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Abstract

We propose an intermittent diffusion(ID) method to find global mini-
mizers of a given function g : R

n → R. The main idea is to add in-
termittent, instead of continuously diminishing, random perturbations
to the gradient flow generated by g, so that the trajectories can quickly
escape from one minimizer and approach other minimizers. The associ-
ated Fokker-Planck equations for existing global optimization algorithms
that use continuously diminishing random perturbations are of parabolic
types. For the ID method, its Fokker-Planck equation is degenerate and
alternates between hyperbolic and parabolic types. It is because of this
alternation, we have a numerical algorithm which is efficient. We prove
that with probability arbitrarily close to 1, one can find by using the ID
algorithm, a good approximation to the global minimizer in a finite time
T provided T is sufficently large. We also prove that for any given finite
set of minimizers of g, any trajectories of the ID method will visit an ar-
bitrary small neighborhood of each minimizer with positive probability.
Numerical simulations show that the proposed method achieves signifi-
cant improvements in terms of the time and the frequencies of visiting
the global minimizers over some existing global optimization algorithms.
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1 Introduction

Global optimization is a classical issue appeared in numerous research fields
and applications, such as inverse problems, optimal design and digital image
processing, just to name a few. In this paper, we will investigate a new strategy
to find global minimizers for a general objective functional

min
x
g(x), x ∈ Ω (1.1)

where Ω is an admissible set for x ∈ R
n. The objective functional g(x) is often

defined by an energy functional or a cost function in many applications. For
examples, g(x) is the double-well potential energy in the 2-phase composite
material problem, the quality factor in optical spectrometer design, and the
total distance in optimal path planning in unmanned vehicle navigation.

As one of the oldest applied mathematics problems, finding minimizers for
(1.1) has been intensively studied. Numerous research results have been re-
ported. We refer to some books for more details and references on this rich
subject [5, 16, 19, 22]. Among the existing studies in the field, one of them is
on convex optimizations in which the objective functional g(x) is convex on a
convex admissible set Ω. In that case, we have a rather complete theory on
nearly every aspect of the problem. For instances, it is clear that there exists
a unique minimizer provided that g(x) is reasonable well behaved. In addi-
tion, there are many efficient numerical algorithms to find the minimizer. for
example, the gradient flow given by

ẋ(t) = −∇g(x(t)), (1.2)

will lead to the minimizer when t goes to infinity.
Despite the existence of extensive literature, finding global minimizers for

general g, if it is possible, can still be extremely challenging, especially when
the dimension of x is large and the level sets of g are complicated. One of
the most notorious difficulties that any global optimization method has to face
is how to escape local minimizers when the solution is trapped by them. This
becomes more serious if negative gradient flow is used, because the gradient flow
is guaranteed to stuck at the (possibly local) minimizer of a valley. For many
problems, global minimum is reachable only if the initial guess is close enough
to it. For this reason, many of the existing algorithms very much rely on good
selections of initial guess. For examples, the inverse media scattering methods
proposed in [3, 4] can be viewed as gradient flows for minimizing a regularized
data fitting objective, and it is crucial to have a good starting point.

Among the existing global optimization methods, the celebrated Metropolis
random walks [18] and simulated annealing method [6, 17] are generic stochas-
tic based strategies to identify global optimal solutions for a broad range of
discrete and continuous problems. An essential idea in simulated annealing is
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to iteratively use sampling procedures which generate a new admissible state
according to a probability associated with g(x). The new state is compared to
the concurrent best sample state, and replace it if the new state is better. After
enough samples, the best sample state is considered as an approximation to the
global optimal solution.

The basic idea of simulated annealing is intuitive. It has been broadly used
in many problems with remarkable successes. In particular, there are many
examples that simulated annealing can give reasonable good approximations
to the global minimizers while other methods fail to provide anything close to
the global minima. However, it is also well-known that the original simulated
annealing may not be very efficient in many applications. To improve the ef-
ficiency, Szu and Hartley [20] proposed the “fast simulated annealing”, which
generates a new state according to the Cauchy density that has unbounded
variance. Later, Ingber [15] generalized this idea and suggested a “non-local
generating” of a new state in Metropolis algorithm, which is called “very fast
simulated annealing”. The studies in [20] heuristically provides a sufficient con-
dition to guarantee that the state-generating is infinite often in time (i.o.t.), i.e.,
with probability one that any state x in R

n will be generated for infinitely many
times. Another study for the analysis of fast and very fast simulated annealing
can be found in [23].

The original simulated annealing method does not have to explicitly use
the gradient information in searching for the next best samples. Later, some
efforts have been devoted to use simulated annealing ideas together with the
gradient flow for global optimizations, especially for objective functions g that
are continuously depending on the state variables x. For example, the studies
in [1] and [9], suggest to implement the idea of Metropolis algorithm by running
the stochastic differential equation:

dx(t, ω) = −∇g(x(t, ω))dt+ σ(t)dW (t), t ∈ [0,∞], (1.3)

where W (t) is the Brownian motion in R
n, ω is a random event (a random

path) in the Wiener space of W (t), and the diffusion coefficient function σ(t) is
continuously decreasing to zero. For convenience, we shall call this implemen-
tation the continuous diminishing diffusion (CDD) method in this paper. It is
proved in [7, 9] that if σ(t) is given by

σ(t) = c/
√

log t, (1.4)

for large c > 0, the solution of (1.3) will converge weakly to a distribution
concentrated at the global minima of g. More approaches and analysis can be
found in [10, 13, 14].

Inspired by simulated annealing and some recent developments in random
dynamical systems, we propose a new strategy to find the global optimal solu-
tion. The main idea is to combine the advantages of gradient flow, which may
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quickly lead to local minimizers, and stochastic perturbations that can promote
the trajectories out of the traps set by local minimizers. More precisely, we
consider σ(t) as a piecewise smooth function (we use piecewise constants in this
paper) of t with alternating positive and zero values. When σ(t) = 0, (1.3) cor-
responds to the gradient descent algorithm (1.2). When σ(t) > 0 the trajectory
of (1.3) may jump off any local minimum with a probability controlled by σ(t).
Then we repeat such a process multiple times.

An interesting viewpoint for this new strategy can be explained by study-
ing the probability distribution of the trajectories x(t, ω) of (1.3). Its density
function p(t, x) satisfies the Fokker-Planck equation,

pt = ∇ · (∇g(x)p) +
1

2
σ(t)2∆p. (1.5)

When σ(t) is positive, this is a parabolic equation. When σ(t) = 0, the equation
(1.5) becomes a hyperbolic equation. We call this new method the intermittent
diffusion (ID) method owing to the diffusion coefficient being intermittently set
to zero.

By selecting σ(t) as a discontinuous function (1.5) becomes degenerate.
However, it possesses some interesting properties that are not shared by the
standard Fokker-Planck equations for regular diffusion processes in which σ(t)
is taken as positive values for all time t. More precisely, in ID method, when
σ(t) > 0, it is the standard diffusion process that gives a positive probabil-
ity for the trajectories to go everywhere. When σ(t) = 0, the diffusion term
drops from (1.5), and the equation becomes a backward hyperbolic equation
with the coefficient ∇g(x) that compresses p toward point distributions (Dirac
delta functions). The compression speed is quicker if ∇g(x) has larger mag-
nitude. This indicates that probability density function p will cluster around
the minima. This is actually consistent with the gradient descent process that
every initial state will go to a minimum point. Our examples indicate that a
repetitive implementation of such diffusion-compression process helps to cluster
the probability density function toward the global minima in a much quicker
pace than that of CDD method.

Another significant difference between ID method and CDD method is that
CDD method requires the diffusion coefficient σ(t) goes to zero as t tends to
infinity, while ID sets σ(t) as piecewise constants that do not go to zero. ID
method can find many minima, including global minima, during the process
while CCD method does not give any minima during the process and only
settles near the global minimum asymptotically. More importantly, we shall
prove theoretically that with probability arbitrarily close to 1, ID method can
find the global minimum in a finite time T provided T reasonably large. We
also prove that for any given finite sequence of (local or global) minimizers,
with a positive probability the trajectory of ID method will visit an arbitrarily
small neighborhood of each member of the sequence. Experimental trials shows

4



that within finite time intervals, the frequency that ID method reaches the
global minimizer is significant more than CDD method with (1.4) does in many
examples.

This paper is arranged as follows. In the next section, we present the inter-
mittent diffusion method and give two simple examples to illustrate how it is
used. A theoretical study is given in Section 3. And we show more numerical
examples and comparisons in Section 4.

2 The Intermittent Diffusion Algorithm

In this section, we present the Intermittent Diffusion Algorithm. In contrast to
the existing work on diffusion for global optimizations [7, 9], which gradually
decreases the diffusion strength, we employ the deterministic property of (1.3)
that with σ = 0 the ω-limit set of a trajectory of (1.3) is a (local) minimizer of
g(x) ([12]). Our idea is: (i) to allow the trajectory randomly jump off a local
minimizer to a stable manifold of another local minimizer by setting σ > 0;
(ii) If all eigenvalues of the linear part of the Hessian matrix have negative real
parts (i.e., each local minimizer is hyperbolic), the trajectory will reach a local
minimizer within short time once σ is set to 0. In fact, we can simply realize this
by computing the stochastic perturbed gradient flow (1.3) with a discontinuous
diffusion σ(x, t) defined by,

σ(x, t) =
N

∑

j=1

σjI[Sj ,Tj ](t), (2.6)

where 0 = S1 < T1 < S2 < T2 · · · < SN < TN < SN+1 = T , and I[Sj ,Tj ](t) is the
characteristic function of interval [Sj , Tj].

The discontinuous function σ(x, t) actually “turns off” the diffusion in the
time intervals [Tj , Sj+1], so that the flow becomes a gradient flow. This will
allow the state to approach local minimizer in a more efficient way. If the local
minimizer is hyperbolic, the flow will approach the local minimizer exponentially
fast.

On the other hand, when σ(x, t) takes non-zero values, the stochastic differ-
ential equation (1.3) becomes active in diffusion and the trajectory will not rest
at the stationary points. It has been shown that in many scenarios, the trajecto-
ries will eventually escape the traps of the stationary points provided sufficient
noise is added to the system. We use this property of diffusion to promote the
trajectories getting out of the traps of local minimizers. For this purpose, we
do not want to add noise in decreasing strength. In our numerical experiments,
we set σ(x, t) to random positive constants for simplicity. The intervals [Sj, Tj ]
are also picked with random lengths, i.e., Tj − Sj is a random positive number
to help the trajectories move from one stable manifold to another. In Figure
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1, we illustrate the sample function σ that we used in our simulations. For
convenience, we call the trajectories in the time interval [Sj , Sj+1] one segment
of the (random) dynamical systems.

Figure 1:

Following this idea, we present the intermittent diffusion algorithm:

1. Set α ≡ the scale for diffusion strength, and γ ≡ the scale for diffusion
time.

2. Generate a random initial state x0 ∈ R
n, and set the optimal state Xopt =

x0.

3. Generate two positive random numbers d, t within [0, 1] where d is for
diffusion strength and t is for diffusion time.

4. Let σ := αd, and T := γt.

5. Compute the stochastic equation for t ∈ [0, T ]

dx(t, ω) = −∇g(x(t, ω)dt+ σdW (t), x(0, ω) = x0, (2.7)

and record final state xT := x(T, ω).

6. Compute the solution for the following system until a convergence crite-
rion is satisfied,

˙x(t) = −∇g(x(t)), x(0) = xT , (2.8)

and record the final state as Xi. If g(Xi) < g(Xopt), set Xopt = Xi. This
finishes one segment of ID method.

7. Repeat Step 3 to Step 6 for N times to obtain N segments of the tra-
jectories, which obtains up to N local minimizers X1, · · · , XN . For large
enough N , Xopt is considered as an approximation of the global minimizer.
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Remark 2.1.

1. Different schemes may be used to solve (2.7) and (2.8). For example, one
can use Euler-Maruyama scheme for (2.7) and a Runge-Kutta scheme for
(2.8).

2. The convergence criterion in Step 6 can be set in different ways. For
example, a sample way that we use in our numerical experiments is to stop
the iteration if the absolute value of the difference between two successive
iterates is less than a prescribed tolerance ǫ > 0.

3. Although we only consider constant σi in this paper, it can be functions of
(t, x) in general. Ideally, σi(t, x) shall be used to prevent repetitive visits
to the same local minima and take the most efficient route to the global
minimizer. But how to select σi(t, x) in practice is still under investigation.

The time for convergence to a local minimizer at Step 6 is usually shorter
than that of (1.3) with positive σ(x, t). The strong noise will promote the
trajectories to escape the stable manifolds quicker. In addition, ID method
finds the best approximation in the entire trajectory and does not require the
stopping state as the best solution, while the trajectories of CDD method only
settle down near the global minimizer asymptotically. These are among the
reasons that ID method is more effective than the existing diffusion method for
global minimization. We present some numerical comparisons in Section 4.

In order to illustrate the algorithms, we consider two examples from [1] and
[20] to show how intermittent diffusion algorithm works.

Example 1. A Quartic Function: The following function

g(x) = x4 − 16x2 + 5x; (2.9)

has two local minima as shown in Figure 2. The trajectories of the algorithm
move back and forth from the valleys of one minimum to the other and converge
to the circles when the diffusion is turned off. They are close approximations
to the local minimizers. ID method records the left one as the global minimizer
because it has smaller g value.
Example 2. Goldstein’s Function: A function

g(x) = x6 − 15x4 + 27x2 + 250; (2.10)

has three local minima as shown in Figure 3. The trajectories spend more time
around the left and right minima than in the middle because it has higher value.
The circle points are the convergent locations. ID method records both points
as global minimizers because they have the same value.
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Figure 2: Numerical experiment for Example 1. The blue circles mark the
convergent points at the non-diffusion step.
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Figure 3: Numerical experiment for Example 2. The blue circles mark the
convergent points at the non-diffusion step.

3 An analysis of ID Method

In this section, we consider some theoretical properties of the ID algorithm. For
convenience, we focus our analysis on the case where σ is taken as piecewise
constant functions as shown in Figure 1.

Theorem 3.1. Consider a gradient flow

ẋ(t) = −∇g(x(t)),

and its ID process generated by

dx(t, ω) = −∇g(x(t, ω))dt+ σ(t)dWt,

where σ(t) =
∑N

j=1 σjI[Sj ,Tj ](t). Suppose g(x) has a finite number of minima.
Let Q be the set of global minimizers, U a small neighborhood of Q, and Xopt
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the optimal solution obtained by the ID process. Then for any given ε > 0,
there exist τ > 0, σ0 > 0 and N0 > 0 such that if Ti − Si > τ , σi < σ0 (for
i = 1, · · · , N), and N > N0,

P(Xopt ∈ U) ≥ 1 − ε. (3.1)

Proof. We give the proof for the case assuming there is one global minimum
point {x∗} and U = B(x∗, γ), a small ball centered at x∗ with small enough
radius γ. For other situations including multiple global minima, a similar proof
can be given with minor modifications and we will omit it in this paper.

Let us consider one segment of the ID process in [Si, Si+1] first. Since the
trajectory of ID rests on a local minimizer of g at the end of each gradient
descent flow, we may assume x(Si) = qi, where qi is a minimizer. For t ∈ [Si, Ti],
(2.7) is a homogeneous diffusion process with initial value x(Si) = qi. We denote
the probability density function of the ID trajectory x(t, ω) visiting x at time
t ∈ [Si, Ti] by pσi

(t − Si, x; qi) which depends on perturbation strength σi and
initial state qi. It is well known that pσi

satisfies the Fokker-Planck equation
given by

(pσi
)t = ∇ · (∇g(x)pσi

) +
1

2
σ2

i ∆pσi
, (3.2)

with initial condition as the Dirac delta function concentrated at qi. As a
solution of this linear convection diffusion equation, pσi

∈ C∞ continuously
depends on t > 0 and σi > 0.

It is straightforward to verify that (3.2) has a steady state solution which is
given by the famous Gibbs distribution,

p̄σi
(x) = Ae

−
2g(x)

σ2
i , (3.3)

where A is a constant defined as

A =

(
∫

Rn

e
− 2g(x)

σ2
i dx

)−1

(3.4)

to normalize pσi
to be a probability density function. Furthermore, it is also

easy to verify [7, 9] that p̄σi
(x) converges to a point distribution concentrated

at x∗, i.e.
lim
σi→0

p̄σi
(x) = δx∗(x). (3.5)

In other words, (3.5) implies that

lim
σi→0

lim
t→∞

∫

U

pσi
(t, x; qi)dx = 1. (3.6)

For a minimum point ξ, let us define the attraction set of ξ as

K(ξ) = {x : (2.8) with x as the initial state converges to a point in B(ξ, γ)}.
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Obviously, we have B(ξ, γ) ⊆ K(ξ) if γ is small enough. Thus, by the continuity
of pσi

with respect to t and σi, for any given α ∈ (0, 1) there exist τ(α, qi) and
σ(α, qi) such that for Ti − Si > τ(α, qi) and σi < σ(α, qi), we have

P
(

x(Si+1) ∈ U | x(Si) = qi
)

= P
(

x(Ti) ∈ K(x∗)| x(Si) = qi
)

> α. (3.7)

This is true because the flow is deterministic on [Ti, Si+1].
Let Θ be the set consisting of local minimizers of g, then

P
(

x(Si+1) ∈ U c
)

=
∑

qi∈Θ

P
(

x(Si+1) ∈ U c| x(Si) = qi
)

P(x(Si) = qi), (3.8)

where U c is the complement of U . If one chooses τ = maxqi∈Θ τ(α, qi) and
σ0 = minqi∈Θ σ(α, qi), then by estimate (3.7), one has

P
(

x(Si+1) ∈ U c| x(Si) = qi
)

< (1 − α) for all qi ∈ Θ, (3.9)

provided (Ti − Si) > τ and σi < σ0. This implies

P
(

x(Si+1) ∈ U c
)

< (1 − α)
∑

qi∈Θ

P(x(Si) = qi) < (1 − α). (3.10)

It is obvious that the estimate (3.10) can be made for all segments i = 1, 2, · · · , N .
If one repeats it for all intervals [Sj, Sj+1], j = 1, · · · , N , with the same fixed α,
then the probability that the solution Xopt of the ID method does not belong
to U satisfies,

P(Xopt ∈ U c) = P(∪N
i=0x(Si) ∈ U c)

< (1 − α)N .

For any given ε ∈ (0, 1), there exists N0 > 0, such as for N ≥ N0,

P(Xopt ∈ U c) < (1 − α)N < ε,

which is equivalent to (3.1).

It is desirable to extend the above results to more general situations such
as there are infinitely many minima in g. One way to do so is to use the
notion of isolated invariant sets in topological dynamic systems. The idea is
to partition the minimizers into a finite number of neighborhoods of isolated
invariant sets and study their statistical properties. More details along this line
of investigations are reported in [8].

It is also possible to modify the proof of Theorem 3.1 for the case that g has
infinitely many minimizers. In fact, it is easy to verify that the majority of the
proof remain valid except two places.
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1. If Q contains infinitely many global minimizers, there are two different
cases: its Lesbegue measure is zero or positive. (3.5) is no longer true
in either case. For example, if |Q| > 0, then the asymptotic distribution
p̄σi

as σi → 0 is uniform on Q. However, (3.6) still holds in both cases.
Therefore the consequent (3.7) is still true.

2. It might not be possible to find finite values τ and σ0 such that (3.9) and
(3.10) holds for all i = 1, · · · , N . This is because supqi∈Θ τ(α, qi) may
become ∞, and infqi∈Θ σi(α, qi) might be 0, if Θ contains infinitely many
minimizers. However, for each fixed trajectory of ID method, any segment
[Si, Si+1] must have the following property,

P
(

x(Si+1) ∈ U c
)

< (1 − α),

provided [Ti − Si] is large and σi small enough. In particular, if one
picks α ≥ 1/2, it implies that x(Si+1) has larger probability in U than in
the neighborhoods of other local minimizers. Then, one can repeat the
estimate for all segments in this trajectory and obtain the bound (3.1),
even though the conditions imposed on (Ti − Si) and σi might depend on
the trajectories of ID process.

We summarize this extension in the following theorem.

Theorem 3.2. Consider the ID process for the gradient flow stated in Theorem
3.1, and suppose g has infinitely many minimizers.

(i) If 0 < γ << 1, then

P(x(Si+1, ω) ∈ U) ≥ P(x(Si+1, ω) ∈ B(qj , γ)),

where qj is any local minimizer, provided Ti − Si is large and σi small
enough.

(ii) For any given ε ∈ (0, 1), then

P(Xopt ∈ U) ≥ 1 − ε, (3.11)

provided σi is small and Ti − Si large for all i = 1, 2, · · · , N , and the
number segments N also large enough in the ID process.

Remark 3.3. From the proof of Theorem 3.1, we can also observe the following
points:

1. We note that in ID method, the convergence does not require to have
σ(t) → 0 as t tends to infinity. This is different from the diffusion coeffi-
cient requirements of CDD.
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2. The convergence of ID method is monotone with respect to number of
segments N . In fact, it can be seen from the proof that the convergence
rate (in probability sense) of ID method is a geometric series based on
the factor α that is related to the stable manifold that contains the global
minimum. This ultimately determines good selections of [Si, Ti] and σi,
which is still under investigation.

Theorem 3.4. Consider the ID process for the gradient flow stated in Theorem
3.1, and suppose that g satisfies tthe following conditions:

(H1) g has a global minimum and lim
|x|→∞

g(x) = ∞.

(H2) ∇g has a Lipschtiz constant L on R
n.

(H3) All critical points of g are hyperbolic.

Given 0 < ǫ, T > 0 and any finite sequence {pi}i=1···N of local minimizers of g,
there exist a Ω′ ⊂ Ω with P(Ω′) > 0 such that for ω ∈ Ω′ the trajectory of ID
visiting each B(pi, ǫ) within [0, T ].

For convenience of following discussion, we denote f := −∇g, and (Ω,F ,P)
the Wiener space generated by Brownian motion W (t). To prove this theorem,
we need some lemmas for the counterpart equation of (1.3):

dx = f(x)dt+ σdW, x(0) = x0, (3.12)

where σ is a constant. Denoted by φ(t, ω)x0, ω ∈ Ω the solution of (3.12).

Lemma 3.5. Assume (H1) and (H2) are true. The solution of (3.12) is a global
solution for all ω ∈ Ω (i.e., φ(t, ω)x0 is defined for t ∈ [0,∞)).

Proof. Let v := x− σW , we have

dv

dt
= f(v + σW ). (3.13)

Then, the time-derivative of g along trajectories v(t) is given by

dg(v(t))

dt
= −f(v) · f(x) (3.14)

= −(f(v) − f(x) + f(x)) · f(x) (3.15)

≤ −|f(x)|2 + |f(x)||f(x) − f(v)| (3.16)

≤ −|f(x)|2 + L|f(x)||σW | (3.17)

≤ (L|σW (t)|)2/4, (3.18)
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which implies

g(v(t)) ≤ g(v(0)) +

∫ t

0

(L|σW (s)|)2/4 := M(t).

Therefore v(t) is bounded by KM(t) which is a bounded set. It follows that v(t)
is defined for t ∈ [0,∞), and so is x(t).

Let ψ̇(t) be a piecewise continuous function. We consider the following nonau-
tonomous equation:

dy = f(y)dt+ σψ̇dt, y(0) = x0. (3.19)

Denoted by S(t, ψ̇)x0 the solution of (3.19).

Lemma 3.6. Assume (H1) and (H2) are true. For any piecewise continuous ψ̇,
the solution of (3.19) is a global solution (i.e., S(t, ψ̇)x0 is defined for t [0,∞)).

Proof. Let ψ(t) :=
∫ t

0
ψ̇(s)ds, which is a continuous function of t. The proof is

similar to that for Theorem 3.5 with W (t) replaced by ψ(t).

Lemma 3.7. Assume (H1) and (H2) are true. Given T > 0, ǫ > 0, x0 and
q ∈ R

n, there exists a piecewise continuous ψ̇(t) such that solution of (3.19)
satisfying the boundary condition S(T, ψ̇)x0 ∈ B(q, ǫ).

Proof. We may assume σ = 1 for simplicity and ǫ < 1. Let N ∈ N and

0 := t0 < t1 < · · · < tN := T, ti − ti−1 = h := T/N (3.20)

qi := x0 + i
(

(p− x0)/N
)

, 1 ≤ i ≤ N. (3.21)

Let V be the tube centered at the line segment from x0 to q and with radius
one, i.e.,

V :=
⋃

t∈[0,1]

B((1 − t)x0 + tq, 1)

Let C := sup
x∈V

|f(x)| < ∞. We are going to construct ψ(t) on each (ti, ti + 1).

According to Lemma 3.6 the solution are defined for t ∈ (ti, ti + 1). For sim-
plicity we set ψ(ti) = 0 at each ti.

(i) On (t0, t1):

Denote q0 := x0. Let

ψ(t) := (q1 − q0)t/h, t ∈ (t0, t1)

then q0 + ψ(t) ∈ V , t ∈ (t0, t1). Therefore,

sup
s∈(t0,t1)

|f(q0 + ψ(s))| ≤ C.
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From (3.19) we have

y(t) − (q0 + ψ(t)) =

∫ t

t0

f(y(s)) − f(q0 + ψ(s))ds

+

∫ t

t0

f(q0 + ψ(s))ds,

which implies

|y(t) − (q0 + ψ(t))| ≤

∫ t

t0

|f(y(s))− f(q0 + ψ(s))|ds

+

∫ t

t0

|f(q0 + ψ(s))|ds,

≤

∫ t

t0

L|y(s) − (q0 + ψ(s))|ds+ hC.

By Gronwall inequality, we have

|y(t1) − (q0 + ψ(t1))| ≤ hCeLh < ǫ/2,

provided h small. Denote by q̃1 := y(t1) ∈ V .

(ii) On (ti−1, ti), 2 ≤ i ≤ N :

To define ψ(t) on each (ti−1, ti), we repeat the following process for 2 ≤ i ≤ N .
Let

ψ := (qi − q̃i−1)(t− ti−1)/h, t ∈ (ti−1, ti)

then q̃i−1 + ψ(t) ∈ V , t ∈ (ti−1, ti). Therefore,

sup
s∈(ti−1,ti)

|f(q̃i−1 + ψ(s))| ≤ C.

Consider (3.19) with t ∈ (ti−1, ti) and y(ti−1) = q̃i−1, then we have

y(t) − (q̃i−1 + ψ(t)) =

∫ t

ti−1

f(y(s)) − f(q̃i−1 + ψ(s))ds

+

∫ t

ti−1

f(q̃i−1 + ψ(s))ds,

which implies

|y(t) − (q̃i−1 + ψ(t))| ≤

∫ t

ti−1

|f(y(s))− f(q̃i−1 + ψ(s))|ds

+

∫ t

ti−1

|f(q̃i−1 + ψ(s))|ds,

≤

∫ t

ti−1

L|y(s) − (q̃i−1 + ψ(s))|ds+ hC.
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By Gronwall inequality,

|y(ti) − (q̃i−1 + ψ(ti))| ≤ hCeLh < ǫ/2,

provided h small. Denote by q̃i := y(ti).

At the final stage i = N , we have

|y(T ) − (q̃i−1 + ψ(T ))| = |y(T ) − q| < ǫ/2

Thus we have |S(T, ψ̇)x0 − q| < ǫ. The proof is complete.

We are going to prove that with positive probability of ω the solution φ(t, ω)p
of (3.12) can be approximated by solution S(t, ψ̇)p of (3.7) in any finite time
interval and any initial point p.

Lemma 3.8. Assume (H1) and (H2) are true. Given a piecewise continuous ψ̇,
T > 0 and γ > 0, the set Aγ defined by

Aγ := {ω : sup
p∈Rn

sup
t∈[0,T ]

|S(t, ψ̇)p− φ(t, ω)p| < γ}, (3.22)

has P(Aγ) > 0.

Proof. According to Lemma 3.5 and Lemma 3.6, S(t, ψ̇)p and φ(t, ω)p are de-
fined for t ∈ [0, T ]. From (3.12) and (3.19) we have

d(x− y) = (f(x) − f(y))dt− σψ̇(t)dt+ σdW (t). (3.23)

We may assume ψ(0) = 0 since it doesn’t affect the solution of (3.19). Let
W̃ (t) := W (t) − ψ(t), t ∈ [0, T ], then we have

dW̃ = −ψ̇(t)dt+ dW. (3.24)

By Girsanov’s Theorem ([11]), W̃ is a Brownian motion under probability P̃,
where

dP̃

dP
= exp(

∫ T

0

ψ̇(s) · dW (s) −
1

2
|ψ̇(s)|2ds) > 0. (3.25)

Let Λ̃ε := {ω : sup
t∈[0,T ]

|W̃ (t, ω)| < ε} and Λε := {ω : sup
t∈[0,T ]

|W (t, ω)| < ε}, then

P̃(Λ̃ε) > 0, which implies P(Λε) > 0 by (3.25). It follows that for ω ∈ Λε

|φ(t, ω)p− S(t, ψ̇)p| ≤

∫ t

0

|f(φ(s, ω)p)− f(S(s, ψ̇)p)|ds+ σ|W̃ (t)|

≤

∫ t

0

L|φ(s, ω)p− S(s, ψ̇)p)|ds+ σε. (3.26)
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By Gronwall inequality, we have

sup
p∈Rn

sup
t∈[0,T ]

|S(t, ψ̇)p− φ(t, ω)p| < σεeLT , ω ∈ Λε.

The assertion follows by chose ε small enough.

Proof of Theorem 3.4:
We still denote by φ(t, ω) the flow for (1.3) with piecewise constant diffusion
σ(t) shown in Figure 1. Let q0 be a initial point. We may assume B(pi, ǫ) lying
in the stable manifold of pi for i = 1, · · · , N .

Let qi ∈ R
n. For each 1 ≤ i ≤ N , by Lemma 3.7, there exists a piecewise

continuous ψ̇i(t), t ∈ [Si, Ti] such that the solution of

dy(i) = f(y(i))dt+ σ(t)ψ̇idt, y
(i)(Si) = qi−1, (3.27)

satisfying
y(i)(T ) ∈ B(pi, ǫ/2).

Since σ(t) = 0 and y(i)(Ti) lies in the stable manifold of pi, it follows that

y(i)(t) ∈ B(pi, ǫ/2), t ∈ [Ti, Si+1],

Selecting qi = y(i−1)(Si−1), 2 ≤ i ≤ N , and let ψ̇(t) be the piecewise continuous
function defined by

ψ̇(t) =

{

ψ̇i(t), t ∈ [Si, Ti], 1 ≤ i ≤ N,

0, otherwise.
(3.28)

Then we have

S(t, ψ̇)q0 ∈ B(pi, ǫ/2), t ∈ [Ti, Si+1], 1 ≤ i ≤ N,

By Lemma 3.8, the set

{ω : sup
t∈[0,T ]

|S(t, ψ̇)q0 − φ(t, ω)q0| < ǫ/2}, (3.29)

has positive probability, which implies the set

Ω′ := {ω : φ(t, ω)q0 ∈ B(pi, ǫi), t ∈ [Ti, Si+1], 1 ≤ i ≤ N}, (3.30)

has P(Ω′) > 0. The proof is complete.
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4 Numerical Examples

In this section, we will demonstrate the ID method on four standard test ex-
amples for global optimization methods. They are designed to have many local
minima that are similar to the unique global minimum and they can easily trap
the solutions. In all the experiments, we set the parameters α = 10, γ = 10
and N = 10.

Problem 1. Penalized Shubert Function. Let

g1(x) =

5
∑

i=1

i cos((i+ 1)x+ 1) (4.31)

be the standard Shubert function. Then the penalized Shubert function is
defined by

g(x) := g1(x) + u(x, 10, 100, 2) (4.32)

where u(x, a, k,m) is the penalization function defined by

u(x, a, k,m) :=











k(x− a)m, x > a

0 −a ≤ x ≤ a

k(−x− a)m x < −a

. (4.33)

As shown in Figure 4, the function g has 19 local minima in the region {x : |x| <
10} and three of them are global minima. One realization of the ID method
gives the circled points, which is the convergent points of the gradient flow after
the diffusion is turned off. It finds the global minimum in the middle.

Problem 2. Two-Dimensional Penalized Shubert Function is defined by

g(x, y) =

{

5
∑

i=1

i cos((i+ 1)x+ 1)

}{

5
∑

i=1

i cos((i+ 1)y + 1)

}

(4.34)

+ u(x, 10, 100, 2) + u(y, 10, 100, 2).

It has 760 local minima in the region {(x, y) : |x| < 10, |y| < 10} and 18 of
them are global minima as shown in Figure 5. It also shows that an arbitrary
realization of ID algorithm gives the circled points. Among them, it finds three
global minima.

Problem 3. Two-Dimensional Penalized Shubert Function with Parameter
β is defined by

g(x, y) =

{

5
∑

i=1

i cos((i+ 1)x+ 1)

}{

5
∑

i=1

i cos((i+ 1)y + 1)

}

(4.35)

+ u(x, 10, 100, 2) + u(y, 10, 100, 2)

+ β[(x− 6.0835)2 + (y + 5.8581)2],
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where β > 0 is a constant and (x, y) = (6.0835,−5.8581) is a global min-
imizer of g with β = 0. The function behaves roughly the same with the
function considered in Problem 2, but has only one unique global minimizer
at (x, y) = (6.0853,−5.8581) as shown in Figure 6. We show the results of
convergent points (circled points) of an arbitrary ID realization. Similar to the
previous problems, the ID method is able to reach the global minima.

Problem 4. A Multi-Dimensional Function. Let

g(x) = (π/n)
{

k sin2(πy1) (4.36)

+
n−1
∑

i=1

(yi −A)2[1 + k sin2(πyi+1)] + (yn − A)2

}

,

where

x = (x1, · · · , xn) ∈ R
n,

yi = 1 + (xi − 1)/4, i = 1, · · · , n,

k = 10, A = 1.

The function has roughly 5n local minima in the region {(x, y) : |x| < 10, |y| <
10} and a unique global minimum located at

xi = 1, i = 1, · · · , n.

For n = 3, Figure 7 is the projection plot of the graph of y = g(x1, x2, x3) on
the space x3 = 1, which illustrates the global minimizers is surrounded by a
lot of local minimizers. The convergent points visited in sequential order by an
arbitrary ID realization for n = 3 and n = 4 are shown in following respectively:
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The ID method reaches the global minima for both cases. And the frequencies
of finding the global minimum are obviously higher than that of other local
minima.

We compare the ID method with the CDD method for global optimizations
studied in [9]. We run both methods on Problem 3 for 100 independent realiza-
tions with the final stopping time 300 respectively. In each realization, the ID
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and diffusion methods use the same initial point and Brownian motion path.
We record the number of visits that ID and CDD reach a small neighborhood
of the unique global minimizer respectively. Our experiments shows that the
average number of visits in the 100 realizations for the ID method is 7.5. In
contrast, it is 0 for the CDD method, which indicates that it fails to reach the
small neighborhood of the global minimum in most of the realizations. This is
not surprising since the convergence time for CDD is exponentially long, while
the convergence time at non-diffusion step for ID is short because the gradient
flow drives the trajectories to a small neighborhood of the minimizers.

We also compare the first time to reach a small neighborhood of the global
minimizer for Problem 3 by both methods. The first time that ID and CDD
methods enter a square neighborhood of the global minimizer with diameter
ǫ = 0.001 and ǫ = 0.0001 are recorded respectively for 30 independent real-
izations. Figure 8 shows the log plot of the first arriving time for ǫ = 0.001.
The ID takes less time to reach the global minimizer than CDD does at most
realizations. Figure 9 shows the log plot of the first arriving time for a much
smaller neighborhood with ǫ = 0.0001. The ID takes less time to hit the global
minimizer than CDD does for all realizations except one, and the time differ-
ence is significant large. This is the evidence that CDD takes too much time
to wander in the stable manifold, while ID method converges to the minimizer
very quickly due to the deterministic gradient descent process.
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Figure 4: Numerical experiment for Problem 3. The blue circles mark the
convergent points at the non-diffusion step.

Figure 5: Numerical experiment for Problem 4. The black circles mark the
convergent points at the non-diffusion step.

20



Figure 6: Numerical experiment for Problem 5. The black circles mark the
convergent points at the non-diffusion step.

Figure 7: the projection plot of the graph of y = g(x1, x2, x3) on the space
x3 = 1 for Problem 6.
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Figure 8: The log plot of the The first time to enter a square neigborhood of the
global minimizer with diameter ǫ = 0.001 by ID and CDD for 30 independent
realizations.
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Figure 9: The log plot of the The first time to enter a square neighborhood of the
global minimizer with diameter ǫ = 0.0001 by ID and CDD for 30 independent
realizations.
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