in [BT89], [Ber99], [Roc70] and [Tse91]. The

goal is to produce algorithms that consist of simple, easy to compute steps that

can deal with the terms of J(u) one at a time. One approach based on duality

leads to augmented Lagrangian type methods that can be interpreted as split-

ting methods applied to a dual formulation of the problem. A good summary
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of these methods can be found in chapter three of [GT89] and Eckstein’s thesis

[Eck89]. Here we will focus mainly on ADMM because of its connection to the

Split Bregman algorithm of Goldstein and Osher. They show in [GO09] how

to simplify the minimization of convex functionals of u involving the l1 norm of

a convex function Φ(u). They replace Φ(u) with a new variable z, add a con-

straint z = Φ(u) and then use Bregman iteration [YOG08] techniques to handle

the resulting constrained optimization problem. A key application is functionals

containing ‖u‖TV . A related splitting approach that uses continuation methods

to handle the constraints has been studied by Wang, Yin and Zhang, [WYZ07]

and applied to TV minimization problems including TV-l1 ([GLN08], [YZY09]).

The connection between Bregman iteration and the augmented Lagrangian for

constrained optimization problems with linear equality constraints is discussed

by Yin, Osher, Goldfarb and Darbon in [YOG08]. They show Bregman iteration

is equivalent to the method of multipliers of Hestenes [Hes69] and Powell [Pop80]

when the constraints are linear. The augmented Lagrangian for problem (2.1) is

Lα(u, λ) = J(u) + 〈λ, f −Ku〉 +
α

2
‖f −Ku‖2,

where ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and standard inner product. The

method of multipliers is to iterate

uk+1 = arg min
u∈Rm

Lα(u, λk) (2.2)

λk+1 = λk + α(f −Kuk+1),

whereas Bregman iteration yields

uk+1 = arg min
u∈Rm

J(u) − J(uk) − 〈pk, u− uk〉 +
α

2
‖f −Ku‖2 (2.3)

pk+1 = pk + αKT (f −Kuk+1).
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J(u)−J(uk)−〈pk, u−uk〉 is the Bregman distance between u and uk, where pk is a

subgradient of J at uk. Similarly, in the special case when Φ is linear, an interpre-

tation of the split Bregman algorithm, explained in sections 2.3.1.1 and 2.3.2.1,

is to alternately minimize with respect to u and z the augmented Lagrangian

associated to the constrained problem and then to update a Lagrange multi-

plier. This procedure also describes ADMM, which goes back to Glowinski and

Marocco [GM75], and Gabay and Mercier [GM76]. The augmented Lagrangian

for problem (P0) is

Lα(z, u, λ) = F (z) +H(u) + 〈λ, b− Au−Bz〉 +
α

2
‖b− Au−Bz‖2,

and the ADMM iterations are given by

zk+1 = arg min
z∈Rn

Lα(z, uk, λk)

uk+1 = arg min
u∈Rm

Lα(zk+1, u, λk) (2.4)

λk+1 = λk + α(b−Auk+1 − Bzk+1).

ADMM can also be interpreted as Douglas Rachford splitting [DR56] applied to

the dual problem. The connection between these two interpretations was first

explored by Gabay [Gab83] and is also discussed by Glowinski and Le Tallec in

[GT89]. The dual version of the algorithm was studied by Lions and Mercier

[LM79]. The equivalence of ADMM to a proximal point method was studied

by Eckstein and Bertsekas [EB92], who also generalized the convergence theory

to allow for inexact minimizations. Direct convergence proofs in the exact mini-

mization case can also be found for example in [GT89, BT89, WT09]. Techniques

regarding applying ADMM to problems with separable structure can be found

for example in [FG83] and are discussed in detail by Bertsekas and Tsitsiklis

in ([BT89] Section 3.4.4). The connection between split Bregman and Douglas

Rachford splitting has also been made by Setzer [Set09].
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Other splitting methods besides Douglas Rachford splitting can be applied

to the dual problem, which is a special case of the well studied more general

problem of finding a zero of the sum of two maximal monotone operators. See for

example [Eck89] and [LM79]. Some splitting methods applied to the dual problem

can also be interpreted in terms of alternating minimization of the augmented

Lagrangian. For example, Peaceman Rachford splitting [PR55] corresponds to an

alternating minimization algorithm very similar to ADMM except that it updates

the Lagrange multiplier twice, once after each minimization of the augmented

Lagrangian [GT89].

Proximal forward backward splitting can also be effectively applied to the

dual problem. This splitting procedure, which goes back to Lions and Mercier

[LM79] and Passty [Pas79], appears in many applications. Some examples include

classical methods such as gradient projection and more recent ones such as the

iterative thresholding algorithm FPC of Hale, Yin and Zhang [HYZ07] and the

framelet inpainting algorithm of Cai, Chan and Shen [CCS08].

The Lagrangian interpretation of the dual application of forward backward

splitting was studied by Tseng in [Tse91]. He shows that it corresponds to an

algorithm with the same steps as ADMM except that one of the minimizations

of the augmented Lagrangian, Lα(z, u, λ), is replaced by minimization of the

Lagrangian, which for (P0) is

L(z, u, λ) = F (z) +H(u) + 〈λ, b− Au− Bz〉.

The resulting iterations are given by

uk+1 = arg min
u∈Rm

L(zk, u, λk)

zk+1 = arg min
z∈Rn

Lα(z, uk+1, λk) (2.5)

λk+1 = λk + α(b−Auk+1 − Bzk+1).
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Tseng called this the alternating minimization algorithm, referred to in shorthand

as AMA. This method is useful for solving (P0) when H is strictly convex but

including the augmented quadratic penalty leads to a minimization step that is

more difficult to solve.

There are other methods for decoupling variables that don’t require the func-

tional to be strictly convex. An example is the predictor corrector proximal

method (PCPM) by Chen and Teboulle [CT94], which alternates proximal steps

for the primal and dual variables. The PCPM iterations are given by

uk+1 = arg min
u∈Rm

L(zk, u, λk) +
1

2αk

‖u− uk‖2

zk+1 = arg min
z∈Rn

L(z, uk, λk) +
1

2αk

‖z − zk‖2

λk+1 = λk + (αk+1 + αk)(b− Auk+1 − Bzk+1) − αk(b−Auk −Bzk).

This method can require many iterations. Another technique to undo the coupling

of variables that results from quadratic penalty terms of the form αk

2
‖Ku−f‖2 is

to replace such a penalty with one of the form 1
2δk

‖u−uk +αkδkK
T (Kuk − f)‖2,

which instead penalizes the distance of u from a linearization of the original

penalty. This was applied to the method of multipliers by Stephanopoulos and

Westerberg in [SW75]. It was used in the derivation of the linearized Bregman

algorithm in [YOG08]. This technique is also used with Bregman iteration meth-

ods by Zhang, Burger, Bresson and Osher in [ZBB09], leading to the Bregman

Operator Splitting (BOS) algorithm, which they apply for example to nonlocal

TV minimization problems. They also show the connection to inexact Uzawa

methods. Written as an inexact Uzawa method, the BOS algorithm applied to
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(2.1) yields the iterations

uk+1 = arg min
u∈Rm

J(u) + 〈λk, f −Ku〉 +
1

2δk
‖u− uk + αkδkK

T (Kuk − f)‖2

(2.6)

λk+1 = λk + αk(f −Kuk+1).

This decoupling idea was extended to to splitting applications by Zhang, Burger

and Osher in ([ZBO09], Algorithm A1). It can be applied to (P0) by adding

an additional quadratic penalty to each minimization step of ADMM (2.4). The

resulting method will be referred to here by the split inexact Uzawa method. The

iterations when applied to (P0) are given by

zk+1 = arg min
z∈Rn

Lα(z, uk, λk) +
1

2
‖z − zk‖2

Q1

uk+1 = arg min
u∈Rm

Lα(zk+1, u, λk) +
1

2
‖u− uk‖2

Q2
(2.7)

λk+1 = λk + α(b−Auk+1 − Bzk+1),

where Q1, Q2 are positive definite matrices and ‖z‖2
Q1

= 〈Q1z, z〉, ‖u‖2
Q2

=

〈Q2u, u〉. Although Q1 and Q2 can be arbitrary positive definite matrices, they

can also be chosen to effectively linearize the quadratic penalties in the ADMM

minimization steps by letting Q1 = 1
δ
−αBTB and Q2 = 1

δ
−αATA, with δ and α

chosen to ensure positive definiteness. An example of this application is given in

Section 2.3.3.2 and it’s connection to a variant of the PDHG method is discussed

in Chapter 3.

This chapter consists of three main parts. The first part discusses the La-

grangian formulation of the problem (P0) and the dual problem. The second

part focuses on exploring the connection between split Bregman and ADMM,

their application to (P0) and their dual interpretation. It also demonstrates how

further decoupling of variables is possible using AMA and BOS. The third part
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shows how to apply these algorithms to some example image processing prob-

lems, focusing on applications that illustrate how to take advantage of problems’

separable structure.

2.2 The Primal and Dual Problems

Lagrangian duality will play an important role in the analysis of (P0). In this

section we define a Lagrangian formulation of (P0) and the dual problem. We

also discuss conditions that guarantee solutions to the primal and dual problems.

2.2.1 Lagrangian Formulation and Dual Problem

Associated to the primal problem (P0) is the Lagrangian

L(z, u, λ) = F (z) +H(u) + 〈λ, b− Au− Bz〉, (2.8)

where the dual variable λ ∈ R
d can be thought of as a vector of Lagrange multi-

pliers. The dual functional q(λ) is a concave function q : R
d → [−∞,∞) defined

by

q(λ) = inf
u∈Rm,z∈Rn

L(z, u, λ). (2.9)

The dual problem to (P0) is

max
λ∈Rd

q(λ). (D0)

Since (P0) is a convex programming problem with linear constraints, if it has an

optimal solution (z∗, u∗) then (D0) also has an optimal solution λ∗, and

F (z∗) +H(u∗) = q(λ∗),

which is to say that the duality gap is zero, ([Ber99] 5.2, [Roc70] 28.2, 28.4). To

guarantee existence of an optimal solution to (P0), assume that the set

{(z, u) : F (z) +H(u) ≤ c , Au+Bz = b}
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is nonempty and bounded for some c ∈ R. Alternatively, we could assume that

Ku = f has a solution, and if it’s not unique, which it probably won’t be, then

assume F (z) + H(u) is coercive on the affine subspace defined by Au + Bz =

b. Either way, we can equivalently minimize over a compact subset. Since F

and H are closed proper convex functions, which is to say lower semicontinuous

convex functions not identically infinity, Weierstrass’ theorem implies a minimum

is attained [Ber99].

2.2.2 Saddle Point Formulation and Optimality Conditions

Finding optimal solutions of (P0) and (D0) is equivalent to finding a saddle point

of L. More precisely ([Roc70] 28.3), (z∗, u∗) is an optimal primal solution and λ∗

is an optimal dual solution if and only if

L(z∗, u∗, λ) ≤ L(z∗, u∗, λ∗) ≤ L(z, u, λ∗) ∀ z, u, λ. (2.10)

From this it follows that

max
λ∈Rd

F (z∗) +H(u∗) + 〈λ, b−Au∗ − Bz∗〉 = L(z∗, u∗, λ∗)

= min
u∈Rm,z∈Rn

F (z) +H(u) + 〈λ∗, b− Au− Bz〉,

from which we can directly read off the Kuhn-Tucker optimality conditions.

Au∗ +Bz∗ = b (2.11a)

BTλ∗ ∈ ∂F (z∗) (2.11b)

ATλ∗ ∈ ∂H(u∗), (2.11c)

where ∂ denotes the subdifferential, defined by

∂F (z∗) = {p ∈ R
n : F (v) ≥ F (z∗) + 〈p, v − z∗〉 ∀v ∈ R

n} ,
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∂H(u∗) = {q ∈ R
m : H(w) ≥ H(u∗) + 〈q, w − u∗〉 ∀w ∈ R

m} .

These optimality conditions (2.11) hold if and only if (z∗, u∗, λ∗) is a saddle point

for L ([Roc70] 28.3). Note also that L(z∗, u∗, λ∗) = F (z∗) +H(u∗).

2.2.3 Dual Functional

The dual functional q(λ) (2.9) can be written in terms of the Legendre-Fenchel

transforms of F and H .

q(λ) = inf
z∈Rn,u∈Rm

F (z) + 〈λ, b− Bz − Au〉 +H(u)

= inf
z∈Rn

(F (z) − 〈λ,Bz〉) + inf
u∈Rm

(H(u) − 〈λ,Au〉) + 〈λ, b〉

= − sup
z∈Rn

(
〈BTλ, z〉 − F (z)

)
− sup

u∈Rm

(
〈ATλ, u〉 −H(u)

)
+ 〈λ, b〉

= −F ∗(BTλ) −H∗(ATλ) + 〈λ, b〉,

where F ∗ and H∗ denote the Legendre-Fenchel transforms, or convex conjugates,

of F and H defined by

F ∗(BTλ) = sup
z∈Rn

(
〈BTλ, z〉 − F (z)

)
,

H∗(ATλ) = sup
u∈Rm

(
〈ATλ, u〉 −H(u)

)
.

2.2.4 Maximally Decoupled Case

An interesting special case of (P0), which will arise in many of the following

examples, is when H(u) = 0. This corresponds to

min

u ∈ R
m, z ∈ R

n

Bz + Au = b

F (z). (P1)
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As before, the dual functional is given by

q1(λ) = −F ∗(BTλ) −H∗(ATλ) + 〈λ, b〉,

except here H∗(ATλ) can be interpreted as an indicator function defined by

H∗(ATλ) =





0 if ATλ = 0,

∞ otherwise.

This can be interpreted as the constraint ATλ = 0, which is equivalent to Pλ = λ,

where P is the projection onto Im(A)⊥ defined by

P = I − AA†.

Therefore the dual problem for (P1) can be written as

max

λ ∈ R
d

ATλ = 0

−F ∗(BTPλ) + 〈Pλ, b〉. (D1)

The variable u can also be completely eliminated from the primal problem,

which can be equivalently formulated as

min

z ∈ R
n

P (b−Bz) = 0

F (z). (P2)

The associated dual functional is

q2(λ) = −F ∗(BTPλ) + 〈Pλ, b〉,

and the dual problem is therefore

max
λ∈Rd

−F ∗(BTPλ) + 〈Pλ, b〉, (D2)

which is identical to (D1) without the constraint. However, since q2(λ) = q2(Pλ)

the ATλ = 0 constraint can be added to (D2) without changing the maximum.
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2.3 Algorithms

In this section we start by analyzing Bregman iteration (2.3) applied to (P0)

because the first step in deriving the split Bregman algorithm in [GO09] was

essentially to take advantage of the separable structure of (2.1) by rewriting it

as (P0) and applying Bregman iteration. Then we show an equivalence between

ADMM (2.4) and the split Bregman algorithm and present a convergence result

by Eckstein and Bertsekas [EB92]. Next we interpret AMA (2.5) and the split

inexact Uzawa method (2.7) as modifications of ADMM applied to (P0), and we

discuss when they are applicable and why they are useful. Throughout, we also

discuss the dual interpretations of Bregman iteration/method of multipliers as

gradient ascent, split Bregman/ADMM as Douglas Rachford splitting and AMA

as proximal forward backward splitting.

2.3.1 Bregman Iteration and Method of Multipliers

2.3.1.1 Application to Primal Problem

Bregman iteration applied to (P0) yields

Algorithm: Bregman iteration on (P0)

(zk+1, uk+1) = arg min
z∈Rn,u∈Rm

F (z) − F (zk) − 〈pk
z , z − zk〉+

H(u) −H(uk) − 〈pk
u, u− uk〉+ (2.12)

α

2
‖b−Au− Bz‖2

pk+1
z = pk

z + αBT (b− Auk+1 − Bzk+1)

pk+1
u = pk

u + αAT (b− Auk+1 −Bzk+1).

17



For the initialization, p0
z and p0

u are set to zero while z0 and u0 are arbitrary. Note

that for k ≥ 1, pk
u ∈ ∂H(uk) and pk

z ∈ ∂F (zk). Now, following the argument in

[YOG08] that shows an equivalence between Bregman iteration and the method

of multipliers (2.2) in the case of linear constraints, define λk for k ≥ 0 by λ0 = 0

and

λk+1 = λk + α(b−Auk+1 − Bzk+1). (2.13)

Notice that if pk
z = BTλk and pk

u = ATλk then pk+1
z = BTλk+1 and pk+1

u = ATλk+1.

So by induction, it holds for all k. This implies that

−〈pk
z , z〉 − 〈pk

u, u〉 = −〈BTλk, z〉 − 〈ATλk, u〉 = 〈λk,−Au−Bz〉.

This means the objective function in (2.12) up to a constant is equivalent to the

augmented Lagrangian at λk, defined by

Lα(z, u, λk) = F (z) +H(u) + 〈λk, b− Au−Bz〉 +
α

2
‖b− Au−Bz‖2. (2.14)

Then (zk+1, uk+1) in (2.12) can be equivalently updated by the method of multi-

pliers (2.2),

Algorithm: Method of multipliers on (P0)

(zk+1, uk+1) = arg min
z∈Rn,u∈Rm

Lα(z, u, λk) (2.15)

λk+1 = λk + α(b− Auk+1 − Bzk+1). (2.16)

This connection was also pointed out in [TW09].

Note that the same assumptions that guaranteed existence of a minimizer for

(P0) also guarantee that (2.15) is well defined. Having assumed that there exists

c ∈ R such that

Q = {(z, u) : F (z) +H(u) ≤ c , Au+Bz = b}
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is nonempty and bounded, it follows that

R =
{

(z, u) : F (z) +H(u) + 〈λk, b− Au−Bz〉 +
α

2
‖b− Au−Bz‖2 ≤ c

}

is nonempty and bounded. If not, then being an unbounded convex set, R must

contain a half line. Because of the presence of the quadratic term, any such line

must be parallel to the affine set defined by Au + Bz = b. But since R is also

closed, by ([Roc70] 8.3) a half line is also contained in that affine set, which

contradicts the assumption that Q was bounded. Weierstrass’ theorem can then

be used to show that a minimum of (2.15) is attained.

2.3.1.2 Dual Interpretation

Since Bregman iteration with linear constraints is equivalent to the method of

multipliers it also shares some of the interesting dual interpretations. In particu-

lar, it can be interpreted as a proximal point method for maximizing q(λ) or as

a gradient ascent method for maximizing qα(λ), where qα(λ) denotes the dual of

the augmented Lagrangian Lα defined by

qα(λ) = inf
z∈Rn,u∈Rm

Lα(z, u, λ). (2.17)

Note that from previous assumptions guaranteeing existence of an optimal solu-

tion to (P0), and because the augmented term α
2
‖b−Au−Bz‖2 is zero when the

constraint is satisfied, the maximums of q(λ) and qα(λ) are attained and equal.

Following arguments by Rockafellar in [Roc76] and Bertsekas and Tsitsiklis in

[BT89], note that

Lα(z, u, λk) = max
λ∈Rd

L(z, u, λ) − 1

2α
‖λ− λk‖2.

As in (2.15), let (zk+1, uk+1) (possibly not unique) be where the minimum of

Lα(z, u, λk) is attained. Also let λk+1 be defined as the Lagrange multiplier
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update (2.16),

λk+1 = λk + α(b−Auk+1 − Bzk+1).

We can verify that (zk+1, uk+1, λk+1) is a saddle point of L(z, u, λ)− 1
2α
‖λ− λk‖2

by showing that

L(zk+1, uk+1, λ) − 1

2α
‖λ− λk‖2 ≤ L(zk+1, uk+1, λk+1) − 1

2α
‖λk+1 − λk‖2 (2.18)

≤ L(z, u, λk+1) − 1

2α
‖λk+1 − λk‖2 (2.19)

for all (z, u, λ). The first inequality (2.18) is true because

λk+1 = arg max
λ

L(zk+1, uk+1, λ) − 1

2α
‖λ− λk‖2

by definition. For the second inequality, we first notice that by plugging in λk+1,

L(z, u, λk+1) − 1

2α
‖λk+1 − λk‖2

= L(z, u, λk) + α〈b− Auk+1 −Bzk+1, b− Au−Bz〉 − α

2
‖b−Auk+1 − Bzk+1‖2.

(2.20)

Furthermore, finding a minimizer of (2.20) is equivalent to solving

arg min
z,u

L(z, u, λk) + 〈∇(
α

2
‖b− Au− Bz‖2)|(zk+1,uk+1), (z, u)〉. (2.21)

It follows ([BT89] Lemma 4.1, p. 257) from the fact that (zk+1, uk+1) is a min-

imizer of L(z, u, λk) + α
2
‖b − Au − Bz‖2 that it is also a minimizer for (2.21).

Therefore,

(zk+1, uk+1) = arg min
z,u

L(z, u, λk+1) − 1

2α
‖λk+1 − λk‖2,

verifying the second inequality (2.19).

By the definition of qα,

qα(λk) = min
z,u

max
λ

L(z, u, λ) − 1

2α
‖λ− λk‖2.
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From the existence of a saddle point, the min and max can be swapped ([Roc70]

36.2), implying

qα(λk) = max
λ

inf
z,u
L(z, u, λ) − 1

2α
‖λ− λk‖2.

By the definition of q,

qα(λk) = max
λ

q(λ) − 1

2α
‖λ− λk‖2, (2.22)

and because (zk+1, uk+1, λk+1) is a saddle point, this maximum is attained at λk+1

([Roc70] 36.2). In other words, the Lagrange multiplier update (2.16) is given by

λk+1 = arg max
λ∈Rd

q(λ) − 1

2α
‖λ− λk‖2, (2.23)

which can be interpreted as a step in a proximal point method for maximizing

q(λ). The connection to the proximal point method is also derived for example

in [BT89]. Since from (2.23), λk+1 is uniquely determined given λk, that means

that Auk+1 + Bzk+1 is constant over all minimizers (zk+1, uk+1) of Lα(z, u, λk).

Going back to the Bregman iteration (2.12), we also have that pk+1
z = BTλk+1

and pk+1
u = ATλk+1 were uniquely determined at each iteration.

One way to interpret (2.23) as a gradient ascent method applied to qα(λ) is

to note that from (2.22), qα(λk) is minus the Moreau envelope of index α of the

closed proper convex function −q at λk ([CW06] 2.3). The Moreau envelope can

be shown to be differentiable, and there is a formula for its gradient ([BT89] p.

234), which when applied to (2.22) yields

∇qα(λk) = −
[
λk − arg maxλ

(
q(λ) − 1

2α
‖λ− λk‖2

)

α

]
.

Substituting in λk+1 we see that

∇qα(λk) =
λk+1 − λk

α
,
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which means we can interpret the Lagrange multiplier update as the gradient

ascent step

λk+1 = λk + α∇qα(λk),

where ∇qα(λk) = (b−Auk+1 − Bzk+1).

2.3.2 Split Bregman and ADMM Equivalence

2.3.2.1 Alternating Minimization

The split Bregman algorithm uses an alternating minimization approach to min-

imize (2.15), namely iterating

zk+1 = arg min
z∈Rn

F (z) + 〈λk,−Bz〉 +
α

2
‖b− Auk − Bz‖2

uk+1 = arg min
u∈Rm

H(u) + 〈λk,−Au〉 +
α

2
‖b− Au−Bzk+1‖2

T times and then updating

λk+1 = λk + α(b−Auk+1 − Bzk+1).

When T = 1, this becomes ADMM (2.4), which can be interpreted as alternately

minimizing the augmented Lagrangian Lα(z, u, λ) with respect to z, then u and

then updating the Lagrange multiplier λ,

Algorithm: ADMM on (P0)

zk+1 = arg min
z∈Rn

F (z) + 〈λk,−Bz〉 +
α

2
‖b− Auk − Bz‖2 (2.24a)

uk+1 = arg min
u∈Rm

H(u) + 〈λk,−Au〉 +
α

2
‖b− Au− Bzk+1‖2 (2.24b)

λk+1 = λk + α(b− Auk+1 −Bzk+1). (2.24c)
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A similar derivation motivated by the augmented Lagrangian can be found in

[BT89]. Note that this equivalence between split Bregman and ADMM is not in

general true when the constraints are not linear.

Also note the asymmetry of the u and z updates. If we switch the order, first

minimizing over u, then over z, we obtain a valid but different incarnation of

ADMM, which we are not considering here.

2.3.2.2 Dual Interpretation

Some additional insight comes from the dual interpretation of ADMM as Douglas-

Rachford [DR56] splitting applied to the dual problem (D0), which we recall can

be written as

max
λ∈Rd

−F ∗(BTλ) + 〈λ, b〉 −H∗(ATλ).

Define operators Ψ and φ by

Ψ(λ) = B∂F ∗(BTλ) − b (2.25)

φ(λ) = A∂H∗(ATλ). (2.26)

Douglas Rachford splitting is a classical method for solving parabolic problems

of the form
dλ

dt
+ f(λ) + g(λ) = 0

by iterating

λ̂k − λk

∆t
+ f(λ̂k) + g(λk) = 0

λk+1 − λk

∆t
+ f(λ̂k) + g(λk+1) = 0,

where ∆t is the time step. By iterating to steady state, this can also be used to

solve

f(λ) + g(λ) = 0.
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Solving the dual problem (D0) is equivalent to finding λ such that zero is in

the subdifferential of −q at λ. One approach is to look for λ such that

0 ∈ Ψ(λ) + φ(λ). (2.27)

Such a λ necessarily solves (D0). Some additional minor technical assumptions,

usually true in practice, are needed for (2.27) to be equivalent to (D0). See

([Roc70] 23.8, 23.9).

By formally applying Douglas Rachford splitting to (2.27) with α as the time

step, we get

0 ∈ λ̂k − λk

α
+ Ψ(λ̂k) + φ(λk), (2.28a)

0 ∈ λk+1 − λk

α
+ Ψ(λ̂k) + φ(λk+1). (2.28b)

Following the arguments by Glowinski and Le Tallec [GT89] and Eckstein and

Bertsekas [EB92], we can show that ADMM satisfies (2.28). Define

λ̂k = λk + α(b−Bzk+1 − Auk).

Then from the optimality condition for (2.24a),

BT λ̂k ∈ ∂F (zk+1).

Then from the definitions of subgradient and convex conjugate it follows that

zk+1 ∈ ∂F ∗(BT λ̂k).

Multiplying by B and subtracting b we have

Bzk+1 − b ∈ B∂F ∗(BT λ̂k) − b = Ψ(λ̂k).

The analogous argument starting with the optimality condition for (2.24b) yields

Auk+1 ∈ A∂H∗(ATλk+1) = φ(λk+1).
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With λk+1 defined by (2.24c) and noting that Auk ∈ φ(λk), we see that the

ADMM procedure satisfies (2.28).

It’s important to note that Ψ and φ are not necessarily single valued, so

there could possibly be multiple ways of formally satisfying the Douglas Rachford

splitting as written in (2.28). For example, in the maximally decoupled case where

H(u) = 0, φ can be defined by

φ(y) =





Im(A) for y such that ATy = 0

∅ otherwise

.

The method of multipliers applied to either (P1) or (P2) with Pλ0 = λ0 is

equivalent to the proximal point method applied to the dual. This would yield

λk+1 = λ̂k = arg max
y∈Rd

−F ∗(BTPy) + 〈Py, b〉 − 1

2α
‖y − λk‖2

with Pλk = λk. This also formally satisfies (2.28), but the λk+1 updates are

different from ADMM and ususally more difficult to compute.

The particular way in which ADMM satisfies (2.28) can be derived by applying

the Moreau decomposition [Mor65, CW06] to directly rewrite ADMM applied to

(P0) as Douglas Rachford splitting applied to (D0).

Theorem 2.3.1. (Generalized Moreau Decomposition)

If J is a closed proper convex function on R
n, f ∈ R

m and A ∈ R
n×m, then

f = arg min
u
J(Au) +

1

2α
‖u− f‖2

2 + αAT arg min
p
J∗(p) +

α

2
‖ATp− f

α
‖2

2. (2.29)

Proof. [Tse09] Let p∗ be a minimizer of J∗(p) + α
2
‖ATp− f

α
‖2

2. Then

0 ∈ ∂J∗(p∗) + αA(ATp∗ − f

α
).

Let

u∗ = f − αATp∗.
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Multiplying by A we see that

Au∗ ∈ ∂J∗(p∗).

By the definitions of the subdifferential and Legendre transform, this implies

p∗ ∈ ∂J(Au∗)

ATp∗ ∈ AT∂J(Au∗)

f − u∗

α
∈ AT∂J(Au∗)

0 ∈ AT∂J(Au∗) +
u∗ − f

α
.

This implies that

u∗ = arg min
u
J(Au) +

1

2α
‖u− f‖2,

which verifies that the Moreau decomposition is given by

f = u∗ + αATp∗.

To rewrite ADMM as Douglas Rachford splitting, first combine (2.24b) and

(2.24c) from (2.24) to get

λk+1 = λk +α(b−Bzk+1)−αA
[
arg min

u
H(u) +

α

2
‖Au− λk + α(b− Bzk+1)

α
‖2

]
.

Applying the Moreau decomposition (2.29) then yields

λk+1 = arg min
λ
H∗(ATλ) +

1

2α
‖λ− (λk + α(b− Bzk+1))‖2.

We can also apply the Moreau decomposition to (2.24a) to get

αBT zk+1 = λk + α(b−Auk) − arg min
λ̂

F ∗(BT λ̂) +
1

2α
‖λ̂− (λk + α(b−Auk))‖2.
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Let

λ̂k = arg min
λ̂

F ∗(BT λ̂) − 〈λ̂, b〉 +
1

2α
‖λ̂− (λk − αAuk)‖2. (2.30)

Then since αBT zk+1 = λk + α(b− Auk) − λ̂k,

λk+1 = arg min
λ
H∗(ATλ) +

1

2α
‖λ− αAuk − λ̂k‖2. (2.31)

It’s straightforward to verify that since Auk ∈ φ(λk) and Bzk+1 − b ∈ Ψ(λ̂k)

that (2.30) and (2.31) are consistent with (2.28). These Douglas Rachford steps

can furthermore be rewritten in a more implementable way by removing the

dependence on Auk. We can plug the expression for Bzk+1 into the Lagrange

multiplier update (2.24c), which implies

Auk+1 = Auk +
1

α
(λ̂k − λk+1).

Letting yk = λk + αAuk, this becomes

yk+1 = yk + (λ̂k − λk).

Substituting Auk = yk−λk

α
into (2.30) and (2.31) and combining these steps with

the yk+1 update, we arrive at an implementable form of Douglas Rachford split-

ting applied to (D0) which produces the same sequence of λk as ADMM applied

to (P0).

Algorithm: Douglas Rachford on (D0)

λ̂k = arg min
λ̂

F ∗(BT λ̂) − 〈λ̂, b〉 +
1

2α
‖λ̂− (2λk − yk)‖2 (2.32a)

λk+1 = arg min
λ
H∗(ATλ) +

1

2α
‖λ− (yk − λk + λ̂k)‖2 (2.32b)

yk+1 = yk + λ̂k − λk (2.32c)

The following theorem from [Eck89] shows that convergence of λk can be ensured

with very few assumptions.
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Theorem 2.3.2. [Eck89] Assume F and H are closed proper convex functions.

Let α > 0 and let (λ0, y0) be arbitrary. Suppose (λ̂k, λk, yk) satisfies (2.32). Then

{λk} converges to a solution of (D0).

It’s also possible to express (2.30) and (2.31) in terms of the resolvents (I +

αΨ)−1 and (I + αφ)−1,

λ̂k = (I + αΨ)−1(λk − αAuk) (2.33a)

λk+1 = (I + αφ)−1(λ̂k + αAuk). (2.33b)

Since uk by assumption is uniquely determined, Auk is well defined. One way to

argue the resolvents are well defined is using monotone operator theory [Eck89].

Briefly, a multivalued operator Φ : R
d → R

d is monotone if

〈w − w′, u− u′〉 ≥ 0 whenever w ∈ Φ(u) , w′ ∈ Φ(u′) .

The operator Φ is maximal monotone if in addition to being monotone, its graph

{(u, w) ∈ R
d × R

d|w ∈ Φ(u)} is not strictly contained in the graph for any

other monotone operator. From a result by Minty [Min62], if Φ is maximal

monotone, then for any α > 0, (I + αΦ)−1 is single valued and defined on all of

R
d ([EB92], [Tse91]). Then from a result by Rockafellar ([Roc70] 31.5.2), Φ is

maximal monotone if it is the subdifferential of a closed proper convex function.

Since Ψ(y) and φ(y) were defined to be subdifferentials of F ∗(BTy) − 〈y, b〉 and

H∗(ATy) respectively, the resolvents in (2.33) are well defined.

It’s possible to rewrite the updates in (2.33) completely in terms of the dual

variable [EB92]. Combining the two steps yields

λk+1 = (I + αφ)−1
(
(I + αΨ)−1(λk − αAuk) + αAuk

)
. (2.34)

Suppose

yk = λk + αAuk.
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Since Auk ∈ φ(λk), yk ∈ (I + αφ)λk. So λk = (I + αφ)−1yk. We can use this to

rewrite (2.34) as

λk+1 = (I + αφ)−1
[
(I + αΨ)−1

(
2(I + αφ)−1 − I

)
+
(
I − (I + αφ)−1

)]
yk.

Now let

yk+1 =
[
(I + αΨ)−1

(
2(I + αφ)−1 − I

)
+
(
I − (I + αφ)−1

)]
yk. (2.35)

Recalling the definition of λ̂k and λk+1

yk+1 =
(
(I + αΨ)−1(λk − αAuk) + αAuk

)

= λ̂k + αAuk

= λk + α(b− Bzk+1)

= λk+1 + αAuk+1.

Thus assuming we initialize y0 = λ0 + αAu0 with u0 ∈ ∂H∗(ATλ0), yk = λk +

αAuk and λk = (I + αφ)−1yk hold for all k ≥ 0. So ADMM is equivalent to

iterating (2.35). This is the representation used by Eckstein and Bertsekas [EB92]

and referred to as the Douglas Rachford recursion. Note that in the maximally

decoupled case, (I + αφ)−1 reduces to the projection matrix P , which projects

onto Im(A)⊥.

2.3.2.3 Convergence Theory for ADMM

In [EB92], Eckstein and Bertsekas use the dual Douglas Rachford recursion form

of ADMM to show that it can be interpreted as an application of the proximal

point algorithm. They use this observation to prove a convergence result for

ADMM that allows for approximate computation of zk+1 and uk+1, as well some

over or under relaxation. Their theorem as stated applies to (P0) in the case
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when A = I, b = 0 and B is an arbitrary full column rank matrix, but the

same result also holds under slightly weaker assumptions. In particular, we will

assume F (z)+‖Bz‖2 and H(u)+‖Au‖2 are strictly convex and let b be nonzero.

Note the strict convexity assumptions automatically hold when A and B have

full column rank. We restate their result as it applies to (P0) under the slightly

weaker assumptions and in the case without over or under relaxation factors.

Theorem 2.3.3. (Eckstein, Bertsekas [EB92]) Consider the problem (P0) where

F and H are closed proper convex functions, F (z)+ ‖Bz‖2 is strictly convex and

H(u) + ‖Au‖2 is strictly convex. Let λ0 ∈ R
d and u0 ∈ R

m be arbitrary and let

α > 0. Suppose we are also given sequences {µk} and {νk} such that µk ≥ 0,

νk ≥ 0,
∑∞

k=0 µk <∞ and
∑∞

k=0 νk <∞. Suppose that

‖zk+1 − arg min
z∈Rn

F (z) + 〈λk,−Bz〉 +
α

2
‖b− Auk − Bz‖2‖ ≤ µk (2.36)

‖uk+1 − arg min
u∈Rm

H(u) + 〈λk,−Au〉 +
α

2
‖b− Au− Bzk+1‖2‖ ≤ νk (2.37)

λk+1 = λk + α(b−Auk+1 −Bzk+1). (2.38)

If there exists a saddle point of L(z, u, λ) (2.8), then zk → z∗, uk → u∗ and

λk → λ∗, where (z∗, u∗, λ∗) is such a saddle point. On the other hand, if no

such saddle point exists, then at least one of the sequences {uk} or {λk} must be

unbounded.

Note that the convergence result carries over to the split Bregman algorithm

in the case when the constraints are linear and when only one inner iteration is

used.

Only a few minor changes to the proof in [EB92] are needed to accommodate

the slightly weaker assumptions made here. The proof that λk converges to a

solution of the dual problem (D0) remains unchanged. It follows from the equiv-

alence between ADMM applied to (P0) and Douglas Rachford splitting applied
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to (D0) and a convergence proof for a generalized form of Douglas Rachford split-

ting ([EB92] p. 307). The argument that (zk, uk, λk) converges to a saddle point

is what requires the additional assumptions. This is needed to ensure that uk

converges to a solution of (P0). In [EB92] it is assumed that A and B have full

column rank, an assumption that doesn’t hold for some important image pro-

cessing models like the TV-l2 minimization example discussed in Section 2.4.5.

In that case, one of the matrices corresponds to the discrete gradient, which

doesn’t have full column rank. But it can still be true that F (z) + ‖Bz‖2 and

H(u) + ‖Au‖2 are strictly convex, which still ensures the zk+1 and uk+1 updates

are uniquely determined and is enough to guarantee that (zk, uk, λk) converges

to a saddle point. Although the assumptions on A and B have been slightly

weakened in Theorem 2.3.3, this version is less general in other ways because it

ignores the relaxation factors ρk in [EB92], which here we take to be one.

Proof. This proof of theorem 2.3.3 is due to Eckstein and Bertsekas and is taken

from their paper [EB92]. The entire proof is not reproduced here. Just enough

is sketched to make the changes clear.

Let JαΨ and Jαφ be shorthand notation for the resolvents (I + αΨ)−1 and

(I + αφ)−1 respectively. Also define

yk = λk + αAuk , k ≥ 0

λ̂k = λk + α(b− Bzz+1 − Auk), k ≥ 0

ak = α‖B‖µk , k ≥ 0

β0 = ‖λ0 − Jαφ(λ0 − αAu0)‖

βk = α‖A‖νk, k ≥ 1
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The main outline of Eckstein and Bertsekas’ proof is to first show that

(Y 1) ‖λk − Jαφ(yk)‖ ≤ βk

(Y 2) ‖λ̂k − JαΨ(2λk − yk)‖ ≤ ak

(Y 3) yk+1 = yk + λ̂k − λk

hold for all k ≥ 0. If βk = 0 and ak = 0 then this would be exactly the form of

the Douglas Rachford splitting algorithm in (2.32). To see this, note that since

λk = (I + αφ)−1yk (2.32b) can be replaced by

λk = arg min
λ
H∗(ATλ) +

1

2α
‖λ− yk‖2,

and then (2.32b) and (2.32a) can be swapped. Assuming there exists a saddle

point of L(z, u, λ) (2.8), Eckstein and Bertsekas apply an earlier theorem in their

paper to say that {yk} converges. This Douglas Rachford convergence argument

that allows for errors in the updates is the main part of their proof of the gener-

alized ADMM (2.3.3). But since this theorem still applies here with the slightly

different assumptions, there’s no need to reproduce the details. Finally they ar-

gue that zk → z∗, uk → u∗ and λk → λ∗, where (z∗, u∗, λ∗) is a saddle point of

L(z, u, λ). Some changes are made to this last part.

Noting that (Y 1) is true for k = 0, they suppose it is true at iteration k and

show it follows that (Y 2) is true at k. Define

z̄k = arg min
z∈Rn

F (z) + 〈λk,−Bz〉 +
α

2
‖b−Bz − Auk‖2

and

λ̃k = λk + α(b−Bz̄k − Auk).

Note that z̄k is uniquely determined because F (z) + ‖Bz‖2 is strictly convex.

From the optimality conditions for the z̄k update, it follows that

z̄k ∈ ∂F ∗(BT λ̃k),
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and therefore that

Bz̄k − b ∈ Ψ(λ̃k).

Since

λ̃k + α(Bz̄k − b) = λk − αAuk ∈ λ̃k + αΨ(λ̃k),

it follows that

λ̃k = JαΨ(λk − αAuk) = JαΨ(2λk − yk).

Then

‖λ̂k − JαΨ(2λk − yk)‖ = ‖λ̂k − λ̃k‖ = α‖B(zk+1 − z̄k)‖

≤ α‖B‖‖zk+1 − z̄k‖ ≤ α‖B‖µk = ak.

Thus (Y 2) holds at iteration k. Next they assume (Y 1) and (Y 2) hold at k and

define

sk = yk + λ̂k − λk

= λk + α(b− Bzk+1)

ūk = arg min
u∈Rm

H(u) + 〈λk,−Au〉 +
α

2
‖b− Bzk+1 −Au‖2

s̃k = λk + α(b− Bzk+1 −Aūk).

(Y 3) holds trivially since

yk+1 = λk+1 + αAuk+1 = λk + α(b− Bzk+1) = yk + λ̂k − λk.

Next, from the assumption that H(u) + ‖Au‖2 is strictly convex, it follows that

ūk is uniquely determined. The optimality condition for the ūk update yields

ūk ∈ ∂H∗(AT s̃k)

from which it follows that

Aūk ∈ φ(s̃k).
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Since

sk = s̃k + αAūk ∈ s̃k + αφ(s̃k),

we have that

s̃k = Jαφ(sk).

Noting that yk+1 = sk,

‖λk+1 − Jαφ(yk+1)‖ = ‖λk+1 − Jαφ(s
k)‖ = ‖λk+1 − s̃k‖ = α‖A(uk+1 − ūk)‖

≤ α‖A‖νk = βk,

which means (Y 1) holds at k + 1. By induction, (Y 1), (Y 2) and (Y 3) hold for

all k. Moreover, the sequences {βk} and {ak} are summable by definition. Taken

together this satisfies the requirements of a previous theorem in ([EB92] p. 307),

Theorem 7. If there exists a saddle point L(z, u, λ), then in particular there exists

an optimal dual solution, in which case Theorem 7 implies that yk converges to

y∗ = λ∗ + αw∗ such that w∗ ∈ φ(λ∗) and −w∗ ∈ Ψ(λ∗). If there is no saddle

point, Theorem 7 implies the sequence {yk} is unbounded, which means either

{λk} or {uk} is unbounded. In the case where yk converges, note that

y∗ ∈ λ∗ + αφ(λ∗),

so

λ∗ = Jαφ(y∗).

From (Y 1) and the continuity of Jαφ it follows that λk → λ∗. Let wk = Auk.

Then wk = yk−λk

α
, which implies wk → y∗−λ∗

α
= w∗. If A had full column

rank, we could immediately conclude the convergence of {uk}. Instead, define

S(u) = H(u) + α
2
‖Au‖2, which was assumed to be strictly convex. Rewrite the

objective functional for the u minimization step

H(u) + 〈λk,−Au〉 +
α

2
‖b− Bzk+1 −Au‖2 = S(u) + 〈λk,−Au〉 +

α

2
‖b−Bzk+1‖2

+ α〈b− Bzk+1,−Au〉.
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The optimality condition for ūk then implies that

0 ∈ ∂S(ūk) − AT (λk + α(b− Bzk+1))

0 ∈ ∂S(ūk) − AT (λk+1 + αAuk+1)

ATyk+1 ∈ ∂S(ūk)

ūk ∈ ∂S∗(ATyk+1).

Since S is strictly convex, S∗ is continuously differentiable ([Roc70] 26.3), so

ūk = ∇S∗(ATyk+1). Since ‖uk+1 − ūk‖ → 0, this implies

uk → ∇S∗(ATy∗).

Let u∗ = ∇S∗(ATy∗). Since Auk → w∗, we have that Au∗ = w∗. Now since

λk+1 − λk = α(b−Bzk+1 − Auk+1) → 0, we have that

Bzk+1 → b−Au∗.

The argument for the convergence of {zk} is analogous to the one made for {uk}.
Define T (z) = F (z) + α

2
‖Bz‖2, which was assumed to be strictly convex. Then

rewrite the objective functional for the z minimization step

F (z) + 〈λk,−Bz〉 +
α

2
‖b−Bz −Auk‖2 = T (z) + 〈λk,−Bz〉 +

α

2
‖b−Auk‖2

+ α〈b− Auk,−Bz〉.

The optimality condition for z̄k then implies

BT (λk + α(b− Auk)) ∈ ∂T (z̄k

z̄k = ∇T ∗(BT (λk + α(b−Auk))).

Since T ∗ is continuously differentiable, λk → λ∗, uk → u∗ and ‖zk+1 − z̄k‖ → 0,

zk → z∗ := ∇T ∗(BT (λ∗ + α(b−Au∗)))
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and

Au∗ +Bz∗ = b.

Now note that we also have λ̃k → λ∗, s̃k → λ∗, z̄k → z∗ and ūk → u∗. Recalling

the optimality conditions for the u and z update steps,

z̄k ∈ ∂F ∗(BT λ̃k) and ūk ∈ ∂H∗(AT s̃k).

Citing a result by Brezis [Br73] regarding limits of maximal monotone operators,

it then follows that

z∗ ∈ ∂F ∗(BTλ∗) and u∗ ∈ ∂H∗(ATλ∗).

These together with Au∗ +Bz∗ = b are exactly the optimality conditions (2.11)

for (P0). Thus (z∗, u∗, λ∗) is a saddle point of L(z, u, λ).

2.3.3 Decoupling Variables

The quadratic penalty terms of the form α
2
‖Ku− f‖2 that appear in the ADMM

iterations couple the variables in a way that can make the algorithm computa-

tionally expensive. If K has special structure, this may not be a problem. For

example, K could be diagonal. Or it might be possible to diagonalize KTK using

fast transforms like the FFT or the DCT. Alternatively, the ADMM iterations

can be modified to avoid the difficulty caused by the ‖Ku‖2 term. In this section

we show how AMA (2.5) and the split inexact Uzawa method (2.7) accomplish

this by modifying the ADMM iterations in different ways. AMA essentially re-

moves the offending quadratic penalty, while the split inexact Uzawa method is

based on the preconditioning idea from BOS, which adds an additional quadratic

penalty chosen so that it cancels the ‖Ku‖2 term. A strict convexity assumption

is required to apply AMA, but not for the split inexact Uzawa approach.
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2.3.3.1 AMA Applied to Primal Problem

In order to apply AMA to (P0), either F or H must be strictly convex. Assume

for now that H(u) is strictly convex with modulus σ > 0. The additional strict

convexity assumption is needed so that the step of minimizing the non-augmented

Lagrangian is well defined.

Recalling the definitions of Ψ and φ (2.25), proximal forward backward split-

ting (PFBS) [LM79, Pas79, CW06] applied to the dual problem (D0) is defined

by

λk+1 = (I + αΨ)−1(I − αφ)λk, (2.39)

where λ0 is arbitrary. Note that φ(λk) is single valued because of the strict con-

vexity of H(u). Also, (I+αΨ)−1 is well defined because Ψ is maximal monotone.

So (2.39) determines λk+1 uniquely given λk.

As Tseng shows in [Tse91], (2.39) is equivalent to

Algorithm: AMA applied to (P0)

uk+1 = arg min
u∈Rm

H(u) − 〈ATλk, u〉 (2.40a)

zk+1 = arg min
z∈Rn

F (z) − 〈BTλk, z〉 +
α

2
‖b− Auk+1 −Bz‖2 (2.40b)

λk+1 = λk + α(b− Auk+1 − Bzk+1). (2.40c)

To see the equivalence, note that optimality of uk+1 implies ATλk ∈ ∂H(uk+1).

It follows that

Auk+1 ∈ A∂H∗(ATλk) = φ(λk).

Similarly, optimality of zk+1 implies

Bzk+1 − b ∈ Ψ(λk+1).
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Since λk+1 = λk + α(b−Auk+1 −Bzk+1),

0 ∈ λk+1 + αΨ(λk+1) − λk + αφ(λk),

from which (2.39) follows. AMA and PFBS are are discussed in more detail in

Chapter 3 with regard to their close connection to PDHG.

Tseng shows that {uk, zk} converges to a solution of (P0) and {λk} converges

to a solution of (D0) if α, which he allows to depend on k, satisfies the time step

restriction

ε ≤ αk ≤ 4σ

‖A‖2
− ε (2.41)

for some ε ∈ (0, 2σ
‖A‖2 ).

2.3.3.2 BOS Applied to Primal Problem

The BOS algorithm applied to (2.1) was interpreted by Zhang, Burger, Bresson

and Osher in [ZBB09] as an inexact Uzawa method. It modifies the augmented

Lagrangian not by removing the quadratic penalty, but by adding an additional

proximal-like penalty chosen so that the ‖Ku‖2 term cancels out. It simplifies the

minimization step by decoupling the variables coupled by the constraint matrix

K, and it doesn’t require the functional J to be strictly convex. In a sense it

combines the best advantages of Rockafellar’s proximal method of multipliers

[Roc76] and Daubechies, Defrise and De Mol’s surrogate functional technique

[DDM04]. Recall that the method of multipliers (2.2) applied to (2.1) requires

solving

uk+1 = arg min
u∈Rm

J(u) + 〈λk, f −Ku〉 +
α

2
‖f −Ku‖2.

The inexact Uzawa method in [ZBB09] modifies that objective functional by

adding the term
1

2
〈u− uk, (

1

δ
− αKTK)(u− uk)〉,
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where δ is chosen such that 0 < δ < 1
α‖KT K‖ in order that (1

δ
−αKTK) is positive

definite. Combining and rewriting terms yields

uk+1 = arg min
u∈Rm

J(u) +
1

2δ
‖u− uk + αδKT (Kuk − f − λk

α
)‖2.

The new penalty keeps uk+1 close to a linear approximation of the old penalty

evaluated at uk, and the iteration is simplified because the variables u are no

longer coupled together by K. An important example is the case when J(u) =

‖u‖1, in which case the decoupled functional can be explicitly minimized by a

shrinkage formula discussed in section 2.4.2. In [ZBO09], the algorithm was

combined with split Bregman and applied to more complicated problems such as

one involving nonlocal total variation regularization.

2.3.4 Split Inexact Uzawa Applied to Primal Problem

Applying the same decoupling trick from BOS to the ADMM iterations means

selectively replacing some quadratic penalties of the form α
2
‖Ku− f‖2 with their

linearized counterparts 1
2δ
‖u−uk +αδKT (Kuk−f)‖2. An example application to

constrained TV minimization is given in section 2.4.7. This is a special case of the

more general form of the split inexact Uzawa algorithm ([ZBO09] Algorithm A1).

Let ‖ · ‖Q be defined by ‖ · ‖2
Q = 〈Q·, ·〉 for positive definite Q. The split inexact

Uzawa method modifies the ADMM iterations by adding additional quadratic

penalties to the minimization steps and also generalizing the Lagrange multiplier

update.
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Algorithm: Split Inexact Uzawa on (P0)

zk+1 = arg min
z∈Rn

F (z) + 〈λk,−Bz〉 +
α

2
‖b− Auk −Bz‖2 +

1

2
‖z − zk‖2

Q1

(2.42a)

uk+1 = arg min
u∈Rm

H(u) + 〈λk,−Au〉 +
α

2
‖b− Au−Bzk+1‖2 +

1

2
‖u− uk‖2

Q2

(2.42b)

Cλk+1 = Cλk + (b−Auk+1 − Bzk+1). (2.42c)

where Q1, Q2 and C are positive definite matrices, and C is such that 0 <

1
λC

m
≤ α where λC

m is the smallest eigenvalue of C. The quadratic penalties can

be effectively linearized by letting Q1 = 1
δ
− αBTB and Q2 = 1

δ
− αATA, with

δ > 0 and α > 0 chosen small enough to ensure positive definiteness.

The convergence theory from [ZBO09] for the split inexact Uzawa method

is further discussed in Chapter 3 in connection with a variant of the PDHG

algorithm.

2.4 Example Applications

Here we give a few examples of how to write several optimization problems from

image processing in the form (P0) so that application of ADMM takes advantage

of the separable structure of the problems and produces efficient, numerically sta-

ble methods. The example problems that follow involve minimizing combinations

of the l1 norm, the square of the l2 norm, and a discretized version of the total

variation seminorm. ADMM applied to these problems often requires solving a

Poisson equation or l1-l2 minimization. So we first define the discretizations used,
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the discrete cosine transform, which can be used for solving the Poisson equations,

and also the shrinkage formulas that solve the l1-l2 minimization problems.

2.4.1 Notation Regarding Discretizations Used

A straightforward way to define a discretized version of the total variation semi-

norm is by

‖u‖TV =
Mr∑

p=1

Mc∑

q=1

√
(D+

1 up,q)2 + (D+
2 up,q)2 (2.43)

for u ∈ R
Mr×Mc . Here, D+

k represents a forward difference in the kth index and

we assume Neumann boundary conditions. It will be useful to instead work with

vectorized u ∈ R
MrMc and to rewrite ‖u‖TV . The convention for vectorizing an

Mr by Mc matrix will be to associate the (p, q) element of the matrix with the

(q− 1)Mr + p element of the vector. Consider a graph G(E ,V) defined by an Mr

by Mc grid with V = {1, ...,MrMc} the set of m = MrMc nodes and E the set of

e = 2MrMc −Mr −Mc edges. Assume the nodes are indexed so that the node

corresponding to element (p, q) is indexed by (q − 1)Mr + p. The edges, which

will correspond to forward differences, can be indexed arbitrarily.

Define D ∈ R
e×m to be the edge-node adjacency matrix for this graph. So for

a particular edge η ∈ E with endpoint indices i, j ∈ V and i < j, we have

Dη,k =





−1 for k = i,

1 for k = j,

0 for k 6= i, j.

(2.44)

The matrix D is a discretization of the gradient and −DT is the corresponding

discretization of the divergence. The product −DTD defines the discrete Lapla-

cian 4 corresponding to Neumann boundary conditions. It is diagonalized by

the basis for the discrete cosine transform. Let g̃ ∈ R
Mr×Mc denote the discrete
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cosine transform of g ∈ R
Mr×Mc defined by

g̃s,t =
Mr∑

p=1

Mc∑

q=1

gp,q cos

(
π

Mr

(p− 1

2
)s

)
cos

(
π

Mc

(q − 1

2
)t

)

Like the fast Fourier transform, this can be computed with O(MrMc log(MrMc))

complexity. The discrete Laplacian can be computed by

(̃4g)s,t =

(
2 cos

(
π(s− 1)

Mr

)
+ 2 cos

(
π(t− 1)

Mc

)
− 4

)
g̃s,t.

Also define E ∈ R
e×m such that

Eη,k =





1 if Dη,k = −1,

0 otherwise.

(2.45)

The matrix E will be used to identify the edges used in each forward difference.

Now define a norm on R
e by

‖w‖E =

m∑

k=1

(√
ET (w2)

)
k
. (2.46)

Note that in this context, the square root and w2 denote componentwise opera-

tions. Another way to interpret ‖w‖E is as the sum of the l2 norms of vectors wν ,

where wν =




...

we

...


 for e such that Ee,ν = 1. Typically, away from the boundary,

wν is of the form wν =


weν

1

weν
2


, where eν

1 and eν
2 are the edges used in the forward

difference at node ν. So in terms of wν , ‖w‖E =
∑m

ν=1 ‖wν‖2. The discrete TV

seminorm defined above (2.43) can be written in terms of ‖ · ‖E as

‖u‖TV = ‖Du‖E.
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Use of the matrix E is nonstandard, but also more general. For example, by re-

defining D and adding edge weights, it can easily be extended to other discretiza-

tions and even nonlocal TV. Such weighted graph formulations are discussed in

[ELB08].

By definition, the dual norm ‖ · ‖E∗ to ‖ · ‖E is

‖x‖E∗ = max
‖y‖E≤1

〈x, y〉. (2.47)

If xν is defined analogously to wν , then

‖x‖E∗ = max
ν

‖xν‖2.

To see this, note that by the Cauchy Schwarz inequality,

max
‖y‖E≤1

〈x, y〉 = max∑m
ν=1 ‖yν‖2≤1

m∑

ν=1

〈xν , yν〉 ≤ max
ν

‖xν‖2 = ‖xν̃‖2 for some ν̃.

The the maximum is trivially attained if ‖xν̃‖2 = 0 and otherwise the maximum

is attained for y such that yν =





xν̃

‖xν̃‖2
if ν = ν̃

0 otherwise

. Altogether in terms of the

matrix E,

‖w‖E = ‖
√
ET (w2)‖1 and ‖x‖E∗ = ‖

√
ET (x2)‖∞.

2.4.2 Shrinkage Formulas

When the original functional involves the l1 norm or the TV seminorm, applica-

tion of split Bregman or ADMM will result in l1-l2 minimization problems that

can be explicitly solved by soft thresholding, or shrinkage formulas, which will

be defined in this section.
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2.4.2.1 Primal Approach

Consider

min
w

∑

i

(
µ‖wi‖ +

1

2
‖wi − fi‖2

)
, (2.48)

where wi, fi ∈ R
si, and ‖·‖ still denotes the l2 norm. This decouples into separate

problems of the form minwi
Θi(wi) where

Θi(wi) = µ‖wi‖ +
1

2
‖wi − fi‖2. (2.49)

Consider the case when ‖fi‖ ≤ µ. Then

Θi(wi) = µ‖wi‖ +
1

2
‖wi‖2 +

1

2
‖fi‖2 − 〈wi, fi〉

≥ µ‖wi‖ +
1

2
‖wi‖2 +

1

2
‖fi‖2 − ‖wi‖‖fi‖

=
1

2
‖wi‖2 +

1

2
‖fi‖2 + ‖wi‖(µ− ‖fi‖)

≥ 1

2
‖fi‖2 = Θi(0),

which implies wi = 0 is the minimizer when ‖fi‖ ≤ µ. In the case where ‖fi‖ > µ,

let

wi = (‖fi‖ − µ)
fi

‖fi‖
,

which is nonzero by assumption. Then Θ is differentiable at wi and

∇Θ(wi) = µ
wi

‖wi‖
+ wi − fi,

which equals zero because
wi

‖wi‖
=

fi

‖fi‖
.

So altogether, the minimizer of (2.48) is given by

wi =





wi = (‖fi‖ − µ) fi

‖fi‖ if ‖fi‖ > µ

0 otherwise

. (2.50)
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When fγ , wγ ∈ R are the components of f, w ∈ R
m, fγ

‖fγ‖ is just sign (fγ).

Define the scalar shrinkage operator S by

Sµ(f)γ =





fγ − µ sign (fγ) if |fγ| > µ

0 otherwise

, (2.51)

where γ = 1, 2, ..., m. This can be interpreted as solving the minimization prob-

lem,

Sµ(f) = arg min
w∈Rm

µ‖w‖1 +
1

2
‖w − f‖2. (2.52)

The formula (2.50) can be interpreted as wi = Sµ(‖fi‖) fi

‖fi‖ , which is to say scalar

shrinkage of ‖fi‖ in the direction of fi. Note also that the problem of minimizing

over w ∈ R
e

µ‖w‖E +
1

2
‖w − z‖2, (2.53)

which arises in TV minimization problems, is of the form (2.48). In the notation

of the previous section, it can be written as

min
w∈Re

m∑

k=1

[
µ
(√

ET (w2)
)

k
+

1

2

(
ET (w − z)2

)
k

]
.

Let

s = E
√
ET (z)2.

Similar to the scalar case, by applying (2.50) for γ = 1, 2, ..., e we can define the

operator S̃µ(z) that solves (2.53) by

S̃µ(z)γ =





zγ − µ
zγ

sγ
if sγ > µ

0 otherwise

. (2.54)

2.4.2.2 Dual Approach

The shrinkage formulas in the previous section can also be directly derived using

duality by applying the Moreau decomposition (Theorem 2.3.1) to the l1-l2 min-
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imization problem (2.48). Define J(w) =
∑

i ‖wi‖ so that (2.48) can be written

as

min
w
J(w) +

1

2µ
‖w − f‖2. (2.55)

It’s straightforward to compute the Legendre transform of J .

J∗(p) = sup
w

〈p, w〉 − J(w)

=
∑

i

sup
wi

〈pi, wi〉 − ‖wi‖

=
∑

i

sup
wi

‖wi‖(‖pi‖ − 1)

=





0 if maxi ‖pi‖ ≤ 1

∞ otherwise.

We could also have used the fact that the Legendre transform of a norm is the

indicator function for the unit ball in its dual norm. Applying the Moreau de-

composition to (2.55) implies that

arg min
w
J(w) +

1

2µ
‖w − f‖2 = f − µ argmin

p
J∗(p) +

µ

2
‖p− f

µ
‖2

= f − µ arg min
{p:maxi ‖pi‖≤1}

µ

2
‖p− f

µ
‖2

= f − µΠ{p:maxi ‖pi‖≤1}(
f

µ
)

= f − Π{p:maxi ‖pi‖≤µ}(f),

where Π denotes the orthogonal projection onto the given set. In the scalar

shrinkage case (2.52),

Sµ(f) = f − Π{p:‖p‖∞≤µ}(f). (2.56)

Similarly, in the TV case (2.53),

S̃µ(z) = z − Π{p:‖p‖E∗≤µ}(z), (2.57)

which agrees with (2.54).
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2.4.3 ADMM Applied to Constrained TV Minimization

One of the example applications of split Bregman that was presented in [GO09]

is constrained total variation minimization. Here we consider the same example

but in the context of applying ADMM to (P0). Consider

min

u ∈ R
m

Ku = f

‖u‖TV ,

which can be rewritten using the norm ‖ · ‖E defined in section 2.4.1 as

min

u ∈ R
m

Ku = f

‖Du‖E. (2.58)

Writing this in the form of (P0) while taking advantage of the separable structure,

we let

z = Du B =


−I

0


 A =


D
K


 b =


0

f


 .

Now the problem can be written

min

z ∈ R
n, u ∈ R

m

Bz + Au = b

‖z‖E .

We assume that ker (D)
⋂

ker (K) = {0}, or equivalently that ker (K) does not

contain the vector of all ones. This ensures that A has full column rank, so

Theorem 2.3.3 can be used to guarantee convergence of ADMM applied to this

problem. Introducing a dual variable λ, the augmented Lagrangian is

‖z‖E + 〈λ, b− Bz − Au〉 +
α

2
‖b− Bz − Au‖2.
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Let λ =


p
q


 and rewrite the augmented Lagrangian as

‖z‖E + 〈p, z −Du〉 + 〈q, f −Ku〉 +
α

2
‖z −Du‖2 +

α

2
‖f −Ku‖2.

Moving linear terms into the quadratic terms, the ADMM iterations are given

by

zk+1 = arg min
z

‖z‖E +
α

2
‖z −Duk +

pk

α
‖2

uk+1 = arg min
u

α

2
‖Du− zk+1 − pk

α
‖2 +

α

2
‖Ku− f − qk

α
‖2

pk+1 = pk + α(zk+1 −Duk+1)

qk+1 = qk + α(f −Kuk+1),

where p0 = q0 = 0, u0 is arbitrary and α > 0. Note that this example corresponds

to the maximally decoupled case, in which the u update has the interesting in-

terpretation of enforcing the constraint ATλ = 0. Here, since DTp0 +KT q0 = 0

and by the optimality condition for uk+1, it follows that DTpk +KT qk = 0 for all

k. In particular, this makes the qk+1 update unnecessary. The explicit ADMM

steps reduce to

zk+1 = S̃ 1

α
(Duk − pk

α
)

uk+1 = (−4 +KTK)−1

(
DTzk+1 +

DTpk

α
+KTf +

KT qk

α

)

= (−4 +KTK)−1
(
DT zk+1 +KT f

)

pk+1 = pk + α(zk+1 −Duk+1).

Since the discrete cosine basis diagonalizes the discrete Laplacian for Neumann

boundary conditions, this can be efficiently solved whenever KTK can be simul-

taneously diagonalized.

48



2.4.4 ADMM Applied to TV-l1

The same decomposition principle applied to constrained TV minimization also

applies to the discrete TV-l1 minimization problem ([CE04], [CEN06]),

min
u∈Rm

‖u‖TV + β‖Ku− f‖1,

which can be rewritten as

min
u∈Rm

‖Du‖E + β‖Ku− f‖1. (2.59)

Writing this in the form of (P0), we let

z =


w
v


 =


 Du

Ku− f


 B = −I A =


D
K


 b =


0

f


 .

Again assume that ker (D)
⋂

ker (K) = {0}, or ker (K) does not contain the

vector of all ones. With this assumption, Theorem 2.3.3 again applies. Intro-

ducing the dual variable λ, which we decompose into λ =


p
q


, the augmented

Lagrangian can be written

‖w‖E +β‖v‖1 + 〈p, w−Du〉+ 〈q, v−Ku+ f〉+
α

2
‖w−Du‖2 +

α

2
‖v−Ku+ f‖2.

Minimizing over z would correspond to simultaneously minimizing over w and

v. But no term in the augmented Lagrangian contains both w and v, so it is

equivalent to separately minimizing over w and over v.
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The ADMM iterations are given by

wk+1 = arg min
w

‖w‖E +
α

2
‖w −Duk +

pk

α
‖2

vk+1 = arg min
v
β‖v‖1 +

α

2
‖v −Kuk + f +

qk

α
‖2

uk+1 = arg min
u

α

2
‖Du− wk+1 − pk

α
‖2 +

α

2
‖Ku− vk+1 − f − qk

α
‖2

pk+1 = pk + α(wk+1 −Duk+1)

qk+1 = qk + α(vk+1 −Kuk+1 + f),

where p0 = q0 = 0, u0 is arbitrary and α > 0. Again, corresponding to the

ATλ = 0 constraint in the dual problem, since DTp0 + KT q0 = 0 and by the

optimality condition for uk+1, it follows that DTpk + KT qk = 0 for all k. The

explicit formulas for wk+1, vk+1 and uk+1 are given by

wk+1 = S̃ 1

α
(Duk − pk

α
)

vk+1 = S β
α
(Kuk − f − qk

α
)

uk+1 = (−4 +KTK)−1

(
DTwk+1 +

DTpk

α
+KT (vk+1 + f) +

KT qk

α

)

= (−4 +KTK)−1
(
DTwk+1 +KT (vk+1 + f)

)
.

To get a sense of the speed of this algorithm, we let K = I and test it

numerically on a synthetic grayscale image similar to one from [CE04]. The

intensities range from 0 to 255 and the image is scaled to sizes 64×64, 128×128,

256 × 256 and 512 × 512. Let β = .6, .3, .15 and .075 for the different sizes

respectively. Similarly let α = .02, .01, .005 and .0025. Let û denote uk at

the first iteration k > 1 such that ‖uk − uk−1‖∞ ≤ .5, ‖Duk − wk‖∞ ≤ .5 and

‖vk − uk + f‖∞ ≤ .5. The original image f and the result û are shown in Figure

2.1. The number of iterations required and time to compute on an average PC

running a MATLAB implementation are tabulated in Table 2.1.
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f û

Figure 2.1: TV-l1 minimization of 512 × 512 synthetic image

Image Size Iterations Time

64 × 64 40 1s

128 × 128 51 5s

256 × 256 136 78s

512 × 512 359 836s

Table 2.1: Iterations and time required for TV-l1 minimization
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2.4.5 ADMM Applied to TV-l2

An example where there is more than one effective way to apply ADMM is the

TV-l2 minimization problem

min
u∈Rm

‖u‖TV +
λ

2
‖Ku− f‖2,

which can be rewritten as

min
u∈Rm

‖Du‖E +
λ

2
‖Ku− f‖2. (2.60)

The splitting used by Goldstein and Osher for this problem in [GO09] can be

written in the form of (P0) by letting

z = Du B = −I A = D b = 0.

Note that F (z) = ‖z‖E and H(u) = λ
2
‖Ku− f‖2. Introducing the dual variable

p, the augmented Lagrangian can be written

‖z‖E +
λ

2
‖Ku− f‖2 + 〈p, z −Du〉 +

α

2
‖z −Du‖2.

Assume again that ker (D)
⋂

ker (K) = {0}, or ker (K) does not contain the

vector of all ones. This ensures that λ
2
‖Ku− f‖2 + ‖Du‖2 is strictly convex, so

Theorem 2.3.3 applies and guarantees the convergence of ADMM.

The ADMM iterations are given by

zk+1 = arg min
z

‖z‖E +
α

2
‖z −Duk +

pk

α
‖2

uk+1 = arg min
u

λ

2
‖Ku− f‖2 +

α

2
‖Du− zk+1 − pk

α
‖2 (2.61)

pk+1 = pk + α(zk+1 −Duk+1).
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The explicit formulas for zk+1 and uk+1 are

zk+1 = S̃ 1

α
(Duk − pk

α
)

uk+1 = (−α4 + λKTK)−1
(
λKTf + αDT zk+1 +DTpk

)
.

Another approach is to apply ADMM to TV-l2 as it was applied to TV-

l1. This corresponds to the maximally decoupled case and involves adding new

variables not just for the TV term but also for the l2 term when rewriting (2.60)

in the form of (P0). Let

z =


w
v


 =


 Du

Ku− f


 B = −I A =


D
K


 b =


0

f


 .

Note that F (z) = ‖w‖E + λ
2
‖v‖2 , H(u) = 0 and A has full column rank. The

augmented Lagrangian can be written

‖w‖E +
λ

2
‖v‖2 + 〈p, w−Du〉+ 〈q, v−Ku+ f〉+

α

2
‖w−Du‖2 +

α

2
‖v−Ku+ f‖2.

As with the TV-l1 example, minimizing over z would correspond to simultane-

ously minimizing over w and v, which here is equivalent to separately minimizing

over w and over v.

The ADMM iterations are then

wk+1 = arg min
w

‖w‖E +
λ

2
‖w −Duk +

pk

α
‖2

vk+1 = arg min
v

λ

2
‖v‖2 +

α

2
‖v −Kuk + f +

qk

α
‖2

uk+1 = arg min
u

α

2
‖Du− wk+1 − pk

α
‖2 +

α

2
‖Ku− vk+1 − f − qk

α
‖2

pk+1 = pk + α(wk+1 −Duk+1)

qk+1 = qk + α(vk+1 −Kuk+1 + f).
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The formulas for wk+1, vk+1 and uk+1 are

wk+1 = S̃ 1

α
(Duk − pk

α
)

vk+1 =
1

λ+ α
(αKuk − αf − qk)

uk+1 = (−4 +KTK)−1
(
KTf +DTwk+1 +KTvk+1

)
.

By substituting vk+1 into the update for uk+1 and using the fact that DTpk +

KT qk = 0 for all k, the updates for q and v can be eliminated. The remaining

iterations are

wk+1 = S̃ 1

α
(Duk − pk

α
)

uk+1 = (−4 +KTK)−1

(
λKTf

λ+ α
+DTwk+1 +

DTpk

λ+ α
+
αKTKuk

λ+ α

)

pk+1 = pk + α(wk+1 −Duk+1).

This alternative application of ADMM to TVL2 is very similar to the first(2.61),

differing only in the update for uk+1. Empirically, at least in the denoising case

for K = I, the two approaches perform similarly. But since the algorithm is

neither simplified nor improved by the additional decoupling of the l2 term, there

is no compelling reason to do it.

An approach suggested in [GO09] for speeding up the iterations of (2.61) is to

only approximately solve for uk+1 using several Gauss Seidel iterations instead of

solving a Poisson equation. Convergence of the resulting approximate algorithm

could be guaranteed by Theorem 2.3.3 if we knew that the sum of the norms

of the errors was finite, but this is a difficult thing to know in advance. Since

H(u) was strictly convex in the first method for TV-l2, an alternative approach

to simplifying the iterations is to apply AMA.
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2.4.6 AMA Applied to TV-l2

Consider again the TV-l2 problem (2.60) in the denoising case where K = I.

Since H(u) is strictly convex, we can apply AMA to obtain a similar algorithm

that doesn’t require solving the Poisson equation. Recall the Lagrangian for this

problem is given by

‖z‖E +
λ

2
‖u− f‖2 + 〈p, z −Du〉.

The AMA iterations are

uk+1 = arg min
u

λ

2
‖u− f‖2 − 〈DTpk, u〉

zk+1 = arg min
z

‖z‖E +
α

2
‖z −Duk+1 +

pk

α
‖2 (2.62)

pk+1 = pk + α(zk+1 −Duk+1).

(2.63)

The explicit formulas for zk+1 and uk+1 are

uk+1 = f +
DTpk

λ

zk+1 = S̃ 1

α
(Duk+1 − pk

α
).

Note that α must satisfy the time step restriction from (2.41). Since H(u)

is strictly convex with modulus λ
2
, a safe choice for α is to let α ≤ λ

‖D‖2 . We

can bound ‖D‖2 by the largest eigenvalue of DTD, which is minus the discrete

Laplacian corresponding to Neumann boundary conditions. The matrix DTD

from its definition has only the numbers 2, 3 and 4 on its main diagonal. All the

off diagonal entries are 0 or −1, and the rows sum to zero. Therefore, by the

Gersgorin Circle Theorem, all eigenvalues of DTD are in the interval [0, 8]. Thus

‖D‖2 ≤ 8, so we can take α = λ
8
.
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For this example, since it is already efficient to solve the Poisson equation us-

ing the discrete cosine transform, the benefit of slightly faster iterations compared

to ADMM is outweighed by the reduced stability and the additional iterations

required.

The application of AMA to TV-l2 minimization is equivalent to applying

gradient projection (3.37) to its dual problem. This connection will be discussed

in greater detail in Section 3.5.

2.4.7 Split Inexact Uzawa Applied to Constrained TV

Consider again the constrained TV minimization problem (2.58) but now with a

more complicated matrix K that makes the update for uk+1

uk+1 = arg min
u

α

2
‖Du− zk+1 − pk

α
‖2 +

α

2
‖Ku− f − qk

α
‖2

difficult to compute. Applying the split inexact Uzawa algorithm, we can handle

the Ku = f constraint in a more explicit manner by adding 1
2
〈u − uk, (1

δ
−

αKTK)(u − uk)〉 to the objective functional for the uk+1 update, with 0 < δ <

1
α‖KT K‖ . This yields

uk+1 = arg min
u

α

2
‖Du− wk+1 − pk

α
‖2 +

1

2δ
‖u− uk + αδKT (Kuk − f − qk

α
)‖2

= (
1

δ
− α4)−1

(
αDTwk+1 +DTpk +

1

δ
uk − αKT

(
Kuk − f − qk

α

))
.

Altogether, the modified ADMM iterations are given by

zk+1 = S̃ 1

α
(Duk − pk

α
)

uk+1 = (
1

δ
− α4)−1

(
αDTwk+1 +DTpk +

1

δ
uk − αKT

(
Kuk − f − qk

α

))

pk+1 = pk + α(zk+1 −Duk+1)

qk+1 = qk + α(f −Kuk+1).
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h û

Figure 2.2: Constrained TV minimization of 32×32 image subject to constraints

on 4 Haar wavelet coefficients

Although it no longer follows that DTpk +KTqk = 0 as it did for ADMM applied

to constrained TV, all updates except for the uk+1 step remain the same.

As a numerical test, we will apply this algorithm to a TV wavelet inpainting

type problem [CSZ06]. LetK = Xψ, where X is a row selector and ψ is the matrix

corresponding to the translation invariant Haar wavelet transform. For a 2r × 2r

image, there are (1 + 3r)22r Haar wavelets when all translations are included.

The rows of the (1 + 3r)22r × 22r matrix ψ contain these wavelets weighted such

that ψTψ = I. X is a diagonal matrix with ones and zeros on the diagonal. For

a simple example, let h be a 32 × 32 image that is a linear combination of four

Haar wavelets. Let X select the corresponding wavelet coefficients and define

f = Xψh. Also choose α = .01 and δ = 50. Let û = u10000, the result after 10000

iterations. Figure 2.2 shows h and û. Although ûmay look unusual, it satisfies the

four constraints and does indeed have smaller total variation. ‖h‖TV = 1.25×104

whereas ‖û‖TV = 1.04 × 104.

Perhaps a more illustrative example is to try to recover an image from partial
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h û

Figure 2.3: Constrained TV minimization of 256 × 256 cameraman image given

1% of its translation invariant Haar wavelet coeffienents

knowledge of its wavelet coefficients like in the examples of [CSZ06]. Let h be the

256× 256 cameraman image shown on the left in Figure 2.3. Let ψ again be the

translation invariant Haar wavelet transform as in the previous example. Note

that for this size image, these translation invariant Haar wavelets are redundant

by a factor of 25. Let X be a row selector that randomly selects one percent

of these wavelet coefficients and define f = Xψh. Given f , we try to recover h

by finding a minimizer u of (2.58). Let û = u1500 denote the result after 1500

iterations, which is shown on the right in Figure 2.3.
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CHAPTER 3

A General Framework for a Class of First Order

Primal-Dual Algorithms

3.1 Introduction

In this chapter, we study the primal dual hybrid gradient (PDHG) algorithm

proposed by Zhu and Chan [ZC08] and draw connections between it and related

algorithms including ADMM, AMA, and the split inexact Uzawa method.

The PDHG method starts with a saddle point formulation of the problem and

proceeds by alternating proximal steps that alternately maximize and minimize a

penalized form of the saddle function. PDHG can generally be applied to saddle

point formulations of inverse problems that can be formulated as minimizing a

convex fidelity term plus a convex regularizing term. However, its performance

for problems like TV denoising is of special interest since it compares favorably

with other popular methods like Chambolle’s method [Cha04] and split Bregman

[GO09].

PDHG is an example of a first order method, meaning it only requires func-

tional and gradient evaluations. Other examples of first order methods popular

for TV minimization include gradient descent, Chambolle’s method and split

Bregman. Second order methods like the method of Chan, Golub and Mulet

(CGM) [CGM99] work by essentially applying Newton’s method to an appro-

59



priate formulation of the Euler Lagrange equations and therefore also require

information about the Hessian. These can be quadratically convergent and are

useful for computing benchmark solutions of high accuracy. However, the cost

per iteration is much higher, so for large scale problems or when high accuracy

is not required, these are often less practical than the first order methods that

have much lower cost per iteration.

PDHG is also an example of a primal-dual method. Each iteration updates

both a primal and a dual variable. It is thus able to avoid some of the difficul-

ties that arise when working only on the primal or dual side. For example, for

TV minimization, gradient descent applied to the primal functional has trouble

where the gradient of the solution is zero because the functional is not differen-

tiable there. Chambolle’s method is a method on the dual that is very effective

for TV denoising, but doesn’t easily extend to applications where the dual prob-

lem is more complicated, such as TV deblurring. Primal-dual algorithms can

avoid to some extent these difficulties. Other examples include CGM [CGM99],

split Bregman [GO09], and more generally other Bregman iterative algorithms

[YOG08] and Lagrangian-based methods.

An adaptive time stepping scheme for PDHG was proposed in [ZC08] and

shown to outperform other popular TV denoising algorithms like Chambolle’s

method, CGM and split Bregman in many numerical experiments with a wide

variety of stopping conditions. Aside from some special cases of the PDHG

algorithm like gradient projection and subgradient descent, the theoretical con-

vergence properties were not known.

We show that we can make a small modification to the PDHG algorithm,

which has little effect on its performance, but that allows the modified algorithm

to be interpreted as an inexact Uzawa method of the type analyzed in [ZBO09].

60



The specific modified PDHG algorithm applied here has been previously proposed

by Pock, Cremers, Bischof and Chambolle [PCB09] for minimizing the Mumford-

Shah functional. They also prove convergence for a special class of saddle point

problems. Here, in a more general setting, we apply the convergence analysis for

the inexact Uzawa method from [ZBO09] to show the modified PDHG algorithm

converges for a range of fixed parameters. An alternate proof can be found in

[CCN09]. While the modified PDHG method is nearly as effective as fixed param-

eter versions of PDHG, well chosen adaptive step sizes are an improvement. With

additional restrictions on the step size parameters, we prove a convergence result

for PDHG applied to TV denoising by interpreting it as a projected averaged

gradient method on the dual.

We additionally show that the modified PDHG method can be extended in

the same ways as PDHG was extended in [ZC08] to apply to additional problems

like TV deblurring, l1 minimization and constrained minimization problems. For

these extensions we point out the range of parameters for which the convergence

theory from [ZBO09] is applicable. We gain some insight into why the method

works by putting it in a general framework and comparing it to related algorithms.

The organization of this chapter is as follows. In Sections 3.2 and 3.3 we

review the main idea of the PDHG algorithm and details about its application

to TV deblurring type problems. Then in Section 3.4, we discuss primal-dual

formulations for a more general problem. We define a general version of PDHG

and discuss in detail the framework in which it can be related to other similar

algorithms. These connections are diagrammed in Figure 3.1. In Section 3.5 we

show how to interpret PDHG applied to TV denoising as a projected averaged

gradient method on the dual and present a convergence result for a special case.

Then in Section 3.6, we discuss how to use operator splitting to apply the modified
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PDHG algorithm to more general problems. In particular, we give examples

of its application to constrained TV and l1 minimization problems and even

to multiphase image segmentation. Section 3.7 presents numerical experiments

for TV denoising, constrained TV deblurring and constrained l1 minimization,

comparing the performance of the modified PDHG algorithm with other methods.

3.2 Background and Notation

The PDHG algorithm in a general setting is a method for solving problems of

the form

min
u∈Rm

J(Au) +H(u),

where J and H are closed proper convex functions and A ∈ R
n×m. Usually,

J(Au) will correspond to a regularizing term of the form ‖Au‖, in which case

PDHG works by using duality to rewrite it as the saddle point problem

min
u∈Rm

max
‖p‖∗≤1

〈p, Au〉 +H(u)

and then alternating dual and primal steps of the form

pk+1 = arg max
‖p‖∗≤1

〈p, Auk〉 − 1

2δk
‖p− pk‖2

2

uk+1 = arg min
u∈Rm

〈pk+1, Au〉 +H(u) +
1

2αk

‖u− uk‖2
2

for appropriate parameters αk and δk. Here, ‖ · ‖ denotes an arbitrary norm on

R
m and ‖ · ‖∗ denotes its dual norm defined by

‖x‖∗ = max
‖y‖≤1

〈x, y〉,

where 〈·, ·〉 is the standard Euclidean inner product. Formulating the saddle point

problem also uses the fact that ‖ · ‖∗∗ = ‖ · ‖ [HJ85], from which it follows that

‖Au‖ = max‖p‖∗≤1〈p, Au〉.
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The applications considered here are to solve constrained and unconstrained

TV and l1 minimization problems. Problems of the form

min
u∈Rm

‖u‖TV +
λ

2
‖Ku− f‖2

2 (3.1)

are analyzed in [ZC08]. If K is a linear blurring operator, this corresponds to a

TV regularized deblurring model. It also includes the TV denoising case when

K = I. Also mentioned in [ZC08] are possible extensions such as to TV denoising

with a constraint on the variance of u and l1 minimization.

We will continue to use the same notation as in Chapter 2 for the discrete

gradient D (2.44), the matrix E (2.45), the norm ‖ ·‖E (2.46) defined so ‖u‖TV =

‖Du‖E, and the dual norm ‖ · ‖E∗ (2.47).

3.3 PDHG for TV Deblurring

In this section we review from [ZC08] the application of PDHG to the TV de-

blurring and denoising problems, but using the present notation.

3.3.1 Saddle Point Formulations

For TV minimization problems, the saddle point formulation that the PDHG is

based on starts with the observation that

‖u‖TV = max
p∈X

〈p,Du〉, (3.2)

where

X = {p ∈ R
e : ‖p‖E∗ ≤ 1} . (3.3)

The set X, which is the unit ball in the dual norm of ‖·‖E, can also be interpreted

as a Cartesian product of unit balls in the l2 norm. For example, in order for
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Du to be in X, the discretized gradient


 up+1,q − up,q

up,q+1 − up,q


 of u at each node (p, q)

would have to have Euclidean norm less than or equal to 1. The dual norm

interpretation is one way to explain (3.2) since

max
‖p‖E∗≤1

〈p,Du〉 = ‖Du‖E,

which equals ‖u‖TV by definition. Using duality to rewrite ‖u‖TV is also the

starting point for the primal-dual approach used by CGM [CGM99] and a second

order cone programming (SOCP) formulation used in [GY05]. Here it can be

used to reformulate problem (3.1) as the min-max problem

min
u∈Rm

max
p∈X

Φ(u, p) := 〈p,Du〉+
λ

2
‖Ku− f‖2

2. (3.4)

3.3.2 Existence of Saddle Point

One way to ensure that there exists a saddle point (u∗, p∗) of the convex-concave

function Φ is to restrict u and p to be in bounded sets. Existence then follows

from ([Roc70] 37.6). The dual variable p is already required to lie in the convex

set X. Assume that

ker (D)
⋂

ker (K) = {0}.

This is equivalent to assuming that ker (K) does not contain the vector of all

ones, which is very reasonable for deblurring problems where K is an averaging

operator. With this assumption, it follows that there exists c ∈ R such that the

set {
u : ‖Du‖E +

λ

2
‖Ku− f‖2

2 ≤ c

}

is nonempty and bounded. Thus we can restrict u to a bounded convex set.

64



3.3.3 Optimality Conditions

If (u∗, p∗) is a saddle point of Φ, it follows that

max
p∈X

〈p,Du∗〉 +
λ

2
‖Ku∗ − f‖2

2 = Φ(u∗, p∗) = min
u∈Rm

〈p∗, Du〉 +
λ

2
‖Ku− f‖2

2,

from which we can deduce the optimality conditions

DTp∗ + λKT (Ku∗ − f) = 0 (3.5)

p∗E
√
ET (Du∗)2 = Du∗ (3.6)

p∗ ∈ X. (3.7)

The second optimality condition (3.6) with E defined by (2.45) can be understood

as a discretization of p∗|∇u∗| = ∇u∗.

3.3.4 PDHG Algorithm

In [ZC08] it is shown how to interpret the PDHG algorithm applied to (3.1) as a

primal-dual proximal point method for solving (3.4) by iterating

pk+1 = arg max
p∈X

〈p,Duk〉 − 1

2λτk
‖p− pk‖2

2 (3.8a)

uk+1 = arg min
u∈Rm

〈pk+1, Du〉 +
λ

2
‖Ku− f‖2

2 +
λ(1 − θk)

2θk

‖u− uk‖2
2. (3.8b)

The index k denotes the current iteration. Also, τk and θk are the dual and primal

step sizes respectively. The above max and min problems can be explicitly solved,

yielding
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Algorithm: PDHG for TV Deblurring

pk+1 = ΠX

(
pk + τkλDu

k
)

(3.9a)

uk+1 =
(
(1 − θk) + θkK

TK
)−1
(

(1 − θk)u
k + θk(K

Tf − 1

λ
DTpk+1)

)
. (3.9b)

Here, ΠX is the orthogonal projection onto X defined by

ΠX(q) = arg min
p∈X

‖p− q‖2
2 =

q

Emax
(√

ET (q2), 1
) , (3.10)

where the division and max are understood in a componentwise sense. For ex-

ample, ΠX(Du) can be thought of as a discretization of





∇u
|∇u| if |∇u| > 1

∇u otherwise

.

This projection ΠX is the same as the one that appeared in the shrinkage formula

(2.57). In the denoising case where K = I, the pk+1 update remains the same

and the uk+1 simplifies to

uk+1 = (1 − θk)u
k + θk(f − 1

λ
DTpk+1).

For the initialization, we can take u0 ∈ R
m and p0 ∈ X.

3.4 General Algorithm Framework

In this section we consider a more general class of problems that PDHG can be

applied to. We define equivalent primal, dual and several primal-dual formula-

tions. We also place PDHG in a general framework that connects it to other

related alternating direction methods applied to saddle point problems.
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3.4.1 Primal-Dual Formulations

PDHG can more generally be applied to what we will refer to as the primal

problem

min
u∈Rm

FP (u), (P)

where

FP (u) = J(Au) +H(u), (3.11)

A ∈ R
n×m, J : R

n → (−∞,∞] and H : R
m → (−∞,∞] are closed convex

functions. The form of (P) is chosen to be slightly simpler than (P0) in order

to facilitate comparisons between related algorithms in this chapter. Assume

there exists a solution u∗ to (P). We will pay special attention to the case where

J(Au) = ‖Au‖ for some norm ‖ · ‖, but this assumption is not required. J(Au)

reduces to ‖u‖TV when J = ‖·‖E and A = D. In Section 3.2 when J was a norm,

it was shown how to use the dual norm to define a saddle point formulation of

(P) as

min
u∈Rm

max
‖p‖∗≤1

〈Au, p〉 +H(u).

This can equivalently be written in terms of the Legendre-Fenchel transform, or

convex conjugate, of J denoted by J∗ and defined by

J∗(p) = sup
w∈Rn

〈p, w〉 − J(w).

When J is a closed proper convex function, we have that J∗∗ = J [ET99]. There-

fore,

J(Au) = sup
p∈Rn

〈p, Au〉 − J∗(p).

So an equivalent saddle point formulation of (P) is

min
u∈Rm

sup
p∈Rn

LPD(u, p), (PD)
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where

LPD = 〈p, Au〉 − J∗(p) +H(u).

This holds even when J is not a norm, but in the case when J(w) = ‖w‖, we can

then use the dual norm representation of ‖w‖ to write

J∗(p) = sup
w

〈p, w〉 − max
‖y‖∗≤1

〈w, y〉

=





0 if ‖p‖∗ ≤ 1

∞ otherwise

,

in which case we can interpret J∗ as the indicator function for the unit ball in

the dual norm.

Let (u∗, p∗) be a saddle point of LPD. In particular, this means

max
p∈Rn

〈p, Au∗〉 − J∗(p) +H(u∗) = LPD(u∗, p∗) = min
u∈Rm

〈p∗, Au〉 +H(u) − J∗(p∗),

from which we can deduce the equivalent optimality conditions and then use the

definitions of the Legendre transform and subdifferential to write these conditions

in two ways

−ATp∗ ∈ ∂H(u∗) ⇔ u∗ ∈ ∂H∗(−AT p∗) (3.12)

Au∗ ∈ ∂J∗(p∗) ⇔ p∗ ∈ ∂J(Au∗), (3.13)

where ∂ denotes the subdifferential. Recall that the subdifferential ∂F (x) of a

convex function F : R
m → (−∞,∞] at the point x is defined by the set

∂F (x) = {q ∈ R
m : F (y) ≥ F (x) + 〈q, y − x〉 ∀y ∈ R

m}.

Another useful saddle point formulation that we will refer to as the split

primal problem is obtained by introducing the constraint w = Au in (P) and

forming the Lagrangian

LP (u, w, p) = J(w) +H(u) + 〈p, Au− w〉. (3.14)
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The corresponding saddle point problem is

max
p∈Rn

inf
u∈Rm,w∈Rn

LP (u, w, p). (SPP)

Although p was introduced in (3.14) as a Lagrange multiplier for the constraint

Au = w, it has the same interpretation as the dual variable p in (PD). It follows

immediately from the optimality conditions that if (u∗, w∗, p∗) is a saddle point

for (SPP), then (u∗, p∗) is a saddle point for (PD).

The dual problem is

max
p∈Rn

FD(p), (D)

where the dual functional FD(p) is a concave function defined by

FD(p) = inf
u∈Rm

LPD(u, p) = inf
u∈Rm

〈p, Au〉 − J∗(p) +H(u) = −J∗(p) −H∗(−ATp).

(3.15)

Note that this is equivalent to defining the dual by

FD(p) = inf
u∈Rm,w∈Rn

LP (u, w, p). (3.16)

Since we assumed there exists an optimal solution u∗ to the convex problem

(P), it follows from Fenchel Duality ([Roc70] 31.2.1) that there exists an optimal

solution p∗ to (D) and FP (u∗) = FD(p∗). Moreover, u∗ solves (P) and p∗ solves

(D) if and only if (u∗, p∗) is a saddle point of LPD(u, p) ([Roc70] 36.2).

By introducing the constraint y = −ATp in (D) and forming the corresponding

Lagrangian

LD(p, y, u) = J∗(p) +H∗(y) + 〈u,−ATp− y〉, (3.17)

we obtain yet another saddle point problem,

max
u∈Rm

inf
p∈Rn,y∈Rm

LD(p, y, u), (SPD)
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which we will refer to as the split dual problem. Although u was introduced in

(SPD) as a Lagrange multiplier for the constraint y = −ATp, it actually has the

same interpretation as the primal variable u in (P). Again, it follows from the

optimality conditions that if (p∗, y∗, u∗) is a saddle point for (SPD), then (u∗, p∗)

is a saddle point for (PD). Note also that

FP (u) = − inf
p∈Rn,y∈Rm

LD(p, y, u).

3.4.2 Algorithm Framework and Connections to PDHG

In this section we define a general version of PDHG applied to (PD) and discuss

connections to related algorithms that can be interpreted as alternating direction

methods applied to (SPP) and (SPD). These connections are summarized in

Figure 3.1.

It was shown in [ZC08] that PDHG applied to TV denoising can be interpreted

as a primal-dual proximal point method applied to a saddle point formulation of

the problem. More generally, applied to (PD) it yields

Algorithm: PDHG on (PD)

pk+1 = arg max
p∈Rn

−J∗(p) + 〈p, Auk〉 − 1

2δk
‖p− pk‖2

2 (3.18a)

uk+1 = arg min
u∈Rm

H(u) + 〈ATpk+1, u〉 +
1

2αk

‖u− uk‖2
2, (3.18b)

where p0 = 0, u0 is arbitrary, and αk, δk > 0. The parameters τk and θk from

(3.9) in terms of δk and αk are

θk =
λαk

1 + αkλ
τk =

δk

λ
.
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3.4.2.1 Proximal Forward Backward Splitting Special Cases of PDHG

Two notable special cases of PDHG are αk = ∞ and δk = ∞. These special

cases correspond to the proximal forward backward splitting method (PFBS)

[LM79, Pas79, CW06] applied to (D) and (P) respectively.

PFBS is an iterative splitting method that can be used to find a minimum of

a sum of two convex functionals by alternating a (sub)gradient descent step with

a proximal step. Applied to (D) it yields

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− (pk + δkAu

k+1)‖2
2, (3.19)

where uk+1 ∈ ∂H∗(−AT pk). Since uk+1 ∈ ∂H∗(−AT pk) ⇔ −AT pk ∈ ∂H(uk+1),

which is equivalent to

uk+1 = arg min
u∈Rm

H(u) + 〈ATpk, u〉,

(3.19) can be written as

Algorithm: PFBS on (D)

uk+1 = arg min
u∈Rm

H(u) + 〈ATpk, u〉 (3.20a)

pk+1 = arg min
p∈Rn

J∗(p) + 〈p,−Auk+1〉 +
1

2δk
‖p− pk‖2

2. (3.20b)

Even though the order of the updates is reversed relative to PDHG, since the

initialization is arbitrary it is still a special case of (3.18) where αk = ∞.

If we assume that J(·) = ‖ · ‖, we can interpret the pk+1 step as an orthogonal

projection onto a convex set,

pk+1 = Π{p:‖p‖∗≤1}
(
pk + δkAu

k+1
)
.
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Then PFBS applied to (D) can be interpreted as a (sub)gradient projection al-

gorithm.

As a special case of ([CW06] Theorem 3.4), the following convergence result

applies to (3.20).

Theorem 3.4.1. Fix p0 ∈ R
n, u0 ∈ R

m and let (uk, pk) be defined by (3.20).

If H∗ is differentiable, ∇(H∗(−ATp)) is Lipschitz continuous with Lipschitz con-

stant equal to 1
β
, and 0 < inf δk ≤ sup δk < 2β, then {pk} converges to a solution

of (D) and {uk} converges to the unique solution of (P).

Proof. Convergence of {pk} to a solution of (D) follows from ([CW06] 3.4). From

(3.20a), uk+1 satisfies −ATpk ∈ ∂H(uk+1), which, from the definitions of the sub-

differential and Legendre transform, implies that uk+1 = ∇H∗(−AT pk). So by

continuity of ∇H∗, uk → u∗ = ∇H∗(−AT p∗). From (3.20b) and the convergence

of {pk}, Au∗ ∈ ∂J∗(p∗). Therefore (u∗, p∗) satisfies the optimality conditions

(3.12,3.13) for (PD), which means u∗ solves (P) ([Roc70] 31.3). Uniqueness fol-

lows from the assumption thatH∗ is differentiable, which by ([Roc70] 26.3) means

that H(u) in the primal functional is strictly convex.

It will be shown later in Section 3.4.2.4 how to equate modified versions of

the PDHG algorithm with convergent alternating direction methods, namely split

inexact Uzawa methods from [ZBO09] applied to the split primal (SPP) and split

dual (SPD) problems. The connection there is very similar to the equivalence

from [Tse91] between PFBS applied to (D) and what Tseng in [Tse91] called

the alternating minimization algorithm (AMA) applied to (SPP). Recall from

Section 2.3.3.1 that AMA applied to (SPP) is an alternating direction method

that alternately minimizes first the Lagrangian LP (u, w, p) with respect to u and

then the augmented Lagrangian LP + δk

2
‖Au − w‖2

2 with respect to w before
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updating the Lagrange multiplier p.

Algorithm: AMA on (SPP)

uk+1 = arg min
u∈Rm

H(u) + 〈ATpk, u〉 (3.21a)

wk+1 = arg min
w∈Rn

J(w) − 〈pk, w〉 +
δk

2
‖Auk+1 − w‖2

2 (3.21b)

pk+1 = pk + δk(Au
k+1 − wk+1) (3.21c)

To see the equivalence between (3.20) and (3.21), first note that (3.21a) is

identical to (3.20a), so it suffices to show that (3.21b) and (3.21c) are together

equivalent to (3.20b). Combining (3.21b) and (3.21c) yields

pk+1 = (pk + δkAu
k+1) − δk arg min

w
J(w) +

δk

2
‖w − (pk + δkAu

k+1)

δk
‖2

2.

By the Moreau decomposition (2.29), this is equivalent to

pk+1 = arg min
p
J∗(p) +

1

2δk
‖p− (pk + δkAu

k+1)‖2
2,

which is exactly (3.20b).

In [Tse91], convergence of (uk, wk, pk) satisfying (3.21) to a saddle point of

LP (u, w, p) is directly proved under the assumption that H is strongly convex,

an assumption that directly implies the condition on H∗ in Theorem 3.4.1.

The other special case of PDHG where δk = ∞ can be analyzed in a similar

manner. The corresponding algorithm is PFBS applied to (P),
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Algorithm: PFBS on (P)

pk+1 = arg min
p∈Rn

J∗(p) + 〈−Auk, p〉 (3.22a)

uk+1 = arg min
u∈Rm

H(u) + 〈u,ATpk+1〉 +
1

2αk

‖u− uk‖2
2, (3.22b)

which is analogously equivalent to AMA applied to (SPD).

Algorithm: AMA on (SPD)

pk+1 = arg min
p∈Rn

J∗(p) + 〈−Auk, p〉 (3.23a)

yk+1 = arg min
y∈Rm

H∗(y) − 〈uk, y〉+
αk

2
‖y + ATpk+1‖2

2 (3.23b)

uk+1 = uk + αk(−AT pk+1 − yk+1) (3.23c)

The equivalence again follows from the Moreau decomposition (2.29), and the

analogous version of Theorem 3.4.1 applies to (3.22).

Note that there are other ways to apply the algorithms described above. For

example, when applying PFBS to (P), we could have applied the gradient step to

H(u) and the proximal step to J(Au). This would have corresponded to swapping

the roles of p and y in AMA applied to (SPD). There is a corresponding alternate

version of AMA on (SPP). But these alternate versions aren’t considered here

because they aren’t as closely connected to PDHG. In addition, those alternate

versions involve more complicated minimization steps in the sense that variables

are coupled by either the matrix A or AT .
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3.4.2.2 Reinterpretation of PDHG as Relaxed AMA

The general form of PDHG (3.18) can also be interpreted as alternating direction

methods applied to (SPP) or (SPD). These interpretations turn out to be relaxed

forms of AMA. They can be obtained by modifying the objective functional for

the Lagrangian minimization step by adding either 1
2αk

‖u − uk‖2
2 to (3.21a) or

1
2δk

‖p− pk‖2
2 to (3.23a).

Algorithm: Relaxed AMA on (SPP)

uk+1 = arg min
u∈Rm

H(u) + 〈ATpk, u〉 +
1

2αk

‖u− uk‖2
2 (3.24a)

wk+1 = arg min
w∈Rn

J(w) − 〈pk, w〉 +
δk

2
‖Auk+1 − w‖2

2 (3.24b)

pk+1 = pk + δk(Au
k+1 − wk+1) (3.24c)
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Algorithm: Relaxed AMA on (SPD)

pk+1 = arg min
p∈Rn

J∗(p) + 〈−Auk, p〉 +
1

2δk
‖p− pk‖2

2 (3.25a)

yk+1 = arg min
y∈Rm

H∗(y) − 〈uk, y〉+
αk

2
‖y + ATpk+1‖2

2 (3.25b)

uk+1 = uk + αk(−AT pk+1 − yk+1) (3.25c)

The equivalence of these relaxed AMA algorithms to the general form of PDHG

(3.18) follows by a similar argument as in Section 3.4.2.1.

3.4.2.3 Connection to ADMM

Although equating PDHG to the relaxed AMA algorithm doesn’t yield any direct

convergence results for PDHG, it does show a close connection to ADMM, which

does have a well established convergence theory, discussed in Section 2.3.2.3. If,

instead of adding proximal terms of the form 1
2αk

‖u−uk‖2
2 and 1

2δk
‖p−pk‖2

2 to the

first step of AMA applied to (SPP) and (SPD), we add the augmented Lagrangian

penalties δk

2
‖Au−wk‖2

2 and αk

2
‖ATp− yk‖2

2, then we get exactly ADMM applied

to (SPP) and (SPD) respectively.

Algorithm: ADMM on (SPP)

uk+1 = arg min
u∈Rm

H(u) + 〈ATpk, u〉 +
δk

2
‖Au− wk‖2

2 (3.26a)

wk+1 = arg min
w∈Rn

J(w) − 〈pk, w〉 +
δk

2
‖Auk+1 − w‖2

2 (3.26b)

pk+1 = pk + δk(Au
k+1 − wk+1) (3.26c)
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Algorithm: ADMM on (SPD)

pk+1 = arg min
p∈Rn

J∗(p) + 〈−Auk, p〉 +
αk

2
‖yk + ATp‖2

2 (3.27a)

yk+1 = arg min
y∈Rm

H∗(y) − 〈uk, y〉 +
αk

2
‖y + ATpk+1‖2

2 (3.27b)

uk+1 = uk + αk(−ATpk+1 − yk+1) (3.27c)

ADMM applied to (SPP) can be interpreted as Douglas Rachford splitting

[DR56] applied to (D) and ADMM applied to (SPD) can be interpreted as Dou-

glas Rachford splitting applied to (P) [Gab79, GT89, Eck93, EB92]. Section

2.3.2.2 shows how these connections are made. It is also shown in Section 2.3.2.1

[Ess09, Set09] how to interpret these as the split Bregman algorithm of [GO09].

Assuming that we are most interested in finding a solution u∗ to (P), when we

apply ADMM to (SPP), we want to ensure that (uk, wk, pk) converges to a saddle

point. Conditions for this are given in Theorem 2.3.3 [EB92].

On the other hand, when applying ADMM to (SPD), it isn’t necessary to

insist that (pk, yk, uk) converge to a saddle point if we are only interested in

the convergence of {uk} to a solution of (P). Instead we can make use of the

convergence theory for the equivalent Douglas Rachford splitting method on (P),

see Theorem 2.3.2 [Eck93].

An interesting way to arrive at a version of Douglas Rachford splitting that

corresponds exactly to ADMM applied to (SPD) is to apply ADMM to yet another

Lagrangian formulation of (P), namely

max
y

inf
v,u
LPDR

(v, u, y) := J(Av) +H(u) + 〈y, v − u〉.
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This yields an easily implementable way of writing the Douglas Rachford splitting

algorithm [Eck93].

Algorithm: Douglas Rachford on (P)

vk+1 = arg min
v∈Rm

J(Av) +
1

2αk

‖v − uk + αky
k‖2

2 (3.28a)

uk+1 = arg min
u∈Rm

H(u) +
1

2αk

‖u− vk+1 − αky
k‖2

2 (3.28b)

yk+1 = yk +
1

αk

(vk+1 − uk+1) (3.28c)

Douglas Rachford splitting applied to (D) can be derived in an analogous manner

or by referring to (2.32).

Algorithm: Douglas Rachford on (D)

qk+1 = arg min
q∈Rn

H∗(−AT q) +
1

2δk
‖q − pk + δkw

k‖2
2 (3.29a)

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− qk+1 − δkw

k‖2
2 (3.29b)

wk+1 = wk +
1

δk
(qk+1 − pk+1) (3.29c)

3.4.2.4 Modifications of PDHG

In this section we show that two slightly modified versions of the PDHG algo-

rithm, denoted PDHGMp and PDHGMu, can be interpreted as a split inexact

Uzawa method from [ZBO09] applied to (SPP) and (SPD) respectively. In the

constant step size case, PDHGMp replaces pk+1 in the uk+1 step (3.18b) with

2pk+1−pk whereas PDHGMu replaces uk in the pk+1 step (3.18a) with 2uk−uk−1.
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The variable step size case will also be discussed. The advantage of these modified

algorithms is that for appropriate parameter choices they are nearly as efficient as

PDHG numerically, and some known convergence results [ZBO09] can be applied.

Alternate convergence results for PDHGMu are also proved in [PCB09, CCN09]

based on an argument in [Pop80].

The split inexact Uzawa method from [ZBO09] applied to (SPD) can be

thought of as a modification of ADMM. Applying the main idea of the Bregman

operator splitting algorithm from [ZBB09], it adds 1
2
〈p−pk, ( 1

δk
−αkAA

T )(p−pk)〉
to the penalty term αk

2
‖ATp− yk‖2

2 in the objective functional for the first mini-

mization step. To ensure 1
δk
−αkAA

T is positive definite, choose 0 < δk <
1

αk‖A‖2 .

Adding this extra term, like the surrogate functional approach of [DDM04], has

the effect of linearizing the penalty term and decoupling the variables previously

coupled by the matrix AT . The updates for yk+1 and uk+1 remain the same as

for ADMM. By combining terms for the pk+1 update, the resulting algorithm can

be written as

Algorithm: Split Inexact Uzawa applied to (SPD)

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− pk − δkAu

k + αkδkA(AT pk + yk)‖2
2 (3.30a)

yk+1 = arg min
y∈Rm

H∗(y) − 〈uk, y〉 +
αk

2
‖y + ATpk+1‖2

2 (3.30b)

uk+1 = uk + αk(−AT pk+1 − yk+1). (3.30c)

The above algorithm can be shown to converge at least for fixed step sizes α and

δ satisfying 0 < δ < 1
α‖A‖2 .

Theorem 3.4.2. [ZBO09] Let αk = α > 0, δk = δ > 0 and 0 < δ < 1
α‖A‖2 . Let

(pk, yk, uk) satisfy (3.30). Also let p∗ be optimal for (D) and y∗ = −ATp∗. Then
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• ‖ATpk + yk‖2 → 0

• J∗(pk) → J∗(p∗)

• H∗(yk) → H∗(y∗)

and all convergent subsequences of (pk, yk, uk) converge to a saddle point of LD

(3.17).

Moreover, the split inexact Uzawa algorithm can be rewritten in a form that

is very similar to PDHG. Since the yk+1 (3.30b) and uk+1 (3.30c) steps are the

same as those for AMA on (SPD) (3.23), then by the same argument they are

equivalent to the uk+1 update in PDHG (3.18b). From (3.30c), we have that

yk =
uk−1

αk−1

− uk

αk−1

− ATpk. (3.31)

Substituting this into (3.30a), we see that (3.30) is equivalent to a modified form

of PDHG where uk is replaced by
(
(1 + αk

αk−1
)uk − αk

αk−1
uk−1

)
in (3.18a). The

resulting form of the algorithm will be denoted PDHGMu.

Algorithm: PDHGMu

pk+1 = arg min
p∈Rn

J∗(p) + 〈p,−A
(

(1 +
αk

αk−1

)uk − αk

αk−1

uk−1

)
〉 +

1

2δk
‖p− pk‖2

2

(3.32a)

uk+1 = arg min
u∈Rm

H(u) + 〈ATpk+1, u〉 +
1

2αk

‖u− uk‖2
2, (3.32b)

Note that from (3.31) and (3.32b), yk+1 = ∂H(uk+1), which we could substitute

instead of (3.31) into (3.30a) to get an equivalent version of PDHGMu, whose

updates only depend on the previous iteration instead of the previous two.
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The corresponding split inexact Uzawa method applied to (SPP) is obtained

by adding 1
2
〈u − uk, ( 1

αk
− δkA

TA)(u − uk)〉 to the uk+1 step of ADMM applied

to (SPP).

Algorithm: Split Inexact Uzawa applied to (SPP)

uk+1 = arg min
u∈Rm

H(u) +
1

2αk

‖u− uk + αkA
Tpk + δkαkA

T (Auk − wk)‖2
2 (3.33a)

wk+1 = arg min
w∈Rn

J(w) − 〈pk, w〉 +
δk

2
‖Auk+1 − w‖2

2 (3.33b)

pk+1 = pk + δk(Au
k+1 − wk+1) (3.33c)

Again by Theorem 3.4.2, the above algorithm converges for fixed stepsizes α

and δ with 0 < α < 1
δ‖A‖2 . Note this requirement is equivalent to requiring

0 < δ < 1
α‖A‖2 .

Since from (3.33c), we have that

wk =
pk−1

δk−1
− pk

δk−1
+ Auk, (3.34)

a similar argument shows that (3.33) is equivalent to a modified form of PDHG

where pk is replaced by
(
(1 + δk

δk−1
)pk − δk

δk−1
pk−1

)
. The resulting form of the

algorithm will be denoted PDHGMp.

Algorithm: PDHGMp

uk+1 = arg min
u∈Rm

H(u) + 〈AT

(
(1 +

δk

δk−1
)pk − δk

δk−1
pk−1

)
, u〉 +

1

2αk

‖u− uk‖2
2,

(3.35a)

pk+1 = arg min
p∈Rn

J∗(p) − 〈p, Auk+1〉 +
1

2δk
‖p− pk‖2

2 (3.35b)
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The modifications to uk and pk in the split inexact Uzawa methods are remi-

niscent of the predictor-corrector step in Chen and Teboulle’s predictor corrector

proximal method (PCPM) [CT94]. Despite some close similarities, however, the

algorithms are not equivalent. The modified PDHG algorithms are more implicit

than PCPM.

The connections between the algorithms discussed so far are diagrammed in

Figure 3.1. For simplicity, constant step sizes are assumed in the diagram.

3.5 Interpretation of PDHG as Projected Averaged Gra-

dient Method for TV Denoising

Even though we know of a convergence result (Theorem 3.4.2) for the modified

PDHG algorithms PDHGMu (3.32) and PDHGMp, it would be nice to show

convergence of the original PDHG method (3.18) because PDHG still has some

numerical advantages. Empirically, the stability requirements for the step size

parameters are less restrictive for PDHG, so there is more freedom to tune the

parameters to improve the rate of convergence. In this section, we restrict atten-

tion to PDHG applied to TV denoising and prove a convergence result assuming

certain conditions on the parameters.

3.5.1 Projected Gradient Special Case

In the case of TV denoising, problem (P) becomes

min
u∈Rm

‖u‖TV +
λ

2
‖u− f‖2

2, (3.36)
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(P) minu FP (u)

FP (u) = J(Au) + H(u)

(D) maxp FD(p)

FD(p) = −J∗(p) − H∗(−AT p)

(PD) minu supp LPD(u, p)

LPD(u, p) = 〈p, Au〉 − J∗(p) + H(u)

(SPP) maxp infu,w LP (u, w, p)

LP (u, w, p) = J(w) + H(u) + 〈p, Au − w〉
(SPD) maxu infp,y LD(p, y, u)

LD(p, y, u) = J∗(p) + H∗(y) + 〈u,−AT p − y〉
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Legend: (P): Primal
(D): Dual
(PD): Primal-Dual
(SPP): Split Primal
(SPD): Split Dual

AMA: Alternating Minimization Algorithm (4.2.1)
PFBS: Proximal Forward Backward Splitting (4.2.1)
ADMM: Alternating Direction Method of Multipliers (4.2.2)
PDHG: Primal Dual Hybrid Gradient (4.2)
PDHGM: Modified PDHG (4.2.3)
Bold: Well Understood Convergence Properties

Figure 3.1: PDHG-Related Algorithm Framework
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with J = ‖ · ‖E, A = D and H(u) = λ
2
‖u − f‖2

2, in which case PFBS on (D)

simplifies to

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p− (pk + δkD∇H∗(−DTpk))‖2

2.

Since J∗ is the indicator function for the unit ball, denoted X (3.3), in the dual

norm ‖·‖E∗ , this is exactly an orthogonal projection onto the convex set X (3.10).

Letting τk = δk

λ
and using also that

H∗(−DTp) =
1

2λ
‖λf −DTp‖2

2 −
λ

2
‖f‖2

2,

the algorithm simplifies to

Algorithm: Gradient Projection for TV Denoising

pk+1 = ΠX

(
pk − τkD(DTpk − λf)

)
. (3.37)

Many variations of gradient projection applied to TV denoising are discussed in

[ZWC08]. As already noted in [ZC08], algorithm PDGH applied to TV denoising

reduces to projected gradient descent when θk = 1. Equivalence to (3.9) in the

θk = 1 case can be seen by plugging uk = (f − 1
λ
DTpk) into the update for pk+1.

This can be interpreted as projected gradient descent applied to

min
p∈X

G(p) :=
1

2
‖DTp− λf‖2

2, (3.38)

an equivalent form of the dual problem.

Theorem 3.5.1. Fix p0 ∈ R
n. Let pk be defined by (3.37) with 0 < inf τk ≤

sup τk <
1
4
, and define uk+1 = f − DT pk

λ
. Then {pk} converges to a solution of

(3.38), and {uk} converges to a solution of (3.36).
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Proof. Since ∇G is Lipschitz continuous with Lipschitz constant ‖DDT‖ and

uk+1 = ∇H∗(−DTpk) = f − DT pk

λ
, then by Theorem 3.4.1 the result follows if

0 < inf τk ≤ sup τk <
2

‖DDT ‖ . The bound ‖DDT‖ ≤ 8 follows from the Gersgorin

circle theorem.

3.5.1.1 AMA Equivalence and Soft Thresholding Interpretation

By the general equivalence between PFBS and AMA discussed in Section 2.3.3.1,

the gradient projection algorithm (3.37) is equivalent to

Algorithm: AMA for TV Denoising

uk+1 = f − DTpk

λ
(3.39a)

wk+1 = S̃ 1

δk

(Duk+1 +
1

δk
pk) (3.39b)

pk+1 = pk + δk(Du
k+1 − wk+1), (3.39c)

where S̃ (2.54) denotes the soft thresholding operator for ‖ · ‖E. It can be

interpreted in terms of an orthogonal projection onto the set X.

S̃α(f) = arg min
z

‖z‖E +
1

2α
‖z − f‖2

2 = f − ΠαX(f). (3.40)

Similar formulas to (3.40) arise when J equals norms other than ‖ · ‖E, the

modification being that X is replaced by the unit ball in the respective dual

norms. In fact, it’s not always necessary to assume that J is a norm to obtain

similar projection interpretations. It’s enough that J be a convex 1-homogeneous

function, as Chambolle points out in [Cha04] when deriving a projection formula

for the solution of the TV denoising problem. By letting z = DTp, the dual
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problem (3.38) is solved by the projection

z = Π{z:z=DT p,‖p‖E∗≤1}(λf),

and the solution to the TV denoising problem is given by

u∗ = f − 1

λ
Π{z:z=DT p,‖p‖E∗≤1}(λf).

However, the projection is nontrivial to compute.

3.5.2 Projected Averaged Gradient

In the θ 6= 1 case, still for TV denoising, the projected gradient descent interpre-

tation of PDHG extends to an interpretation as a projected averaged gradient

descent algorithm. Consider for simplicity parameters τ and θ that are indepen-

dent of k. Then plugging uk+1 into the update for p yields

pk+1 = ΠX

(
pk − τdk

θ

)
(3.41)

where

dk
θ = θ

k∑

i=1

(1 − θ)k−i∇G(pi) + (1 − θ)k∇G(p0)

is a convex combination of gradients of G at the previous iterates pi. Note that

dk
θ is not necessarily a descent direction.

This kind of averaging of previous iterates suggests a connection to Nesterov’s

method [Nes07]. Several recent papers study variants of his method and their

applications. Weiss, Aubert and Blanc-Féraud in [WAB07] apply a variant of

Nesterov’s method [Nes05] to smoothed TV functionals. Beck and Teboulle in

[BT09] and Becker, Bobin and Candes in [BBC] also study variants of Nesterov’s

method that apply to l1 and TV minimization problems. Tseng gives a unified

treatment of accelerated proximal gradient methods like Nesterov’s in [Tse08].
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However, despite some tantalizing similarities to PDHG, it appears that none is

equivalent.

In the following section, the connection to a projected average gradient method

on the dual is made for the more general case when the parameters are allowed

to depend on k. Convergence results are presented for some special cases.

3.5.2.1 Convergence

For a minimizer p, the optimality condition for the dual problem (3.38) is

p = ΠX(p− τ∇G(p)), ∀τ ≥ 0, (3.42)

or equivalently

〈∇G(p), p− p〉 ≥ 0, ∀p ∈ X.

In the following, we denote G = minp∈X G(p) and let X∗ denote the set of min-

imizers. As mentioned above, the PDHG algorithm (3.9) for TV denoising is

related to a projected gradient method on the dual variable p. When τ and θ are

allowed to depend on k, the algorithm can be written as

pk+1 = ΠX

(
pk − τkd

k
)

(3.43)

where

dk =

k∑

i=0

si
k∇G(pi), si

k = θi−1

k−1∏

j=i

(1 − θj).

Note that

k∑

i=0

si
k = 1, si

k = (1 − θk−1)s
i
k−1 ∀k ≥ 0, i ≤ k, and (3.44)

dk = (1 − θk−1)d
k−1 + θk−1∇G(pk). (3.45)

As above, the direction dk is a linear (convex) combination of gradients of all

previous iterates. We will show dk is an ε-gradient at pk. This means dk is an
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element of the ε-differential (ε-subdifferential for nonsmooth functionals), ∂εG(p),

of G at pk defined by

G(q) ≥ G(pk) + 〈dk, q − pk〉 − ε, ∀q ∈ X

When ε = 0 this is the definition of dk being a sub-gradient (in this case, the

gradient) of G at pk.

For p and q, the Bregman distance based on G between p and q is defined as

D(p, q) = G(p) −G(q) − 〈∇G(q), p− q〉 ∀p, q ∈ X (3.46)

From (3.38), the Bregman distance (3.46) reduces to

D(p, q) =
1

2
‖DT (p− q)‖2

2 ≤
L

2
‖p− q‖2,

where L is the Lipschitz constant of ∇G.

Lemma 3.5.1. For any q ∈ X, we have

G(q) −G(pk) − 〈dk, q − pk〉 =

k∑

i=0

si
k(D(q, pi) −D(pk, pi)).

Proof. For any q ∈ X,

G(q) −G(pk) − 〈dk, q − pk〉 = G(q) −G(pk) − 〈
k∑

i=0

si
k∇G(pi), q − pk〉

=

k∑

i=0

si
kG(q) −

k∑

i=0

si
kG(pi) −

k∑

i=0

si
k〈∇G(pi), q − pi〉

+

k∑

i=0

si
k(G(pi) −G(pk) − 〈∇G(pi), pi − pk〉)

=

k∑

i=0

si
k(D(q, pi) −D(pk, pi))
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Lemma 3.5.2. The direction dk is a εk-gradient of pk where εk =
∑k

i=0 s
i
kD(pk, pi).

Proof. By Lemma 3.5.1,

G(q) −G(pk) − 〈dk, q − pk〉 ≥ −
k∑

i=0

si
kD(pk, pi) ∀q ∈ X.

By the definition of ε-gradient, we obtain that dk is a εk-gradient of G at pk,

where

εk =

k∑

i=0

si
kD(pk, pi).

Lemma 3.5.3. If θk → 1, then εk → 0.

Proof. Let hk = G(pk) − G(pk−1) − 〈dk−1, pk − pk−1〉, then using the Lipschitz

continuity of ∇G and the boundedness of dk, we obtain

|hk| = |D(pk, pk−1)+〈(∇G(pk−1)−dk−1, pk−pk−1|〉| ≤ L

2
‖pk−pk−1‖2

2+C1‖pk−pk−1‖2,

where L is the Lipschitz constant of ∇G, and C1 is some positive constant. Since

εk =
∑k

i=0 s
i
kD(pk, pi), and

∑
i=0 s

i
k = 1, then εk is bounded for any k.

Meanwhile, by replacing q with pk and pk by pk−1 in Lemma 3.5.1, we obtain

hk =
∑k−1

i=0 s
i
k−1(D(pk, pi) −D(pk−1, pi)). From

si
k = (1 − θk−1)s

i
k−1, ∀ 1 ≤ i ≤ k − 1,

we get

εk = (1 − θk−1)

k−1∑

i=0

si
k−1D(pk, pi)

= (1 − θk−1)εk−1 + (1 − θk−1)

k−1∑

i=0

si
k−1(D(pk, pi) −D(pk−1, pi))

= (1 − θk−1)(εk−1 + hk).
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By the boundness of hk and εk, we get immediately that if θk−1 → 1, then

εk → 0.

Since εk → 0, the convergence of pk follows directly from classical [SKR85,

LPS03] ε-gradient methods. Possible choices of the step size τk are given in the

following theorem:

Theorem 3.5.2. [SKR85, LPS03][Convergence to the optimal set using divergent

series τk] Let θk → 1 and let τk satisfy τk > 0, limk→∞ τk = 0 and
∑∞

k=1 τk = ∞.

Then the sequence pk generated by (3.43) satisfies G(pk) → G and dist{pk, X∗} →
0.

Since we require θk → 1, the algorithm is equivalent to projected gradient

descent in the limit. However, it is well known that a divergent step size for τk is

slow and we can expect a better convergence rate without letting τk go to 0. In

the following, we prove a different convergence result that doesn’t require τk → 0

but still requires θk → 1.

Lemma 3.5.4. For pk defined by (3.43), we have 〈dk, pk+1 − pk〉 ≤ − 1
τk
‖pk+1 −

pk‖2
2.

Proof. Since pk+1 is the projection of pk − τkd
k onto X, it follows that

〈pk − τkd
k − pk+1, p− pk+1〉 ≤ 0, ∀p ∈ X.

Replacing p with pk, we thus get

〈dk, pk+1 − pk〉 ≤ − 1

τk
‖pk+1 − pk‖2

2.
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Lemma 3.5.5. Let pk be generated by the method (3.43), then

G(pk+1) −G(pk) − β2
k

αk

‖pk − pk−1‖2
2

≤ −(αk + βk)
2

αk

‖pk − (
αk

αk + βk

pk+1 +
βk

αk + βk

pk−1)‖2
2

where

αk =
1

τkθk−1
− L

2
, βk =

1 − θk−1

2θk−1τk−1
(3.47)

Proof. By using the Taylor expansion and the Lipschiz continuity of ∇G (or

directly from the fact that G is quadratic function), we have

G(pk+1) −G(pk) ≤ 〈∇G(pk), pk+1 − pk〉 +
L

2
‖pk+1 − pk‖2

2,

Since ∇G(pk) = 1
θk−1

(dk − (1 − θk−1)d
k−1), we have

G(pk+1) −G(pk) ≤ 1

θk−1

〈dk, pk+1 − pk〉 − 1 − θk−1

θk−1

〈dk−1, pk+1 − pk〉

+
L

2
‖pk+1 − pk‖2

2,

= (
L

2
− 1

τkθk−1

)‖pk+1 − pk‖2
2 −

1 − θk−1

θk−1

〈dk−1, pk+1 − pk〉.

On the other hand, since pk is the projection of pk−1 − τk−1d
k−1, we get

〈pk−1 − τk−1d
k−1 − pk, p− pk〉 ≤ 0, ∀p ∈ X.

Replacing p with pk+1, we thus get

〈dk−1, pk+1 − pk〉 ≥ 1

τk−1
〈pk−1 − pk, pk+1 − pk〉.

This yields

G(pk+1) −G(pk) ≤ −αk‖pk+1 − pk‖2 − 2βk〈pk−1 − pk, pk+1 − pk〉

= −(αk + βk)
2

αk

‖pk − (
αk

αk + βk

pk+1 +
βk

αk + βk

pk−1)‖2

+
β2

k

αk

‖pk − pk−1‖2.
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where αk and βk are defined as (3.47).

Theorem 3.5.3. If αk and βk defined as (3.47) such that αk > 0, βk ≥ 0 and

∞∑

k=0

(αk + βk)
2

αk

= ∞,

∞∑

k=0

β2
k

αk

<∞, lim
k→∞

βk

αk

= 0. (3.48)

then every limit point pair (p∞, d∞) of a subsequence of (pk, dk) is such that p∞

is a minimizer of (3.38) and d∞ = ∇G(p∞).

Proof. The proof is adapted from [Ber99](Proposition 2.3.1,2.3.2) and Lemma

3.5.5. Since pk and dk are bounded, the subsequence (pk, dk) has a convergent

subsequence. Let (p∞, d∞) be a limit point of the pair (pk, dk), and let (pkm, dkm)

be a subsequence that converges to (p∞, d∞). For km > n0, lemma 3.5.5 implies

that

G(pkm) −G(pn0) ≤ −
km∑

k=n0

(αk + βk)
2

αk

‖pk − (
αk

αk + βk

pk+1 +
βk

αk + βk

pk−1)‖2
2

+

km∑

k=n0

β2
k

αk

‖pk−1 − pk‖2
2.

By the boundness of the constraint set X, the conditions (3.48) for αk and βk

and the fact that G(p) is bounded from below, we conclude that

‖pk − (
αk

αk + βk

pk+1 +
βk

αk + βk

pk−1)‖2 → 0.

Given ε > 0, we can choose m large enough such that ‖pkm − p∞‖2 ≤ ε
3
,

‖pk−( αk

αk+βk
pk+1+ βk

αk+βk
pk−1)‖2 ≤ ε

3
for all k ≥ km, and

βkm

αkm+βkm
‖(pkm−1−p∞)‖2 ≤

ε
3
. This third requirement is possible because limk→∞

βk

αk
= 0. Then

‖(pkm − p∞) − αkm

αkm + βkm

(pkm+1 − p∞) − βkm

αkm + βkm

(pkm−1 − p∞)‖2 ≤
ε

3
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implies

‖ αkm

αkm + βkm

(pkm+1 − p∞) +
βkm

αkm + βkm

(pkm−1 − p∞)‖2 ≤
2

3
ε.

Since
βkm

αkm+βkm
‖(pkm−1 − p∞)‖2 ≤ ε

3
, we have

‖pkm+1 − p∞‖2 ≤
αkm + βkm

αkm

ε.

Note that km + 1 is not necessarily an index for the subsequence {pkm}. Since

limk
αk+βk

αk
= 1, then we have ‖pkm+1 − p∞‖2 → 0 when m → ∞. According

(3.43), the limit point p∞, d∞ is therefore such that

p∞ = ΠX(p∞ − τd∞) (3.49)

for τ > 0.

It remains to show that the corresponding subsequence dkm = (1−θkm−1)d
km−1+

θkm−1∇G(pkm) converges to ∇G(p∞). By the same technique, and the fact that

θk → 1, we can get ‖∇G(pkm) − d∞‖ ≤ ε. Thus ∇G(pkm) → d∞. On the other

hand, ∇G(pkm) → ∇G(p∞). Thus d∞ = ∇G(p∞). Combining with (3.49) and

the optimal condition (3.42), we conclude that p∞ is a minimizer.

In summary, the overall conditions on θk and τk are:

• θk → 1, τk > 0,

• 0 < τkθk <
2
L
,

• ∑∞
k=0

(αk+βk)2

αk
= ∞,

• limk→∞
βk

αk
= 0,

• ∑∞
k=0

β2
k

αk
<∞,
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where

αk =
1

τkθk−1
− L

2
, βk =

1 − θk−1

2θk−1τk−1
. (3.50)

Finally, we have θk → 1, and for τk the classical condition for the projected

gradient descent algorithm, (0 < τk < 2
L
), and divergent stepsize, (limk τk →

0,
∑

k τk → ∞), are special cases of the above conditions. Note that even though

the convergence with 0 < θk ≤ c < 1 and even θk → 0 is numerically demon-

strated in [ZC08], a theoretical proof is still an open problem.

3.6 Applications

In this section we discuss the general types of functionals to which PDHG and

it’s variants can be applied. We show how seemingly more complicated models

can often still be written as the primal problem (P) and give several examples.

3.6.1 General Application to Convex Programs with Separable Struc-

ture

Analogous to the approach discussed in 2.1 about rewriting convex programs in

the form of (P0), similar operator splitting methods can be used to cast a large

class of problems in the form of (P). We will consider functionals that are sums

of convex functions composed with linear operators and subject to any number

of convex constraints. In particular, consider the problem of minimizing with

respect to u

F (u) =

N∑

i=1

φi(BiAiu+ bi) +H(u), (3.51)
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where φi and H are closed proper convex functions. By defining A =




A1

...

AN


 and

J(Au) =
∑N

i=1 Ji(Aiu) with Ji(zi) = φi(Bizi + bi), we can rewrite

F (u) =

N∑

i=1

Ji(Aiu) +H(u) (3.52)

= J(Au) +H(u),

which is of the form (P). The reason PDHG and it’s variants are still effective

for such problems is that the Ji terms naturally decouple when the algorithms

are applied. Letting p =




p1

...

pN


, it follows that

J∗(p) =

N∑

i=1

J∗
i (pi).

Application of PDHG to (3.52) yields

uk+1 = arg min
u
H(u) +

1

2αk

∥∥∥∥∥u−
(
uk − αk

N∑

i=1

AT
i p

k
i

)∥∥∥∥∥

2

2

(3.53a)

pk+1
i = arg min

pi

J∗
i (pi) +

1

2δk

∥∥pi −
(
pk

i + δkAiu
k+1
)∥∥2

2
i = 1, ..., N. (3.53b)

The application of PDHGMp to (3.52) with fixed time steps α and δ additionally

replaces pk
i in the uk+1 update with 2pk

i − pk−1
i . Recall that for PDHGMp to

converge, the parameters must satisfy α > 0, δ > 0 and αδ < 1
‖A‖2 .

The algorithm is most efficient when the individual minimization steps can

be explicitly solved. Some important examples of the types of functionals that

make this possible are when F (u) is composed of l2, l∞ and l1 norms, the l2 norm
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squared, l1-like terms such as TV, l∞-like terms such as max, indicator functions

gS(u) =





0 u ∈ S

∞ otherwise

for convex sets S that are easy to orthogonally project onto, and any of these

functions composed with linear operators. Additionally, the matrices Bi in (3.51)

should be chosen so that functionals of the form

φi(Biz + b) +
1

2
‖z − f‖2

2

are easy to minimize with respect to z. Often this means choosing Bi to be

diagonal, which can still be useful for scaling purposes. If φi = 1
2
‖·‖2

2 for example,

then the algorithm remains efficient for Bi where I + BTB is easily invertible.

The l2 norm squared terms are easy to deal with because they lead to quadratic

functions which can be explicitly minimized. The l2, l1 and l∞ norms are easy

to deal with because their Legendre transforms are the indicator functions for

the unit balls in the l2, l∞ and l1 norms respectively. It’s straightforward to

orthogonally project onto these convex sets. In the cases of the l2 and l∞ unit

balls

Π{z:‖z‖2≤1}(f) =
f

max(‖f‖2, 1)
(3.54)

and

Π{z:‖z‖∞≤1}(f) =
f

max(|f |, 1)
, (3.55)

where the division in Π{z:‖z‖∞≤1} is understood in a componentwise sense. Al-

though there isn’t a formula for the orthogonal projection onto the l1 unit ball,

Π{z:‖z‖1≤1}(f) can be computed in O(m log(m)) complexity for f ∈ R
m. Total

variation terms, as seen in previous examples, lead to the orthogonal projection

onto {z : ‖z‖E∗ ≤ 1} defined by (3.10). The Legendre transform of the max

function is the indicator function for the positive face of the l1 unit ball. The
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projection onto this convex set is similar to the projection onto the l1 unit ball

and can also be computed with complexity O(m log(m)). This projection ap-

pears in Section 3.6.4 and plays an important role in the convex registration and

nonlocal inpainting examples in Chapters 4 and 5.

The extension of PDHG to constrained minimization problems is discussed

in [ZC08] and applied for example to TV denoising with a constraint of the

form ‖u − f‖2 ≤ σ2 with σ2 an estimate of the variance of the Gaussian noise.

Suppose the constraint on u is of the form ‖Ku − f‖2 ≤ ε for some matrix K

and ε > 0. Let S = {u : ‖Ku− f‖2 ≤ ε}. When H(u) = gS(u), applying PDHG

or the modified versions results in a primal step that can be interpreted as an

orthogonal projection onto S. For this to be practical, ΠS must be straightforward

to compute. In general for this constraint,

ΠS(z) = (I −K†K)z +K†





Kz if ‖Kz − f‖2 ≤ ε

f + r
(

Kz−KK†f

‖Kz−KK†f‖2

)
otherwise

,

where

r =
√
ε2 − ‖(I −KK†)f‖2

2

and K† denotes the pseudoinverse of K. Note that (I − K†K) represents the

orthogonal projection onto ker (K). A special case where this projection is easily

computed is when K = RΦ where R is a row selector and Φ is orthogonal. Then

KKT = I and K† = KT . In this case, the projection onto S simplifies to

ΠS(z) = (I −KTK)z +KT





Kz if ‖Kz − f‖2 ≤ ε

f + ε
(

Kz−f

‖Kz−f‖2

)
otherwise

.

Without this kind of simplification, it’s often better to define T = {z : ‖z−f‖2 ≤
ε} and replace gS(u) with gT (Ku). By letting one of the Ji terms equal gT (z)
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it’s only necessary to project onto T , which is significantly easier than projecting

onto S. This projection ΠT is defined by

ΠT (z) = f +
z − f

max
(

‖z−f‖2

ε
, 1
) . (3.56)

3.6.2 Constrained and Unconstrained TV deblurring

In the notation of problem (P), the unconstrained TV deblurring problem (3.1)

corresponds to J = ‖ · ‖E, A = D and H(u) = λ
2
‖Ku − f‖2

2. PDHG applied to

(3.1) gives the following algorithm.

Algorithm: PDHG for Unconstrained TV Deblurring

uk+1 = (
1

αk

+ λKTK)−1

(
λKTf −DTpk +

uk

αk

)

pk+1 = ΠX

(
pk + δkDu

k+1
)
,

In the case when αk + λKTK is not easy to invert, we can instead let

H(u) = 0 and J(Au) = J1(Du) + J2(Ku),

where A =


D
K


, J1(w) = ‖w‖E and J2(z) = λ

2
‖z − f‖2

2. Letting p =


p1

p2


, it

follows that J∗(p) = J∗
1 (p1) + J∗

2 (p2). Applying PDHG and using the fact that

J∗
2 (p2) =

‖p2‖2
2

2λ
+ 〈p2, f〉, we obtain
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Algorithm: PDHG for Unconstrained TV Deblurring

uk+1 = uk − αk(D
Tpk

1 +KTpk
2)

pk+1
1 = ΠX

(
pk

1 + δkDu
k+1
)

pk+1
2 =

(
δkλ

δk + λ

)
(pk

2 + δkKu
k+1 − f).

A constrained version of this problem,

min
‖Ku−f‖2≤ε

‖u‖TV , (3.59)

can be rewritten as

min
u

‖Du‖E + gT (Ku).

Again let

H(u) = 0 and J(Au) = J1(Du) + J2(Ku),

where A =


D
K


, J1(w) = ‖w‖E but now J2(z) = gT (z). Applying PDHG (3.18)

with the uk+1 step written first, we obtain

Algorithm: PDHG for Constrained TV Deblurring

uk+1 = uk − αk(D
Tpk

1 +KT pk
2) (3.60a)

pk+1
1 = ΠX

(
pk

1 + δkDu
k+1
)

(3.60b)

pk+1
2 = pk

2 + δkKu
k+1 − δkΠT

(
pk

2

δk
+Kuk+1

)
. (3.60c)

In the constant step size case, to get the PDHGMp version of this algorithm, we

would replace DTpk
1 + KTpk

2 with DT (2pk
1 − pk−1

1 ) +KT (2pk
2 − pk−1

2 ). Note that

λ in the unconstrained problem is related to ε by λ =
‖p∗

2
‖

2ε
.
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3.6.3 Constrained l1-Minimization

Compressive sensing problems [CRT05] that seek to find a sparse solution sat-

isfying some data constraints sometimes use the type of constraint described in

the previous section. A simple example of such a problem is

min
z∈Rm

‖Ψz‖1 such that ‖RΓz − f‖2 ≤ ε, (3.61)

where Ψz is what we expect to be sparse, R is a row selector and Γ is orthogonal.

RΓ can be thought of as a measurement matrix that represents a selection of some

coefficients in an orthonormal basis. We could apply the same strategy used for

constrained TV deblurring, but we will instead let Ψ be orthogonal and focus on

a simpler example in order to compare two different applications of PDHGMu,

one that stays on the constraint set and one that doesn’t. Since Ψ is orthogonal,

problem (3.61) is equivalent to

min
u∈Rm

‖u‖1 such that ‖Ku− f‖2 ≤ ε, (3.62)

where K = RΓΨT .

3.6.3.1 Applying PDHGMu

Letting J = ‖ · ‖1, A = I, S = {u : ‖Ku− f‖2 ≤ ε} and H(u) equal the indicator

function gS(u) for S, application of PDHGMu yields

100



Algorithm: PDHGMu for Constrained l1-Minimization

pk+1 = Π{p:‖p‖∞≤1}

(
pk + δk

(
(1 +

αk

αk−1
)uk − αk

αk−1
uk−1

))
(3.63a)

uk+1 = ΠS

(
uk − αkp

k+1
)
, (3.63b)

where Π{p:‖p‖∞≤1} is defined by (3.55) and

ΠS(u) = (I −KTK)u+KT


f +

Ku− f

max
(

‖Ku−f‖2

ε
, 1
)




thanks to the special form of K. As before, Theorem 3.4.2 applies when αk =

α > 0, δk = δ > 0 and δ ≤ 1
α
. Also, since A = I, the case when δ = 1

α
is exactly

ADMM applied to (SPD), which is equivalent to Douglas Rachford splitting on

(P).

3.6.3.2 Reversing Roles of J and H

A related approach for problem (3.62) is to apply PDHGMu with J(u) = gT (Ku)

and H(u) = ‖u‖1, essentially reversing the roles of J and H . This will no longer

satisfy the constraint at each iteration, but it does greatly simplify the projection

step. The resulting algorithm is
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Algorithm: PDHGRMu (reversed role version) for Constrained l1-Minimization

vk+1 = pk + δkK

(
(1 +

αk

αk−1

)uk − αk

αk−1

uk−1

)
(3.64a)

pk+1 = vk+1 − δkΠT

(
vk+1

δk

)
(3.64b)

wk+1 = uk − αkK
Tpk+1 (3.64c)

uk+1 = wk+1 − αkΠ{p:‖p‖∞≤1}

(
wk+1

αk

)
. (3.64d)

Here, vk+1 and wk+1 are just place holders and ΠT is defined by (3.56).

This variant of PDHGMu is still an application of the split inexact Uzawa

method (3.30). Also, since ‖K‖ ≤ 1, the conditions for convergence are the same

as for (3.63). Moreover, since KKT = I, if δ = 1
α
, then this method can again

be interpreted as ADMM applied to the split dual problem.

Since ΠT is much simpler to compute than ΠS, the benefit of using operator

splitting to simplify the projection step is important for problems where K† is

not practical to deal with numerically.

3.6.4 Multiphase Segmentation

Another interesting application of PDHGMp is to the convexified multiphase seg-

mentation model proposed in [ZGF08] and discussed in [BYT09, BCB09]. The

goal is to segment a given image, h ∈ R
M , into W regions where the intensities in

the wth region are close to given intensities zw ∈ R and the lengths of the bound-

aries between regions should not be too long. This is modeled by minimizing over
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c ∈ R
MW a functional of the form

gC(c) +

W∑

w=1

(
‖cw‖TV +

λ

2
〈cw, (h− zw)2〉

)
, (3.65)

where

C = {c = (c1, ..., cW ) : cw ∈ R
M ,

W∑

w=1

cw = 1, cw ≥ 0}

and gC is the indicator function for C. This is a convex relaxation of the related

nonconvex functional which additionally requires the labels, c, to only take on

the values zero and one.

To apply PDHGMp, first define Xw to be a row selector for the cw labels so

that Xwc = cw. Define

H(c) = gC(c) +
λ

2
〈c,

W∑

w=1

X T
w (h− zw)2〉

and

J(Ac) =
W∑

w=1

Jw(DXwc),

where A =




DX1

...

DXW


 and

Jw(DXwc) = ‖DXwc‖E = ‖Dcw‖E = ‖cw‖TV .

Applying PDHGMp (3.35) yields

ck+1 = ΠC

(
ck − α

W∑

w=1

X T
w (DT (2pk

w − pk−1
w ) +

λ

2
(h− zw)2)

)

pk+1
w = ΠX

(
pk

w + δDXwc
k+1
)

for w = 1, ...,W.

The projection ΠC can be computed with complexity of O(MW log(W )) and is

further discussed in Section 4.3.1.
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Empirically, most of the weights cm,w, where m = 1, ...,M , automatically con-

verge to either 0 or 1. To guarantee this when visualizing the segmentation result,

we estimate a binary solution c̃k such that c̃km,w ∈ {0, 1} from ck by thresholding

c̃km,w =





1 if w = arg maxj c
k
m,j

0 otherwise.

If arg maxj c
k
m,j is not uniquely determined, it is chosen to be the first index where

the maximum is attained.

3.7 Numerical Experiments

We perform three numerical experiments to show the modified and unmodified

PDHG algorithms have similar performance and applications. The first is a com-

parison between PDHG, PDHGMu and ADMM applied to TV denoising. The

second compares the application of PDHG and PDHGMp to a constrained TV

deblurring problem. The third experiment applies PDHGMu in two different

ways to a compressive sensing problem formulated as a constrained l1 minimiza-

tion problem. We also demonstrate the application of PDHGMp to the convex

relaxation of multiphase segmentation discussed in Section 3.6.4.

3.7.1 Comparison of PDHGM, PDHG and ADMM for TV denoising

Here, we closely follow the numerical example presented in Table 4 of [ZC08],

which compares PDHG to Chambolle’s method [Cha04] and CGM [CGM99] for

TV denoising. We use the same 256 × 256 cameraman image with intensities in

[0, 255]. The image is corrupted with zero mean gaussian noise having standard

deviation 20. We also use the same parameter λ = .053. Both adaptive and fixed

stepsize strategies are compared. In all examples, we initialize u0 = f and p0 = 0.
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Figure 3.2: Original, noisy and benchmark denoised cameraman images

Figure 3.2 shows the clean and noisy images along with a benchmark solution for

the denoised image.

Recall the PDHG algorithm for the TV denoising problem (3.36) is given

by (3.9) with K = I. The adaptive strategy used for PDHG is the same one

proposed in [ZC08] where

τk = .2 + .008k θk =
.5 − 5

15+k

τk
. (3.66)

These can be related to the step sizes δk and αk in (3.18) by

δk = λτk αk =
θk

λ(1 − θk)
.

These time steps don’t satisfy the requirements of Theorem 3.5.3, which requires

θk → 1. However, we find that the adaptive PDHG strategy (3.66), for which

θk → 0, is better numerically for TV denoising.

When applying the PDHGMu algorithm to TV denoising, the stability re-

quirement means using the same adaptive time steps of (3.66) can be unstable.

Instead, the adaptive strategy we use for PDHGMu is

αk =
1

λ(1 + .5k)
δk =

1

8.01αk

(3.67)

Unfortunately, no adaptive strategy for PDHGMu can satisfy the requirements of

Theorem 3.4.2, which assumes fixed time steps. However, the rate of convergence
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of the adaptive PDHGMu strategy for TV denoising is empirically better than

the fixed parameter strategies.

We also perform some experiments with fixed α and δ. A comparison is made

to gradient projection (3.37). An additional comparison is made to ADMM as

applied to (SPP). This algorithm alternates solving a Poisson equation, soft

thresholding and updating the Lagrange multiplier. The explicit iterations are

given by

uk+1 = (λ− δ∆)−1(λf + δDTwk −DTpk) (3.68)

wk+1 = S̃ 1

δ
(Duk+1 +

pk

δ
)

pk+1 = pk + δ(Duk+1 − wk+1),

where S̃ is defined as in (3.40) and ∆ = −DTD denotes the discrete Laplacian.

This is equivalent to the split Bregman algorithm [GO09], which was compared

to PDHG elsewhere in [ZC08]. However, by working with the ADMM form of

the algorithm, it’s easier to use the duality gap as a stopping condition since u

and p have the same interpretations in both algorithms. As in [ZC08] we use the

relative duality gap R for the stopping condition defined by

R(u, p) =
FP (u) − FD(p)

FD(p)
=

(
‖u‖TV + λ

2
‖u− f‖2

2

)
−
(

λ
2
‖f‖2

2 − 1
2λ
‖DTp− λf‖2

2

)

λ
2
‖f‖2

2 − 1
2λ
‖DTp− λf‖2

2

,

which is the duality gap divided by the dual functional. The duality gap is de-

fined to be the difference between the primal and dual functionals. This quantity

is always nonnegative, and is zero if and only if (u, p) is a saddle point of (3.4)

with K = I. Table 3.1 shows the number of iterations required for the rela-

tive duality gap to fall below tolerances of 10−2, 10−4 and 10−6. Note that the

complexity of the PDHG and PDHGMu iterations scale like O(m) whereas the

ADMM iterations scale like O(m logm). Results for PDHGMp were identical to

those for PDHGMu and are therefore not included in the table.
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Algorithm tol = 10−2 tol = 10−4 tol = 10−6

PDHG (adaptive) 14 70 310

PDHGMu (adaptive) 19 92 365

PDHG α = 5, δ = .025 31 404 8209

PDHG α = 1, δ = .125 51 173 1732

PDHG α = .2, δ = .624 167 383 899

PDHGMu α = 5, δ = .025 21 394 8041

PDHGMu α = 1, δ = .125 38 123 1768

PDHGMu α = .2, δ = .624 162 355 627

PDHG α = 5, δ = .1 22 108 2121

PDHG α = 1, δ = .5 39 123 430

PDHG α = .2, δ = 2.5 164 363 742

PDHGMu α = 5, δ = .1 unstable

PDHGMu α = 1, δ = .5 unstable

PDHGMu α = .2, δ = 2.5 unstable

Proj. Grad. δ = .0132 48 750 15860

ADMM δ = .025 17 388 7951

ADMM δ = .125 22 100 1804

ADMM δ = .624 97 270 569

Table 3.1: Iterations required for TV denoising
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From Table 3.1, we see that PDHG and PDHGMu both benefit from adap-

tive stepsize schemes. The adaptive versions of these algorithms are compared

in Figure 3.4(a), which plots the l2 distance to the benchmark solution versus

number of iterations. PDHG with the adaptive stepsizes outperforms all the

other numerical experiments, but for identical fixed parameters, PDHGMu per-

formed slightly better than PDHG. However, for fixed α the stability requirement,

δ < 1
α‖D‖2 for PDHGMu places an upper bound on δ which is empirically about

four times less than for PDHG. Table 3.1 shows that for fixed α, PDHG with

larger δ outperforms PDHGMu. The stability restriction for PDHGMu is also

why the same adaptive time stepping scheme used for PDHG could not be used

for PDHGMu.

Table 3.1 also demonstrates that larger α is more effective when the relative

duality gap is large, and smaller α is better when this duality gap is small. Since

PDHG for large α is similar to projected gradient descent, roughly speaking this

means the adaptive PDHG algorithm starts out closer to being gradient projec-

tion on the dual problem, but gradually becomes more like a form of subgradient

descent on the primal problem.

3.7.2 Constrained TV Deblurring Example

PDHGMp and PDHG also perform similarly for constrained TV deblurring (3.59).

For this example we use the same cameraman image from the previous section

and let K be a convolution operator corresponding to a normalized Gaussian

blur with a standard deviation of 3 in a 17 by 17 window. Letting h denote the

clean image, the given data f is taken to be f = Kh + η, where η is zero mean

Gaussian noise with standard deviation 1. We thus set ε = 256. For the numer-

ical experiments we used the fixed parameter versions of PDHG and PDHGMp
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with α = .2 and δ = .55. The images h, f and the recovered image from 300

iterations of PDHGMp are shown in Figure 3.3. Figure 3.4(b) compares the l2

Figure 3.3: Original, blurry/noisy and image recovered from 300 PDHGMp iter-

ations

error to the benchmark solution as a function of number of iterations for PDHG

and PDHGMp. Empirically, with the same fixed parameters, the performance

of these two algorithms is nearly identical, and the curves are indistinguishable

in Figure 3.4(b). Although many iterations are required for a high accuracy so-

lution, Figure 3.3 shows the result can be visually satisfactory after just a few

hundred iterations.

3.7.3 Constrained l1 Minimization Examples

Here we compare PDHGMu (3.63) and the reversed role version, PDHGRMu

(3.64), applied to the constrained l1 minimization problem given by (3.62) with

ε = .01. Let K = RΓΨT , where R is a row selector, Γ is an orthogonal 2D

discrete cosine transform and Ψ is an orthogonal 2D Haar wavelet transform.

It follows that KKT = I and K† = KT . R selects about ten percent of the

DCT measurements, mostly low frequency ones. The constrained l1 minimization

model aims to recover a sparse signal in the wavelet domain that is consistent
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Figure 3.4: l2 error versus iterations for PDHG and PDHGMp

Figure 3.5: Original, damaged and benchmark recovered image

with these partial DCT measurements [CR05].

For the numerical experiments, we let α = 1 and δ = 1. Let h denote the

clean image, which is a 32 by 32 synthetic image shown in figure 3.5. The data

f is taken to be RΓh. For the initialization, let p0 = 0 and let u0 = Ψz0,

where z0 = ΓTRTRΓh is the backprojection obtained by taking the inverse DCT

of f with the missing measurements replaced by 0. Let u∗ denote the solution

obtained by 25000 iterations of PDHGRMu. Figure 3.5 shows h, z0 and z∗, where

z∗ = ΨTu∗.

Both versions of PDHGMu applied to this problem have simple iterations

that scale like O(m), but they behave somewhat differently. PDHGMu (3.63) by
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definition satisfies the constraint at each iteration. However, these projections

onto the constraint set destroy the sparsity of the approximate solution so it can

be a little slower to recover a sparse solution. PDHGRMu (3.64) on the other

hand more quickly finds a sparse approximate solution but can take a long time

to satisfy the constraint to a high precision.

To compare the two approaches, we compare plots of how the constraint

and l1 norm vary with iterations. Figure 3.6(a) plots |‖Kuk − f‖2 − ε| against

the iterations k for PDHGRMu. Note this is always zero for PDHGMu, which

stays on the constraint set. Figure 3.6(b) compares the differences |‖uk‖1 −
‖u∗‖1| for both algorithms on a semilog plot, where ‖u∗‖1 is the l1 norm of the

benchmark solution. The empirical rate of convergence to ‖u∗‖1 was similar for

both algorithms despite the many oscillations. PDHGRMu was a little faster

to recover a sparse solution, but PDHGMu has the advantage of staying on the

constraint set. For different applications with more complicated K, the simpler

projection step for PDHGRMu would be an advantage of that approach.
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Figure 3.6: Comparison of PDHGRMu and PDHGMu
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3.7.4 Multiphase Segmentation Example

Numerical experiments for the convex relaxed multiphase segmentation model

(3.65) are performed in [BYT09], where an expectation maximization algorithm is

applied after forming a smooth approximation to the dual problem. As discussed

in Section 3.6.4, it’s also possible to directly apply PDHGMp without altering

the functional. This is tested on the problem of segmenting a brain scan image

into five regions. In terms of the functional (3.65), h is the original image shown

in Figure 3.7, λ = .0025 and we let

z =
[
75 105 142 178 180

]
.

The time step parameters α and δ are each set to .995√
40

. The result, which is also

shown in Figure 3.7, is obtained by thresholding c1000 and visualized by setting

the intensities to z on the segmented regions.

original image segmented image

region 1 region 2 region 3 region 4 region 5

Figure 3.7: Segmentation of brain image into 5 regions

It is possible to improve the regularization on the length of the boundaries

by introducing µw parameters in front of the ‖cw‖TV terms and adjusting them
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according to any a-priori assumptions we can make about the shapes of the desired

regions.

If z is not known in advance, one can additionally minimize over z. The

resulting functional is nonconvex, but a practical method for approximating its

minimizers is to follow the approach of Chan-Vese segmentation [CV01] and al-

ternate minimization of c with z fixed and minimization of z with c fixed, which

leads to weighted average updates for the zw.
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CHAPTER 4

A Convex Model for Image Registration

4.1 Introduction

In this chapter, we propose a convex model for image registration. The model

uses a graph-based formulation and minimizes a convex function on the edges

of the graph instead of working directly with the displacement field. A classical

approach for registering given images u, φ : Ω ⊂ R
2 → R is to minimize the

Horn-Schunck model, [HS81]

1

2
‖φ(x+ v(x)) − u(x)‖2 +

γ

2
‖∇v1‖2 +

γ

2
‖∇v2‖2, (4.1)

with respect to the displacement field v. Instead of seeking a global minimum of

this nonconvex functional, we reformulate it as a convex minimization problem,

but without linearizing the fidelity term, which would require a small deformation

assumption, and also while avoiding the interpolation difficulty that arises when

discretizing φ(x+ v). Rather than discretizing a continuous model, we will work

in a discrete setting throughout. Given images u ∈ R
mr×mc and φ ∈ R

nr×nc ,

consider defining a graph as in Figure 4.1. The nodes correspond to pixel centers

in u and φ, and the edges are defined to connect each pixel in u to a neighborhood

of pixels in φ. The unknown edge weights will correspond to the coefficients of

a weighted average. The main idea behind the convex reformulation is then to

replace φ(x+v), v1 and v2 in (4.1) with weighted averages of intensities and pixel
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phi

x2

x1

y2

y1

u

Figure 4.1: Construction of edges ei,j

locations. The discrete interpolation corresponding to φ(x+v) will be a weighted

average of intensities of φ with the weights corresponding to edge weights on the

graph. Similarly the displacement will be modeled as the difference between the

pixel locations in u and the same weighted averages of the pixel locations in φ.

A crucial requirement for the weighted average approach to be justified is

that the weights be localized. For the interpolation to make sense, it should only

depend on nearby pixels. Therefore the edge weights should be zero outside a

small neighborhood around the weighted average of the φ pixel locations. Di-

rectly enforcing this would unfortunately correspond to a nonconvex constraint.

However, it is possible to indirectly encourage the weights to cluster by adding

a convex term to the functional requiring the weights to be spatially smooth.

Details are in the following section.

There are many other approaches that aim to convexify or at least partially

convexify Horn-Schunck related models for image registration. Many authors

make use of a multiscale approach, working from coarse to fine images, since ap-

plying low pass filters to the images can make the energy more convex [LC01]. As

already mentioned, one can obtain a convex approximation to (4.1) by linearizing

1
2
‖φ(x+ v(x))− u(x)‖2 to obtain 1

2
‖φ(x) + 〈∇φ(x), v(x)〉 − u(x)‖2

2. A multiscale
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approach can be used to get around the drawback that the linearization is only

valid for small deformations. It’s shown in [BBP04] that applying a coarse to fine

strategy to either the original nonconvex functional or to the linearized version

amounts to essentially the same thing. A coarse to fine approach is also used

in [ZPB07] in a real time algorithm for computing optical flow. Another very

interesting approach is the discrete functional lifting method in [GBO09], which

recovers a global minimum of the nonconvex functional by solving an equivalent

convex problem. It is related to the discrete and continuous functional lifting

approaches of [Ish03] and [PSG08].

The organization of this chapter is as follows. In Section 4.2, the weighted av-

erage based convex model for image registration is defined and discussed. Section

4.3 explains how a variant of the primal dual hybrid gradient (PDHG) method

[ZC08, EZC09] can be used to minimize the resulting functional. Numerical re-

sults for several registration examples are presented in Section 4.4. Section 4.5

discuses extensions of the convex model such as incorporating l1 and TV terms

into the functional, modifications of the numerical scheme as well as other appli-

cations of the numerical approach to similar models.

4.2 Formulation of Convex Registration Model

Let the images u ∈ R
mr×mc and φ ∈ R

nr×nc be given. Assume that the pixel

intensities are not changed by the optimal displacement. This is the key assump-

tion behind the data fidelity term in (4.1). Also assume we are given a guess

ν = (ν1, ν2) of the displacement field and upper bounds r1, r2 ≥ 0 such that if v∗

is the true displacement, then ‖ν1 − v∗1‖∞ ≤ r1 and ‖ν2 − v∗2‖∞ ≤ r2. The images

are allowed to be at different resolutions, but we assume that the dimensions of

the pixels are known and are such that there are no major scale differences be-
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tween the two images. Let M = mrmc be the number of pixels in u and N = nrnc

the number of pixels in φ. Consider a graph G(V, E) with a node for each pixel in

u and φ. We can write V as V = Vu

⋃Vφ where Vφ = {1, ..., N} indexes the nodes

from φ and Vu = {N + 1, ...,M +N} indexes the nodes from u. We will consider

u ∈ R
M to be a function on the nodes in Vu and similarly φ ∈ R

N a function on

the nodes in Vφ. Also define x1, x2 ∈ R
M to be functions on nodes in Vu, and

similarly define y1 and y2 to be functions on the nodes in Vφ such that (xi
1, x

i
2) is

the location of the center of the pixel corresponding to node i ∈ Vu, and (yj
1, y

j
2)

is the location of the center of the pixel corresponding to node j ∈ Vφ. Now let

there be an edge between node i ∈ Vu and node j ∈ Vφ if |yj
1 − (xi

1 + νi
1)| ≤ r1

and |yj
2 − (xi

2 + νi
2)| ≤ r2. Denote the total number of edges by e. Figure 4.1

illustrates how these edges connect each node i to a group of nodes j.

Note that if r is too large, the number of edges defined could be so large as

to cause memory problems in a numerical implementation. One way of avoiding

this is to limit the size of the allowed deformation. Some alternatives include only

defining edges on a subset of the nodes satisfying the displacement bounds, using

a coarse to fine multiscale approach, or designing a transformation that gives a

lower dimensional approximation of the edge weights. Here, we will make use of

the multiscale approach in numerical implementations.

Assume for simplicity that any (w1, w2) ∈ R
2 satisfying |w1 − (xi

1 + νi
1)| ≤ r1

and |w2 − (xi
2 + νi

2)| ≤ r2 for some i ∈ Vu also satisfies minj(y
j
1) ≤ w1 ≤ maxj(y

j
1)

and minj(y
j
2) ≤ w2 ≤ maxj(y

j
2) (φ can be padded if this doesn’t hold). Let c ∈ R

e

be a function on the edges such that ci,j ≥ 0 and
∑

j∼i ci,j = 1 for each i ∈ Vu.

Now we model the displacement v to be the difference between the c-weighted
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average of y and x.

(vi
1, v

i
2) =

(
(
∑

j∼i

ci,jy
j
1 − xi

1), (
∑

j∼i

ci,jy
j
2 − xi

2)

)
(4.2)

These weighted averages can be represented more compactly in terms of the

edge-node adjacency matrix [Q R] ∈ R
e×(M+N) for the graph G, where Q cor-

responds to the nodes in Vφ and R corresponds to the nodes in Vu. For each

edge ei,j where i ∈ Vu and j ∈ Vφ, Qe,j = −1 and Re,i = 1. All other en-

tries of Q and R equal zero. Let diag (c) denote the diagonal matrix with the

vector c along the diagonal. The operation of taking c-weighted averages of

a function on Vφ for each node i ∈ Vu can be represented in matrix notation

by −(RT diag (c)R)−1RT diag (c)Q. The constraint that the weights on the edges

coming out of each node i sum to 1 can be written as RT c = 1 orRT diag (c)R = I.

Thus the c-weighted averages of φ can be written as −RT diag (c)Qφ. Now define

Aφ = −RT diag (Qφ).

This means Aφc represents the c-weighted averages of φ. Similarly, define

Ay1
= −RT diag (Qy1)

and

Ay2
= −RT diag (Qy2).

Ay1
c and Ay2

c represent the c-weighted averages of y1 and y2 respectively. In

terms of these matrices, the displacements v1, v2 ∈ R
M are modeled by

v1 = Ay1
c− x1 , v2 = Ay2

c− x2.

Let C denote the convex set that the weights c are constrained to lie in. This

set is defined by

C =

{
c ∈ R

e : ci,j ≥ 0 and
∑

j∼i

ci,j = 1

}
. (4.3)
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Let gC be the indicator function for C defined by

gC(c) =





0 if c ∈ C

∞ otherwise

. (4.4)

We also need to define the discretized gradient D that will act on vectorized

images in R
M . The convention for vectorizing a mr by mc matrix will be to stack

the columns so that the (r, c) element of the matrix corresponds to the (c−1)mr+r

element of the vector. Consider a new graph, GD(Vu, ED) with nodes in Vu and

edges that correspond to forward differences as is shown in Figure 4.2. Index the

Figure 4.2: Graph for defining D

M nodes by (c−1)mr + r and the eD = 2mrmc −mr −mc edges arbitrarily. Now

define D ∈ R
eD×M to be the edge node adjacency matrix for the graph GD. For

each edge ξ with endpoint indices (i, j), i < j, define

Dξ,k =





−1 for k = i

1 for k = j

0 for k 6= i, j

. (4.5)

The matrix D thus defined can be interpreted as the discrete gradient, and like-

wise −DT represents the discrete divergence operator. The graph definition im-

plicitly assumes Neumann boundary conditions.
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With this notation we can define the weighted average analogue to (4.1),

1

2
‖Aφc− u‖2

2 +
η

2
‖D(Ay1

c− x1)‖2
2 +

η

2
‖D(Ay2

c− x2)‖2
2 + gC(c). (4.6)

We will assume that the displacement is smooth and therefore keep the reg-

ularization terms that penalize the l2 norm squared of its gradient. It will be

convenient for notational reasons to define

R1(z) =
η

2
‖D(z − x1)‖2

2

and

R2(z) =
η

2
‖D(z − x2)‖2

2

so that these regularization terms can be rewritten as R1(Ay1
c) + R2(Ay2

c). For

applications where discontinuities are expected in the displacement field, total

variation regularization terms could be used here instead.

Since the displacement is assumed to be smooth, the weights themselves

should also be spatially smooth. Moreover enforcing this should encourage the

weights to be localized, which needs to happen for the model of the displacement

to make sense. For simplicity, assume every node i ∈ Vu has the same number

of edges connecting it to nodes in Vφ and moreover that those nodes in Vφ form

a rectangle of dimension wr by wc that will be referred to as the search win-

dow. To be consistent with the bounds r1 and r2, we can take wr = 2r2 + 1 and

wc = 2r1 + 1. There are W = wrwc weights for each node in Vu. Note that the

total number of edge weights is e = MW . Let w be an index for the weights

in the search window and define Xw ∈ R
M×e to be a row selector (XwX T

w = I)

for the wth weight. So Xw applied to c returns a vector of just those M weights

that correspond to the index w. Now we can encourage spatial smoothness of the

weights by adding
W∑

w=1

‖DXwc‖2
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to the functional. It will later be helpful to rewrite this in terms of an indicator

function gB for the unit l2 ball

B = {p : ‖p‖2 ≤ 1}

because the numerical approach will involve projecting onto this set. Since the

Legendre transform of a norm can be interpreted as the indicator function for

the unit ball in the dual norm,

‖DXwc‖2 = g∗B(DXwc),

where g∗B denotes the Legendre transform of gB.

The quadratic data fidelity term doesn’t robustly handle outliers. To remedy

this, we will replace the quadratic term with convex constraints that control both

the local error and the average error for Aφc− u. To control the local error, we

can require that ‖Aφc−u

τ
‖∞ ≤ 1 for some data dependent τ ∈ R

M and where the

division by τ is understood to be componentwise. To control the average error we

can require that ‖Aφc− u‖2 ≤ ε for some ε ≥ 0. These constraints can be added

to the functional as indicator functions for the appropriate convex sets. Let

T2 = {z : ‖z − u‖2 ≤ ε}

and let

T∞ = {z : ‖z − u

τ
‖∞ ≤ 1}.

Let gT2
and gT∞

be the indicator functions for T2 and T∞. Another possibility is

to use the l1 norm for the data fidelity term, which is considered in Section 4.5.1.

Altogether, the proposed convex functional for image registration is given by

F (c) = gC(c)+

W∑

w=1

g∗B(DXwc)+gT2
(Aφc)+gT∞

(Aφc)+R1(Ay1
c)+R2(Ay2

c). (4.7)
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A minimizer exists as long as the set

{c : c ∈ C, ‖Aφc− u‖2 ≤ ε, ‖Aφc− u

τ
‖∞ ≤ 1}

is nonempty.

4.3 Numerical Approach

To solve (4.7) we will use the PDHGMp variant of the PDHG algorithm, which is

defined by (3.35). It’s application to (4.7) will make use of the operator splitting

techniques discussed in Section 3.6.1.

4.3.1 Application of PDHGMp

Since F (4.7) is in the form of (3.52), the PDHGMp method can be directly

applied. However, the relative scaling of the matrices DXw, Aφ, Ay1
and Ay2

can

affect the numerical performance. We therefore introduce scaling factors sw, sφ2
,

sφ∞
, sy1

and sy2
and define

g̃∗B(zw) = g∗B(swzw)

g̃T2
(zφ2

) = gT2
(sφ2

zφ2
)

g̃T∞
(zφ∞

) = gT∞
(sφ∞

zφ∞
)

R̃1(zy1
) = R1(sy1

zy1
)

R̃2(zy2
) = R2(sy2

zy2
)

so that F can be equivalently written as

F (c) = gC(c) +
W∑

w=1

g̃∗B(
DXwc

sw

) + g̃T2
(
Aφc

sφ2

) + g̃T∞
(
Aφc

sφ∞

) + R̃1(
Ay1

c

sy1

) + R̃2(
Ay2

c

sy2

).

(4.8)
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To apply PDHGMp, let

A =




DX1

s1

...

DXw

sW

Aφ

sφ

Aφ

sφ

Ay1

sy1

Ay2

sy2




, p =




p1

...

pW

pφ2

pφ∞

py1

py2




, H(c) = gC(c)

and

J(Ac) =

W∑

w=1

g̃∗B(
DXwc

sw

) + g̃T2
(
Aφc

sφ2

) + g̃T∞
(
Aφc

sφ∞

) + R̃1(
Ay1

c

sy1

) + R̃2(
Ay2

c

sy2

).

The initialization is arbitrary. One iteration of PDHGMp applied to F (c) and

including the scale factors consists of the following minimization steps:

ck+1 = arg min
c
gC(c) +

1

2α

∥∥∥∥∥c−
(
ck − α

W∑

w=1

X T
wD

T (2pk
w − pk−1

w )

sw

−α
AT

φ (2pk
φ2

− pk−1
φ2

)

sφ2

− α
AT

φ (2pk
φ∞

− pk−1
φ∞

)

sφ∞

−αA
T
y1

(2pk
y1
− pk−1

y1
)

sy1

− α
AT

y2
(2pk

y2
− pk−1

y2
)

sy2

)∥∥∥∥∥

2

2
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pk+1
w = sw arg min

pw

gB(pw) +
s2

w

2δ

∥∥∥∥∥pw −
(pk

w + δDXwck+1

sw
)

sw

∥∥∥∥∥

2

2

for w = 1, ...,W

pk+1
φ2

= sφ2
arg min

pφ2

g∗T2
(pφ2

) +
s2

φ2

2δ

∥∥∥∥∥∥
pφ2

−
(pk

φ2
+

δAφck+1

sφ2

)

sφ2

∥∥∥∥∥∥

2

2

pk+1
φ∞

= sφ∞
arg min

pφ∞

g∗T∞
(pφ∞

) +
s2

φ∞

2δ

∥∥∥∥∥∥
pφ∞

−
(pk

φ∞
+

δAφck+1

sφ∞
)

sφ∞

∥∥∥∥∥∥

2

2

pk+1
y1

= sy1
arg min

py1

R∗
1(py1

) +
s2

y1

2δ

∥∥∥∥∥∥
py1

−
(pk

y1
+

δAy1
ck+1

sy1

)

sy1

∥∥∥∥∥∥

2

2

pk+1
y2

= sy2
arg min

py2

R∗
2(py2

) +
s2

y2

2δ

∥∥∥∥∥∥
py2

−
(pk

y2
+

δAy2
ck+1

sy2

)

sy2

∥∥∥∥∥∥

2

2

There are simple to compute, explicit formulas for each of the minimization steps.

A helpful tool for writing down some of the formulas is the general Moreau

decomposition (2.3.1).

Substituting formulas for the minimization steps and using the Moreau de-

composition to simplify the last four updates, the PDHGMp method applied to
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F (c), still including the scale factors, is to iterate

ck+1 = ΠC

(
ck − α

W∑

w=1

X T
wD

T (2pk
w − pk−1

w )

sw

− α
AT

φ (2pk
φ2

− pk−1
φ2

)

sφ2

−α
AT

φ (2pk
φ∞

− pk−1
φ∞

)

sφ∞

− α
AT

y1
(2pk

y1
− pk−1

y1
)

sy1

− α
AT

y2
(2pk

y2
− pk−1

y2
)

sy2

)

pk+1
w = swΠB

(
(pk

w + δDXwck+1

sw
)

sw

)
for w = 1, ...,W

pk+1
φ2

= pk
φ2

+
δAφc

k+1

sφ2

− δ

sφ2

ΠT2

(
(pk

φ2
+
δAφc

k+1

sφ2

)
sφ2

δ

)

pk+1
φ∞

= pk
φ∞

+
δAφc

k+1

sφ∞

− δ

sφ∞

ΠT∞

(
(pk

φ∞
+
δAφc

k+1

sφ∞

)
sφ∞

δ

)

pk+1
y1

= pk
y1

+
δAy1

ck+1

sy1

− (I +
ηs2

y1

δ
DTD)−1

(
ηsy1

DTDx1 + pk
y1

+
δAy1

ck+1

sy1

)

pk+1
y2

= pk
y2

+
δAy2

ck+1

sy2

− (I +
ηs2

y2

δ
DTD)−1

(
ηsy2

DTDx2 + pk
y2

+
δAy2

ck+1

sy2

)

Here ΠC , ΠB, ΠT2
and ΠT∞

denote the orthogonal projections onto the convex

sets C, B, T2 and T∞ respectively. Formulas for the latter three are

ΠB(p) =
p

max(‖p‖2, 1)
,

ΠT2
(z) = u+

z − u

max(‖z−u‖2

ε
, 1)

and

ΠT∞
(z) = u+

z − u

max( |z−u|
τ
, 1)

,

where for ΠT∞
the max and division are understood in a componentwise sense.

Although there isn’t a formula for ΠC(c), it can still be computed efficiently with

complexity of O(MW log(W )). In describing this projection, it is helpful to rein-

dex c. Computing ΠC(c), where c ∈ R
MW , amounts to orthogonally projecting

M vectors in R
W onto the positive face of the l1 unit ball in R

W . Let cm ∈ R
W

for m = 1, ...,M denote those vectors. Then the elements cm,w of cm must project

125



either to zero or to cm,w−θm, where θm is such that
∑W

w=1 cm,w = 1 and cm,w ≥ 0.

Therefore the projection can be computed once the thresholds θm are found,

which can be done by sorting and using a bisection strategy to determine how

many elements project to zero. Finally note thatDTD denotes minus the discrete

Laplacian corresponding to Neumann boundary conditions. The corresponding

discrete Poisson equation can be efficiently solved with O(M log(M)) complexity

using the discrete cosine transform.

4.3.2 Discussion of Parameters

There are some necessary conditions on the parameters. The parameters ε ∈ R

and τ ∈ R
M , which appear in the definition of the sets T2 and T∞, must be large

enough so that a minimizer exists. Also, α and δ must be positive and satisfy

αδ < 1
‖A‖2 . Adjusting ε and τ changes the underlying model and will affect the

solution. Changing α and δ, as long as they satisfy the stability requirement,

only affects the rate of convergence.

The scaling factors sw, sφ2
, sφ∞

, sy1
and sy2

also affect the rate of convergence

but mostly they alter the relative weight that each term of the functional has on

each iteration. Adjusting these factors doesn’t change the model or the eventual

solution, but it can for example make the numerical solution satisfy the data

constraint in fewer iterations at the cost of it taking more iterations for the

weights to become smooth. Or vice versa, the scaling factors can encourage early

iterates to be smooth at the cost of more iterations being needed to satisfy the

data fidelity constraints. A natural approach to defining the scaling parameters

is to try to give the five terms (thinking of the sum over w as a single term) in

J(Ac) roughly equal weight.

The parameter η does affect the model in the sense of altering the relative
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importance of the smooth displacement regularizer and the smooth weights reg-

ularizer. If η is too large, then a smooth displacement might come at the cost of

having insufficiently smooth and therefore possibly nonlocal weights. If η is too

small, the weights themselves will be spatially smooth, but although the smooth-

ness of the displacement is indeed encouraged by smoothness of the weights, it

is not always sufficiently enforced that way. Moreover, it empirically takes many

more iterations to get a reasonable solution when η is too small. For some ex-

amples, choosing η too small can again result in nonlocal weights. Since the

displacement model assumes local weights, it’s therefore important to choose η

well to avoid errors in the registration.

4.3.3 Multiscale Approach

A downside of the model (4.7) is the large number of variables involved. Although

it’s a convex registration model that allows for large deformations, the number

of edge weights in the graph formulation can be impractically large. By practical

necessity, a coarse to fine multiscale approach is used for the numerical examples

in Section 4.4. A dimension reduction idea is mentioned in Section 4.5.4 but not

implemented.

The multiscale approach works by downsampling the original images by a

factor of two as many times as is necessary for the number of pixels within the

maximum displacement estimate not to be impractically large. The effect of one

level of downsampling is illustrated in Figure 4.3. The convex registration prob-

lem is first solved for the low resolution images. Then the resulting displacement

solution given by (Ay1
c−x1, Ay2

c−x2) is upsampled by a factor of two and used

as an initial guess when solving the convex registration problem for the next finer

resolution. If one assumes the global coarse solution is close, say within half a
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Figure 4.3: Effect of downsampling on resolution and search window size

coarse pixel, to the global fine solution, then small search windows suffice for

all the successive applications of the method to the finer resolution images. For

example, after the coarse problem is solved, a three by three window of weights

could be used for the remaining problems.

An advantage of the multiscale approach is that by downsampling enough

times, the size of the search window of weights can be made small enough to

automatically satisfy the localized weights assumption. And the number of extra

variables can be made small enough so that the computation remains efficient.

However, the coarse solutions aren’t guaranteed to be close to the true global

minimum of the functional at the fine scale. In fact, downsampling too many

times will result in poor solutions. So it is best to employ the multiscale strategy

as little as possible, only as much as is practically necessary to achieve reasonable

computation times.

128



4.4 Numerical Examples

In this section, the performance of the model and numerical approach is illus-

trated for three examples.

The first example is a synthetic image of the letter E which is to be registered

with a translated, rotated version. See Figure 4.4. This example illustrates that

the model succeeds in filling in the large homogeneous regions with a smooth

displacement field.

The second example is low resolution digital photo of two pencils on a desk

which is to be registered with a version that has undergone a large translation

and also some rotation. See Figure 4.5. The initial displacement is chosen to

align the rightmost pencil in u with the leftmost pencil in φ. This would be a

local minimum for the classical registration model (4.1), but the global solution

of the convex model correctly registers the images despite the large translation

and challenging initialization. The pencil example will also be used to illustrate

the problems that occur if η is too small or if the fidelity terms are too weak.

These both result in nonlocal weights and a poor solution, whereas with well

chosen parameters the weights do indeed localize and the solution is good.

The third example is a brain scan where a section in the middle has been

deformed, leaving the outer regions unchanged. See Figure 4.6. This example

is from [TGS06, LGD09] and the ground truth is known. A comparison with

the ground truth displacement is plotted in Figure 4.7. In addition to showing

that the model can successfully register this medical image, the example is also

used to illustrate the need for the smoothing regularizer on the weights. If η

is chosen too large, the displacement should still of course be smooth but the

weights themselves may not be smooth enough. It’s then possible for nonlocal
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weights to conspire to satisfy the data fidelity constraints and yield a smooth

displacement while still giving the wrong solution.

4.4.1 Parameter Definitions

Most of the parameters are chosen similarly for the numerical examples. The pa-

rameter η that balances the smooth displacement and smooth weights regularizers

is usually chosen to be 1 except for the examples that illustrate what goes wrong

when η is too small or too large. The weights τ ∈ R
m for the l∞ data constraint

are data dependent, small in homogeneous regions and large near discontinuities.

For all the examples τi is defined by taking the difference of the maximum and

minimum intensities in the three by three neighborhood around the ith pixel,

multiplying by .75 and adding .5. This ensures |Aφc − u| is never much larger

that could be expected from interpolation errors. Recall that Aφc − u is the

difference between the c-weighted averages of φ and u. For the l2 data fidelity

constraint, the best choice of ε depends on the problem. The scaling parameters

are designed to normalize the matrices
∑W

w=1 X T
wD

T , AT
φ , AT

y1
and AT

y2
so that

they have roughly the same operator norms. For all the numerical examples,

define

sw = 2
√

10W

sφ2
= ‖φ‖∞

√
5W

sφ∞
= sφ2

sy1
= nc∆yc

√
5W

sy2
= nr∆yr

√
5W,

where ∆yc and ∆yr denote the dimensions of a single pixel in φ. The choice of

numerical parameters α and δ can greatly affect the rate of convergence. It is
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best for αδ to be close to the stability bound 1
‖A‖2 . An upper bound, a for ‖A‖2

is

a =
8W

s2
w

+ ‖
AφA

T
φ

s2
φ2

+
AφA

T
φ

s2
φ∞

+
Ay1

AT
y1

s2
y1

+
Ay2

AT
y2

s2
y2

‖,

which is straightforward to compute because AφA
T
φ , Ay1

AT
y1

and Ay2
AT

y2
are di-

agonal matrices. Reasonable choices for α and δ are α = .995
sφ2

√
a

and δ =
.995sφ2√

a
.

4.4.2 Multiscale Implementation and Stopping Condition

To speed up the numerical implementation, a coarse to fine multiscale approach

as described in 4.3.3 is used for all the following examples. The letter E and

pencil examples are both initially downsampled twice. The brain example is

initially downsampled three times. The downsampling is always by a factor of

two. Once a coarse solution is obtained and the displacement computed, bilinear

interpolation is used on the coarse displacement field to obtain an initial guess for

the next finer resolution. Since the coarse solution is assumed to be close to the

true solution, small search windows, (usually 3× 3 or 5× 5), are used for all the

finer resolution registration problems with good initial displacement estimates.

The stopping condition used for the E and pencil examples is

‖ck+1 − ck‖∞ ≤ .002

W
, (4.9)

where W is the total number of weights in each search window. To speed up

computation for the brain example, .002 was replaced by .004.

4.4.3 Results

For the letter E example, Figure 4.4 shows the original 128 × 128 images u and

φ, the c-weighted averages of φ and the computed displacement. The parameters

used are α = .995
sφ2

√
a
, δ =

.995sφ2√
a

, ε =
√

M
2

and η = 1. The maximum displacement
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scale iterations

2 3890

1 2348

0 1552

Table 4.1: Iterations required for registering E example

(r1, r2) is set to (16, 8). For all scales beyond the coarsest, three by three search

windows are used. The number of iterations required at each scale to satisfy the

stopping condition (4.9) is given in Table 4.1, where scale refers to the number

of downsamplings.
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Figure 4.4: Registration of rotated and translated letter E

The pencil registration result plotted in Figure 4.5 uses the same parameters

as the E example except that five by five search windows are used after the coarse

solution is obtained. Recall that the initial displacement is chosen to make this
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scale iterations

2 14276

1 6560

0 10403

Table 4.2: Iterations required for registering pencil example

problem challenging by lining up the right pencil in u with the left pencil in φ.

The displacement plot shows the location of the 46 × 38 image u, bordered in

black, relative to the 79 × 98 image φ and draws the displacement field at a few

points. The maximum displacement (r1, r2) is set to (32, 16). Table 4.2 shows

the number of iterations required.
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Figure 4.5: Registration of low resolution photo of two pencils

Some parameters are changed for the brain example, where u and φ are both

186×197 images. The maximum displacement (r1, r2) is set to (10, 10). Since the
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displacement is expected to be mostly zero, a smaller ε is used, namely ε =
√

M
16

.

Adjusting α and δ to α = .0995
sφ2

√
a
, δ =

9.95sφ2√
a

sped up the rate of convergence

slightly for this example. Also, at the four scales computed in the multiscale

approach, a three by three search window was used for the finest while five by five

search windows were used for the two intermediate scales after the coarsest. The

registration result is shown in Figure 4.6 and the number of iterations required

are listed in Table 4.3. For this example, the ground truth displacement is known

and compared to the computed displacement in Figure 4.7. The root mean square

errors relative to the ground truth for the displacement components v1 and v2

are .3995 and .5748 respectively.

u

0 50 100 150

0

50

100

150

phi

0 50 100 150

0

50

100

150

c−weighted average of phi

0 50 100 150

0

50

100

150

0 50 100 150

0

50

100

150

displacement

Figure 4.6: Registration of brain images

Although the convex registration model was successful on the previous exam-

ples, it can fail if the parameters are not well chosen. Three examples of what

can go wrong are when the data fidelity constraints are too weak, when η is too
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scale iterations

3 3914

2 4919

1 6813

0 11303

Table 4.3: Iterations required for registering brain example

small or even when η is too large.

The pencil example will be used to illustrate the first two potential problems.

The solution of the coarse, twice downsampled, problem suffices to demonstrate

this. Figure 4.8 shows the c-weighted average of φ, the displacement, the weights

corresponding to index w = 77 and the weights corresponding to pixel m = 102

that result from choosing ε = 100
√
M or choosing η = 10−12. Since the l∞

constraint was already weak, the c-weighted average is not a good approximation

to u when ε is large. Moreover, the computed displacement is poor. With ε =
√

M
2

but η too small, the c-weighted average accurately approximates u but the

resulting displacement is not smooth or accurate. Part of the reason for these

poor results is the nonlocal weights. Weights that should be concentrated on

one pencil instead appear on both, which means the weighted averages of the

locations in φ are not even close to where the weights are large. The nonlocal

weights that result from poor parameter choices are also illustrated in Figure 4.8.

A large value of η actually works fine for the pencil example, but not for

the brain example. Looking at the coarse, three times downsampled problem,

Figure 4.9 compares the good brain image registration result for η = 1 to the

poor result when η = 1012. In both examples, ε =
√

M
16

and the stopping condition

was ‖ck+1 − ck‖∞ ≤ .0001
W

. In the case where η is too large, the displacement is
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Figure 4.7: Comparison of brain registration to ground truth displacement

zero in many places where it shouldn’t be. Figure 4.9 shows that for m = 247

corresponding to such a location, the cm weights are more localized for the η = 1

case than for the large η case. The figure also shows that example cw for w = 19

and w = 13 are less smooth in the large η case.

4.5 Modifications and Other Applications

4.5.1 Using Other Norms

Some image registration problems are better modeled using the l1 norm or the TV

seminorm for either the data fidelity or the regularization terms. This is the case

when one expects discontinuities in the displacement field or a sparse difference

between the original and registered images. If the images have slight changes in

intensity, it makes sense to register the gradients of u and φ. Even with all these
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possible changes to the model, the PDHGMp method is still applicable and the

overall numerical approach is very similar.

The optical flow problem of registering successive frames in a video sequence

is an example where it would make sense to use the l1 norm for data fidelity

and total variation to regularize the displacement field. The convex registration

model, however, is not ideal for optical flow problems. When such problems

already satisfy a small deformation assumption, the convexity of the model isn’t

really needed. Moreover, speed of the algorithm is especially important for video

applications and the convex model is slow because of the many extra variables

it must take into account. Nevertheless, it serves as a good illustration of how

to substitute other norms into (4.7) and still apply PDHGMp to minimize the

functional.

Consider the following TV -l1 model for optical flow,

F (c) = gC(c) +
W∑

w=1

‖Xwc‖TV + gT (Aφc) + η‖Ay1
c− x1‖TV + η‖Ay2

c− x2‖TV ,

where gT is the indicator function for T = {z : ‖z − u‖1 ≤ ε} and the total

variation seminorm is defined in Section 2.4.1.

Let gX be the indicator function for X = {p : ‖p‖E∗ ≤ 1} (3.3). Then the

functional can be rewritten as

F (c) = gC(c)+

W∑

w=1

g∗B(DXwc)+gT (Aφc)+ηg
∗
B(D(Ay1

c−x1))+ηg
∗
B(D(Ay2

c−x2)).

Applying PDHGMp analogous to the way it was applied in Section 4.3.1, again
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with scaling factors, yields the following iterations,

ck+1 = ΠC

(
ck − α

W∑

w=1

X T
wD

T (2pk
w − pk−1

w )

sw

− α
AT

φ (2pk
φ − pk−1

φ )

sφ

−αA
T
y1
DT (2pk

y1
− pk−1

y1
)

sy1

− α
AT

y2
DT (2pk

y2
− pk−1

y2
)

sy2

)

pk+1
w = swΠB

(
(pk

w + δDXwck+1

sw
)

sw

)
for w = 1, ...,W

pk+1
φ = pk

φ +
δAφc

k+1

sφ

− δ

sφ

ΠT

(
(pk

φ +
δAφc

k+1

sφ

)
sφ

δ

)

pk+1
y1

= ηsy1
ΠB




(pk
y1

+
δD(Ay1

ck+1−x1)

sy1

)

ηsy1




pk+1
y2

= ηsy2
ΠB




(pk
y2

+
δD(Ay2

ck+1−x2)

sy2

)

ηsy2


 ,

where ΠX(p) is defined by (3.10). Although there isn’t an explicit formula for ΠT ,

the orthogonal projection onto T , its computation is very similar to that for ΠC

as described at the end of Section 4.3.1 and can be computed with O(M logM)

complexity.

4.5.2 Different Multiscale Strategies

Although the convex registration model presented here doesn’t require a mul-

tiscale numerical approach, it is impractically slow without it. Even with the

coarse to fine approach, it took 20 to 30 minutes for the E and pencil exam-

ples and several hours for the brain example. Most of this time was needed for

computing the solutions at the finest scales. However, after solving the coarse

problem, a small deformation assumption is satisfied for all problems at finer

resolutions. Therefore, it might make sense to solve the convex model only for

the coarsest problem in the multiscale approach, switching perhaps to a more
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efficient linearized version of something like (4.1) for the finer scales.

4.5.3 More Implicit Numerical Methods

The special structure of the matrices Aφ, Ay1
, Ay2

and DXw suggests that a

more implicit algorithm than PDHGMp might work well. Since AφA
T
φ , Ay1

AT
y1

and Ay2
AT

y2
are diagonal, terms like I + AT

φAφ, I + AT
y1
Ay1

and I + AT
y2
Ay2

are

easy to invert using the Sherman Morrison Woodbury formula. A term like

I +
∑

w X T
wD

TDXw is also easy to deal with because with the proper indexing

it is a block diagonal matrix with I minus the discrete Laplacian as each block.

So, with the addition of some extra variables, the application of split Bregman

[GO09] yields simple iterations. The equivalent application of ADMM (3.26 to

the Lagrangian

L = gC(c)

+
W∑

w=1

(g∗B(zw) + 〈pw, DXwu1 − zw〉) + 〈r1, c− u1〉

+ gT2
(zφ2

) + 〈pφ2
, Aφu2 − zφ2

〉 + 〈r2, c− u2〉

+ gT∞
(zφ∞

) + 〈pφ∞
, Aφu3 − zφ∞

〉 + 〈r3, c− u3〉

+R1(zy1
) + 〈py1

, Ay1
u4 − zy1

〉 + 〈r4, c− u4〉

+R2(zy2
) + 〈py2

, Ay2
u5 − zy2

〉 + 〈r5, c− u5〉

was attempted but found to be slightly less efficient for the examples tested.

With the introduction of scaling parameters similar to those used for PDHGMp,

ADMM required similar numbers of iterations to meet the same stopping criteria.

However, the more implicit ADMM iterations were more time consuming and

memory intensive. It may still be possible to improve the performance with

better parameter choices or by working with a different Lagrangian formulation
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that involves fewer variables but requires solving slightly more complicated linear

systems for some of the subproblems.

4.5.4 Dimension Reduction

A possible idea for speeding up the method without resorting to a multiscale

approach is to try to approximate c by a linear transformation of a lower dimen-

sional vector s. The motivation for this kind of dimension reduction is that the

cw ∈ R
M represent smooth images and can therefore be well approximated by,

for example, the low frequency terms in its representation via the discrete cosine

transform (DCT). Putting these l < M low frequency DCT basis vectors in the

columns of Ψ ∈ R
M×l, we can try to represent cw = Ψsw for w = 1, ...,W . A dif-

ficulty with this approach is finding feasible constraints on s so that c ∈ C. The

situation can be somewhat simplified by using the above constraint relaxation

idea, but we still must have Ψsw ≥ 0 and Ψ
∑

w sw = 1. Assuming ΨT Ψ = I, the

overall constraints on s could be written

W∑

w=1

sw = ΨT 1 , Ψsw ≥ 0 ∀w.

If this approach is to succeed, it will likely be necessary to redesign Ψ so that

the constraints on s are feasible and also computable without reintroducing the

larger vector c that we are trying to approximate in the first place.

4.5.5 Constraint Relaxation

It’s possible to slightly speed up the iterations for PDHGMp applied to (4.8) by

splitting up the constraint c ∈ C into two separate constraints. Recall that this

normalization constraint enforces that for each pixel m ∈ R
m, the corresponding

vector of weights cm ∈ R
W has to be nonnegative and sum to one. Consider
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adding a new variable s constrained to equal c such that s is constrained to

be nonnegative and each vector cm is constrained to sum to one. Numerically

this can be handled by introducing indicator functions for these constraints into

the model and applying the split inexact Uzawa method from [ZBO09] to the

Lagrangian

g{s≥0}(s) + g{∑w cm,w=1}(c) + J(z) + 〈p, Ac− z〉 + 〈λ, c− s〉,

where p and λ are Lagrange multipliers for the Ac = z and s = c constraints.

Compared to the PDHGMp implementation, the c update is replaced by

ck+1
m =

1

W
+ (ck − αAT (2pk − pk−1) − αλk)m−

mean((ck − αAT (2pk − pk−1) − αλk)m) for m = 1, ...,M,

sk+1 = max(ck+1 +
λk

δ
, 0),

the p updates are identical, and there is an additional update for the multiplier

λ,

λk+1 = λk + δ(ck+1 − sk+1).

The projection onto C which could be computed with complexity O(MW log(W ))

has now been replaced with two simpler projections that have complexity O(MW ).

This does indeed speed up each iteration, but more iterations are also required,

especially when M is large. Overall the method tends not to be any faster unless

W is large or M is small.
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Figure 4.8: Comparison of coarse pencil registration results
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Figure 4.9: Comparison of coarse brain image registration results
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CHAPTER 5

A Convex Model for Patch-Based Nonlocal

Image Inpainting

5.1 Introduction

In this chapter, a convex variational model for nonlocal image inpainting is pro-

posed. It uses patches from anywhere in the known part of the image to fill in

a large unknown area. There are many existing convex inpainting models, but

they tend to be based on propagating local information into the unknown region

and therefore aren’t well suited for filling in areas far from the boundary. For

example, total variation inpainting [CS05] works well for piecewise constant im-

ages and when missing pixels are close to known pixels. It is good for geometry

inpainting and interpolation but not for texture inpainting.

Greedy approaches for exemplar-based texture inpainting have been success-

fully considered by many authors. The idea is closely related to the texture

synthesis technique of [EL99] that sweeps through the unknown pixels, greedily

setting each to be the value from the center of the image patch that best agrees

with its known neighboring pixels.

Previous variational methods for texture inpainting have also been proposed.

A variational model proposed in [DSC03] and extended in [ALM08] is based on

a correspondence map Γ, which maps from the unknown region to the known
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region such that the value u at the location x is given by u(x) = u(Γ(x)). The

functionals to be minimized essentially require that u(x−y) be close to u(Γ(x)−y)
for y in a neighborhood of 0, and that Γ should locally behave like a translation

operator. A more easily computable variational approach in [ACS09] minimizes

a nonlocal means type energy but with dynamic weights that are determined by

also minimizing an entropy term. It produces the same kinds of updates for the

dynamic weights as the nonlocal total variation wavelet inpainting method in

[ZC09]. These variational approaches are all based on nonconvex models.

The approach proposed here is inspired by the method of Arias, Caselles

and Sapiro in [ACS09]. We first consider a small set of unknown patches that

cover the inpainting region. Each unknown patch will be a c-weighted average

of known patches with the weights c to be determined by minimizing a convex

functional. All patches are of uniform size. To yield a good solution, the weights

c should be sparse, since each unknown patch should be a weighted average only

of very similar patches. For many examples, the ideal situation would be for the

weights to be binary where each unknown patch would exactly equal a known

patch. Unknown pixels are defined to be a weighted average of contributing

pixels from overlapping unknown patches with these weights fixed in advance and

emphasizing more heavily pixels near patch centers. The proposed functional

consists of two terms. The first term penalizes at each pixel in or near the

inpainting region the sum of the squares of the differences between the values

of the contributing pixels and the value at the current pixel. This encourages

the unknown patches to agree with each other where they overlap and to agree

with any known data they overlap. The second term regularizes the weights

by treating them like correspondence maps. The weights for a single unknown

patch correspond to the locations of the centers of known patches. Weights for a

neighboring unknown patch shifted by v should more likely than not correspond
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to the same previous locations also shifted by v. The second term of the functional

enforces this by penalizing the l1 norm of the differences of these weights, wherever

these differences are defined.

Since the proposed model is convex, it can be solved using the PDHG algo-

rithm and its related variants discussed in Chapter 3. However, the global mini-

mum of this model is not always a great solution. The recovered image tends to

be somewhat blurry and averaged out, especially away from the boundary. The

method can still work reasonably well for simple examples with repetitive struc-

ture. An example of this is given in Section 5.3.2. The blurriness occurs when the

weights don’t converge to a sparse enough solution. The unknown patches can

therefore end up being averages of too many known patches. This causes a loss

of contrast in the unknown patches, which in turn can actually help them agree

with each other where they overlap. Moreover, having many nonzero weights can

still be consistent with the correspondence constraint. Although there would al-

most surely be disagreement near the boundary for non-sparse weights, this isn’t

enough by itself to enforce sparsity.

It’s difficult to encourage c to be sparse while maintaining convexity of the

model. The constraint on c helps by requiring that the weights in each weighted

average be nonnegative and sum to one. Another strategy is to use the l1 norm

instead of the l2 norm for the data fidelity term. This would determine unknown

pixels by taking a weighted median of the corresponding pixels from overlapping

patches. This modification is discussed in Section 5.4.1. It still doesn’t always

produce the desired sparsity of the weights.

To further encourage sparsity of c, the convex model can be modified by

adding a nonconvex term of the form γ(〈c, 1〉 − ‖c‖2). This is analogous to how

a double well potential is used to enforce the binary constraint in phase field
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approaches for image segmentation, except here it suffices to use a quadratic

function because c is already constrained to lie between zero and one. This mod-

ification can lead to much better solutions with binary weights as demonstrated

in Section 5.4.2. Unfortunately, the resulting model is no longer convex, and

the numerical scheme is also not guaranteed to converge to a global minimum.

We still use a modified version of PDHGMp (3.35) to produce the examples in

Section 5.4.2, but its convergence is no longer guaranteed.

5.2 Notation and Formulation of Model

The formulation of the model is notationally heavy despite being based on simple

ideas. Figure 5.1 shows a picture of the setup, and the key notation is defined in

the list in Section 5.2.1.

o

0

p

u

h

Figure 5.1: Regions Defined for Nonlocal Inpainting Model
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5.2.1 Notation

h ∈ R
mr×mc Original image

Ω Inpainting region: Set of pixels (i, j) such that h(i, j) is un-

known

ps Patch size (assume ps = 6n+ 3 for simplicity)

Ωu Region of unknown patches: Set of pixels (i, j) covered by

unknown patches. This should strictly contain Ω.

v Index for pixels in Ωu, v = 1, ..., |Ωu|
Ωup Subset of Ωu consisting of a grid of pixels spaced apart by 2ps

3
,

corresponding to the unknown patches that will be solved for

Ωo Overlap region: Ωo = Ωu

⋂
Ωc

Ωp Region of known patches: Set of pixels for which correspond-

ing patches are contained in Ωc

P ∈ R
p2

s×|Ωp| Matrix of vectorized known patches. P (q, p) is the qth pixel

in the pth patch, q = 1, ..., p2
s, p = 1, ..., |Ωp|

u ∈ R
|Ωu| Value at pixels in Ωu constrained so u(v) = h(v) for v ∈ Ωo

S Set of valid u: {u : u(v) = h(v) for v ∈ Ωo}
c ∈ R

|Ωp|×|Ωup| Weights for representing Ωup patches as weighted averages of

Ωp patches. Must constrain c(p,m) ≥ 0 and
∑

p c(p,m) =

1 ∀m, m = 1, ..., |Ωup|
C Set of valid c: {c : c(p,m) ≥ 0 and

∑
p c(p,m) = 1 ∀m}

Pc ∈ R
p2

s×|Ωup| Matrix product of P and c is matrix of vectorized Ωup patches

β(q) Vectorized 2D Gaussian weights (standard deviation ps

3
) de-

fined on a single patch,

βv(q) Normalized weights βv(q) = β(q)∑
Qv

β(q)
where

Qv = {q : there exists a Ωup patch whose qth pixel overlaps v}
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5.2.2 Definition of Functional

The proposed functional will initially be defined in terms of c and u. Later, the

expression for u in terms of c will be substituted in. The constraints on c and u

will be handled by introducing indicator functions gC(c) and gS(u) for the sets C

and S.

gC(c) =





0 if c ∈ C

∞ otherwise

gS(u) =





0 if u ∈ S

∞ otherwise

The first term of the functional can be written

|Ωu|∑

v=1

∑

contributing(q,m)

(βv(q)((Pc)(q,m) − u(v)))2 ,

where the contributing (q,m) indices are those for which the qth pixel in the mth

Ωup patch overlaps pixel v. This can be more conveniently rewritten as

‖A(c) −B(u)||2F ,

where ‖ ·‖F is the Frobenius norm and A : R
|Ωp|×|Ωup| → R

p2
s×|Ωu| and B : R

|Ωu| →
R

p2
s×|Ωu| are linear operators defined as follows.

A(c)(q, v) =





βv(q)(Pc)(q,m)
if there exists m such that pixel q

of the Ωup patch at m overlaps v

0 otherwise

B(u)(q, v) =





βv(q)u(v)
if there exists m such that pixel q

of the Ωup patch at m overlaps v

0 otherwise

Note that u is only compared to pixels that come from weighted averages of

known patches. This is a potential weakness of this choice of data fidelity term.

It would be better to directly compare u to the information in the known patches
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in this weighted average, but we don’t because to do so would be much more

computationally intensive.

The correspondence term of the functional will be defined as

|Ωup|∑

m=1

∑

m̃∼m

|Ωp|∑

p=1





|c(p,m) − c(p̃(p, m̃,m), m̃)| if defined

0 otherwise,

where p̃(p, m̃,m) denotes the index for the Ωp patch shifted from p by the same

amount m̃ is shifted from m, defined when contained in Ωp. These differences can

be more conveniently written in terms of a linear operator D : R
|Ωp|×|Ωup| → R

e,

with e the total number of differences taken. With this notation the correspon-

dence term can be rewritten as ‖D(c)‖1.

The proposed functional is then

G(c, u) = gC(c) + gS(u) +
µ

2
‖A(c) −B(u)‖2

F + ‖D(c)‖1, (5.1)

which is to be minimized with respect to u and c. Note, however, that u can be

easily solved for in terms of c.

u(v) =




h(v) v ∈ Ωo

((B∗B)−1B∗A(c))(v) v ∈ Ω,

where B∗ denotes the adjoint of B. This formula for u can be thought of as

taking a weighted average at each unknown pixel of the contributing pixels from

overlapping patches. Pixels closer to the center of the patches are more heavily

weighted according to the Gaussian weights β. This weighted averaging update

for u is very similar to the one used in [ACS09]. When plugging the formula for

u back into ‖A(c)−B(u)‖2
F , it makes sense to break the term into two parts, one
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defined on Ωo and the other defined on Ω. To that end, define

XΩo(q, v) =





1 v ∈ Ωo

0 otherwise

XΩ(q, v) =





1 v ∈ Ω

0 otherwise

.

Also define

h0(v) =





h(v) v ∈ Ωo

0 otherwise

.

Plugging the expression for u into G yields

gC(c)+
µ

2
‖XΩo ·A(c)−XΩo ·B(h0)‖2

F +
µ

2
‖XΩ ·(I−B(B∗B)−1B∗)A(c)‖2

F +‖D(c)‖1,

where · denotes componentwise multiplication of matrices. Let

f = XΩo · B(h0)

and define linear operators AΩo and AΩ such that

AΩo(c) = XΩo · A(c)

and

AΩ(c) = XΩ · (I −B(B∗B)−1B∗)A(c).

Now we can define a convex functional in terms of c,

F (c) = gC(c) +
µΩo

2
‖AΩo(c) − f‖2

F +
µΩ

2
‖AΩ(c)‖2

F + ‖D(c)‖1, (5.2)

and attempt to solve the inpainting problem by finding a minimizer.

5.3 Numerical Approach

Variants of the PDHG method (3.18) are well suited for minimizing F (5.2). In

this section, we demonstrate how to apply the algorithm and also present several

numerical examples that show some of the strengths and weaknesses of the model.
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5.3.1 Application of PDHGMp

To minimize F , we use the PDHGMp variant (3.35) of the PDHG method. Let

H(c) = gC(c),

Ã =




AΩo

AΩ

D




and

J(Ã(c)) = JΩo(AΩo(c)) + JΩ(AΩ(c)) + JD(D(c)),

where

JΩo(zΩo) =
µΩo

2
‖zΩo − f‖2

F ,

JΩ(zΩ) =
µΩ

2
‖zΩ‖2

F

and

JD(zD) = ‖zD‖1.

With the addition of dual variables pΩo, pΩ, pD, time step parameters α, δ and op-

tional scaling parameters sΩo , sΩ, sD as discussed in Section 4.3.1, the PDHGMp

iterations are given by

ck+1 = arg min
c
gC(c) +

1

2α
‖c−

(
ck − α

A∗
Ωo

(2pk
Ωo

− pk−1
Ωo

)

sΩo

− α
A∗

Ω(2pk
Ω − pk−1

Ω )

sΩ

−αD
∗(2pk

D − pk−1
D )

sD

)
‖2

F

pk+1
Ωo

= arg min
pΩo

J∗
Ωo

(
pΩo

sΩo

) +
1

2δ
‖pΩo − (pk

Ωo
+
δAΩo(c

k+1)

sΩo

)‖2
F

pk+1
Ω = arg min

pΩ

J∗
Ω(
pΩ

sΩ
) +

1

2δ
‖pΩ − (pk

Ω +
δAΩ(ck+1)

sΩ
)‖2

F

pk+1
D = arg min

pD

J∗
D(
pD

sD

) +
1

2δ
‖pD − (pk

D +
δAD(ck+1)

sD

)‖2
F ,
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where the initialization is arbitrary. Each of the above minimizers can be explic-

itly solved by the following formulas,

ck+1 = ΠC

(
ck − α

A∗
Ωo

(2pk
Ωo

− pk−1
Ωo

)

sΩo

− α
A∗

Ω(2pk
Ω − pk−1

Ω )

sΩ
− α

D∗(2pk
D − pk−1

D )

sD

)

(5.3a)

pk+1
Ωo

=
pk

Ωo
+ δ

sΩo
(AΩo(c

k+1) − f)

δ
µΩos2

Ωo

+ 1
(5.3b)

pk+1
Ω =

pk
Ω + δ

sΩ
AΩ(ck+1)

δ
µΩs2

Ω

+ 1
(5.3c)

pk+1
D = Π{z:‖z‖∞≤sD}

(
pk

D +
δ

sD

D(ck+1)

)
(5.3d)

where ΠC and Π{z:‖z‖∞≤sD} denote orthogonal projection onto C and {z : ‖z‖∞ ≤
sD} respectively. The projection ΠC(c) amounts to projecting each column of c

onto the positive face of the l1 unit ball. This ensures the weights are nonnegative

and normalized. The same projection appears in Section 4.3.1, but there it is

applied to the rows of a matrix.

5.3.2 Numerical Results

The convex inpainting model works best for simple images with repeating struc-

ture and we show its successful application to the problem of inpainting a missing

portion of a brick wall in Figures 5.2 and 5.3. These examples also demonstrate

the effect of the correspondence term ‖D(c)‖1, which encourages information in

the recovered image to have similar spatial correspondence as information in the

known part of the image. In the extreme case where the weights are binary and

the correspondence term equals zero, the recovered data would simply be a copy

of a contiguous block of known image. Figure 5.2 shows the inpainting result

without the correspondence term. The parameters µΩo and µΩ were both set
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equal to one. The scaling parameters, which affect the efficiency of the numer-

ical scheme but don’t change the model, were chosen to be sΩo = 100000 and

sΩ = 10000. Figure 5.3 shows the result with the correspondence term included.

For this example, 1000‖D(c)‖1 was added to the functional and sD = 100. As can

be seen in the figures, the addition of the correspondence term makes it possible

to better reproduce the repeating structure of the image even when far from the

boundary.
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Figure 5.2: Inpainting brick wall using 15×15 patches but without including the

correspondence term

For more complicated images like the picture of grass in Figure 5.4, the ad-

dition of the correspondence term is not always able to encourage recovery of

more detail in the inpainting region. In this example, with 15 by 15 patches,

it’s difficult to find known patches that agree well with the boundary informa-

tion. When that happens, weights minimizing the convex functional tend to be
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Figure 5.3: Inpainting brick wall using 15 × 15 patches and including the corre-

spondence term

less sparse. That’s because when the unknown patches end up being averages of

many known patches, they become more nearly constant and therefore agree well

with patches they overlap. Figure 5.4 shows an example of such an unsatisfactory

over-averaged inpainting result. Modifications to the functional that address this

drawback are discussed in the next section.

5.4 Modifications to Functional

Some modifications to F (5.2) intended to improve the sparsity of the weights are

discussed in this section. Using the l1 norm instead of the l2 norm for the data

fidelity term leads to slightly sparser weights, but the results are not significantly

different. On the other hand, we show that adding a nonconvex term to encourage
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Figure 5.4: Inpainting grass using 15 × 15 patches and including the correspon-

dence term

binary weights can lead to good quality sparse solutions. Unfortunately, the

model in that case is no longer convex, the numerical approach becomes somewhat

ad-hoc and the results can be sensitive to parameter choices. Even so, the superior

results such an approach can yield merits a brief discussion.

5.4.1 Using l1 Data Fidelity

If the l1 norm is used instead of l2 for the data fidelity term, then the resulting

problem is

min
u,c

gC(c) + gS(u) +
µ

2
‖A(c) − B(u)‖1 + ‖D(c)‖1, (5.4)

It’s still possible to solve for u as a function of c. At each unknown pixel v, u(v) is

given by a weighted median of the contributing pixels from overlapping patches,

which appear as the nonzero entries of the vth column of A(c). The weights
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in this weighted median depend on the Gaussian weights β and the number of

contributing pixels. However, the resulting u depends nonlinearly on c, and so we

can’t use the same approach of substituting this formula back into the functional.

We could instead directly apply the PDHGMp algorithm, thinking of


c
u




as a single variable y and letting H(y) = gC(c) + gS(u), Ã =
[
A −B

]
and

J(Ã(y)) = µ

2
‖A(c) − B(u)‖1 + ‖D(c)‖1. Unfortunately, the stability restriction

that αδ < 1
‖Ã∗Ã‖ is too severe in this case because A and B can no longer be

scaled independently of each other.

An alternating version that works better in practice but is not theoretically

justified is to apply PDHGMp to (5.4) as if u were fixed, and then directly update

u every few iterations by computing the appropriate weighted median. In practice

this did lead to slightly sparser weights for the examples tested, but the results

compared to the l2 version did not differ significantly in visual quality.

5.4.2 Adding Nonconvex Term to Encourage Binary Weights

Motivated by the phase field approach for segmentation that enforces a binary

constraint by introducing a double well potential, we consider a similar strategy

for making c sparser or even binary. The double well potential strategy would be

to add a term of the form

γ
∑

p,m

c2p,m(1 − cp,m)2

to (5.2). Since the normalization constraint c ∈ C already forces 0 ≤ cp,m ≤ 1,

we instead choose to add the quadratic function

γ
∑

p,m

cp,m(1 − cp,m),
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which can be rewritten as

γ〈c, 1〉 − γ‖c‖2
F .

The resulting nonconvex functional is defined by

Fnc(c) = gC(c) + γ〈c, 1〉 − γ‖c‖2
F +

µΩo

2
‖AΩo(c) − f‖2

F +
µΩ

2
‖AΩ(c)‖2

F + ‖D(c)‖1.

(5.5)

We use the same numerical approach as in Section 5.3 after first redefining

H(c) = gC(c) + γ〈c, 1〉 − γ‖c‖2
F .

The PDHGMp minimization steps in (5.3) remain the same except for the ck+1

update, which becomes

ck+1 = arg min
c
gC(c) + γ〈c, 1〉 − γ‖c‖2

F +
1

2α
‖c−

(
ck − α

A∗
Ωo

(2pk
Ωo

− pk−1
Ωo

)

sΩo

(5.6)

−αA
∗
Ω(2pk

Ω − pk−1
Ω )

sΩ
− α

D∗(2pk
D − pk−1

D )

sD

)
‖2

F .

Let 0 ≤ γ < 1
2α

. This ensures that the objective functional for the ck+1 update

remains convex. Naturally, if γ = 0 then the update is unchanged from before.

Altogether the PDHGMp iterations are given by

ck+1 = ΠC

((
1

1 − 2αγ

)(
ck − α

A∗
Ωo

(2pk
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− pk−1
Ωo

)

sΩo
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Ω )
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pk
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)
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Note that the convergence theory for PDHGMp based on Theorem 3.4.2 no longer

applies because Fnc(c) is not convex. In practice, the method does not find global

minimizers of Fnc, but it does produce good solutions with binary weights as

demonstrated in Section 5.4.2.1.

5.4.2.1 Numerical Examples using Nonconvex Model

The nonconvex modification of the inpainting model discussed in Section 5.4.2 is

tested on two example images, an image of grass and the brick wall image, both

missing a large rectangular region in the center. In both examples, the weights

end up being binary. Although the solutions are not a global minimizers of Fnc(c),

they look more natural than the global minimizers of the convex model.

For both examples, µΩo = 1, µΩ = 1, the correspondence term was multiplied

by 1000, sΩo = 100000, sΩ = 10000 and sD = 100.

The brick example in Figure 5.5 was computed in 400 iterations. For the first

200 iterations we set α = 1000, δ = .001 and γ = .01
2α

. For the last 200 iterations

we set α = 100, δ = .0001 and γ = .05
2α

.

The grass example in Figure 5.6 was computed in 700 iterations. Similar to

the brick example, for the first 500 iterations we set α = 1000, δ = .001 and

γ = .01
2α

. For the last 200 iterations we set α = 100, δ = .0001 and γ = .05
2α

.

These parameters were not exhaustively optimized and better parameter se-

lections may well lead to improved performance of the model.

Interestingly, the computed minimizers of Fnc are demonstrably not global

minimizers. Even the global minimizers of F for the same examples have lower

energy in terms of Fnc. The fact that the computed minimizers of Fnc lead

to better solutions suggests that perhaps we shouldn’t be looking for a global
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Figure 5.5: Inpainting brick wall using the nonconvex model with 45×45 patches

minimizer of that functional. Since the computed minimizers of Fnc are binary for

the examples tested, this indicates that we may be more interested in computing

minimizers of F subject to an additional constraint that restricts c to be binary.

Our procedure for minimizing Fnc may be a practical approach for approximating

solutions to that nonconvex problem.

5.5 Conclusions and Future Work

The proposed convex model for nonlocal inpainting can successfully be applied

to simple images with repeating structure like the brick wall example. It’s also a

very good example of the efficiency of PDHGMp for large scale problems. Despite

the high dimensionality of the model, the PDHGMp method is a practical means

of solving it. However, in general the convex model tends to involve averaging
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Figure 5.6: Inpainting grass using the nonconvex model with 15 × 15 patches

together too many known patches because this helps the unknown patches agree

where they overlap. For images with repeating structure, the global minimizer

prefers to at least take averages over similar patches to obtain better agreement at

the boundary. But, when boundary agreement is difficult, as in more complicated

images, the global minimizer can involve far too much averaging and yield visually

poor solutions. Adding the nonconvex sparsifying term proved to be a fairly

successful remedy to this problem, but the benefit of having a convex model was

then lost.

Future work will involve investigating whether it’s possible to achieve the

sparser solutions while still staying in a convex framework. It may help to modify

the strength of the data fidelity term depending on the distance to the boundary.

This idea is used to improve inpainting results in [ACS09] via the introduction of

a ’confidence mask.’ It’s also worth studying how to put the nonconvex model and
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its numerical solution in a better theoretical framework. Of particular interest is

the relationship between the binary computed minimizers of Fnc and minimizers

of F with c constrained to be binary.

It may be possible to smooth the transition from the recovered solution on

Ω to the known portion of the image on Ωc by relaxing the u ∈ S constraint.

To accomplish this, Ωu could be enlarged to cover the entire image, and gS(u)

in (5.1) could be replaced with a quadratic penalty defined on Ωo of the form

1
2η
‖XΩo · (u − h0)‖2

F . By weighting the term 1
2η
‖XΩo · (u − h0)‖2

F more heavily

away from Ω, it should still effectively act as the constraint gS(u) away from Ω

and yet facilitate a smoother transition to the recovered image near Ω. It would

also be interesting to combine this approach with a geometry inpainting model

such as Euler elastica inpainting applied only near the boundary, similar to how

texture synthesis and Euler elastica inpainting were combined in [Ni08].

Other modifications to consider are multiresolution approaches and expand-

ing Ωp to include patches that overlap the inpainting region. Multiresolution

techniques, while doable, would be considerably more complicated to implement.

Expanding Ωp would make it possible to take weighted averages of patches which

themselves depend on the unknown solution. This would allow the model to be

more generally applicable, but it would also complicate the update for u and

make the overall functional nonconvex.
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