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A Convex Speech Extraction Model and Fast
Computation by the Split Bregman Method

Meng Yu, Wenye Ma, Jack Xin, and Stanley Osher.

Abstract—A fast speech extraction (FSE) method is presented
using convex optimization made possible by pause detection of
the speech sources. Sparse unmixing filters are sought by l1
norm regularization and the split Bregman method. A subdivided
split Bregman method is developed for efficiently estimating
long reverberations in real room recordings. The speech pause
detection is based on a binary mask source separation method.
The FSE method is evaluated objectively and subjectively, and
found to outperform existing blind speech separation approaches
on both synthetic and room recorded data in terms of the overall
computational speed and separation quality.

Index Terms—convexity, sparse filters, split Bregman method,
fast blind speech extraction.

I. INTRODUCTION

BLIND speech separation (BSS) aims to recover source
signals from their mixtures without detailed knowledge

of the mixing process [1]. However, it remains a challenge
to retrieve sound sources recorded in real-world environment
such as in cluttered rooms. The physical reason is that sound
reflections (reverberations) in enclosed rooms cause signal
mixing at current time to depend on source signals and their
long delays (history dependent). Mathematically, the mixing
process is convolutive in time and the unknowns are high
dimensional. Various efforts have been made to separate con-
volutive mixtures. Three major approaches are: time-domain
BSS, frequency domain BSS, and time-frequency (TF) domain
BSS.

Time domain BSS is based on optimizing a cost func-
tion (measuring entropy or non-Gaussianity) for time domain
signals, for example independent component analysis (ICA).
The approach is theoretically reasonable, and achieves a good
separation if the optimization can be done accurately as is the
case for mixtures with minimal time delay (low reverberation).
However at the fundamental level, all time domain methods
based on ICA attempt to optimize non-convex objectives, for
which no global convergence is mathematically guaranteed.
This weakness poses a difficult problem for actual convergence
and robustness of approximation in real-world settings where
high dimensional (on the order of thousands) optimization un-
der measurement noise is encountered. The lack of robustness
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under perturbations may be explained by potentially many
local minima of a non-convex objective where approximating
sequences can get stuck in. Even if local convergence of
optimizing sequence occurs, it may be computationally ex-
pensive. For example, the time domain scaled natural gradient
method [1] is typically time consuming in the regime of
long reverberations. Moreover, small divisors and divergence
may occur in silent durations of mixture signals, in other
words, the method is not stable in the presence of a small
piece of silent duration. Though a nonlocally weighted soft
constrained natural gradient method [2] resolves such issues
and renders the method asymptotically consistent, convergence
is still rather slow.

In frequency domain BSS, the observed time domain signals
are converted into frequency domain time series signals by
the short-time (windowed) Fourier transform (STFT). The
convolutive mixture can be approximated with multiple instan-
taneous mixtures (no time delay), each of which is defined in
a frequency bin. The approximation is however only valid if
the window size is much larger than the length of delay. Under
such condition, one can then employ any instantaneous BSS
algorithm to separate the mixtures bin by bin. However, the
permutation and scaling ambiguity of a BSS solution turns into
a serious problem in reconstructing time domain output. The
order of the output in each frequency bin must be determined
correctly so that the separated frequency components that
originate from the same source are grouped together before
taking inverse STFT. Large window size, permutation and
scaling issues limit the effectiveness of frequency domain
BSS in reverberant conditions. In contrast, the time-frequency
domain methods ([3], [4]) by spectral data clustering are both
simple and efficient partly because they do not resolve room
impulse responses. The basic working assumption is that at
most one source signal is dominant at each time-frequency
point of the mixture spectrogram. In other words, the Fourier
spectra of the source signals rarely overlap in time. Such a non-
overlapping property in the TF domain deteriorates however
in reverberant conditions ([3], [4]), causing clustering errors
and musical noise in the output.

In this paper, a novel fast time domain speech extraction
(FSE) method is proposed based on the assumption that
intelligible speech signals contain pauses. Pause detection is a
problem of independent interest, which we handle here by
processing the output of a modified TF domain clustering
method. Because we only detect silence durations from the
initial separation, tolerance of artifacts in TF domain clustering
is higher. During silent durations of the target speech signal,
information of the interference (background) is collected and
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allows us to formulate a convex optimization problem for
finding part of the impulse response functions which suffice to
estimate the target speech. A sparse solution is then computed
by l1 norm regularization and the split Bregman method for
which fast convergence was recently studied [5]. The proposed
time domain approach is free from the permutation problem in
frequency domain BSS and relaxes the TF domain non-overlap
hypothesis. It also does not rely on speech data statistics, and
so enjoys high efficiency in data usage and computation.

This paper is organized as follows. In section II, the convex
optimization problem for FSE is introduced. In section III,
computational framework by l1 norm regularization is shown.
The Bregman method and the split Bregman method are
explained with algorithmic schemes and convergence proofs.
In subsections III-C and III-D, algorithms for moderately
and highly reverberant acoustic environments are illustrated.
The subdivided split Bregman method is proposed for FSE
with long reverberations and large number of sources. In
section IV, an onset-offset detection method of speech is
outlined. In section V, the length of selected silent speech
duration is studied, and the comparison between the split
Bregman method and the subdivided split Bregman method
is illustrated under different lengths of the filters. Evaluations
of FSE show its merits in both speed and separation quality in
comparison with existing methods. Discussion and conclusions
are in section VI. Our method also applies to non-speech
signal extraction from convolutive mixtures as long as pause
detection of target signal is possible.

II. FAST SPEECH EXTRACTION MODEL

Let us consider two sensors and two sound sources which
can be either two speech signals or one speech signal and one
non-speech background interference (music or other ambient
noises). FSE method shall sequentially extract speech signals
if there are more than one speech sources. Let us denote one
of the two sources as the target speech signal sT , and the other
one as background interference sB . The mixing model is

xi(t) = hi1 ∗ sB(t) + hi2 ∗ sT (t) (1)

where t is time; i = 1, 2; and ∗ is linear convolution. Instead of
finding an unmixing filter W such that W ∗ (x1, x2) recovers
(sT , sB), we extract speech signal sT by eliminating (not
recovering) interference sB . Suppose that the target speech
contains pauses. Then there is a union D of disjoint time
intervals where sT ≈ 0, while interference sB is active. It
follows from (1) that h21 ∗ x1(t) − h11 ∗ x2(t) ≈ 0 for
t ∈ D. The elimination by cross multiplication was known in
blind channel identification [6] and background suppression
[7]. Inside D, we seek a pair of sparse filters ui (i = 1, 2)
to minimize the energy of u2 ∗ x1 − u1 ∗ x2 in the region
D. Ideally, u1 ≈ h11 and u2 ≈ h21, that is the solutions are
expected to be a pair of sparse acoustic room impulse response
(RIR). The sparse RIR model is theoretically sound [8], and
has been shown useful for estimating RIRs in real acoustic
environments [9]. Filter sparseness is achieved by l1-norm
regularization. The resulting convex optimization problem for

t ∈ D is:

(u∗1, u
∗
2) = arg min

(u1,u2)

1
2
||u2 ∗ x1 − u1 ∗ x2||22

+
η2

2
(

2∑
i=1

ui(1)− 1)2 + µ(||u1||1 + ||u2||1) (2)

where the second term is to fix scaling and prevent zero
(trivial) solution. Denote the length of D by LD and that of ui

by L. D can be as short as even 0.25 s’ duration, which makes
FSE method efficient on the data usage and different from
other BSS methods that are based on the high order statistics
of data. In matrix form, convex objective (2) becomes:

u∗ = arg min
u

1
2
||Au− f ||22 + µ||u||1 (3)

where u is formed by stacking up u1 and u2; vector f =
(0, 0, · · · , 0, η)T with length LD + 1; and (LD + 1) × 2L
matrix A (T is transpose) is:

A =



x1(1) x1(2) ... ... x1(LD−1) x1(LD) η
x1(1) ... ... x1(LD−2) x1(LD−1) 0

. . .
...

...
x1(1) ... x1(LD−L+1) 0

−x2(1) −x2(2) ... ... −x2(LD−1) −x2(LD) η
−x2(1) ... ... −x2(LD−2) −x2(LD−1) 0

. . .
...

...
−x2(1) ... −x2(LD−L+1) 0



T

When t 6∈ D, cross multiplication of (1) shows that ŝT =
u∗2∗x1−u∗1∗x2 ≈ h21∗x1−h11∗x2 = (h21∗h12−h11∗h22)∗
sT . Interference sB is eliminated and ŝT sounds same as sT

to human ear. Here we assumed that the acoustic environment
does not change much so that estimates of h11 and h21 during
D still apply when t 6∈ D. For a convex objective with non-
negativity filter constraints for sparsity, see [7].

Extraction of a speech source from M ≥ 3 mixtures of N
sources (N = M ) is similar. Let a source sn (1 ≤ n ≤ N) be
silent in t ∈ D, for proper value of (η, µ) > 0, we minimize:

1
2
||

M∑
j=1

ujn ∗ xj ||22 +
η2

2
(

M∑
j=1

ujn(1)− 1)2 + µ(
M∑

j=1

||ujn||1),

and estimate sn by ŝn =
M∑

j=1

ujn ∗ xj .

III. MINIMIZATION BY BREGMAN METHOD

In this section, we introduce Bregman distance [10], Breg-
man and split Bregman methods of non-smooth convex opti-
mization. We show that the split Bregman method boils down
to simple operations such as shrinkage, matrix multiplication,
and one-time matrix inversion. Then we adapt the split Breg-
man method and apply it to the convex speech extraction
model (3) in reverberant conditions.

A. Bregman iterative regularization

The Bregman method was first applied [11] to the image
denoising model of Rudin-Osher-Fatemi [12] with the non-
smooth total variation (TV) regularization:

u = arg min
u

µ

∫
|∇u|+ 1

2
||u− f ||22 (4)
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where f is the observed noisy data and µ is a positive pa-
rameter related to signal to noise ratio. The Bregman distance
is

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉

where J(u) = µ
∫
|∇u| and p ∈ ∂J is a subgradient of J at

the point v. The Bregman distance is not a distance in the usual
sense because Dp

J(u, v) 6= Dp
J(v, u) in general. However, it

measures the closeness of two points since Dp
J(u, v) ≥ 0 for

all u and v, and Dp
J(u, v) ≥ Dp

J(w, v) for all w on the line
segment connecting u and v. The Bregman iterative regular-
ization procedure [11] is to solve a sequence of unconstrained
subproblems

uk+1 = arg min
u

Dpk

J (u, uk) +
1
2
||u− f ||22 (5)

for k = 0, 1, . . ., starting with u0 = 0 and p0 = 0.
Since J(u) = µ

∫
|∇u| is not differentiable everywhere, the

subgradient of J may not be unique. However, it follows
from the optimality of uk+1 in (5) that the inclusion 0 ∈
∂J(uk+1)− pk + uk+1 − f holds or:

pk+1 = pk + f − uk+1. (6)

Bregman iteration refers to the mapping from (uk, pk) →
(uk+1, pk+1).

Now consider a more general constrained minimization
problem:

min
u

J(u), s.t. H(u) = 0 (7)

where J is convex but not necessarily differentiable, such as
the l1 norm or TV norm, and H is convex and differentiable
with zero as its minimum value. Traditionally, this problem
may be solved by continuation methods. One solves a se-
quence of unconstrained problems

min
u

J(u) + λkH(u). (8)

By choosing a sequence of positive numbers λk with λk →∞,
one gets the solution of the constrained problem (7). Instead
of solving (8), one solves a sequence of subproblems using
the iterative regularization procedure as above:

uk+1 = arg min
u

Dpk

J (u, uk) + H(u) (9)

pk+1 = pk −∇H(uk+1). (10)

with u0 = 0 and p0 = 0.
In [11], the authors analyzed the convergence of Bregman

iterative scheme (9)-(10) and showed that under fairly weak
assumptions on J and H , H(uk) → 0 as k → ∞. For
some cases, it is shown later [13] that this procedure solves
the original problem (7). Here we restate two particular
convergence results in [11].

Theorem III.1. Assume that J and H are convex functionals
and H is differentiable, and that the solutions to the subprob-
lem in (9) exist. Let u∗ be a minimizer of H , we then have
(1) monotonic decrease in H: H(uk+1) ≤ H(uk),
(2) convergence to a minimizer of H: H(uk) ≤ H(u∗) +

J(u∗)/k.

Theorem III.1 shows that H(uk) converges to H(u∗). In
particular, if H has minimal value 0, then uk gets arbitrarily
close to the solution of the constraint (7). If H(u) = 1

2 ||Au−
f ||22 and Au = f has a solution, then H(uk) converges to
0 in finitely many steps [13]. The advantage of Bregman
method is that it transforms a constrained problem into a
sequence of unconstrained subproblems. It is different from the
continuation methods since the parameter λk = 1 (uniform)
for all subproblems. These subproblems are solvable in closed
form when J is l1 norm, as we show below in the context of
the so called split Bregman method.

B. Split Bregman method

The split Bregman method was introduced by Goldstein and
Osher [5] for solving l1, TV, and related regularized problems
in imaging. It has connections to Lagrangian-based alternating
direction methods in convex optimization [14]. Consider the
unconstrained problem:

min
u

J(Φu) + H(u),

where J and H are as in (7), and Φ is linear operator. In case
of (3), J(u) = µ||u||1, H(u) = 1

2 ||Au−f ||22, and Φ = I . The
key idea is to introduce an auxiliary variable d = Φu, and
solve the constrained problem

min
d,u

J(d) + H(u), s.t. d = Φu (11)

or

min
d,u

E(d, u), s.t.
λ

2
||d− Φu||22 = 0

where E(d, u) = J(d) + H(u) and λ is a positive constant.
Then we can Bregmanize the problem as in (9). We replace
E(d, u) by its associated Bregman distance and update the
subgradients pk

d and pk
u respectively. Given that u0 = 0, d0 =

0, p0
d = 0, and p0

u = 0, we have the iterations:

(uk+1, dk+1) = arg min
u,d

J(d) + H(u)− 〈pk
d, d− dk〉

− 〈pk
u, u− uk〉+

λ

2
||d− Φu||22

pk+1
d =pk

d − λ(dk+1 − Φuk+1)

pk+1
u =pk

u − λΦT (Φuk+1 − dk+1)

For simplicity, we introduce a new variable bk = pk
d/λ. And

we notice that pk
d = λbk and pk

u = −λΦT bk, and thus the
iterations become:

(uk+1, dk+1) = arg min
u,d

J(d) + H(u)− λ〈bk, d− dk〉

+ λ〈bk,Φ(u− uk)〉+
λ

2
||d− Φu||22

bk+1 =bk − dk+1 + Φuk+1

with u0 = 0, d0 = 0 and b0 = 0. The iterates dk+1 and uk+1

can be updated alternatively. We first fix uk to update dk+1

and then fix dk+1 to update uk+1. The general split Bregman
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iteration with initial values d0 = 0, u0 = 0, b0 = 0, is:

dk+1 =arg min
d

1
λ

J(d)− 〈bk, d− dk〉+
1
2
||d− Φuk||22

(12)

uk+1 =arg min
u

1
λ

H(u) + 〈bk,Φ(u− uk)〉

+
1
2
||dk+1 − Φu||22 (13)

bk+1 =bk − (dk+1 − Φuk+1) (14)

If J is the l1 norm, the subproblem (12) has explicit
solutions. The subproblem (13) is also easy to solve since the
objective is differentiable. Convergence of the split Bregman
method for the case of J(u) = µ||u||1 is analyzed [15], and
the result is:

Theorem III.2. Assume that there exists at least one solution
u∗ of (11). Then we have the following properties for the split
Bregman iterations (12),(13), and (14):

lim
k→∞

µ||Φuk||1 + H(uk) = µ||Φu∗||1 + H(u∗)

Furthermore,
lim

k→∞
||uk − u∗||2 = 0

if u∗ is the unique solution.

C. Implementation of FSE for moderate reverberations
In this subsection, we implement our proposed FSE method

for the moderate reverberation case. Let J(u) = µ||u||1, Φ =
I , and H(u) = 1

2 ||Au− f ||22.
Applying the split Bregman method and setting d0 = 0,

u0 = 0, and b0 = 0, we have the iterations:

dk+1 =arg min
d

µ

λ
||d||1 − 〈bk, d− dk〉+

1
2
||d− uk||22 (15)

uk+1 =arg min
u

1
2λ
||Au− f ||22 + 〈bk, u− uk〉

+
1
2
||dk+1 − u||22 (16)

bk+1 =bk − (dk+1 − uk+1) (17)

Explicitly solving (15) and (16) gives the simple algorithm

Initialize u0 = 0, d0 = 0, b0 = 0

While ||uk+1 − uk||2/||uk+1||2 > ε

(1) dk+1 = shrink(uk + bk,
µ

λ
)

(2) uk+1 = (λI + AT A)−1(AT f + λ(dk+1 − bk))

(3) bk+1 = bk − dk+1 + uk+1

end While

Here shrink is the soft threshold function defined by
shrink(v, t) = (τt(v1), τt(v2), · · · , τt(vn)) with τt(x) =
sign(x) max{|x|−t, 0}, see Fig. 1. Noting that the matrix A is
fixed, we can precalculate (λI + AT A)−1, then the iterations
only involve matrix multiplication and are extremely fast as a
result. For moderate reverberation, the length of room impulse
response (RIR) is not too long. The size of matrix λI+AT A is
NL×NL, N being the number of sources. The computational
cost for matrix inversion is not high. The above algorithm runs
fast for the purpose of FSE.

Fig. 1. Demonstration of shrink operator in subsection III-C

D. Subdivided Split Bregman for Long Reverberations

In the strong reverberation regime, RIR length is on the
order of thousands. In order to have a more accurate solution,
the length of u should be large accordingly. The length of u
also goes up when N ≥ 3. To reduce cost of matrix inversion
when u is high dimensional, we subdivide u into r parts:
u = (u1, u2, · · · , ur)T with ui ∈ R NL

r . Correspondingly
A = [A1, A2, · · · , Ar]. The minimization problem is:

u = arg min
u

1
2
||

r∑
i=1

Aiui − f ||22 + µ

r∑
i=1

||ui||1.

The split Bregman method is applied to update each subdi-
vided part of u sequentially (update ui by fixing the other
r − 1 uj’s).

Initialize u0 = 0, d0 = 0, b0 = 0

While ||uk+1 − uk||2/||uk+1||2 > ε

(1) dk+1 = shrink(uk + bk,
µ

λ
)

(2) For i from 1 to r

uk+1
i = (λI + AT

i Ai)−1(AT
i (f −

∑
j 6=i

Ajuj)

+ λ(dk+1
i − bk

i ))
end For

(3) bk+1 = bk − dk+1 + uk+1

end While

where di and bi are the subdivided parts of d and b. We precal-
culate inverse matrices (λI+AT

i Ai)−1, each NL
r dimensional.

With proper choice of the number r, the computation speed
can be improved significantly, as shown in section V.

IV. SOURCE ACTIVITY DETECTION

The necessary preparation for FSE is silence detection of
the speech sources. To maintain the overall speed of the
proposed method, silence detection is based on the binary
mask (BM) separation method DUET, the Degenerate Unmix-
ing Estimation Technique [3], a fast method of blind speech
separation without resolving RIRs. Though musical noise may
occur due to binary operation in TF domain, DUET appears
reliable for identifying silence periods of a target speech from
a mixture (a robust speech feature). A brief review of DUET
algorithm is given here. The standard mixing model for two
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receivers and multiple sources is xj(t) =
∑N

k=1 hjk ∗ sk,
where j = 1, 2, ∗ is the convolution and hjk represents the
impulse response from source sk to sensor j. The time-domain
signals xj(t), j = 1, 2, sampled at frequency fs are first
converted into frequency-domain time-series signals Xj(f, τ)
with STFT. To group TF points into N clusters such that the
points within each cluster are dominated by a single source
signal, the feature parameters associated with each TF point
are defined as a(f, τ) = |r(f, τ)| and δ(f, τ) = −1

f ∠r(f, τ),
where r(f, τ) = X2(f,τ)

X1(f,τ) , | · | denotes the magnitude and ∠·
denotes the phase angle of a complex number. Sufficient values
of a(f, τ) and δ(f, τ) generate a smooth two dimensional
histogram. The K-means clustering algorithm finds the N most
prominent peaks in the histogram. Each peak corresponds to
one source in the mixture and the value for a(f, τ) and δ(f, τ)
at that peak are the feature parameters for that source. Once the
feature parameters for each source have been estimated, DUET
assigns the energy in each TF point to the source whose peak
lies closest to that point in the feature space of a and δ. The
individual separated signal spectrogram Yn(f, τ) is estimated
based on the clustering result. The TF binary mask for the
n-th source signal is:

Mn(f, τ) =

{
1 (f, τ) ∈ cluster Ck

0 otherwise
(18)

Then Yn(f, τ) = Mn(f, τ)XJ(f, τ), where n = 1, ..., N and
J is a selected sensor index. Finally, inverse STFT (iSTFT) is
applied to Yn(f, τ) with overlap-add method [16] to recover
the waveform yn(t).

The ratio Rn(τ) = ||Yn(·,τ)||22
||YB(·,τ)||22

is used for detecting the
silence part of source n, where YB is the sum of back-
ground sources. Though the separation quality may degrade
if reverberation is long, the onset-offset feature is robust and
detectable if we delete certain “fuzzy points” and reduce
binary masking errors. Specifically, at each TF point (f, τ),
the confidence coefficient of (f, τ) ∈ Cn is defined by

CC(f, τ) =
dn

minj 6=n dj
,

where dj is the distance between the value of a and δ at (f, τ)
and that at j-th peak. The mask is redefined for some ρ > 0
as

Mn(f, τ) =

{
1 (f, τ) ∈ Cn & CC(f, τ) ≤ ρ

0 otherwise
(19)

The ρ is usually set to be 1/2 to alleviate clustering error. We
check the mean and variance of the ratio Rn frame by frame
with proper frame size and overlapping. The time intervals
with small mean and variance values are selected as the region
where source n is almost silent. The entire FSE algorithm is:

V. EVALUATION AND COMPARISON

The implementation is in Matlab 2009b and the evaluation
is done in the Windows 7 Home Premium operation system
with Intel Core i5-M520 2.40 GHz CPU and 3.00 GB memory.
The parameters for FSE are chosen as µ = ε = 10−3, η = 1,
and λ = 2µ throughout the evaluation.

Fig. 2. Source activity detection (mixture of speech and music). Top: ratio
R(τ); middle: mean of R(τ); bottom: variance of R(τ). Detection frame
size is 10 with shift as 2. The range of detection frame is half of time frame.
Segments marked by the shadows are selected regions for D where the target
speech signal is weak.

Algorithm 1: FSE Overall Scheme
Input: Acoustic mixing signals, xj , j = 1, ...,M

(M ≥ 2)
Output: Extracted speech source ŝn, n ∈ [1, N ].
Activity Detection: Find durations of total length LD

where speech source n is either weak or silent
if Room reverberation and number of sources are low
then

Apply split Bregman method directly to obtain
filters ujn, j = 1, ...,M

else
Apply subdivided split Bregman method to obtain
filters ujn, j = 1, ...,M

Speech Extraction: Calculate ŝn =
M∑

j=1

ujn ∗ xj .

We first evaluate the proposed FSE method, study the
relation between the length of selected silent speech duration
and the extraction quality, and compare the split Bregman
algorithm with subdivided split Bregman algorithm using
synthetically mixed data (two sensors and two sources).

[Setup 1]: The room size is 5×9×3.5 m, and the impulse
responses are measured by two omni-directional microphones
(middle of the room and 1.5 m above the floor) with the
spacing 15 cm. The sources are 1 m away from the sensors
with the azimuth 30◦ and 90◦, and the same height as sensors.
The reverberation times of impulse responses are from 0 s
(anechoic) to 1.0 s. In order to illustrate the separation quality
and speed of our proposed method, we simplify the detection
step by knowing roughly about 0.5 s’ silent duration D (e.g.
2.3 s - 2.8 s for the speech source in the up-left panel of Fig.
4) of target speech source ahead of time. The other source
(e.g. lower-left panel in Fig. 4) is either speech or background
music. The duration of the sources is 5 s and the sampling
rate is 16000 Hz. Two mixtures (e.g. two right panels in Fig.
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Fig. 3. Output SIR vs. input SIR for the proposed FSE method with different
reverberation times.
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Fig. 4. Clean speech source (up-left panel), background interference (lower-
left panel) and two corresponding synthetical mixtures at T60 = 150 ms
(up-right and lower-right pannels).

4) are synthesized by measured RIRs according to (1). As the
reverberation time goes up, the length of solution u (e.g. sparse
solution u with 400 taps in Fig. 6) increases accordingly from
400 taps to 2000 taps. Shown in Fig. 3 are the average output
signal to interference ratios (SIRs) achieved by FSE for the
various reverberation times and input SIRs. Extracted speech
sources in two channels are shown in Fig. 5, corresponding to
the two sources in Fig. 4.

With different lengths of selected silent speech durations,
FSE achieves various separation qualities, seen in Fig. 7.
Basically, the separation effect is consistently improved with
the increasing size of the silence region D (0.15 s, 0.30 s,
0.45 s, 0.60 s and 0.75 s). The separation reaches a plateau at
0.5 s. Length of 0.5 s total silence is an idea choice, which
balances the computational speed and separation quality.

Table I illustrates the average iterations, computation time
[s] and SIR improvement (SIRI [dB]) of the split Bregman
algorithm and the subdivided split Bregman algorithm by
different lengths of unmixing filters. The data are synthetic
mixtures of two sources same as in [Setup 1] with however
the reverberation time T60 = 780 ms and the input SIR
≈ −5.9 dB. The comparison indicates that the subdivided split
Bregman (r = 2 here) performs better than the split Bregman
if the length of unmixing filters is larger than 800 taps. When
the length L is above 2000, the split Bregman runs out of
memory. There is a trade-off between improved separation and
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Fig. 5. Extracted two speech sources from the two mixtures in Fig. 4 by FSE
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Fig. 6. Sparse filters u’s with 400 taps, u11 and u21 (u12 and u22) are
used to estimate source 1 (source 2) in Fig. 5.

computation costs. From Table I, L = 800 already achieves a
good separation.

TABLE I
Comparison of the (divided) split Bregman algorithms

Split Bregman Subdivided Split Bregman

L Iteration Time SIRI Iteration Time SIRI

50 57 0.028 6.386 57 0.332 6.392

100 50 0.058 6.214 50 0.531 6.221

200 42 0.209 6.766 43 0.796 6.776

400 44 0.780 8.069 43 1.565 8.111

800 62 4.386 9.107 50 4.064 9.195

1200 63 10.994 10.364 41 7.019 10.401

1600 71 21.684 11.379 66 14.820 11.265

2000 103 38.161 12.306 77 23.132 12.159

2800 - - - 104 48.245 12.984

3600 - - - 123 83.295 13.466

The comparison of a list of existing BSS methods is shown
in Table II in terms of computation time, SIR, signal to
distortion ratio (SDR) and signal to artifact ratio (SAR).
The data are synthetic mixtures of two speech sources as in
[Setup 1] with reverberation time T60 = 150 ms and input
SIR ≈ −5.9 dB. To compare the computation time of the
algorithms directly, the proposed FSE method extracts two
speech sources sequentially with the silent unions for the two
speech sources known ahead of time. Table II indicates that the
proposed FSE achieves the best separation quality in objective
measures at almost the speed of FastICA.

Room recorded mixture data are used to evaluate and
compare the above BSS methods by the Perceptual Evaluation
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Fig. 7. The relationship between average separation effect — SIR improve-
ment (SIRI) and the length of selected silent speech duration with different
reverberation times. The input SIR is about -5.9 dB.

TABLE II
Comparison of BSS methods on synthetic mixture data

Time [s] SIR [dB] SDR [dB] SAR [dB]

Parra[17] 7.16 5.55 1.62 5.34
IVA[18] 42.72 14.59 7.21 9.52
SNGTD[1] 122.35 11.28 4.67 7.21
FastICA[1] 1.32 9.31 4.12 7.05
FSE 1.56 26.60 15.35 16.39

of Speech Quality (PESQ) [19]. [Setup 2]: The room size is
4.4 × 3.6 × 2.5 m with reverberation time T60 = 130 ms.
The loudspeakers and omni-directional microphones are 1.4
m high from the floor. The sensors are set in the middle of
the room with 4 cm spacing linearly arranged. For the two
sensors and two sources case, sources come from speaker S1

and S2, and Mic2 and Mic3 are turned on, see Fig. 8. For the
case of three sensors and three sources, all the speakers and
microphones in Fig. 8 are included. The mixture data are male
and female speeches with the duration about 7 s and sampling
rate 8000 Hz. Now with the source activity detection added,
the separation quality of the proposed FSE exceeds those of
the known methods, as seen from Table III. The speech sources
activity detection is done within 2 to 3 seconds, and does not
affect the efficiency of the FSE method. DUET BSS method
[20] is included in Table III as the microphone spacing is small
enough so that there is no phase-wrap ambiguity to degrade
its performance.

TABLE III
Average PESQ of BSS methods on real recording mixture data. PRE PESQ

is the average PESQ of the mixture data. Time for FSE is shown as
detection time + speech extraction time.

2 sources (time[s]) 3 sources (time[s])

PRE PESQ 1.37 1.00
Parra 1.57 (7.9) 1.44 (16.0)
FastICA 1.90 (2.1) 1.70 (3.3)
SNGTD 2.07 (120) 1.88 (265)
IVA 2.35 (49.0) 2.02 (52.2)
DUET 2.36 (2.2) 2.00 (4.3)
FSE 2.58 (1.9+2.4) 2.15 (2.3+3.8)

S1
150o

S2
110o

S3
70o

Mic1

Mic2

Mic3

1.2m

Reverberation time: 130 ms

Sampling rate: 8000 Hz

Source: male and female speeches, 
or speeches and music 

with 7s duration
Room height: 2.5 m

Loudspeaker 1.4 m height

Omni-directional microphones 1.4 m height
with 4 cm spacing

4.5 m
3.6 m

Fig. 8. Configuration and parameters of the room recording.

TABLE IV
Subjective evaluation on blind speech separation. Here > (<) means the
output of our method is perceived better (worse) than the other method in

terms of separation quality and voice clearness respectively, while ≈ means
”hard to distinguish”.

Method Test Category > ≈ <

FSE vs IVA Separation 71.5% 4.8% 23.7%
Clearness 53.3% 5.5% 41.2%

FSE vs DUET Separation 65.3% 5.8% 28.9%
Clearness 45.5% 12.4% 42.1%

In the above objective evaluations, IVA, DUET and FSE
lead other approaches. For further study, we evaluate these
three approaches by subjective test. Mixture data are collected
in the same environment as [Setup 2], which contains both
two sources and three sources cases. At lease one source is
speech. Extracted speech sources by three different methods
are evaluated by 10 human subjects with normal hearing. We
utilized the paired comparison (PC) test, which requires each
listener to rank the three methods according to the performance
of separation quality and sound clearness. The preference
percentages of our method to the other two methods is shown
in Table IV, and they are calculated as

PC> =
# of pairs where FSE is better

# of all pairs in the test
(20)

PC< =
# of pairs where FSE is worse

# of all pairs in the test
(21)

PC≈ =
# of pairs where difference is not significant

# of all pairs in the test
(22)

Human perception test confirms that the proposed FSE method
outperforms the other BSS methods in terms of speech sepa-
ration quality and clarity.

VI. DISCUSSION AND CONCLUSION

We proposed and evaluated a fast and efficient blind speech
extraction method as long as target speeches make pauses. A
convex optimization problem is formulated and solved by the
split Bregman method to yield sparse unmixing filters. Binary
mask blind speech separation method is modified to detect
the speech source onset-offset activity. Experimental results
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indicate that the proposed method outperforms conventional
blind speech separation methods in terms of the overall
computation speed and separation quality. The limitation of the
proposed method is that it relies on a robust silence detection
in a long reverberation multi-talker environment which will be
studied further in future work.
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