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Abstract of the Dissertation

Computational Differential Geometry and

Intrinsic Surface Processing

by

Rongjie Lai

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2010

Professor Tony F. Chan, Chair

In this work, we focus on using the intrinsic geometric method to study variational

problems and Laplace-Beltrami eigen-geometry on 3D triangulated surfaces and

their applications to computational brain anatomy. Two classes of problems will

be discussed in this dissertation. In the first part, we study how to tackle image

processing problems on surfaces by using variational approaches. Starting from

the proof for the suitability of total variation for image processing problems on

surfaces, we generalize the well-known total variation related imaging models to

study imaging problems on surfaces by using differential geometry techniques. As

an advantage of this intrinsic method, popular algorithms for solving the total

variation related problems can be adapted to solve the generalized models on

surfaces. We also demonstrate that this intrinsic method provides us a robust

and efficient way to solve imaging problems on surfaces. In the second part,

we focus on studying surfaces’ own geometry. Specifically, we will study how to

detect local and global surface geometry and its applications to computational

brain anatomy. The main tool we use is the Laplace-Beltrami (LB) operator

and its eigen-systems, which provide us an intrinsic and robust tool to study

xix



surface geometry. We first propose to use LB nodal count sequences as a surface

signature to characterize surface and demonstrate its applications to isospectral

surfaces resolving and surface classification. Then, we provide a novel approach

of computing skeletons of simply connected surfaces by constructing Reeb graphs

from the eigenfunctions of an anisotropic Laplace-Beltrami operator. In the last

topic about the LB eigen-geometry, we propose a general framework to define a

mathematically rigorous distance between surfaces by using the eigen-system of

the LB operator, and then we demonstrate one of its applications to tackle the

challenging sulci region identification problem in computational brain anatomy.
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CHAPTER 0

Introduction

With the rapid development of 3D data acquisition technology, 3D surface pro-

cessing has become more and more important in many areas, such as computer

vision, computer graphics, geometry modeling, medical imaging, computational

anatomy, geo-physics, 3D cartoon etc. To the best of our knowledge, there are,

at least, three classes of problems about 3D surface processing, namely, analyzing

functions on given surfaces, studying the geometry of given surfaces and explor-

ing relations among different surfaces. These basic classes of problems motivate

several research topics, for instance, image processing on surfaces, 3D surface

recognition, surface retrieval, surface mapping etc.

As studying problems in Euclidean space, partial different equations (PDEs),

variational methods and many other techniques are also very useful and powerful

tools to study surface processing. However, a big challenge of studying problems

on surfaces is that the background space is no longer flat Euclidean space but

curved surfaces. There are several ways to tackle this challenge. For instance,

implicit surface representation method or parametrization method can convert

problems on surfaces to problems in Euclidean space, then standard techniques

in Euclidean space can be applied. Apparently, a most natural way to solve

problems on surfaces is using differential geometry techniques to handle curved

surfaces. This motivation inspires us to use the intrinsic geometric approach to

study surface processing. As a consequence, the intrinsic geometric approach will

1



provide us a robust and efficient way to solve problems on surfaces.

This dissertation contains two parts. In the first part, we will focus on study-

ing variational PDEs and image processing on surfaces by using the intrinsic

geometry method [58]. Thanks to the differential geometry terminologies, we can

successfully prove the suitability of studying imaging on surfaces by the total

variation on surfaces. As a consequence of the intrinsic geometry method, we

can easily adapt many popular variational image models in Euclidean domains

to analogous models on surfaces. Moreover, many fast algorithms can also be

adapted to solve the generalized variational models on surfaces. As examples, we

typically implement the Rudin-Osher-Fatemi (ROF) image denoising model and

the Chan-Vese segmentation model on surfaces by two popular fast algorithms,

and demonstrate their related applications. This intrinsic geometry method pro-

vides us a robust and efficient approach to study image processing on surfaces.

In the second part of the dissertation, we will focus on studying global and

local surface geometry. The basic problem is how to extract key features from

the given surface, such that these features can truly reflect surface geometry. In

other words, these key features should satisfy:

• Computability: These key features should be numerically easy to compute

with reasonable computational cost;

• Robustness: These key features should reflect the intrinsic properties of

surface geometry. Namely, the translation, rotation, or pose variance will

not affect these key features. Moreover, surfaces with similar geometry

should have similar key features.

• Applicability: These key features can provide us a global or local charac-

terization of the given surface.

2



To satisfy the above conditions, some intrinsic geometric quantities, such as Gauss

curvature and conformal factor might be considered as key features. However, it is

not easy to obtain accurate numerical approximation of Gauss curvature and con-

formal factor. A better choice is the surface Laplace-Belrami (LB) eigen-system.

It contains a sequence of numbers and a sequence of functions intrinsically de-

fined on the given surface. LB eigen-systems can be efficiently computed by the

finite element method on surfaces and provide us a robust key feature set to

characterize surfaces. In this dissertation, we will discuss our series work of how

to use surface LB eigen-system to study surface geometry and their applications

to computational brain anatomy [88, 56, 57].

The organization of the dissertation is as follows:

The first part will focus on studying functions on surfaces, i.e. variational

PDEs and intrinsic image processing on surfaces.

In Chapter 1, we first briefly review different geometry background related

to our work. Then we discuss numerical approximation of surface differential

operators and their sparse matrix representations.

In Chapter 2, we propose to use differential geometry techniques to directly

study image problems on surfaces. By using our approach, all plane image varia-

tion models and their algorithms can be naturally adapted to study image prob-

lems on surfaces. As examples, we show how to generalize Rudin-Osher-Fatemi

(ROF) denoising model [82] and Chan-Vese (CV)[20] segmentation model on

closed surfaces, and then demonstrate how to implement popular algorithms to

solve the total variation related problems on surfaces. This intrinsic approach

provides us a robust and efficient method to directly study image processing, in

particular, total variational problems on surfaces without requiring any prepro-

cessing [58].
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The second part will focus on the surface Laplace-Beltrami eigen-geometry,

which includes how to extract global and local surface geometric information from

the Laplace-Beltrami eigen-systems and their applications to medical imaging.

In Chapter 3, we first briefly discuss the mathematical background of the

Laplace-Beltrami eigen-system and its relation to surface functional analysis and

surface geometry. After that, we describe how to use the finite element method on

triangulated surfaces to approximate the numerical solution of a LB eigen-system

for a given surface.

In Chapter 4, we propose a new signature based on nodal counts of the eigen-

functions. This signature provides a compact representation of the geometric

information that is missing in the eigenvalues. In our experiments, we demon-

strate that the proposed signature can successfully classify anatomical shapes

with similar eigenvalues, and then we show a promising surface classification

result by using this new signature [56].

In Chapter 5, we propose a novel approach of computing skeletons of ro-

bust topology for simply connected surfaces with boundary by constructing Reeb

graphs from the eigenfunctions of an anisotropic Laplace-Beltrami operator. Our

work brings together the idea of Reeb graphs and skeletons by incorporating a

flux-based weight function into the Laplace-Beltrami operator. Based on the in-

trinsic geometry of the surface, the resulting Reeb graph is pose independent and

captures the global profile of surface geometry [88].

In Chapter 6, we propose a novel and intrinsic metric, the spectral l2-distance,

to find the optimal embedding induced by Laplace-Beltrami eigen-systems. We

prove mathematically that this new distance satisfies the conditions of a rigorous

metric. Using the resulting optimal embedding determined by the spectral l2-

distance, we can perform both local and global shape analysis intrinsically in

4



the embedding space. We demonstrate this by developing a template matching

approach in the optimal embedding space to solve the challenging problem of

identifying major sulci on vervet cortical surfaces [57].
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Part I

Variational PDEs on Surfaces
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CHAPTER 1

Background of Differential Geometry

In this chapter, we would like to briefly review the background materials about

differential geometry used in this dissertation. We first describe the mathemati-

cal definition of Riemannian surfaces and several important differential operators,

then the discretization of these differential operators are given for triangulated

surfaces. In addition, to simplify further computation, sparse matrix representa-

tions of these linear operators are given in the end.

1.1 Background of Riemannian Surfaces

A surface M is called a two dimensional smooth manifold, if M is a subset of Rn

such that for each point p ∈ M , there is a smooth function

ϕ : V −→ Rn

x = (x1, x2) 7−→ (ϕ1, · · · , ϕn)

defined on an open set V ⊂ R2 satisfying:

1. ϕ maps V homeomorphically onto an open neighbourhood U of p in M ;

2. For each x ∈ V , the 2 × n matrix




∂ϕ1(x)
∂x1 · · · ∂ϕn(x)

∂x1

∂ϕ1(x)
∂x2 · · · ∂ϕn(x)

∂x2


 has rank 2. In

other words, if we write ∂ϕ(x)
∂xi = (∂ϕ1(x)

∂xi , · · · , ∂ϕn(x)
∂xi ), i = 1, 2, then the two

vectors ∂ϕ(x)
∂x1 , ∂ϕ(x)

∂x2 ∈ Rn are linearly independent.
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Figure 1.1: A local coordinate system at a point p on M

Here, ϕ−1 : U → V is called a local coordinate system at point p (Fig. 1.1). M

is called closed or open, if its topology is closed or open respectively. A function

f : M → R is called smooth at p ∈ M , if for any given local coordinate system

ϕ−1 : U → V at point p, f ◦ϕ : V → R is smooth at ϕ−1(p). f is called a smooth

function on M if f is smooth at each point on M .

We say a vector v ∈ Rn is tangent to M at p if v can be expressed as the

velocity vector of certain smooth path through p ∈ M . For instance, ∂x1 =

∂ϕ(x)
∂x1 , ∂x2 = ∂ϕ(x)

∂x2 are two tangent vectors at p. In fact, any tangent vector at p

can be written as a linear combination of ∂x1 and ∂x2 . Given a tangent vector

v = η1∂x1 + η2∂x2 and a smooth function f : M → R, the derivative of f along

the direction v at p ∈ M is given by :

v(f)|p = η1
∂

∂x1
(f)|p + η2

∂

∂x2
(f)|p (1.1)
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where ∂
∂xi f stands for ∂

∂xi (f ◦ ϕ(x1, x2)), i = 1, 2. The set of all tangent vectors

at p :

TpM = spanR

{
∂ϕ(x)

∂x1
,
∂ϕ(x)

∂x2

}
⊂ Rn (1.2)

is called the tangent space of M at p. The tangent bundle TM of M is a subset of

M×Rn satisfying: TM = {(p, v) ∈ M×Rn | v ∈ TpM}. A tangent vector field is a

smooth cross section of the tangent bundle TM , which is defined by a continuous

map s : M → TM such that Π ◦ s(p) = p, where Π : TM → M : (p, v) 7−→ p.

A Riemannian surface (M, g) is a two dimensional smooth manifold with a

metric g smoothly defined on each tangent space TpM of M as an inner product:

gp : TpM × TpM −→ R

(v, w) 7−→ gp(v, w)

In a local coordinate chart ϕ−1 : U → V at p, if we write ∂x1 = ∂ϕ(x)
∂x1 , ∂x2 = ∂ϕ(x)

∂x2 ,

then g can be locally represented as a 2 × 2 symmetric positive definite matrix

g(x) =


 g11(x) g12(x)

g21(x) g22(x)


, where gij = gp(∂xi , ∂xj), i, j = 1, 2.

Typically, since M is a subset of Rn, there is a natural metric gInd on M

induced from Rn given by:

gInd
p (∂xi , ∂xj) = (∂xi , ∂xj)Rn =

n∑
α=1

∂ϕα(x)

∂x1

∂ϕα(x)

∂x2
(1.3)

where (·, ·)Rn is the standard inner product in Rn. Since ∂x1 , ∂x2 are linearly

independent vectors at each point p, gind
p is a symmetric positive definite matrix.

For most of visible surfaces in the physical world, they are subsets in R3 with

induced metrics. In the rest of this dissertation, all Riemannian surfaces are two

dimensional manifolds in R3 associated with induced metric.
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Let (M, g) be a two dimensional closed Riemannian manifold. For any point

p ∈ M and its local coordinate system {ϕα : Vα → Uα}, the coordinates-

independent surface gradient, divergence, and Laplacian-Beltrami operators are

given by:

∇Mf =
2∑

i,j=1

gij ∂f

∂xi
∂xj (1.4)

divMV =
1√
G

2∑
i=1

∂

∂xi
(
√

Gvi), for V =
2∑

i=1

vi∂xi (1.5)

4Mf = divM(∇Mf) =
1√
G

2∑
i=1

∂

∂xi

(
√

G

2∑
j=1

gij ∂f

∂xj

) (1.6)

where (gij) is the inverse matrix of (gij) and G = det(gij).

In particular, if we consider a simple Riemannian surface R2 with Euclidean

metric, then ∂x1 = (1, 0), ∂x2 = (0, 1) and gij = gij = δij, i, j = 1, 2. Thus

∇R2f = ( ∂f
∂x1 ,

∂f
∂x2 ), divR2f = ∂f

∂x1 + ∂f
∂x2 and 4R2f = ∂2f

∂∂x1 + ∂2f
∂∂x2 , which are exactly

the same as the gradient, divergence and Laplace operators in R2. In this point of

view, the above differential operators are natural generalizations of the standard

gradient,divergence and Laplace operators in Euclidean space.

Given any two functions f, g : M → R, and any tangent vector field V =
∑2

i=1 vi ∂
∂xi , we can also have the divergence theorem similar as in the Rn cases:

∫

M

(divMV)fds = −
∫

M

V · ∇Mfds (1.7)
∫

M

(4Mf)gds = −
∫

M

∇Mf · ∇Mgds (1.8)

Moreover, one can define the l1 and l2 norm, respectively, as follows:

||f ||1 =

∫

M

|f |ds, ||f ||2 = (

∫

M

f 2ds)1/2, 〈f, g〉 =

∫

M

fgds (1.9)

|V| = (
2∑

i,j=1

gijv
ivj)1/2, ||V||1 =

∫

M

|V|ds, ||V||2 =

∫

M

|V|2ds, (1.10)
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For details about the above differential geometry concepts, one can find these in

many textbooks on differential geometry, for example [70, 59].

1.2 Discretization of Differential Operators

In the discrete case, all surfaces we considered are represented by triangle meshes.

Namely, for any given surface M in R3, we represent M as a triangle mesh

M = {P = {pi}N
i=1, T = {Tl}L

l=1}, where pi = (p1
i , p

2
i , p

3
i ) ∈ R3 is the i-th vertex

and Tl = (l1, l2, l3) ∈ N3 represents indices of three vertices of the l-th triangle.

Figure 1.2: A surface with triangle mesh representation

Since the definition of surface gradient, divergence operator are pointwise

given, we can consider the pointwise first order numerical approximation of them

in the first ring of each vertex. The idea of our approximation can be realized in

two steps. We first compute the discretizations on each triangle by their definition

given in (1.4),(1.5), then take a weighted average in the first ring of each vertex

in terms of the triangle area.

We first show the operators discretizations on a given triangle Tl with vertices

{p0, p1, p2}. Assuming a function f = {f(p0), f(p1), f(p2)} and a vector field

V = {V(p0),V(p1),V(p2)} defined on each vertex respectively, any point p ∈ Tl,
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the linear interpolation of f,V in Tl can be given by





p = x1(p1 − p0) + x2(p2 − p0) + p0

f(p) = x1(f(p1)− f(p0)) + x2(f(p2)− f(p0)) + f(p0)

V(p) = x1(V(p1)− V(p0)) + x2(V(p2)− V(p0)) + V(p0)

(1.11)

where {(x1, x2, 1−x1−x2) | 0 6 x1, x2, x1+x2 6 1} are the barycentric coordinates

of Tl.

Then we have ∂x1 = p1− p0, ∂x2 = p2− p0, and the metric matrix of Tl would

be:

g = (gi,j)i,j=1,2 =


 ∂x1 · ∂x1 ∂x1 · ∂x2

∂x2 · ∂x1 ∂x2 · ∂x2


 and (gi,j)i,j=1,2 = g−1 (1.12)

where · is the dot product in R3. We can have the following discretization:

∇d
Tl

f(p0) =
2∑

i,j=1

gij ∂f

∂xj
∂xi = (f(p1)− f(p0), f(p2)− f(p0))g

−1


 ∂x1

∂x2




= (f(p1)− f(p0), f(p2)− f(p0))


 ∂x1 · ∂x1 ∂x1 · ∂x2

∂x2 · ∂x1 ∂x2 · ∂x2



−1 

 p1 − p0

p2 − p0




(1.13)

We next discretize the divergence operator on the triangle Tl. Assume V =

v1∂x1 + v2∂x2 is a vector field on Tl, then the coefficients v1, v2 can be given by:


 v1

v2


 = g−1


 V · ∂x1

V · ∂x2


 (1.14)

and differentiate both sides of above equality, we can obtain:




∂
∂x1 v1

∂
∂x2 v2


 =


 g11(V(p1)− V(p0)) · ∂x1 + g12(V(p1)− V(p0)) · ∂x2

g21(V(p2)− V(p0)) · ∂x1 + g22(V(p2)− V(p0)) · ∂x2


 (1.15)
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Since
√

G is constant on each triangle, we have the discretization of the diver-

gence operator on triangle Tl by directly using its definition in (1.5)

divd
Tl
V(p0) =

1√
G

2∑
i=1

∂

∂xi
(
√

Gvi) =
∂

∂x1
(v1) +

∂

∂x2
(v2) (1.16)

Now, we can give the discretization of the gradient and divergence operators on

each vertex by taking a weighted average in the first ring of the vertex in terms of

the triangle area. Namely, for any function f and vector field V defined on a given

triangle mesh {V = {pi}N
i=1, T = {Tl}L

l=1}, we use the following discretization of

gradient and divergence operators:

Figure 1.3: The first ring

∇d
Mf(pi) =

1∑
l Area(Tl)

∑

l

Area(Tl)∇d
Tl

f(p0) (1.17)

divd
MV(pi) =

1∑
l Area(Tl)

∑

l

Area(Tl)divd
Tl
V(p0) (1.18)

where l goes through all triangles in the first ring of pi as showed in Figure 1.3.

For the Laplace operator, we would like to use the discretization given by

Desbrun et al. [31]:

4d
Mf(pi) =

3∑
l Area(Tl)

∑

j∈Ni

ωij(pi)(f(pj)− f(pi)) (1.19)

where ωij(pi) =
cotαij(pi)+cotβij(pi)

2
and αij,βij are the two angles opposite to the

edge pipj as showed in above figure. This is also a first order discretization.

In the rest of the dissertation, we will also use ∇M , divM and 4M to denote

their discretization operators respectively.
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Remark 1.2.1 One thing we need to point out is that we are not the first to

consider the discretization of surface gradient and divergence. Other different

discretization methods and their approximation analysis can be found in a series

works of M. Meyer, M. Desbrun, P. Schroder, A. Barr and G.Xu et.al [68, 31,

102]. Our contribution is using above discrete differential geometry technique to

solve variational problems on surfaces, especially, total variation models, their

related image processing problems and eigen-problems on surfaces. We will use

finite element to compute surface Laplacian to avoid approximating the second

order operators. Therefore, we just need to approximate gradient and divergence

operators.

1.3 Sparse Matrix Representations of Differential Opera-

tors

With the above discretization of differential operators, the gradient and diver-

gence on any surface can be computed. In addition, we observe that one can

write down the sparse matrix representations of surface gradient and divergence.

In other words, we can implement the actions of these two surface differential op-

erators as matrix multiplications. The computation speed can be improved a lot

with this sparse matrix representation of differential operators. In principle, all

actions of linear operators on surface can be written as the matrix multiplication

with the similar technique.

Before we give the sparse representations of differential operators, we would

like to introduce several notations as follows:

We write
−→
C = (−→cij),

−→
D = (

−→
dij) as a vector matrix, i.e. each entry of

−→
C ,

−→
D is

a vector in R3 instead of a number, let A = (aij) be a number matrix as usual
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and λ be a real number. We define the following multiplications:

(λ
−→
D)ij = λ

−→
dij, (

−→
DA)ij =

∑

k

−→
dikakj (1.20)

(
−→
C • −→D)ij =

∑

k

−→cik · −→d kj, (
−→
C ×−→D)ij =

∑

k

−→cik ×−→d kj (1.21)

where ·,× in the right hand side is the dot, cross product in R3 respectively.

We first write down the matrix representation of gradient and divegence on

each triangle. From (1.13) and (1.16), we have:

∇Tl
f(p0) = g11(f(p1)− f(p0))∂x1 + g12(f(p1)− f(p0))∂x2

+g21(f(p2)− f(p0))∂x1 + g22(f(p2)− f(p0))∂x2 (1.22)

DivTl
V(p0) = g11(V(p1)− V(p0)) · ∂x1 + g12(V(p1)− V(p0)) · ∂x2

+g21(V(p2)− V(p0)) · ∂x1 + g22(V(p2)− V(p0)) · ∂x2 (1.23)

Remember ∂x1 = p1 − p0, ∂x2 = p2 − p0. If we write





−→w p0

Tl
= −(g11 + g21)(p1 − p0)− (g12 + g22)(p2 − p0)

−→w p1

Tl
= g11(p1 − p0) + g12(p2 − p0)

−→w p2

Tl
= g21(p1 − p0) + g22(p2 − p0)

−→
W Tl

= (−→w p0

Tl
,−→w p1

Tl
,−→w p2

Tl
)

fTl
= (f(p0), f(p1), f(p2))

t

VTl
= (V(p0),V(p1),V(p2))

t

(1.24)

then we have,



∇Tl

f(p0) =
−→
W Tl

fTl

divTl
V(p0) =

−→
W Tl

• VTl

(1.25)

By plugging the above formula (1.25) in (1.17) and (1.18), we can obtain

the sparse matrix representation of surface gradient and divergence. Namely,

for a given vector field V = (V(p1), · · · ,V(pN))t and a given function f =
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(f(p1), · · · , f(pN))t on the triangulated surface M = {P = {pi}N
i=1, T = {Tl}L

l=1},
the sparse differentiation matrix

−→
W is as follows:





−→
W (pi, pj) = 0 if pi, pj are not two vertex of a triangle
−→
W (pi, pi) = 1∑

l Area(Tl)

∑
l Area(Tl)

−→w pi

Tl
, i = 1, · · · , N

−→
W (pi, pj) = 1∑

l Area(Tl)
(Area(Tl1)

−→w pj

Tl1
+ Area(Tl2)

−→w pj

Tl2
) ,

if Tl1 and Tl2 are two common triangles of pi and pj

(1.26)

where l goes through the first ring of pi. Then we have:




∇Mf =

−→
Wf

divMV =
−→
W • V

(1.27)

Remark 1.3.1 To the best of our knowledge, we are the first to write down sur-

face gradient and divergence as matrix product in the above compact form. The

biggest advantage of this sparse matrix representation is to speed up the computa-

tion. In this work, our main concern is solving the total variation related imaging

models. To solve total variational related problems, iterative methods are com-

monly used. With the above surface differential operator matrix representation,

we only need to compute a series of sparse matrix products instead of computing

gradient and divergence directly by their definition in each iteration. It is clear

that this sparse matrix representation can decrease the computation cost.
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CHAPTER 2

Variational Problems and Image Processing on

Surfaces

2.1 Introduction

The variational method in image processing is quite an important approach. After

decades of development, many beautiful results are explored, such as variational

models of image denosing, image segmentation [82, 20, 18, 21] etc. However,

most results focus on image processing in Euclidean space, in particular, image

processing on the 2D plane. With the development of 3D data acquisition tech-

nology and the requirement of various applications, there has been increasing

interest in studying image processing and variational problems on surfaces or

general manifolds. For instance, in fields like computer vision, computer graph-

ics, geometry modeling, medical imaging, computational anatomy, geo-physics

and 3D cartoon, it is critical to consider images on 3D surfaces instead of images

only on 2D planes.

Several approaches are explored to study image processing on surfaces by us-

ing the variational PDE method. To the best of our knowledge, there are, roughly

speaking, two classes of approaches to study surfaces imaging, which reflect two

different surface representations. One class is using implicit representation of sur-

faces. S. Osher, G. Sapiro, M. Bertalmio, L. T. Cheng et al. [8, 55, 7, 66, 15] view
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a closed surface as a zero level set of a signed distance function on a Euclidean

domain or a narrow band of the given surface. They approximate differential

operators on surfaces by combining the standard Euclidean differential operators

with projection along the normal direction. The biggest advantage of implicit rep-

resentation of surfaces is that one can easily handle topological change under sur-

face evolution. However, it has its own limitations. For instance, fast algorithms

in Euclidean cases can not be easily adapted to surface cases by implicit method;

For open surfaces, or surfaces with complicated structures, like human’s cortical

surfaces with many close and deep folding parts, it is not easy to obtain their im-

plicit representations. In addition, the cost of the implicit representations is the

pre-step to extend all data on the definition domain of implicit function. These

additional increasing data might decrease the computation speed. Another class

is using explicit representation of surfaces, namely, surfaces are represented by

polygon meshes, in particular, triangle meshes. J. Stam, L. Lopez-Perez, X. Gu,

L. Lui et al. [93, 62, 47, 63] introduce either standard patch-wise parametriza-

tion or conformal parametrization to the given surface, then differential operators

can be computed under the corresponding parametrization. However, the com-

putation of a parametrization is a complicated pre-processing for arbitrary given

surfaces, especially for those surfaces with complicated structures or high genus.

To conclude, the above methods mainly focus on converting problems on surfaces

to problems in Euclidean space. They require pre-processing, either extending

data to the narrow band of the given surface or finding a parametrization of the

given surface.

Our strategy is different from the above methods. To avoid the need for

pre-processing, we will focus on studying variational imaging models directly on

the given surface instead of converting them to be problems in Euclidean spaces.

Specially, we take two well-known models, namely the ROF denoising model
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and the CV segmentation model, as examples to explain our strategy. Related

work and applications of the intrinsic geometry method can be found in a series

work of M. Meyer, M. Desbrun, P. Schroder, A. Barr, G. Xu, C. Bajaj and U.

Clarenz, et al. [68, 31, 3, 102, 26]. However, our contribution in this work is using

intrinsic geometry method to study the total variation related image processing

problems on surfaces and fast algorithms. The most natural extension of the

total variation (TV) on surfaces, which is also well-defined on any n-dimensional

manifold, is given by M. Ben-Artzi and P. G. LeFloch in [6]. By their natural

definition of the total variation on surfaces, we prove the analogous boundary

perimeter formula and co-area formula of TV on surfaces, which illustrate the

suitability of using TV to study image processing on surfaces. After this, we

generalize the ROF denosing model and the CV segmentation model on surfaces

as two examples. To implement the above models on triangulated surfaces, we

approximate surface gradient and divergence operators by using their intrinsic

differential geometry definition. Furthermore, we represent the action of these

operators as the multiplication of sparse matrix to simplify our computation.

As a consequence of this intrinsic geometry method, we can easily adapt many

well-known algorithms in the total variation related problems in Euclidean cases

to the generalization total variation image models on surfaces. As examples,

we discuss the split Bregman iteration method [44, 43] and Chambolle’s dual

method [17, 12] on surfaces. In our experience, there are at least two advantages

of our intrinsic method. First, we do not need to conduct pre-processing, such as

extending all data on the narrow band in the implicit representation or finding

a good parametrization in explicit representation. For instance, in the implicit

method, when we process high resolution data, like a cortical surface, dealing with

large amount of additional data will waste too much computation time; in the

parametrization method, when we process surfaces with complicated structures,
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it is not easy to obtain a good parametrization. Our direct method can be

expected to overcome these limitations. In addition, fast algorithms in Euclidean

cases can be easily adapted to solve the total variational problems on surfaces due

to the intrinsic method. Second, by this intrinsic method, it is easy to handle open

surfaces and surfaces with complicated geometric or topological structures, which

can not be easily processed by implicit methods or parametrization methods. A

brief comparison among different methods is given in the Table 2.1. To explain

everything clearly, we are here just focusing on closed surface cases. One can also

study open surfaces with this general technique.

The rest of this chapter is organized as follows. In Section 2.2, we first gen-

eralize the concept of the total variation (TV) on surfaces, and demonstrate the

analogous version of the boundary perimeter formula and co-area formula for TV

on surfaces. Then, we introduce a general form of variational models on surfaces

and take the ROF denoising model, the total variational inpainting model, the

CV segmentation model as examples to show how to generalize variational mod-

els of image processing on planes to variational models of image processing on

surfaces. The numerical algorithms of ROF denoising and CV segmentation on

surfaces are then presented in Section 2.3. In particular, we use the split Breg-

man iteration and the dual method on surfaces to solve above models on surfaces.

Numerical comparisons with the conformal parametrization method and the level

set method are given in Section 6.2.2. Meanwhile, we demonstrate applications of

surface image denoising to geometric processing and surface image segmentation

to cortical surface parcellation in computational anatomy. Finally, conclusions

are made in Section 2.5.
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method principle Advantage Disadvantage

level set represen-

tation

view a surface as a

zero level set of a func-

tion

easy to handle topological

changes when dealing with

surface evolution

all data need to be ex-

tended to the narrow band

of surface, hard to adapt

fast algorithms in Eu-

clidean cases

parametrization

method

parameterize patches

of a surface by Eu-

clidean coordinates

differential operators are

easy to compute after find-

ing parametrization

not easy to obtain

parametrization for an

arbitrary surface, hard

to handle topological

changes.

intrinsic

geometry method

computation pro-

cessed on the given

surface itself by

differential geometry

techniques

can deal with any surface

without any preprocessing,

easy to adapt fast algo-

rithms in Euclidean cases

hard to handle topological

changes.

Table 2.1: Comparisons among different methods

2.2 The Total Variation and Image Processing Models on

Surfaces

In variational models of image processing on the plane, total variation plays an

important role as a regularizing term. One can expect that the analogue of total

variation on surfaces and similar variational models should also be useful in image

processing on surfaces. In this section, we first describe the generalization of the

total variation concept on surfaces, and then we prove it has similar boundary

perimeter formula and co-area formula as on the plane. After these preparations,

we can consider the analogous variational models on surfaces. In particular,

we explain the generalization of ROF denoising and CV segmentation as two

examples. One can use the same technique to generalize other plane image models

to surface image models.
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2.2.1 The total variation on surfaces

For a given surface M , denote the tangent bundle of M by TM and write the set

of C1 sections of TM , i.e. the set of C1 tangent vector fields on M , by Γ(TM).

For any function ϕ ∈ L1(M), the total variation (TV) of ϕ is given by [6]:

TV (ϕ) = sup
V∈Γ(TM),|V|61

∫

M

ϕdivMVds (2.1)

Let’s write BV (M) for all functions in L1(M) with finite TV s. If ϕ is a C1

function, then TV (ϕ) =
∫

M
|∇Mϕ|ds. Therefore, we also use

∫
M
|∇Mϕ|ds to

denote the total variation of ϕ for convenience.

The importance of the total variation in imaging on 2D planes is that: 1.

TV does not penalize edges of image due to the co-area formula; 2. TV can also

control the geometry of boundary because of the boundary perimeter formula.

The rigorous proof of these two formulas can be found in [37, 39]. With the similar

proof as in Euclidean cases, we can still have the analogue of these two formulas

on surfaces. This tells us that it is reasonable to consider the total variation when

we study image processing on surfaces. Moreover, we can similarly adapt other

properties of total variation in Euclidean spaces to surfaces by using differential

geometry techniques and functional analysis on manifolds.

Let E ⊂ M be a measurable subset in M and χE be its characteristic func-

tion. We can similarly define the perimeter Per(E) of E by TV (χE). Since

the definition of the total variation on surfaces is a natural extension from the

Euclidean case, we can similarly prove the following theorem by combining with

differential geometry:

Theorem 2.2.1 (boundary perimeter formula) Let E be a connected subset
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in M with C2 boundary, then

Per(E) =

∫

M

|∇MχE|ds = length(∂E) (2.2)

[proof]: Remember

Per(E) = TV (χE) = sup
V∈Γ(TM),|V|61

∫

M

χEdivMVds.

Let −→n be the unit normal vector of ∂E. Then, for any V ∈ Γ(TM) with |V| 6 1,

we have

|
∫

M

χEdivMVds| = |
∫

E

divMVds| = |
∫

∂E

V · −→n dl| 6
∫

∂E

1dl = length(∂E)

=⇒ Per(E) 6 length(∂E).

On the other hand, since ∂E is C2 smooth, one can easily construct a tangent

vector field
−→
V0 ∈ Γ(TM), such that

−→
V0|∂E = −→n . Then,

∫

M

χEdivM
−→
V0ds =

∫

E

divM
−→
V0ds =

∫

∂E

−→
V0 · −→n dl =

∫

∂E

1dl = length(∂E)

=⇒ Per(E) > length(∂E)

Therefore, Per(E) = length(∂E) ¤

Furthermore, we also have the analogue of the co-area formula. To prove

co-area formula for bounded variation functions on surfaces, we need to use its

smooth version as follows. It is a standard result in differential geometry. The

main idea of the proof is simply change of variables [23].

Theorem 2.2.2 (Smooth Co-area formula) Given ϕ ∈ C∞(M), we write

Et = {p ∈ M | ϕ(p) > t }. Then

TV (ϕ) =

∫

M

|∇Mϕ|ds =

∫ +∞

−∞
Per(Et)dt (2.3)
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Now, we prove the co-area formula on surfaces. The idea of the proof is similar

to the Euclidean case in [37]. We prove it as follows by using the result of

Theorem.2.2.2

Theorem 2.2.3 (Co-area formula) Given ϕ ∈ TV (M), we write Et = {p ∈
M | ϕ(p) > t }. Then

TV (ϕ) =

∫

M

|∇Mϕ|ds =

∫ +∞

−∞
Per(Et)dt (2.4)

[Proof]: For any real number t, we define a L1 measurable function bt on M by:

bt(p) =





χEt(p), if t > 0

−χEc
t
(p) = χEt(p)− 1, if t < 0

Given an arbitrary point p ∈ M ,

∫ +∞

−∞
bt(p)dt =





∫ ϕ(p)

0
χEt(p)dt =

∫ ϕ(p)

0
1dt = ϕ(p), if ϕ(p) > 0

− ∫ 0

ϕ(p)
χEc

t
(p)dt = − ∫ 0

ϕ(p)
1dt = ϕ(p), if ϕ(p) < 0

Hence, for any V ∈ Γ(TM) with |V| 6 1, by Fubini’s theorem

∫

M

ϕdivMVds =

∫

M

(∫ +∞

−∞
btdt

)
divMVds

=

∫ +∞

−∞

(∫

M

btdivMVds

)
dt

=

∫ +∞

−∞

(∫

M

χEtdivMVds

)
dt

6
∫ +∞

−∞
Per(Et)dt

where
∫

and
∫

denote lower and upper Lebesgue integrals respectively. Then

we have:

TV (ϕ) 6
∫ +∞

−∞
Per(Et)dt.
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On the other hand, one can find a sequence {ϕk} ⊂ C∞(M), such that:

lim
k→∞

∫

M

|ϕ− ϕk| ds = 0 (a)

lim
k→∞

∫

M

|∇Mϕk| ds = TV (ϕ)

Denote Ek
t = {x ∈ M | ϕk > t}, then from the smooth co-area formula on

surfaces, we have:

∫

M

|∇Mϕk| ds =

∫ +∞

−∞
Per(Ek

t )dt, for each k

From (a), it is clear that there is a zero measure subset N ⊂ R, such that for

any t ∈ R−N ,

lim
k→∞

∫

M

|χEt − χEk
t
| ds = 0 (b)

Given t ∈ R−N , if TV (χEt) < ∞, (b) implies

lim
k→∞

TV (χEk
t
) = TV (χEt)

Thus for any ε > 0, there is a integer k0, such that for k > k0,

TV (χEt) 6 TV (χEk
t
) + ε

This implies:

Per(Et) = TV (χEt) 6 lim
k→∞

inf TV (χEk
t
) (c)

If TV (χEt) = ∞, (c) is also true. Now by Fatou’s lemma, we have:

∫ +∞

−∞
Per(Et)dt 6

∫ +∞

−∞
lim
k→∞

inf TV (χEk
t
)dt

6 lim
k→∞

inf

∫ +∞

−∞
TV (χEk

t
)dt

= lim
k→∞

inf TV (ϕk) = TV (ϕ)
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To conclude, we have:

TV (ϕ) 6
∫ +∞

−∞
Per(Et)dt 6

∫ +∞

−∞
Per(Et)dt 6 TV (ϕ)

Therefore: TV (ϕ) =
∫ +∞
−∞ Per(Et)dt ¤

In the following two subsections, as two examples, we will generalize ROF

denoising and CV segmentation to show how to adapt variational models on

Euclidean domains to variational models on surfaces by differential geometry

techniques.

2.2.2 Variational models on surfaces

Similar to variational problems in the Euclidean space Rn, a general setting of

variational problems on a surface M can be written as:

min
ϕ∈S

J (ϕ) +H(ϕ) (2.5)

where S is certain function space on M , J and H are two convex functions

on S. In particular, let S = BV (M) and J (ϕ) = TV (ϕ) as we discussed in

Section 2.2.1, the general variational problem (2.5) becomes the total variation

related problems on the surface M . More specifically, we list the surface analogous

forms of several popular total variational models as follows:

A. The ROF model on surfaces

The Rudin-Osher-Fatemi (ROF) image denoising model was first introduced

by Rudin et al. [82] in plane image cases. Similarly, let I : M → R be an image

on a surface M . Let J (ϕ) =
∫

M
|∇Mϕ|ds,H(ϕ) = µ

2

∫
M

(ϕ−I)2ds The analogous

ROF image denoising model on the surface M can be represented as follows:

min
ϕ∈BV (M)

E1(ϕ) =

∫

M

|∇Mϕ|ds +
µ

2

∫

M

(ϕ− I)2ds (2.6)
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More general, let H(ϕ) = µ
2

∫
M

(Kϕ−I)2ds, the analogue of the total variational

image deblurring model can be written as:

min
ϕ∈BV (M)

E2(ϕ) =

∫

M

|∇Mϕ|ds +
µ

2

∫

M

(Kϕ− I)2ds (2.7)

where K is a linear blurring kernel operator on M .

B. The total variation inpainting model

The total variation inpainting model was first introduced by Chan and Shen [19].

Similarly, assume I : M → R is an image on the surface M . Let D ⊂ M be the

inpainting domain of I and H(ϕ) =
∫

M−D
(ϕ− I)2ds. The analogous total varia-

tional inpainting model on surfaces can be written as the following:

min
ϕ∈BV (M)

E3(ϕ) =

∫

M

|∇Mϕ|ds +
µ

2

∫

M−D

(ϕ− I)2ds. (2.8)

C. CV segmentation and its convexified version

The CV segmentation model was first introduced by Chan and Vese [20] for

segmentation of images in the Euclidean space. For the surface case, suppose

I : M → R is an image on surface M . We also represent a closed curve C on M

as the zero level let of a function ϕ : M → R. The CV segmentation model on

M can be given by:

min
ϕ,c1,c2

∫

M
|∇MH(ϕ)|ds + µ

∫

M
(c1 − I)2H(ϕ)ds + µ

∫

M
(c2 − I)2(1−H(ϕ))ds (2.9)

where H denotes the one dimensional Heaviside function.

However, the energy of CV model is not convex, it might get ”stuck” at certain

local minima. Chan et al. [18] propose another convexified CV (CCV) segmen-

tation model based on a convex energy. It can be adapted to a segmentation

model on surfaces. Namely, fix µ ∈ (0, 1) and let Ω+(ϕk) = {p ∈ M | ϕk(p) > µ}
and Ω−(ϕk) = {p ∈ M | ϕk(p) < µ}, the whole procedure of optimizing CCV

segmentation would be iterating the following two steps until the steady state:
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1. Solve ϕk+1 = arg min
06ϕ61

∫
M
|∇Mϕ|+ µ

∫
M

ϕ((ck
1 − I)2 − (ck

2 − I)2)ds

2. Update ck+1
1 =

∫
Ω+(ϕk+1)

Ids, ck+1
2 =

∫
Ω−(ϕk+1)

Ids

Thanks to differential geometry, we can easily adapt the total variational

image models to surface by using differential geometry terminology. With similar

techniques, many other popular variational PDE models in Euclidean space can

be generalized on surfaces.

2.3 Numerical Algorithms for Total Variation Related Prob-

lems on Surfaces

To solve the above minimization problems, a direct method could be used is the

gradient descent method to find the minimizer. However, it has its own limitation

of computation speed. As an advantage of the intrinsic method, it is easy to

adapt popular fast algorithms to the above total variation related problems on

surfaces. As examples, we will focus on solving the ROF denoising model and the

CCV segmentation models on surfaces by adapting two fast algorithms, namely

the split Bregman iteration method and Chambolle’s dual projection method.

Similar approaches can be used to solve other relevant models on surfaces.

2.3.1 Primal approaches: Split Bregmen iterations

Bregman iteration is first introduced by S. Osher et al. [74]. Later, Tom Goldstein

et al.[44, 43] introduce the split Bregman method to compute ROF and global

convex segmentation problems in plane image cases. The convergence analysis

of this algorithm is given by J.F. Cai et al. in [16]. This algorithm is much

faster than gradient descent. Here we can adapt their algorithm to solve the
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total variation related problems on surfaces as follows.

We consider a general total variation related optimization problem on surfaces:

min
ϕ

∫

M

|∇Mϕ|ds +H(ϕ) (2.10)

where H(·) is a convex function.

Let Γ(TM) be the linear space of all tangent vector fields on M. We also in-

troduce the auxiliary variable V ∈ Γ(TM), and consider the following equivalent

optimization problem:

min
ϕ,V∈Γ(TM)

||V||1 +H(ϕ) subject to V = ∇Mϕ (2.11)

where ||V||1 is defined in (1.10). The corresponding unconstrained problem

would be:

(ϕ∗,V∗) = arg min
ϕ,V∈Γ(TM)

||V||1 +H(ϕ) +
λ

2
||V−∇Mϕ||22 (2.12)

Then, we can apply the Bregman iteration on the above problem, namely, we

should solve a sequence of the following problems:

(ϕk,Vk) = arg min
ϕ,V∈Γ(TM)

||V||1 +H(ϕ) +
λ

2
||V−∇Mϕ−−→b k||22 (2.13)

−→
b k+1 =

−→
b k +∇Mϕk − Vk (2.14)

To solve (2.13), we can iteratively minimize with respect to ϕ and V separately:

ϕk+1 = arg min
ϕ
H(ϕ) +

λ

2
||Vk −∇Mϕ−−→b k||22 (2.15)

Vk+1 = arg min
V∈Γ(TM)

||V||1 +
λ

2
||V−∇Mϕk+1 −−→b k||22 (2.16)

For (2.16), the solution is also similar to plane image cases, which can be obtained

by the following shrinkage:

Vk+1 = max{|∇Mϕk+1 +
−→
b k| − 1/λ, 0} ∇Mϕk+1 +

−→
b k

|∇Mϕk+1 +
−→
b k|

(2.17)
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To summarize, the whole procedure of using split Bregman iterations for the

minimization problem (2.10) on the surface M is the following:

1. Let V0 =
−→
b 0 = 0, Do

2. Update ϕk+1 = arg min
ϕ
H(ϕ) + λ

2 ||Vk −∇Mϕ−−→b k||22;

3. Update Vk+1 = max{|∇Mϕk+1 +
−→
b k| − 1/λ, 0} ∇Mϕk+1+

−→
b k

|∇Mϕk+1+
−→
b k| ;

4. Update
−→
b k+1 =

−→
b k +∇Mϕk+1 − Vk+1;

5. while (”not converge”)

Remark 2.3.1 If the initial auxiliary variables
−→
b 0,V0 are two tangent vector

fields on M , then each
−→
b k,Vk will also be tangent fields on M .

[Proof]: By the definition of step 3 and 4 in above algorithm, and using induction

on k, the fact is obviously true. ¤

When we implement the above algorithms, the surface we consider is an em-

bedding surface in R3, thus a tangent vector on the surface can also be viewed

as a vector in R3. By Remark 2.3.1, if the initial data
−→
b 0,V0 are two tangent

vector fields on the surface, the results of each iteration are automatically two

tangent vector fields of the given surface, even if we view the tangent vector field

as a vector field in R3.

A. Split Bregman iteration for ROF deoising model on surfaces.

In ROF denoising model (2.8), H(ϕ) = µ
2
||ϕ− I||22. In this case, the solution

of the minimization problem (2.15) should satisfy:

(µId− λ4M)ϕk+1 = µI + λ divM(
−→
b k − Vk) (2.18)

Therefore, the split Bregman iteration for ROF denoising model (2.8) would be

given by:
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1. Let V0 =
−→
b 0 = 0, Do

2. Solve (µId− λ4M )ϕk+1 = µI + λ divM (
−→
b k − Vk);

3. Update Vk+1 = max{|∇Mϕk+1 +
−→
b k| − 1/λ, 0} ∇Mϕk+1+

−→
b k

|∇Mϕk+1+
−→
b k| ;

4. Update
−→
b k+1 =

−→
b k +∇Mϕk+1 − Vk+1;

5. while (”not converge”)

B. Split Bregman iterations for CCV segmentation model on surfaces

The key step in CCV segmentation model is solving

ϕk+1 = arg min
06ϕ61

∫

M

|∇Mϕ|+ µ

∫

M

ϕrkds (2.19)

where rk = (ck
1 − I)2 − (ck

2 − I)2. In this case, we have H(ϕ) = µ
∫

M
ϕrkds. The

minimization problem (2.15) becomes:

ϕk+1 = arg min
06ϕ61

λ

2
||Vk −∇Mϕ−−→b k||22 + µ

∫

M

ϕrkds (2.20)

Since the above minimization is a quadratic problem with constraint 0 6 ϕ 6 1,

its solution can be obtained by:

solve: 4Mϕk+1 =
µ

λ
rk + divM(Vk −−→b k)

update: ϕk+1(pi) ←− min{max{ϕk+1(pi), 0}, 1} (2.21)

Therefore, the split Bregman iteration for CCV segmentation model would be

given by:

1. Let V0 =
−→
b 0 = 0, Do

2. Update rk = (ck
1 − I)2 − (ck

2 − I)2;

3. Solve 4Mϕk+1 = µ
λrk + divM (Vk −−→b k),

ϕk+1(pi) ←− min{max{ϕk+1(pi), 0}, 1};
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4. Update Vk+1 = max{|∇Mϕk+1 +
−→
b k| − 1/λ, 0} ∇Mϕk+1+

−→
b k

|∇Mϕk+1+
−→
b k| ;

5. Update
−→
b k+1 =

−→
b k +∇Mϕk+1 − Vk+1;

6. Update ck+1
1 =

∫
Ω+(ϕk+1)

Ids, ck+1
2 =

∫
Ω−(ϕk+1)

Ids;

7. while (”not converge”)

2.3.2 Dual approaches: Chambolle’s projection methods

The discussion based on the variational model (2.10) with split Bregman itera-

tion method, can be viewed as the primal approach to solve the total variation

related problems on surfaces. Meanwhile, based on the definition of the total

variation, there has been increasing interests on dual approaches. One famous

dual algorithm is Chambolle’s projection method of ROF denoising model [17]. It

offers us a fast and easy-coding algorithm to solve ROF denoising model. Later,

X. Bresson et al [12] propose an algorithm based on Chambolle’s dual method

to solve CCV model for plane image problems. Here, we can similarly apply the

Chambolle’s dual methods to solve the total variation related optimization prob-

lems on surfaces. Remembering the definition of the total variation on surfaces

in (2.1), we consider the following variational problem:

min
ϕ

max
V∈Γ(TM),|V|61

∫

M

ϕdivMVds +H(ϕ) (2.22)

By the min-max theorem in optimization theory [33], we can interchange the

min and max, to obtain the following equivalent optimization problem:

max
V∈Γ(TM),|V|61

min
ϕ

∫

M

ϕdivMVds +H(ϕ) (2.23)

A. Dual method for ROF denoising model on surfaces
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In ROF denoising model (2.8), H(ϕ) = µ
2
||ϕ − I||22. In this case, we need to

consider the following problem:

max
V∈Γ(TM),|V|61

min
ϕ

∫

M

ϕdivMVds +
µ

2
||ϕ− I||22 (2.24)

The solution of the inner minimization problem can be solved exactly as ϕ =

I − 1
µ
divMV. Plug in this back to the above problem, we have the following

maximization problem:

arg max
V∈Γ(TM),|V|61

∫

M

(I − 1

µ
divMV)divMVds +

µ

2
|| 1
µ

divMV||22

= arg max
V∈Γ(TM),|V|61

µ

2
(||I||22 − ||

1

µ
divMV− I||22)

= arg min
V∈Γ(TM),|V|61

|| 1
µ

divMV− I||22 (2.25)

As indicated in Chambolle’s method [17], we can also solve the last minimization

problem by the iterative method as follows:

Vn+1 =
Vn + τ∇M(divMVn − µI)

1 + τ |∇M(divMVn − µI)| (2.26)

The convergence analysis in Euclidean cases can be easily adapted to surface

cases to prove the convergence.

B. Dual method for CCV segmentation model on surfaces

The key step in CCV segmentation model is solving

min
06ϕ61

TV (ϕ) + µ

∫

M

ϕrkds (2.27)

where rk = (ck
1−I)2−(ck

2−I)2. It has the same set of minimizers as the following

unconstrained problem [18]:

min
ϕ

TV (ϕ) + µ

∫

M

(ϕrk + αν(ϕ))ds (2.28)
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where ν(ξ) = max{0, 2|ξ − 1/2| − 1}, provided that α > µ
2
||rk(x)||L∞ . As the

algorithms proposed in [1, 12], we can similarly consider convex regularization of

the above minimization problem on surfaces as follows:

min
ϕ,v

TV (ϕ) +
θ

2
||ϕ− v||22 + µ

∫

M

(vrk + αν(v))ds (2.29)

whose solution can be approached by iteratively updating ϕ, v by the following

two steps:

ϕl+1 = arg min
ϕ

TV (ϕ) +
θ

2
||ϕ− vl||22 (2.30)

vl+1 = arg min
v

θ

2
||ϕl+1 − v||22 + µ

∫

M

(vrk + αν(v))ds (2.31)

By the dual algorithm of ROF model, the minimizer of (2.30) can be obtained

by ϕl+1 = vl − 1
θ
divMV, where V can be iteratively solved by

Vn+1 =
Vn + τ∇M(divMVn − θvl)

1 + τ |∇M(divMVn − θvl)| (2.32)

and the solution of (2.31) is given by vl+1 = min{max{ϕl+1 − µ
θ
rk, 0}, 1}. All

convergence proofs of this algorithm on surface optimization problem (2.27) can

be naturally adapted from the proofs in Euclidean cases in [12]. To conclude, the

algorithm of dual method to solve CCV segmentation model on surfaces is given

as follows:

1. Let v0 = 0,V0 = 0, Do

2. Update rk = (ck
1 − I)2 − (ck

2 − I)2;

3. Do

4. Do Vn+1 = Vn+τ∇M (divMVn−θvl)
1+τ |∇M (divMVn−θvl)| while (|Vn+1 − Vn| > ε)

5. Update ϕl+1 = vl − 1
θdivMVn+1;

6. Update vl+1 = min{max{ϕl+1 − µ
θ rk, 0}, 1}

34



7. while (max{|ϕl+1 − ϕl|, |vl+1 − vl|} > ε)

8. Update ck+1
1 =

∫
Ω+(ϕk+1)

Ids, ck+1
2 =

∫
Ω−(ϕk+1)

Ids;

9. while (”not converge”)

To summarize, we want to point out that the successful generalization of the

image models and their related algorithms from Euclidean cases to surface cases

is because of differential geometry. Due to the power of differential geometry, a

natural extension of Euclidean geometry, we can generalize the concept of the

total variation on surfaces, then ROF denoising model and CCV segmentation

model and their related algorithms are adapted on surfaces as examples. More-

over, one can also prove similar convergence results as in the Euclidean cases.

With the same technique, the generalization of fast algorithms is not necessarily

limited to split Bregman iteration and dual projection method, one can similarly

generalize other fast algorithms such as primal-dual methods [103] and so on.

2.3.3 Implementation

So far, we extend all formulas on surfaces. It is easy to observe that each abstract

formula is quite consistent with plane image cases due to differential geometry

terminologies. At the first glance, the only difference is that we replace all Eu-

clidean gradient, divergence, Laplace operators and Euclidean integrals by their

corresponding surface forms. However, since the surface metric has been involved

in the above surface differential operators and surface integrals, the mathemati-

cal meaning of each term is quite different and also numerical implementation is

different.

A. Surface differential operators

As we described in section 1.2, the data structure of each surface is given
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by a triangle mesh M = {P = {pi}N
i=1, T = {Tl}L

l=1}, where pi ∈ R3 is the i-th

vertex and Tl is the l-th triangle. Any function f defined on M can be written as

f = {f(pi)}N
i=1. Since M is a embedding surface in R3, then any tangent vector

V on M can be written as V = {V(pi)}N
i=1, where each V(pi) can be viewed as a

vector in R3. Let
−→
W be the differentiation vector matrix defined in section 1.3

associated with the triangle mesh M . Then we can easily compute the surface

gradient and divergence by the matrix product as the discussion in section 1.3:

∇Mf =
−→
Wf ; divMV =

−→
W • V (2.33)

Once we can compute the surface gradient and divergence, then the dual method

to compute ROF denoising model and CCV segmentation model on surface can

be easily implemented, since the algorithms of dual method only need surface

gradient and divergence.

B. Surface PDEs

The next step is to implement the split Bregman iterations on surfaces. There

are two PDEs related to the Laplace operator we need to solve on surfaces. One

is to solve the equation (2.18) for ROF denoising:

(µId− λ4M)ϕk+1 = µI + λ divM(
−→
b k − Vk) (2.34)

another one is the equation (2.21) for CCV segmentation.

4Mϕk+1 =
µ

λ
rk + divM(Vk −−→b k) (2.35)

Since above two equations are defined on a triangulated surface, we can not

use the fast solver, fast fourier transform (FFT), to solve it as we deal with the

same type of equations in 2D regular domain. One possible method is by using
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the discretization of 4M given by Meyer, Desbrun, Xu et al.[68, 31, 102], then

use Gauss-Seidel, conjugate gradient to solve them. However, the approximation

of Laplace-Beltrami operator on an arbitrary triangulated surface depends on the

quality of the triangle mesh. To avoid discretizing the second order differential

operator, we are here proposing to use finite element methods to solve equations

(2.18) and (2.21).

We choose the linear elements {ei}N
i=1 on the triangle mesh {V = {pi}N

i=1, T =

{Tl}L
l=1}, such that ei(pj) = δi,j and write S = SpanR{ei}N

i=1. Then the discrete

version of the continuous variational problem of (2.18) is to find a ϕk+1 ∈ S, such

that

µ
∑

l

∫

Tl

ϕk+1ej + λ
∑

l

∫

Tl

∇Mϕk+1∇Mej =
∑

l

∫

Tl

Θkej, ∀ej ∈ S. (2.36)

where Θk = µI + λ divM(
−→
b k − Vk).

If we write




ϕk+1 =
∑N

i xiei, Θk =
∑N

i θiei

Q = (aij)N×N , aij =
∑

l

∫
Tl
∇Mei∇Mej

K = (bij)N×N , bij =
∑

l

∫
Tl

eiej

(2.37)

and we also write ϕk+1 = (x1, · · · , xN)t and Θk+1 = (θ1, · · · , θN)t with abused

notations, then to solve ϕk+1 is equivalent to solving the following linear equa-

tions:

(µK + λQ)ϕk+1 = KΘ (2.38)

One fact we would like to point out here is:

Remark 2.3.2 K is a symmetric positive definite sparse matrix and Q is a sym-

metric nonnegative definite sparse matrix.
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[Proof]: Symmetry of Q,K is easy to see. For any f = (f1, · · · , fN)t, g =

(g1, · · · , gN)t, if we also write f =
∑

fiei and g =
∑

giei, then fKgt =
∫

M
fg and

fQgt =
∫

M
∇Mf∇Mg. So K is positive definite and Q is nonnegative definite. ¤

Therefore, when µ and λ are both positive, the matrix (µK+λQ) is a symmet-

ric positive definite sparse matrix. The solution ϕk+1 of (2.38) can be obtained

by using conjugate gradient or Gauss-Seidel.

Similarly, the discrete version of the continuous variational problem of (2.21)

is to find a ϕk+1 ∈ S, such that

∑

l

∫

Tl

∇Mϕk+1∇Mej = −
∑

l

∫

Tl

Γkej, ∀ej ∈ S. (2.39)

where Γk = µ
λ
rk + divM(Vk −−→b k).

If we write ϕk+1 =
∑N

i xiei, Γk =
∑N

i γiei, the solution ϕk+1 of (2.21) is

equivalent to solving the following linear equation:

Qϕk+1 = −KΓk (2.40)

which can be solved by the Gauss-Seidel method.

2.4 Experimental Results and Applications

In this section, several examples will be given to demonstrate advantages of the

intrinsic method. The intrinsic method can provide us a robust and efficient

method to study image problems on surfaces. It can easily handle surfaces with

different complexity, different topologies. Moreover, we will further show two ap-

plications of our intrinsic method of image processing on surfaces. All algorithms

are written in C++ and all experiments are ran on a PC with a 2.0GHz CPU.
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intrinsic method conformal parametrization level set

CCV by split Bregman parametrization: 126.63s + implicit representation with

M1 18.61s CCV by split Bregman in 0.55s 65× 162× 99 grid points in 5.92s

+ CCV by gradient descent in 84.44s

CCV by split Bregman parametrization: 602.91s + implicit representation with

M2 18.94s CCV by split Bregman in 0.56s 143× 350× 227 grid points in 29.55s

+ CCV by gradient descent in 756.4s

Table 2.2: The computation cost of different methods.

2.4.1 Comparison with other approaches

The intrinsic method can efficiently solve variational problems directly on sur-

faces and does not need preprocessing. Due to the natural extension of differential

operators on surfaces, the fast algorithms for variational problems in Euclidean

cases can also be easily adapted on surfaces by this intrinsic method. To demon-

strate these advantages of our intrinsic method, we here compare our method

with level set method and conformal parametrization method. We test the CCV

segmentation model on following two surfaces M1,M2 with characters by the in-

trinsic method, the level set method [55, 66] and the conformal parametrization

method [63] respectively. In Figure 2.1, Surface M2 is a cortical surface in hu-

man’s brain1 and surface M1 is a smoothing version of surface M2. Both surfaces

have 39994 vertices. The computation cost comparison is listed in table 2.2.

From Table 2.2, we can observe two facts as follows:

1. Computation cost under surface structure variance:

For the conformal parametrization method and level set method, they both

1Meshes are provided by the public available database ADNI at LONI
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M1

(a1) (b1) (c1) (d1) (e1)

M2

(a2) (b2) (c2) (d2) (e2)

Figure 2.1: CCV segmentation results on two surfaces with different complexity. The

first row: (a1), (b1) two views of characters image I on surface M1, (c1) the initial

curve for CCV segmentation on M1, (d1), (e1) two views of the CCV segmentation

results ϕ. The second row: (a2),(b2) two views of characters image I on surface M2,

(c2) the initial curve for CCV segmentation on M2, (d2), (e2) two views of the CCV

segmentation results ϕ.

depend on the complexity of surfaces. More specifically, it needs more

time to obtain the conformal parametrization if the surface geometry is

farther from the sphere. Similarly, the level set method also needs more

data to represent a surface with more complicated structure, which requires

more time to solve variational problems. However, the computation of the

intrinsic method is fast and stable under surface structure variance.

2. Adaptability of fast algorithms:

For the conformal parametrization method, once the parametrization is

obtained, one can easily transfer the surface variational problems into 2D

Euclidean cases, then several fast algorithms can be also applied. For the

level set method, since the surface gradient operator is computed by pro-

jection and expression of surface divergence by level set function is very
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complicated, the generalization of fast algorithms, like split Bregman or

dual method is not straightforward. Meanwhile, the data size of implicit

surface representation will consume more computation cost. However, as

we discussed in section 2.3.3, fast algorithms in Euclidean cases can be

easily adapted in surface cases by the intrinsic method.

2.4.2 Further demonstration on high genus surfaces and open surfaces

In many fields such as computer graphics, geometry modeling, medical imaging,

computational anatomy, 3D cartoon, it is also necessary to process high genus

surfaces or open surfaces. Usually, to find a parametrization of a high genus sur-

face is not so easy, one has to cut the surface into several patches [47, 65], then

process these patches separately. This artificial cutting of patches and separately

processing may introduce numerical inaccuracy on the cutting edges. In addition,

the parametrization method and level set method have their own limitations to

study open surfaces, specially open surfaces with topological nontrivial bound-

aries. However, the intrinsic method can easily handle high genus surfaces and

open surfaces as surfaces with spherical topology.

Here, we demonstrate this advantage of the intrinsic method in several syn-

thetic examples. In Figure 2.2, we take a one handled cup 2 with 25075 vertices as

a ground surface and show ROF denoising results of the Lena image with Gaus-

sian noise σ = 40. As we discussed in Section 2.3, the split Bregman iterations

and Chambolle’s dual projection method can be applied to solve ROF denois-

ing models on surfaces. We show denoising results obtained by split Bregman

and Chambolle’s dual projection method respectively in Figure 2.2. In addition,

we also apply our algorithms for the CCV segmentation model on surfaces to

2One handled cup is obtained from the public available database SHARP3D
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(a) (b)

(c)

(e)

(d)

(f)

Figure 2.2: ROF denoising results of the Lena image I on a 25075 vertices cup surface

with split Bregman iterations and dual method. (a) the clear lena image. (b) the

noise image with Gaussian noise σ=40. (c), (d) a denoising result ϕ by split Bregman

iterations with λ = 0.05, µ = 1000 in 17.73 seconds and its corresponding residual

I − ϕ. (e), (f) a denoising result ϕ by dual method with µ = 10 in 35.46 seconds and

its corresponding residual I − ϕ.
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(a) (b) (c) (d) (e)

Figure 2.3: CCV segmentation results on a 25075 vertices cup surface with split

Bregman iterations and Chambolle’s projection method. (a) the cameraman image

and the initial segmentation curve marked by the red contour. (b), (c) the CCV

segmentation result obtained by split Bregman method with λ = 8, µ = 50 in 14.57

seconds and the corresponding edges marked by red contours in the original image.

(d), (e) the CCV segmentation result obtained by Chambolle’s projection method with

µ = 0.1, θ = 400 in 73.34 seconds and the corresponding edges marked by red contours

in the original image.
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the same one handled cup and a torus. The segmentation results are showed

in Figure 2.3 and Figure 2.4. Moreover, to show the advantage of dealing with

open surfaces with the intrinsic method, we show CCV segmentation results in

Figure 2.5 on a human hand surface 3 and Figure 2.6 on a half torus, which

both are open surfaces. To summarize, our intrinsic method can provide a robust

and efficient approach to study image problems on surfaces, whenever surfaces

are closed or open, with genus zero or high genus, with simple or complicated

geometric structure.

(a)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

(e1)

(e2)

Figure 2.4: CCV segmentation results on a 65536 vertices torus with split Bregman

iterations and Chambolle’s projection method. (a) the cameraman image and the initial

segmentation curve marked by the red contour. (b1), (c1), (d1), (e1) two views of the

CCV segmentation result obtained by split Bregman method with µ = 10, λ = 50 in

42.95 seconds and two views of the corresponding edges marked by red contours in

the original image. (b2), (c2), (d2), (e2) two views of the CCV segmentation result

obtained by Chambolle’s projection method with µ = 0.1, θ = 1000 in 162.99 seconds

and the corresponding edges marked by red contours on the original image.

3This model is provided by the public available database AIM@SHAPE Shape Repository
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

(e1)

(e2)

Figure 2.5: CCV segmentation results on a 58875 vertices open hand surface with

split Bregman iterations and Chambolle’s projection method. (a1), (a2) two views the

image and the initial segmentation curve marked by the red contour. (b1), (c1), (d1),

(e1) two views of the CCV segmentation result obtained by split Bregman method with

µ = 5, λ = 50 in 29.74 seconds and two views of the corresponding edges marked by red

contours in the original image. (b2), (c2), (d2), (e2) two views of the CCV segmentation

result obtained by Chambolle’s projection method with µ = 0.1, θ = 1000 in 184.94

seconds and the corresponding edges marked by red contours on the original image.
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(a) (b) (c) (d) (e)

Figure 2.6: CCV segmentation results on a 31247 vertices half double torus with

split Bregman iterations and Chambolle’s projection method. (a) the characters image

with Gauss noise σ = 100 and the initial segmentation curve marked by the red con-

tour. (b), (c) the CCV segmentation result obtained by split Bregman method with

λ = 100, µ = 50 in 21.33 seconds and the corresponding edges marked by red contours

in the original image. (d), (e) the CCV segmentation result obtained by Chambolle’s

projection method with µ = 0.1, θ = 1000 in 108.4 seconds and the corresponding edges

marked by red contours in the original image.

46



2.4.3 Applications

A. Geometric processing

An interesting application of ROF denoising is geometric processing, namely,

surface denoising or geometric processing [25, 29, 30, 3, 35, 32, 63]. Given a

surface M ⊂ R3, there are three coordinate functions (f1, f2, f3) on M , namely

we have the embedding:

−→
f = (f1, f2, f3) : M −→ R3

p 7−→ (f1(p), f2(p), f3(p)) (2.41)

It is natural to view the three coordinate functions (f1, f2, f3) as three image

functions on the surface M . A noisy surface is a perturbation in the geometry

of the surface, namely, we can view the noisy surface
−−−→
fnoise as

−−−→
fclean +

−−−→
noise with

−−−→
noise ∈ N (0, σ)×N (0, σ)×N (0, σ). Thus each coordinate function of the noisy

surface can be viewed as a noisy image on the surface, then we can study the

geometry processing via the surface coordinate functions. As an example, we

naively consider surface ROF denosing model on each coordinate function as an

approach to study surface denosing. Figure 2.7 shows two preliminary results of

the surface denoising. The first row in Figure 2.7 is the surface denoising of a cube

with Gaussian noise σ = 0.1. The edge preserving property of the total variation

can be observed from the denoising result. The second row is a denoising result

of a human’s cortical surface4.

B. Cortical parcellation

Image segmentation techniques are quite useful in image analysis on the 2D

plane. For 3D surface analysis, image segmentation technique can also be used

to detect certain special parts of the given surface. For instance, in anatomical

4This model is provide by the public available database ADNI at LONI
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brain structure analysis, sulci/guri detection for cortical surfaces is important

[64, 90, 57]. However, in most cases, cortical surfaces have many very deep and

closed folding parts. These folding parts might restrict us to easily and efficiently

find parameterization or use implicit method. With our intrinsic image processing

on surfaces method, we can directly process the image segmentation on cortical

surfaces without any preprocessing. This will help us deal with surfaces with

complex structures. For the sulci/guri detection problem, we can view the mean

curvature of cortical surfaces as an image on the surfaces, which can be obtained

by the algorithms given in [68], then apply CCV segmentation on the surface mean

curvature. The CCV segmentation result will provide us a promising cortical

parcellation. In Figure 2.8, we show the segmentation results of two type of

cortical surfaces. The first row is a human’s cortical surface5 and the second row

is a vervet’s cortical surface6. Both surfaces are with deep and narrow sulcal

regions.

2.5 Conclusions and Future Work

In this work, we use differential geometric techniques to study intrinsical image

processing on surfaces. We generalize the total variation concept on surfaces

and show it is also a suitable regularizing term when we study image processing

on surfaces. Furthermore, we take ROF denoising model and CV segmentation

model as two examples to illustrate our intrinsic method. As an advantage of

the intrinsic method, we show the adaptability of fast algorithms in Euclidean

spaces to the total variational related problems on surfaces by using the intrinsic

method. Specifically, we implement the split Bregman method and Chambolle’s

5This model is obtained from the public available database ADNI at LONI
6This model is provided by Dr. Scott Fears
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(a1) (b1) (c1)

(a2) (b2) (c3)

Figure 2.7: the first column: clean surfaces. the second column: noise surfaces with

Gaussian noise σ = 0.1. the third column: denoised results obtained by split Bregman

method.
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(a1) (a2)

(b1) (b2)

Figure 2.8: Top: Two different views of CCV segmentation on the mean curvature of

a human’s cortical surface. Bottom: Two different views of CCV segmentation on the

mean curvature of a vervet’s cortical surface. Surfaces are color coded with their mean

curvature and the red contours mark the boundary of the sulcal and gyral regions.
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dual projection method as two examples. The intrinsic method is a very gen-

eral approach to study variational problems, differential equations and image

processing on surfaces. This technique can be further extended to study diffu-

sion equations, motions of curves, and other surface PDEs or variation related

problems on surfaces. In the future, we will explore along this direction and

demonstrate more applications of this intrinsic geometric technique.
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Part II

Laplace-Beltrami Eigen-Geometry
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CHAPTER 3

Mathematical Background of Laplace-Beltrami

Eigen-Geometry

In this chapter, we will give a brief introduction to eigen-systems of the Laplace-

Beltrami operator on two dimensional surfaces and their numerical computation

by the finite element method on triangulated surfaces. More details about eigen-

systems of the Laplace-Beltrami operator can be found in [23, 50].

3.1 Theoretical Background

Let (M, g) be a two dimensional closed Riemannian manifold. For any point

p ∈ M , we write a local representation of the metric g(p) = (gij(x))i,j=1,2. Then,

for any smooth function u ∈ C∞(M), the Laplace-Beltrami (LB) operator is

defined by:

4Mφ = divM∇M(φ) =
1√
G

2∑
i=1

∂

∂xi

(
√

G

2∑
j=1

gij ∂φ

∂xj

) (3.1)

where (gij) is the inverse matrix of (gij) and G = det(gij)

By the knowledge of differential geometry, one can easily check that the

Laplace-Beltrami operator is not dependent on the choice of local coordinates.

More importantly, the Laplace-Beltrami operator is an elliptic operator, so it has

discrete spectrum. We denote the set of eigenvalues as 0 = λ0 6 λ1 6 λ2 6 · · ·
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and the corresponding eigenfunctions as φ1, φ2, · · · such that

4Mφn = −λnφn, n = 1, 2, · · · (3.2)

{λi, φi}∞i=1 is called an LB eigen-system of (M, g), typically, {λi}∞i=1 is called the

LB spectrum of (M, g).

An important fact of the LB eigen-system is that two eigenfunctions with

different eigenvalues are perpendicular to each other. Namely:

Fact 3.1.1 Let φi, φj be two eigenfunctions of the Laplace-Beltrami operator on

a surface (M, g) with eigenvalue λi, λj respectively. If λi 6= λj, then

〈φi, φj〉M =

∫

M

φi(x)φj(x)dv(x) = 0 (3.3)

Thus, we can choose eigenfunctions {φi}∞i=1 to be an orthonormal basis. From now

on, we always choose {φi}∞i=1 in an eigen-system {λi, φi}∞i=1 to be an orthonormal

basis. Equivalently, an LB eigen-system can be also given by:

λ1 =

∫

M

|∇Mφ1|2dv = inf
C∞(M)

{
∫

M
|∇Mφ|2dv∫
M

φ2dv
}

λn =

∫

M

|∇Mφn|2dv = inf
Bn−1

{
∫

M
|∇Mφ|2dv∫
M

φ2dv
} (3.4)

where Bn−1 = {φ ∈ C∞(M) | 〈φ, φj〉M = 0, j = 1, · · · , n− 1}.

The Laplace-Beltrami operator defined above is actually a generalization of

the standard Laplace operator in Euclidean space and on a sphere. For instance,

the following two examples are two special cases of the above general defined

Laplace-Beltrami operator and its eigen-system.

1. On the interval I = [−π, π]: the Eigensystem is given by: d2

dx2 φn = −λnφn, n =

1, 2, · · ·
{φn} = {sin mx, cos mx}m∈N is a Fourier basis of L2([π, π]).
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2. On the sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}:
Under spherical coordinates, Eigensystem is given by:

1
sin θ

∂

∂θ
(sin θ

∂

∂θ
φm

l ) +
1

sin θ2

∂2

∂φ2
φm

l = −λm
l φm

l ,





l = 0, 1, 2, · · ·
m = −l, · · · , l

where φm
l (θ, φ) = Ne

√−1mφPm
l (cos θ), here φm

l is called a spherical harmonic

function of degree l and order m, is an associated Legendre function, N is

a normalization constant, and θ and φ represent colatitude and longitude,

respectively. {φm
l , l = 0, 1, 2, · · · m = −l, · · · , l} is a basis of L2(S2).

Since the Laplace-Beltrami operator is a complete intrinsic geometric operator

on the surface itself, it is clear that the LB eigen-system of a given surface is also

completely intrinsic. In other words, the LB eigen-system of a surface is isometric

invariant, in particular, it is rotation and translation invariant.

It is well known that the Fourier basis is very useful for functional analysis

in Rn and spherical harmonic functions are quite useful for functional analysis

on the sphere. Similarly, eigen-systems of the Laplace-Beltrami operator are also

a very powerful tool for function analysis on M . For instance, eigen-system is

highly related to the heat equation on a surface as follows:

Let M be a surface. The heat equation on M is given by:





∂u(t,x)
∂t

= 4Mu(t, x)

u(x, 0) = f(x)

u(x, t) = 0 ∀x ∈ ∂M

(3.5)

where u ∈ C∞([0,∞) × M) and f ∈ C∞(M). the heat kernel K(t, x, y) is the

fundamental solution of the heat equation (3.5) with the following properties:

1. K(t, x, y) is C1 in t and C2 in x and y;
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2. K(t, x, y) solves the equation ∂K(t,x,y)
∂t

= 4M,xK(t, x, y) and K(t, x, y) =

0 ∀x ∈ ∂M ;

3. For any compactly supported function f on M , limt→0

∫
M

K(t, x, y)f(y)dv(y) =

f(x).

With the heat kernel K(t, x, y), the solution of the heat equation (3.5) can be

simply given by:

u(t, x) =

∫

M

K(t, x, y)f(y)dv(y) (3.6)

Therefore, the essential step to solve the heat equation on surfaces is to construct

the heat kernel. Theoretically, the heat kernel of M can be represented as follows:

Theorem 3.1.1 (Sturm–Liouville decomposition) Let’s (M, g) be a Rieman-

nian surface and {λn, φn} be an eigen-system of the Laplace-Beltrami operator of

(M, g). Then the heat kernel uniquely exist and can be given as follows:

K(t, x, y) =
∑

i

e−λitφi(x)φi(y) (3.7)

where
∑

i e
−λitφi(x)φi(y) is absolute and uniform convergent when t > 0.

The Sturm-Liouville decomposition clearly illustrates the strong relation of LB

eigen-systems and the heat equation on its ground surface. Moreover, besides

functional analysis on surfaces, another big advantage of LB eigen-systems can

be further used to detect geometry of the ground surface. The following heat trace

expansion will demonstrate how LB spectrum will reflect geometric information

of surfaces.

Write Z(t) =
∫

M
K(t, x, x)dv as the heat trace of the Laplace-Beltrami oper-

ator on (M, g). Since {φi} is an orthonormal basis, the heat trace is also equal
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to:

Z(t) =

∫

M

K(t, x, x)ds =

∫

M

∑
i

e−λitφi(x)φi(y)ds =
∑

i

e−λit (3.8)

Theorem 3.1.2 (heat trace asymptotical expansion) Let (M, g) be a Rie-

mannian surface with boundary B. When t → 0+, the heat trace Z(t) has the

following asymptotical expansion

Z(t) =
1

4πt
(
∞∑
i=0

cit
i/2) (3.9)

where c0, c1, c2 were first computed by H. McKean and I. Singer [67] as follows:

c0 = area(M), c1 = −
√

π

2
length(B), c2 =

1

3

∫

M

K − 1/6

∫

B

J (3.10)

where K is the Gauss curvature of M and J is the mean curvature of B in M .

Moreover, if M is a closed surface with Euler number χ(M), then c2 = 2χ(M)/3

More results about the relation between surface geometry and its eigenvalues can

be found in [67, 84, 97].

From the above asymptotical formula, we can see how to use eigenvalue to

study surface geometry. However, eigenvalues are only one part of the eigen-

system, one can expect that more surface geometric information can be detected

by using eigenvalues together with eigenfunctions. In fact, P.Bérard, G. Besson,

S. Gallot ([2]) have the following theoretical result:

Given an orthonormal basis α = {φα
n} of eigenfunctions of the Laplace-

Beltrami operator of (M, g), for each point x ∈ M , one can have a convergent

sequence {e−λit/2φα
i (x)}i≥1 corresponding to an element in the standard sequence

Hilbert space l2. Now consider the following map:

Iα
t,g : M → l2, Iα

t,g(x) = {e−λit/2φα
i (x)}i≥1 (3.11)
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Here l2 is the standard sequence Hilbert space. P.Bérard, et al have the

following key theorem:

Theorem 3.1.3 For any given surface (M, g), any given basis α = {φα
n} and

any t. the map Iα
t,g is an embedding.

By this embedding theorem, one can represent all of surfaces (it is also right

for all closed manifolds) in a standard space l2. An important fact here is that

a surface is completely determined by its LB eigen-system. This inspires us

to use eigenfunctions instead of only eigenvalues of surface to analyze shapes.

The essential question here is how do we introduce certain models to use LB

eigenfunctions to detect the geometry of corresponding surfaces. This is a widely

open problem. We would like to first discuss how to compute the LB eigen-system

for a given triangulated surface in the following section. Then, based on our work

in [88, 87, 56, 57], we will discuss how to use LB eigen-system to study surface

global and local geometric information and their application to computational

anatomy.

3.2 Numerical Computation: The Finite Element Method

on Surfaces

Numerically, we use the finite element method (FEM) to compute eigen-systems

of the LB operator. For any closed surface (M, g), to solve the original LB

eigensystem problem, is equivalent to solve the following weak version of the

original problem. Namely, for any u ∈ C∞(M), φ should satisfy:
∫

M

4Mφudv = −λ

∫

M

φudv

=⇒
∫

M

(∇Mφ,∇Mu)Mdv = λ

∫

M

φudv (3.12)
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In a local coordinate chart {U, x = (x1, x2)} of (M, g), we locally represent

g = (gij(x))i,j=1,2 and denote (gij(x))−1
i,j=1,2 by (gij(x))i,j=1,2. We further denote

coordinate vector fields by ∂i = ∂
∂xi

, i = 1, 2. Then, the following representation

can be obtained: 


∇Mφ|U =

∑
i,j=1,2 gij ∂φ

∂xi ∂j

(∇Mφ,∇Mu)M =
∑

i,j=1,2 gij
∂φ
∂xi

∂u
∂xj

(3.13)

In particular, we mainly focus on studying surfaces in R3. Therefore, these sur-

faces metric can be viewed as induced metric from R3 (see section 1.1), and

tangent vectors ∇Mφ,∇Mu can be viewed as vectors in R3. Thus:

(∇Mφ,∇Mu)M = (∇Mφ,∇Mu)R3 = ∇Mφ · ∇Mu (3.14)

Let M be a surface represented by triangular mesh {V = {pi}N
i=1, T = {Tl}L

l=1},
where pi means the i-th vertex and Tl means the l-th triangle. To implement

the finite element method on the given triangle mesh, we choose linear elements

{ψh
i }N

i=1, such that ψh
i (vj) = δi,j and write Sh = SpanR{ψh

i }N
i=1. Then the discrete

version of the continuous variational problem is to find a φh ∈ Sh, such that

∑

l

∫

Tl

∇Mφh · ∇Mψh
i = λh

∑

l

∫

Tl

φhψh
i , ∀ψh

i ∈ Sh, i = 1, · · · , N (3.15)

Therefore, the key of the remaining computation is to obtain numerical estima-

tion of the above two types of integral in (3.15) on each triangle, which can be

approximated as follows:

Consider a triangle Tl = {p0, p1, p2} with two functions φ = {φ0, φ1, φ2} and

ψ = {ψ0, ψ1, ψ2} defined on each vertex respectively. Any point p ∈ Tl, the first

order linear interpolation of φ and ψ in Tl can be given by




p = x1(p1 − p0) + x2(p2 − p0) + p0

φ(p) = x1(φ1 − φ0) + x2(φ2 − φ0) + φ0

ψ(p) = x1(ψ1 − ψ0) + x2(ψ2 − ψ0) + ψ0

(3.16)
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where 0 6 x1, x2, x1 + x2 6 1 are the barycenter coordinates.

We first compute the integral on the right hand side of the formula in (3.15)

as follows:
∫

Tl

φ(p)ψ(p)dv =

∫ 1

0

∫ 1−x1

0

φ(p)ψ(p)dx2dx1 (3.17)

Next, we approximate another type integral of the formula in (3.15). Since we

use the first order finite element method, the gradient ∇Tl
φ and ∇Tl

ψ will be two

constant vectors on the triangle Tl. Therefore:
∫

Tl

∇Tl
φ · ∇Tl

ψdv = area(Tl)(∇Tl
φ · ∇Tl

ψ) (3.18)

The only two terms we need to estimate are ∇Tl
φ and ∇Tl

ψ, which can be given

as follows (see Section 1.2):

On the triangle Tl, we have ∂x1 = p1−p0, ∂x2 = p2−p0, and the metric matrix

of Tl would be:

g = (gi,j)i,j=1,2 =


 ∂x1 · ∂x1 ∂x1 · ∂x2

∂x2 · ∂x1 ∂x2 · ∂x2


 (3.19)

where · is the dot product in R3. Then,

∇Tl
φ =

2∑
i,j

gij ∂φ

∂xj
∂xi =

2∑
i,j

gij(φj − φ0)(pi − p0)

= (φ1 − φ0, φ2 − φ0)


 ∂x1 · ∂x1 ∂x1 · ∂x2

∂x2 · ∂x1 ∂x2 · ∂x2



−1 

 p1 − p0

p2 − p0


 (3.20)

Similarly, we have:

∇Tl
ψ =

2∑
i,j

gij ∂ψ

∂xj
∂xi =

2∑
i,j

gij(ψj − ψ0)(pi − p0)

= (ψ1 − ψ0, ψ2 − ψ0)


 ∂x1 · ∂x1 ∂x1 · ∂x2

∂x2 · ∂x1 ∂x2 · ∂x2



−1 

 p1 − p0

p2 − p0


(3.21)
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Now we can go back to solve the problem 3.15. Let hl be the diameter of the

triangle Tl and h = max {hl | l = 1, · · · , L}. If we write





φh =
∑N

i xiψ
h
i

Ah = (aij)N×N , aij =
∑

l

∫
Tl
∇Mψh

i ∇Mψj

Bh = (bij)N×N , bij =
∑

l

∫
Tl

ψh
i ψh

j

(3.22)

then the discrete variational problem is equivalent to the generalized matrix eigen-

problem:





Ahx = λhBhx, where x = (x1, · · · , xN)T

φh =
∑N

i xiψ
h
i

(3.23)

Therefor, the solutions of the LB eigen-system problem can be approximated

by solving the above generalize matrix eigen-problem, which can be obtained

by a variety of linear algebra packages. We here use matlab to solve the ma-

trix eigen-problem in (3.23). In figure 3.1, we show several examples of surface

eigenfunctions obtained by above finite element method. It is clear to see that

this general approach is very robust to surfaces with boundaries, complicated

topology or complicated geometry.

Theoretically, the following two estimations can be obtained by the numerical

analysis of the FEM given in [94].

Theorem 3.2.1 Let (φh
n, λh

n) be the eigen-system computed with FEM, then we

have:

||φn − φh
n|| 6 Ch2λn (3.24)

λn 6 λh
n 6 λn + 2δh2λ2

n (3.25)

where (φn, λn) are the true eigen-system, and C and δ are constants.
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sphere, 1st eigenfunction sphere, 10th eigenfunction sphere, 20th eigenfunction

homer, 1st eigenfunction homer, 10th eigenfunction homer, 20th eigenfunction

hippo, 1st eigenfunction
hippo, 10th eigenfunction

hippo, 20th eigenfunction

children, 1st eigenfunction children, 10th eigenfunction children, 20th eigenfunction

a patch, 1st eigenfunction a patch, 10th eigenfunction a patch, 20th eigenfunction

Figure 3.1: LB Eigenfunctions obtained by FEM are color coded on surfaces.
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This theorem tells us that the accuracy of eigenfunctions obtained by finite el-

ement method is decreasing with increasing the order of eigenvalues. The high

order of eigenvalues and eigenfunctions are, the less accuracy they will be. There

are at least two approaches to improve the numerical accuracy. First, we can

upsample the triangle mesh for a given surface. It often can be done by adding

the middle point of each triangle as a new vertex, thus constructing four new

triangles in each original triangle. This means we decrease the triangle length

h in theorem 3.2.1 to increase the numerical accuracy. Second, we can use high

order finite element method to approach high accuracy solutions [94, 79].
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CHAPTER 4

Laplace-Beltrami nodal counts: From “How to

hear the shape of a drum?” to “How to count

the shape of a drum?”

4.1 Introduction

The analysis of 3D shapes is an important problem in medical imaging. By

studying shapes, we can obtain detailed information about morphometry changes

of anatomical structures. Recently there has been increasing interests in using the

eigenvalues of the Laplace-Beltrami operators to study shapes [79, 71]. Features

based on eigenvalues, however, have limitations in resolving isospectral shapes.

To overcome this difficulty, we propose in this work a new signature derived from

the nodal counts of eigenfunctions and demonstrate its advantage in classifying

medical shapes.

Using the eigenvalues of the Laplace-Beltrami operator, the shape DNA fea-

ture was proposed in [79] as a vector of eigenvalues ordered according to their

magnitude. The shape DNA feature has been successfully applied to the classi-

fication of anatomical structures [71]. One limitation of the shape DNA feature,

however, is that it cannot resolve so called isospectral shapes with the same eigen-

values. There were various examples of isospectral surfaces created by mathe-

matician [69, 96, 46, 22, 36, 81]. In practice, we have also observed shapes with
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quite different geometry but very similar distribution of eigenvalues. To address

this ambiguity in the shape DNA feature, we propose here a new signature de-

rived from the eigenfunctions of the Laplace-Beltrami operator. This new feature

is intrinsically defined over the surfaces and is pose and scale invariant. Using

the nodal counts of the eigenfunctions, this feature provides a compact represen-

tation of the new geometric information that is not described by the eigenvalues.

In our experiments, we show that it has the ability of resolving the ambiguity

in the shape DNA feature. In addition, we illustrate its potential to surface

classification.

4.2 Shape DNA and Isospectral Surfaces

As we discussed in section 3.1, the asymptotical expansion of the heat trace

illustrates that the spectrum of the surface Laplace-beltrami operator can be

used to detect geometric information of the ground surface. Recently, M. Reuter,

F. Wolter, N. Peinecke [79] use the LB spectrum, which is also called shape DNA

in their paper, to obtain promising results of surface classification. However,

only using LB spectrum can not characterize the whole information of surface

geometry. In other words, there are two surfaces sharing the same LB eigenvalues,

but they have different geometry. These surfaces are called isospectral surfaces.

The first example of isospectral surfaces was found by Milnor [69]. He found

two flat tori in R16 with the same spectrum but not isometric. After Milnor’s

work, many other pairs of isospectral surfaces were found. Sunada developed a

general method to construct isospectral, non-isometric manifolds [96]. Gordan

et al. [46] and Chapman [22] used Sunada’s method to construct isospectral

domains in R2. On the discrete version of Laplacian, Fisher gave a few examples

of distinct graphs with the same spectrum [36], Sunda’s method also be used
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to obtain isospectral discrete graphs by Brooks in [81]. In Figure 4.1, we show

two groups of isospectral 2 dimensional manifolds. Each pair shares exactly the

same LB spectrum. However, it is clearly that they have different geometries.

These isospectral phenomenons do not only exist in synthetic data, but also can

(a)

(b)

Figure 4.1: two groups of isospectral surfaces. (a) isospectral shapes found by Gordon,

Webb, and Wolpert; (b) isospectral shapes found by P.Bérard

be found in our physical world. In practice, we show in Figure 4.2 two types of

anatomical structures, putamen and caudate surfaces, in human’s brain. These

two groups of surfaces have different geometries, however, their Laplace-Beltrami

spectrums are quite similar. Namely, one can not expect to use Laplace-Beltrami

spectrum to differentiate these two groups. Practically, we can say they are

isospectral surfaces.

4.3 Laplace-Beltrami Nodal Count Sequences

A natural question is how can we resolve isospectral surfaces by using other

information stored in LB eigen-systems. S. Gnutzmann, P.D. Karageorge, and

U. Smilansky suggested that one can use nodal count sequences to ”count” the
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.2: Isospectral anatomical structures . (a)(b)(c) Caudate surfaces. (d)(e)(f)

Putamen. (g) Top: the first 300 eigenvalues of the 6 shapes. Bottom: MDS embedding

results with the shape DNA. ( red: caudate; blue: putamen.)

shape of drum [40], they also developed trace formulas for nodal count sequences

of simple tori and surfaces of revolution [41]. Their trace formulas demonstrate

that nodal count sequences do store geometric information. S. Gnutzmann, R.

Band et al. [42, 4] also suggested that one can use nodal count sequences to

resolve isospectral surfaces and isospectral quantum graphs. In this section, we

will discuss the nodal count sequences and introduce the weight l2-distance to

measure the difference between two surfaces by using their nodal count sequences.

Definition 4.3.1 Let (M, g) be a given two dimensional compact Riemannian

manifold and φ be an eigenfunction of the Laplace-Beltrami operator of (M, g),

then φ−1(0) is called nodal lines of φ on (M, g). Each connected component of

M\φ−1(0) is called a nodal domain of φ and the number of nodal domains is

called the nodal number of φ.
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(a) (b) (c)

Figure 4.3: (a): Nodal lines and nodal domains of the 2-nd eigenfunction of a putamen

and the nodal number is 3. (b) Nodal lines and nodal domains of the 4-th eigenfunction

of an armadillo, the nodal number is 5 (c) Nodal lines and nodal domains of the 4-th

eigenfunction of a cow and the nodal number is 3.

As examples, we show nodal lines on three different surfaces in Fig.4.3. From this

picture, it is clear that nodal lines are loops on surfaces and nodal numbers of

the eigenfunctions in Fig.4.3 are finite. Theoretically, Courant and Cheng prove

the following properties about nodal lines and nodal domains for general two

dimensional manifolds in [28, 24]):

Theorem 4.3.1 Given a two dimensional compact Riemannian manifold (M, g),

1. (Courant’s nodal domain theorem) The number of nodal domains of the i-th

eigenfunction ≤ i+1;

2. The nodal lines consist of a number of C2-immersed one dimensional closed

submanifolds. In other words, nodal lines are number of C2-immersed cir-

cles on M .

Since LB eigenfunctions are intrinsically defined on surfaces, the corresponding

nodal lines and nodal numbers are also intrinsic geometric quantities. Namely,

nodal numbers are isometric invariant. In particular, nodal numbers are rotation
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and translation invariant. Moreover, because the number of connected compo-

nents of an eigenfunction φ only depends on how many times the eigenfunction

φ crosses the zero level line, thus function φ and its scale cφ will have the same

nodal numbers (c > 0), which means nodal numbers are also scale invariant.

However, this scale invariant property can not be preserved by LB spectrum.

In Fig.4.4, we show a series of pose variation of David from publicly available

TOSCA datasets [13, 14, 14]. It is clear that eigenfunctions are pose invariant.

In Fig.4.5, we deform a pose of David with different scales. Fig.4.5(c) shows how

LB spectrum will change under different scale and Fig.4.5(d) illustrates the scale

invariant property of nodal numbers.

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

Figure 4.4: Pose invariance of nodal numbers. Nodal lines are marked by red lines.

The first row: nodal lines of the first eigenfunction. The second row: nodal lines of the

fifth eigenfunction.

According to Theorem 4.3.1, for a given eigenfunction sequence {φ1, φ2, · · · }
of (M, g), we can have a sequence of numbers {l1, l2, · · · } which correspond to
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(a) (b) (c) (d)

Figure 4.5: Scale variance properties of LB spectrum and nodal count sequences.

(a): the nodal domains of the first eigenfunctions, (b): the nodal domains of the fifth

eigenfunctions, (c) the first 100 eigenvalues of the David with 3 different scales. (d) the

first 100 nodal numbers of the David with 3 different scales. red dots—big, blue + —

middle, black x —- small

the number of nodal domains of the eigenfunction sequence. This sequence is

well-defined because each lk is a finite number. The sequence {l1, l2, · · · } is called

the nodal count sequence of {φ1, φ2, · · · } on (M, g). As the properties we

described for nodal numbers, nodal count sequences have the following invariant

properties:

1. Nodal count sequences are isometric invariant. In particular, they are ro-

tation, translation and pose invariant;

2. Nodal count sequences are scale invariant.

A natural question is if we can expect to obtain surfaces’ geometric informa-

tion by using their nodal count sequence. As Kac’s famous question: ”Can one

hear the shape of a drum?” for LB spectrum, a similar question:”Can one count

the shape of a drum? ” can be proposed for nodal count sequences. Recently, S.

Gnutzmann, P. Karageorge, U. Smilansky [41] introduce a trace formula for the

nodal count sequence, which is an analogue of the spectrum trace formula. The

nodal trace formula shows the dependence of the nodal count sequences on the
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geometry of the surface in both the smooth(Wely-like) and the fluctuating parts.

The geometric information stored in nodal count sequence is not the same as the

information stored in the spectrum. Moreover, in [4, 42], it was conjectured that

the nodal count sequence can resolve the isospectral surface and was partially

proved for flat tori and simple metric graph cases. Intuitively, if two isospectral

surfaces (M, {λi}, {φi}) and (M̃, {λ̃i}, {φ̃i}) have the same LB spectrums, i.e.

λi = λ̃i, i = 1, 2, . . . , but they have different geometries. Then they can not have

the same eigenfunctions for each order. This implies that they may have different

nodal count sequences. That is the reason we expect that nodal count sequences

can tell us different geometric information as a complementary part of geometric

information stored in the LB spectrum.

There is one weak point of the nodal count sequences, namely, in the case of

multi-dim eigenspace, the choice of basis is not unique. For a given eigenvalue

λ, if the corresponding eigenspace is multi-dimension, different choice of basis

can be made for that eigenspace. Then, the corresponding nodal count sequence

is not unique. Generally speaking, the more symmetry an object has, the more

multiplicity its eigen-system has. However, Uhlenbeck’s results in [100] prove

that this phenomenon is rare. For generic (mathematical sense) 2- manifolds,

they have simple LB eigen-system. This is equivalent to say for most of surfaces,

their eigen-system have no multi-dim phenomenons. Practically, we can view our

shapes as simple eigen-system surfaces except some high symmetry shapes, like

a sphere.

Numerically, given a triangulated surface M , we use the finite element method

on surfaces described in Section 3.2 to compute its LB eigenvalues and eigenfunc-

tions. To obtain the corresponding nodal count sequences, we count the number

of connected components of the triangular mesh with the same sign of its LB
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eigenfunctions. As we discussed in Section 3.2, the following two estimations of

the FEM method can be obtained as it was proved in [94]:

Theorem 4.3.2 Let (φh
n, λ

h
n) and (φn, λn) as above description

||φn − φh
n||0 6 Ch2λn (4.1)

λn 6 λh
n 6 λn + 2δh2λ2

n (4.2)

where C and δ are constant.

The nodal number of a given eigenfunction φn reflects the oscillation of φn.

From the above theorem, we can see the accuracy of the eigenfunction decreases

as the order n increases for a given h. As a result, the nodal counts for high order

eigenfunctions are noisier than that of the low order eigenfunctions. However, the

more eigenfunctions we can use, the more geometric information can be obtained.

We need to find a balance between using the nodal number of high frequency

eigenfunction and overcoming the numerical issue. Based on this consideration,

we propose the following weighted l2 distance between two nodal count sequences

{ln}∞n=1 and {l̃n}∞n=1:

Dist({ln}∞n=1, {l̃n}∞n=1) =

√√√√
∞∑

n=1

(
1

nα
)2(ln − l̃n)2 (4.3)

where α > 0. In our experiments, we demonstrate that the nodal count se-

quences under this weighted l2 distance provide robust performance for shape

classification.

4.4 Experimental Results and Applications

In this section, we present experimental results to demonstrate the application of

the nodal count sequence in shape analysis. In particular, we show that the nodal
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counts of the Laplace-Beltrami operator is able to resolve isospectral shapes.

After that, we also use our method shapes: a group of caudate nucleus, a group

of putamen, a group of hippocampus, group of Armadillo, a cow, a male, a camel.

Our method can provide a promising classification results as shape DNA did. All

the experiments were run on a PC with a 2.0GHz CPU.

A. Isospectral Surfaces Resolving

The 3D shapes used in the first experiment are three putamen and three

caudate surfaces shown in Fig.4.2. While the putamen and caudate are visually

quite different, they share very similar distribution of eigenvalues, i.e., the shape

DNA, as shown in Fig.4.6(g). For each group of surfaces, we use their nodal

count sequences and the shape DNA to embed them into a 2D space with multi-

dimensional scaling (MDS) technique. The details of this embedding process is

summarized as follows.

1. For a given surface (M, g) represented by a triangle mesh, we compute the

first N eigenvalues and eigenfunctions of the Laplace-Beltrami operator by

the finite element method to obtain the signature.

2. For a group of surfaces, we compute the pairwise weighted l2 distance of

their corresponding signatures. The pairwise distances are stored in a dis-

tance matrix.

3. Using the distance matrix, the MDS technique is applied to embed the

surfaces into the Euclidean space.

In our experiment, we choose N = 300, α = 1, and the embedding results

with the shape DNA and the nodal count sequences are shown in Fig. 4.6 (g)

and (h). From the results, we can see clearly that the nodal counts provide better
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separation of these two groups. This demonstrates the ability of the nodal count

sequences in resolving isospectral surfaces.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.6: (a)(b)(c) Caudate surfaces. (d)(e)(f) Putamen. (g) Top: the first 300

eigenvalues of the 6 shapes. Bottom: MDS embedding results with the shape DNA.

(h) Top: The first 300 nodal counts of the 6 shapes. Bottom: MDS embedding results

with the nodal count sequences. ( red: caudate; blue: putamen.)

In the second experiment, we demonstrate the above shape classification pro-

cedures to a larger data set. This data set includes three groups of surfaces: 20

hippocampus, 20 putamen, and 20 caudate. For the three groups, the eigenvalue

sequences and nodal count sequences were computed. By applying the same

MDS technique as in the first experiment to these signatures, we can embed the

60 surfaces into a 2D space and the results are shown in Fig. 4.7. Clearly these

results show that the nodal count sequence provides better classification.

B. Surface classification

In [79], M. Reuter et.al use LB spectrum of shapes to classify surfaces. As we

discussed in section 4.3, the nodal count sequences can provide us the geometry

information of surfaces. Here, we propose to use the nodal count sequences

to tackle shape classification problems as spectrum did. In Fig.4.8, we choose

N = 300, α = 1 to classify different groups of surfaces. From the picture, it is
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putamen

cortical surfaces
hippocampus

Figure 4.7: Top: the MDS embedding of the surfaces with the shape DNA signature.

Bottom: the MDS embedding of the surfaces with the nodal count sequences. The first

300 eigenvalues and eigenfunctions were used in both embeddings. (red ’·’: caudate;

blue ’+’: putamen; black ’∗’: hippocampus.)

clear that different groups cluster together. Moreover, the geometric meaning of

the weight l2 nodal counts distance is also illustrated in Fig.4.8. For instance,

the David group and the Michael group are similar to each other,the geometry of

lioness group and the geometry cat group are closest in all groups, the geometry of

centaurs group are far way from other groups, these intuitions can all be observed

in Fig.4.8. It is clear that the nodal count sequences can provide us promising

results for surface classification.

4.5 Conclusions and Further Work

In this work we proposed to use the nodal count sequences of the Laplace-Beltrami

eigenfunctions as a novel signature of 3D shapes. We demonstrated its ability of

resolving isospectral shapes by classifying anatomical structures with very similar
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Figure 4.8: MDS embedding results to classify cats, horses, lionesses, dogs, wolves,

centaurs, David, Michael with the nodal count sequences.

distribution of eigenvalues. We also apply the nodal count sequence to obtain a

preliminary result of surface classification. In our future work, we will apply the

nodal count sequences, or also combining with LB spectrum to the task of shape

retrieval from databases. We are also investigating its application in classifying

hippocampal surfaces from normal controls and Alzheimer’s disease.
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CHAPTER 5

Anisotropic Laplace-Beltrami Eigenmaps:

Bridging Reeb Graphs and Skeletons

5.1 Introduction

Skeletons are important tools in studying shapes [10] as they provide an intuitive

graph representation that connects well with high level understandings. The

challenge of using skeletons in group studies is to maintain a consistent topology

across population. In this work, we propose a novel approach of computing

skeletons with consistent topology on simply connected surface patches in 3D

by constructing a Reeb graph from the eigenfunction of an anisotropic Laplace-

Beltrami operator.

(a) (b) (c) (d)

Figure 5.1: The Hamilton-Jacobi skeleton of four cingulate gyri.

One weakness in using skeletons to represent shapes is their sensitivity to

small changes on the boundary, which makes it difficult to compare a group

of shapes belonging to the same category but having subtle differences. As an
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example, we show the skeletons of four cingulate gyri in Fig. 5.1 that are com-

puted with the method of Hamilton-Jacobi skeletons [92]. While the skeletons

are relatively clean, they have different graph structures. To address this chal-

lenge, various approaches were proposed to enforce a consistent topology on the

skeleton. A skeleton of fixed topology was computed for 2D shapes by driving a

snake model to the shocks in the distance map [45]. A similar approach was also

taken in studying 3D shapes with a medial axis [98]. Pruning strategies based on

continuity and significance were also developed to simplify skeletons [72, 95, 11].

The other powerful approach is the M-rep that uses a generative approach to

match templates designed a priori to new shapes [76]. More recently, the idea of

inverse skeletonization was used to compute skeletons of simplified topology via

the solution of a nonlinear optimization problem [75].

Given a function defined on a surface, its Reeb graph is intuitively a graph

describing the neighboring relation of the level sets of the function. Following

Morse theory, Reeb graphs [78] have been used as a powerful tool to analyze

geometric information contained in various sources of imaging data. A Reeb

graph was constructed to build a smooth surface interpolating a series of contour

lines [91]. Contour trees were constructed to store seed information for efficient

visualization of volume images [101]. The Reeb graphs were also used to study

terrain imaging data [9] and the matching of topological information in a database

of 3D shapes [48].

In this work, we propose to use Reeb graphs to construct a skeleton of robust

topology for simply connected surface patches with the aim of studying anatom-

ical structures such as the cingulate gyrus and corpus callosum. There are two

main contributions in our work. First of all, we propose to use the spectrum of the

Laplace-Beltrami operator [79, 77] to construct the Reeb graph, which ensures
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the Reeb graph is invariant to the pose of the shape. Our second contribution

is the development of an anisotropic Laplace-Beltrami operator based on a flux

measure [92]. This bridges the idea of Reeb graphs with conventional skeletons

and makes the Reeb graphs follow the main body of skeletons.

The rest of this chapter is organized as follows. In section 5.2, we introduce

the mathematical background of Reeb graphs and its construction on triangular

meshes. We describe the spectrum of the anisotropic Laplace-Beltrami operator

and its use of building Reeb graphs in section 5.3. After that, a flux-based weight

function is proposed in section 5.4 to define the anisotropic Laplace-Beltrami

operator. Experimental results are presented in section 5.5. Finally conclusions

are made in section 5.6.

5.2 Reeb Graphs

Figure 5.2: The Reeb graph of the height function on a double torus of genus two. (a)

Level sets of the height function. (b) The Reeb graph of the level sets.
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Let M denote a compact surface and a feature function f defined on this

surface. The Reeb graph of f on M is defined as follows.

Definition 5.2.1 Let f : M → R. The Reeb graph R(f) of f is the quotient

space with its topology defined through the equivalent relation x ∼ y if f(x) =

f(y)∀x, y ∈ M .

As a quotient topological space derived from M , the connectivity of the elements

in R(f), which are the level sets of f , is determined by the topology, i.e., the

collection of open sets, of M . If f is a Morse function [53], which means the critical

points of f are non-degenerative, the Reeb graph R(f) encodes the topology of

M and it has g loops for a manifold of genus g. To compute the Reeb graph

numerically, we assume the surface M is represented as a triangular mesh M =

(V , T ), where V and T are the set of vertices and triangles, respectively. The

function f is then defined on each vertex in V . We sample the level sets of f at

a set of K values ξ0 < ξ1 < · · · < ξK−1 and the set of contours as

Γ = {Γl
k, 0 < k < K − 1, 0 < l < Lk, }

where Lk denotes the number of contours at the level ξk, and Γl
k represents the

l-th contour at this level. To build edges between contours at neighboring levels,

we consider the region

Rk,k+1 = {x ∈ M | ξk < f(x) < ξk+1}

and a contour Γl1
K at the level ξk and a contour Γl2

K+1 at the level ξk + 1 are

connected if they belong to the same connected component in Rk,k+1. This com-

pletes the construction of a Reeb graph on M as an undirected graph with the

level contours as the nodes and the edges representing the neighboring relation

of these contours.
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(a) (b)

(c) (d)

Figure 5.3: The Reeb graphs of two different feature functions f on a cingulate gyrus.

(a) f is the z-coordinates; (b) The Reeb graph from the function f in (a); (c) f is the

y-coordinates; (d) The Reeb graph from the function f in (c).

As an example, we illustrate the construction of a Reeb graph on a double

torus shown in Fig. 5.2(a). The feature function f used here is the height function.

We sample ten level sets of f and plot them as red contours on the surface. With

these contours as its nodes, the Reeb graph is shown in Fig. 5.2(b), where the

centroid of each contour is used to explicitly represent the nodes of the graph.

Clearly this graph has two loops and it captures the topology of the shape. Reeb

graphs can also be constructed for functions defined on surfaces with boundary.

For the cingulate gyrus on a left hemispherical surface, we compute the Reeb

graph for two different choices of the feature function f . In Fig. 5.3 (a) and (c),
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the function f is the z- and y- coordinates of vertices, respectively. For these

two functions, we sample 20 level sets and the resulting Reeb graphs are shown

in Fig. 5.3 (b) and (d), respectively. Since the level sets here are curve segments,

we use the middle point of each curve segment to explicitly represent the node

of the Reeb graph. The above results demonstrate that Reeb graphs can be

constructed successfully on surface patches given a feature function f , but they

also help point out the main difficulty in using Reeb graphs to compare shapes

across population: the selection of an appropriate feature function f . The two

feature functions used above are similar to the height function used commonly in

previous work [9] and there are two drawbacks of such choices. First, their Reeb

graphs are pose dependent as the coordinates will change under rotation. Second,

they are sensitive to noise on the boundary. We can see in Fig. 5.3(b) and (d) that

spurious branches are created in the Reeb graphs because the boundary is jaggy

as is pretty common for manually segmented structures. We next propose to

use the eigenfunctions of an anisotropic Laplace-Beltrami operator as the feature

function, which are defined intrinsically on the surface and robust to irregularities

on the boundary.

5.3 Anisotropic Laplace-Beltrami Eigenmaps

In this section, we introduce the anisotropic Laplace- Beltrami operator on a

surface patch and the computation of its spectrum. We then propose to use

the first nontrivial eigenfunction of this operator as the feature function in the

construction of Reeb graphs. The spectrum of the Laplace-Beltrami operator

has been used in several work in medical imaging [71, 77]. Here we consider

the more general anisotropic Laplace-Beltrami operator ∇M · (w∇M) on a simply

connected surface patch M, where∇M is the intrinsic gradient operator on M, and
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(a) (b)

Figure 5.4: The Reeb graph of the Laplace-Beltrami eigenmap. (a) The eigenmap.

(b) The level sets of the eigenmap and the Reeb graph.

w : M → R+ is the weight defined over M. If we set w = 1, we have the regular

Laplace-Beltrami operator. Here we only require w to be positive to ensure the

operator is elliptic, so the spectrum is discrete and can be expressed as follows.

We denote the set of eigenvalues as 0 6 λ0 6 λ1 6 · · · and the corresponding

eigenfunctions as φ0, φ1, · · · such that

∇M · (w∇Mφn) = −λnφn, n = 0, 1, · · · (5.1)

The set of eigenfunctions form orthonormal basis functions on M and can be

intuitively considered as the intrinsic Fourier basis functions on the surface. In

fact, they have been used for denoising in brain imaging studies [77].

To compute the spectrum, we use the weak form of (5.1). Taking the Neumann

boundary condition, we can find the eigenvalues as the critical points of the

following energy

E(φ) =

∫
M

w||∇Mφ||2ds∫
M
||φ||2ds

(5.2)

For numerical implementation, we use the finite element method on surfaces

similarly to the discussion in Section 3.2. Let M be a surface represented by
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triangular mesh {V = {pi}N
i=1, T = {Tl}L

l=1}. We choose linear elements {ψh
i }N

i=1,

such that ψh
i (vj) = δi,j and write Sh = SpanR{ψh

i }N
i=1. We write





φ =
∑N

i xiψi

Aw = (aij)N×N , aij =
∑

l

∫
Tl

w∇Mψi∇Mψjds

B = (bij)N×N , bij =
∑

l

∫
Tl

ψiψjds

(5.3)

then the generalized eigen-problem can be approximated by the following matrix

eigen-problem:

Awφ = λBφ. (5.4)

This problem can be solved with a variety of numerical linear algebra packages.

In our implementation, we represent both Aw and B as sparse matrices and use

Matlab to solve 5.4. Since the sum of each row in Aw equals zero, the first

eigenvalue λ0 = 0 and φ0 is constant. As the first nontrivial eigenfunction, φ1

minimizes the energy E and achieves the critical value at λ1:

λ1 =
∫

M
w||∇Mφ1||2dv, (5.5)

s.t. ||φ1||2 = 1.

Thus the eigenmap φ1 provides the smoothest, non-constant map from M to R.

Using this eigenmap, we can capture the intrinsic structure of elongated shapes

such as the cingulate gyrus and corpus callosum. The eigenmap is also invariant

under isometric transformations such as bending. As an example, the eigenmap

φ1 with the isotropic weight w = 1 for the cingulate gyrus in Fig. 5.4 is visualized

in Fig. 5.4(a). The level sets of this function are plotted as red contours in

Fig. 5.4(b), where the Reeb graph is computed with each node representing the

middle point of the level sets. From the level sets, we can see the eigenmap φ1

projects the surface smoothly onto R and is robust to the jaggy boundary of the
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surface. Compared with the skeleton in Fig. 5.1(a), we can see the Reeb graph

of φ1 has a simple chain structure and approximates the main component of the

skeleton very well.

5.4 Flux-based Weight Functions

(a) (b)

Figure 5.5: The Reeb graph of a corpus callosum using the eigenmap of the isotropic

Laplace-Beltrami operator. (a) The Hamilton- Jacobi skeleton. (b) The Reeb graph.

In the cingulate gyrus example in Section 5.3, we see that the Laplace-

Beltrami eigenmap provides a robust way of constructing the Reeb graph and

capturing the global structure of the shape. In some cases, however, the Reeb

graph built from the eigenmap of the isotropic Laplace-Beltrami operator is insuf-

ficient as an approximation of the skeleton. We show such an example in Fig. 5.5.

The Hamilton-Jacobi skeleton of the corpus callosum is plotted in Fig. 5.5 (a),

and the Reeb graph of the eigenmap φ1 computed with the isotropic weight w = 1,

together with the level sets, is shown in Fig. 5.5(b). For most parts, the Reeb

graph does a good job in approximating the skeleton, but it is also not hard to no-

tice that it fails to follow the bending of the genu at the frontal end of the corpus

callosum, which is well represented in the conventional skeleton in Fig. 5.5(a). In

this section, we design a weight function to incorporate information in skeletons

into the construction of Reeb graphs. The weight function we choose is based
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on the flux measure used in the method of Hamilton-Jacobi skeleton [92] and its

extension to triangular meshes [89]. For a surface patch M , let ∂Mdenote its

boundary. We define a distance transform D : M → R as:

D(x) = min
y∈∂M

d(x, y) ∀x ∈ M (5.6)

where d(·, ·) is the geodesic distance between two points. Given this distance

transform, the flux measure is defined as

Flux(x) =

∫
δR
〈 ~N,∇MD〉ds∫

δR
ds

‘ ∀x ∈ M (5.7)

where δR is the boundary of an infinitesimal geodesic neighborhood of x, ~N is

the outward normal direction of δR and ∇MD is the intrinsic gradient of D on

M . To numerically compute the flux measure for a triangular mesh, we first

compute the distance transform with the fast marching algorithm on triangular

meshes [54] to solve the Eikonal equation on M :

||∇MD|| = 1 (5.8)

We then calculate the flux measure at each vertex of M as:

Flux(Vi) ≈ 1

]N(Vi)

∑

Vj∈N(Vi)

〈
−−→ViVj

||−−→ViVj||
,∇MD(Vj)〉 (5.9)

where ]N(Vi) is the number of vertices in the 1-ring neighborhood N(Vi) of Vi,

and
−−→ViVj is the vector from the vertex Vi to Vj . Based on the flux measure, we

define the weight function as:

w(x) = e−sign(Flux(x))|Flux(x)|α ∀x ∈ M (5.10)

Following this definition, more weight is given to points on the skeleton as the

flux is more negative at these points according to (5.9). Recall that the eigenmap

φ1 is the smoothest projection from M to R by the minimization of the energy in
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(5.6). As we decrease the parameter α, as shown in Fig. 5.6, we put more weight

on vertices close to the skeleton, and the shape looks more like the skeleton for

the energy in (5.6). Thus intuitively the projection from M to R will happen

along the skeleton and the level sets of the eigenmap should be more oriented in

the direction normal to the skeleton. With each of the four weight functions in

Figure 5.6: The weight function.

Fig. 5.6, we compute the eigenmap of the anisotropic Laplace-Beltrami operator

∇M · (ω∇M) and use it to construct a Reeb graph for the corpus callosum in

Fig. 5.5. The weight functions and the corresponding Reeb graphs are shown in

Fig. 5.7. As we decrease the parameter α from 1.0 to 0.1, we can see the level sets

of the eigenmap at the frontal part turn more toward the direction pointed by

the main body of the skeleton. As a result, the Reeb graph follows the bending

of the genu better than simply using the isotropic LB operator.
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(a) α = 1.0 (b) α = 0.5 (c) α = 0.25 (d) α = 0.1

Figure 5.7: The effects of the parameter on the Reeb graph. Top row: the weight

function mapped onto the surface. Bottom row: the level sets and the Reeb graph of

the anisotropic Laplace-Beltrami eigenmap.

5.5 Experimental Results

In this section, we present experimental results to demonstrate our algorithm.

Reeb graphs are constructed on two anatomical structures: the cingulate gyrus

and corpus callosum. We illustrate that our algorithm can be used as an ef-

ficient and robust approach of computing skeletons of consistent topology for

these shapes. In the first experiment, we apply our algorithm to a group of 16

cingulate gyri as shown in Fig. 5.3 with the weight function w = 1. Each surface

patch is extracted from triangulated cortical surfaces with manual labeling, and

it is usually composed of around 2000 vertices and 4000 triangles. The com-

putational time is less than 2 seconds on a PC. For each shape, we sample the

eigenmap at 50 level sets and use the middle point of each level contour as the

node of the Reeb graph. Intuitively we can see the Reeb graphs successfully

capture the global profile of these elongated surface patches. For all the exam-

ples, the Reeb graphs have the same chain structure. In the second experiment,

we compute Reeb graphs for a group of 16 corpora callosa with an anisotropic

Laplace-Beltrami eigenmap by choosing the parameter α = 0.25 in 5.10. The

surface patch of each corpus callosum is constructed from manually labeled bi-
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Figure 5.8: The Reeb graph of 16 cingulate gyri constructed using the Laplace-Bel-

trami eigenmap.

Figure 5.9: The Reeb graphs of 16 corpora callosa constructed with the anisotropic

Laplace-Beltrami eigenmap.
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nary masks with the software triangle [86] and also composed of around 2000

vertices and 4000 triangles. Because of the need of calculating the weight func-

tion, it takes around 3 seconds, which is slightly longer than using the isotropic

Laplace-Beltrami eigenmaps, to compute the Reeb graphs on a PC. Similar to

the cingulate examples, a collection of 50 level sets are sampled on the eigenmap

of each corpus callosum. From the results shown in Fig. 5.9, we can see all the

Reeb graphs have the chain structure and successfully capture the bending of the

genu.

To measure the advantage of using the anisotropic eigenmap for analyzing the

corpus callosum, we have also computed the Reeb graphs with the isotropic weight

w = 1 for the 16 corpora callosa. After factoring out rotation and translation, we

applied a principal component analysis (PCA) to each of the two groups of Reeb

graphs [27]. The variances of the principal components for both the isotropic

and anisotropic Reeb graphs are plotted in Fig. 5.10. We can see clearly the

anisotropic Reeb graphs generate more compact representations. This gives a

quantitative validation that anatomically meaningful features are better aligned

with the use of the anisotropic Laplace-Beltrami eigenmaps.

5.6 Conclusions

In this work, we propose to use the Reeb graph of an anisotropic Laplace-Beltrami

eigenmap to analyze shapes represented as simply connected surface patches.

Experimental results on two neuroanatomical structures have been presented to

demonstrate the use of Reeb graphs as skeletons of consistent topology. Besides

shape analysis, the results from our algorithm can also be used to test local

morphometry changes with our results by using the length of the level sets as

a width measure and the correspondences established by the Reeb graphs. For
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Figure 5.10: A comparison of the eigenvalue distribution obtained by applying a PCA

to Reeb graphs of corpora callosa constructed with both isotropic and anisotropic

Laplace-Beltrami eigenmaps.

future work, we will also use the level sets to construct an intrinsic parameter-

ization for the statistical analysis of anatomical/functional features distributed

over the structure.
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CHAPTER 6

Metric-Induced Optimal Embedding for

Intrinsic 3D Shape Analysis

6.1 Introduction

The analysis of 3D shapes is a critical problem in many computer vision problems

such as shape classification and model retrieval [38], shape prior construction

[27], and brain mapping [99]. For the various shape analysis problems, a rigorous

and intrinsic metric is fundamental as it allows the comparison of shapes in a

pose and scale invariant way. In this work, we propose a novel and rigorous

metric via the Laplace-Beltrami embedding for intrinsic 3D shape analysis. We

demonstrate the proposed metric in solving the challenging problem of sulcal

landmark identification from convoluted cortical surfaces of vervet brains.

For intrinsic 3D shape analysis, there are generally three classes of approaches

developed in the context of various applications. The first approach is feature-

based and defines typically application specific intrinsic features to characterize

and compare shapes in the feature space [73, 5, 60]. The second approach is

based on the shape space theory and each surface is viewed as a point on a

manifold [51, 61]. Natural metrics on the manifold can be used to compare shapes,

but it is difficult to extract local information about shapes since each surface is

treated as a point in this space. Thus this approach is especially suitable in shape
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classification and retrieval. The third approach embeds the shapes intrinsically

into a high dimensional space and studies them in the embedding space. One of

the famous examples is the isometric embedding based on the pair-wise geodesic

distances of vertices [34], but it is computationally expensive. More recently there

have been increasing interests in the embedding constructed with the LB eigen-

system because of its generality for arbitrary shapes and ease of computation

[2, 52, 83, 49, 79, 80, 56, 88]. Since surfaces are still manifolds in the embedding

space, both local and global comparisons can be performed intrinsically. Using

the one-to-one correspondences established by the embedding, we can map the

analysis results back to the original Euclidean space easily.

There is, however, a fundamental problem in analyzing and comparing shapes

in the LB embedding space: the non-uniqueness of the embedding. This is caused

by the ambiguity in the sign of the eigenfunctions and possible multiplicity. While

conventional metrics such as the Hausdorff distance can be used for a specific

embedding, they are not truly intrinsic because they depend on heuristic choices

such as the sign of the eigenfunctions. For a truly intrinsic metric, the distance

between two shapes should only be determined by their intrinsic geometry. To

overcome this critical challenge, we propose in this work a novel metric, which we

call the spectral l2-distance, for the LB embedding proposed by Rustamov [83].

The spectral l2-distance is completely determined by the intrinsic geometry of

surfaces and therefore invariant to pose and scale changes. Mathematical proofs

will be presented to show that this distance is a rigorous metric on the space

of surfaces. Besides a distance measure, the process of computing the spectral

l2-distance also removes the ambiguity in embedding and thus determines the

optimal embedding for shape comparison. In the resulting embedding space, we

can perform both global and local analysis based on intrinsic geometry, which we

demonstrate by using the new metric-induced embedding to solve the challenging
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problem of automated sulci detection on cortical surfaces.

The rest of this chapter is organized as follows. In section 6.2, we first give

a brief review of the eigen-system of the LB operator and the eigen-embedding

on general surfaces. After that we present the spectral l2-distance and give the

rigorous mathematical proof to show that it is a metric in the shape space. In

section 6.3, we develop the numerical algorithm to compute the eigen-system and

a tractable approximation of the spectral l2-distance between two triangulated

surfaces. We demonstrate the application of the spectral l2-distance for the ex-

traction of sulcal landmarks for cortical surfaces in section 6.4. Experimental

results are presented in section 6.5 to demonstrate automated sulcal identifi-

cation on a large data of 698 vervet cortical surfaces. Finally, conclusions and

future work are discussed in section 6.6.

6.2 Mathematical Background

In this section, we first review the concept of the LB eigen-system on general

surfaces. The spectral l2-distance and mathematical proofs will be presented to

show that it is a rigorous metric.

6.2.1 The LB Eigen-system

Let (M, g) denote a Riemannian surface. For any smooth function φ ∈ C∞(M),

the LB operator is defined as:

4Mφ =
1√
G

2∑
i=1

∂

∂xi

(
√

G

2∑
j=1

gij ∂φ

∂xj

) (6.1)

where (gij) is the inverse matrix of g = (gij) and G = det(gij).

The LB operator is self adjoint and elliptic, so its spectrum is discrete. We
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denote the eigenvalues of 4M as 0 = λ0 < λ1 < λ2 < · · · and the corresponding

eigenfunctions as φ0, φ1, φ2, · · · such that

4Mφn = −λnφn, n = 0, 1, 2, · · · . (6.2)

Let Ei = {u ∈ C2(M) | 4Mu = −λiu} denote the eigenspace associated with the

eigenvalue λi. If the eigenspace of all eigenvalues are one dimensional, the eigen-

system {λi, φi}|∞i=0 of M is called simple. The eigen-system of the LB operator

has many nice properties [85, 50]:

• The eigen-system {λi, φi}|∞i=0 of 4M is intrinsic and isometric invariant.

Thus properties derived from the eigen-system of 4M are robust to pose

variations.

• Scale formula: Let A be a positive constant, {λi, φi} be the eigensystem of

(M, g), and {λ̃i, φ̃i} be the eigensystem of (M,A · g), then

λi = A · λ̃i and φi =
√

A · φ̃i (6.3)

From a signal processing point of view, the eigenfunctions of the LB operator

are extensions of the Fourier basis functions on the Euclidean domain to gen-

eral manifolds. One famous example is the spherical harmonics, which are the

eigenfunctions of the LB operator on the unit sphere, and they have been used

in various shape analysis tasks. The focus of our research, however, is using the

LB eigen-system to investigate surface geometry.

6.2.2 Metric in the embedding space

Given a surface (M, g) and its LB eigen-system Φ = {λi, φi}, the scale-invariant

embedding proposed in [83] is defined as:

IΦ
M : M → l2, IΦ

M(x) = {φ1(x)√
λ1

,
φ2(x)√

λ2

, · · · ,
φk(x)√

λk

, · · · } (6.4)
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Here l2 is the standard sequence Hilbert space. This is a well defined map since

the Green’s function of the LB operator on M can be represented by

G(x, y) =
∑

i

φi(x)φi(y)

λi

, for any x, y ∈ M (6.5)

Namely, for any fixed point x ∈ M , IM(x) is a l2-convergent sequence. In Fig. 6.1,

we show the embedding results of the unit sphere and a vervet cortical surface by

using the first three eigenfunctions. Generally speaking, the more eigenfunctions

we use, the more detailed information of the surface we can obtain.

Figure 6.1: The first three columns are color coded by the first three eigenfunctions

on each surface respectively. The last column is obtained by using the first three

eigenfunctions as 3 coordinates to reconstruct the original surfaces

The following theorem from [83] shows that the map in (6.4) is an embedding.

Theorem 6.2.1 For any given surface (M, g), any given basis Φ = {φi}, the

map IΦ
M is an embedding and it is scale invariant by the scale formula (6.3).

The biggest advantage of this embedding is that we can put all surfaces into

a common space to factor out all pose and scale variations. But the problem

is that the eigen-system of a given surface M is not unique. The mapping IM

depends on the choice of an orthonormal basis of eigenfunctions. For instance,

both φi and −φi can be an element of basis. For eigenvalues with multiplicity
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greater than one, there is even more freedom to choose the basis. Given a surface

(M, g), one can decompose the space L2(M, g) as L2(M, g) =
⊕∞

i=0 Ei, where

Ei’s are the eigenspaces of the LB operator 4M . We denote B(M) =
∏∞

i=0 B(Ei)

the set of corresponding orthonormal bases. The space B(Ei) can be identified

with the orthogonal group O(dim(Ei)) and hence B(M) is a compact set with

respect to the product topology. Inspired by P.Bérard et al.’s work about heat

kernel embedding [2], we define the following spectral l2-distance for any given

two surfaces (M, g), (M ′, g′) as follows:

Definition 6.2.1 Let (M, g) and (M ′, g) be two surfaces. For any given LB

orthonormal basis Φ of M and Φ′ of M ′, we define

dΦ′
Φ (x,M ′) = inf

y∈M ′
||IΦ

M(x)− IΦ′
M ′(y)||2 , ∀ x ∈ M

dΦ′
Φ (M, y) = inf

x∈M
||IΦ

M(x)− IΦ′
M ′(y)||2 , ∀ y ∈ M ′. (6.6)

The spectral pre-l2-distance between M and M ′ with respect to Φ, Φ′ is defined by:

dΦ′
Φ (M, M ′) = max

{ ∫

M

dΦ′
Φ (x,M ′)dvolM(x) ,

∫

M ′
dΦ′

Φ (M, y)dvolM ′(y)
}

(6.7)

where dvolM(x), dvol′M(x) are normalized area elements, i.e.

∫

M

dvolM(x) = 1,

∫

M ′
dvolM ′(y) = 1. (6.8)

The spectral l2-distance d(M, M ′) between M and M ′ independent of the choice

of eigen-systems is then defined as:

d(M,M ′) = max
{

sup
Φ∈B(M)

inf
Φ′∈B(M ′)

∫

M

dΦ′
Φ (x,M ′)dvolM(x) ,

sup
Φ′∈B(M ′)

inf
Φ∈B(M)

∫

M ′
dΦ′

Φ (M, y)dvolM ′(y)
}

. (6.9)
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Because B(M) and B(M ′) are compact, d(M, M ′) can attain the optimal value

for certain Φ̄ ∈ B(M), Φ̄′ ∈ B(M ′), which we call the optimal embedding basis of

the pair {M,M ′}.

Since our goal is to perform scale and pose invariant shape analysis, we for-

malize this notion as follows. We call two surfaces (M, g) ∼ (M ′, g′) if and only if

there is a diffeomorphism f : M → M ′ and a constant c such that g = c · f ∗(g′).
Then the embedding and spectral l2-distance given above are defined on the quo-

tient space D = {(M, g)}/ ∼. The quotient space D is equivalent to the set of

all surfaces with normalized area, namely D ∼= S = {(M, g) | area(M) = 1}. On

this space, we have the following result.

Theorem 6.2.2 The spectral l2-distance d(·, ·) is a metric on S. Hence it is

also a metric on D.

With this theorem, one can use d(·, ·) as a rigorous measure to compare sur-

faces intrinsically. For example, this is critical for problems such as surface reg-

istration and classification. Next we prove Theorem 6.2.2 and show that the

spectral l2-distance is a metric. It is easy to check that d(·, ·) is symmetric. To

ensure d(·, ·) is a metric on D, we also need the following two lemmas.

Lemma 6.2.1 (triangle inequality) Given any three surfaces (M, g), (M ′, g′),

(N, ĝ) ∈ S, then

d(M, M ′) ≤ d(M,N) + d(N, M ′). (6.10)

[Proof]: Given an arbitrary eigen-system Φ of M , Φ′ of M ′, and Θ of N . For
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any point x ∈ M, y ∈ M ′ and z ∈ N , we have:

dΦ′
Φ (x, y) ≤ dΘ

Φ(x, z) + dΦ′
Θ (z, y)

infy∈M′
=⇒ dΦ′

Φ (x,M ′) ≤ dΘ
Φ(x, z) + dΦ′

Θ (z,M ′)

infz∈N
=⇒ dΦ′

Φ (x,M ′) ≤ dΘ
Φ(x,N) + infz∈N dΦ′

Θ (z, M ′)

≤ dΘ
Φ(x,N) + dΦ′

Θ (z, M ′)

∫
M=⇒

∫

M

dΦ′
Φ (x,M ′) ≤ ∫

M
dΘ

Φ(x,N) +
∫

M
dΦ′

Θ (z, M ′)

=⇒
∫

M

dΦ′
Φ (x,M ′) ≤ ∫

M
dΘ

Φ(x,N) + dΦ′
Θ (z, M ′)

∫
N=⇒

∫

M

dΦ′
Φ (x,M ′) ≤ ∫

M
dΘ

Φ(x, N) +
∫

N
dΦ′

Θ (z, M ′)

Similarly, we can have:

∫

M ′
dΦ′

Φ (M, y) ≤ ∫
N

dΘ
Φ(M, z) +

∫
M ′ d

Φ′
Θ (N, y).

By the definition of d(M, M ′) we then have:

d(M,M ′) ≤ d(M, N) + d(N, M ′). ¤

Lemma 6.2.2 For any two surfaces M, M ′ with V ol(M) = V ol(M ′), then d(M,M ′) =

0 if and only if M and M ′ are isometric.

[Proof]: If M and M ′ are isometric, we have d(M,M ′) = 0 because the LB

eigen-system is isometric invariant.

Next we show the opposite is also true. Let (M, g), (M ′g′) denote two surfaces

with the same surface area. By the compactness of B(M) and B(M ′), we can find

the optimal eigen-system Φ = {(λi, φi}∞i=0, Φ
′ = {(λ′i, φ′i}∞i=0 of (M, g), (M ′, g′),

respectively, such that

d(M,M ′) = max

{∫

M

dΦ′
Φ (x,M ′) ,

∫

M ′
dΦ′

Φ (M, y)

}
.
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Suppose d(M,M ′) = 0, we have:

dΦ′
Φ (x,M ′) = 0, ∀ x ∈ M and dΦ′

Φ (M, y) = 0, ∀ y ∈ M ′.

Therefore,

∀ x ∈ M, ∃ y ∈ M ′, s.t.
φi(x)√

λi

=
φ′i(y)√

λ′i
, i = 1, 2, · · · (6.11)

We denote f : M → M ′ : x 7−→ y, and

∀ y ∈ M ′, ∃ x ∈ M, s.t.
φi(x)√

λi

=
φ′i(y)√

λ′i
, i = 1, 2, · · · (6.12)

Similarly we define h : M ′ → M : y 7−→ x. Both f, h are injective since IΦ
M , IΦ′

M ′

are one-to-one. Thus f ◦h = IdM ′ and h ◦ f = IdM and one can easily show that

f and h are diffeomorphisms.

Moreover, if we integrate (6.11) for all i ≥ 1:

0 =
∫

M
φi(x)√

λi
dvolM(x) =

∫
M

φ′i(f(x))√
λ′i

dvolM(x)

=
∫

M ′
φ′i(y)√

λ′i
J (h)dvolM ′(y).

This means J (h), which is the Jacobian of h, is orthogonal to all φ′i, i ≥ 1.

Therefore, J (h) must be a constant. On the other hand, we have:

1 =

∫

M

dvolM(x) =
V ol(M ′)
V ol(M)

∫

M ′
J (h)dvolM ′(y)

=
V ol(M ′)
V ol(M)

J (h)

∫

M ′
dvolM ′(y) =

V ol(M ′)
V ol(M)

J (h).

So we have J (h) = V ol(M)/V ol(M ′) = 1. Similarly, one can show J (f) = 1.

To conclude, we have shown that both f, h are isometry. Therefore M is

isometric to M ′. ¤

In summary, the first lemma proves the triangular inequality and the second

lemma tells us two surfaces of equal area are the same in R3 if and only if their

spectral l2-distance is zero. This completes our proof that the spectral l2-distance

is a rigorous metric on D.
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6.3 Numerical Implementation of Spectral l2-distance

In this section, we first describe the numerical method to compute the eigen-

system of the LB operator of a triangulated surface. After that, we develop the

numerical approximation of the spectral l2-distance.

6.3.1 Eigen-system computation

Numerically we use the finite element method (FEM) to compute the eigen-

system of the LB operator [79, 77]. For any given surface M in R3, we represent

M as a triangular mesh {V = {vi}N
i=1, T = {Tl}L

l=1}, where vi is the i-th vertex

and Tl is the l-th triangle. We denote hl as the diameter of the triangle Tl and

h = max {hl}. One can choose linear elements {ψh
i }N

i=1, such that φh
i (vj) = δi,j

and write Sh = SpanR{φh
i }N

i=1. Then the discrete version of the continuous

variational problem is to find a φh ∈ Sh, such that

∑

l

∫

Tl

∇Mφh∇Mψh
n = λh

∑

l

∫

Tl

φhψh
n, ∀ψh

n ∈ Sh. (6.13)

If we write




φh =
∑N

i xiψ
h
i

Ah = (aij)N×N , aij =
∑

l

∫
Tl
∇Mψh

i ∇Mψj

Bh = (bij)N×N , bij =
∑

l

∫
Tl

ψh
i ψh

j

(6.14)

then the discrete variational problem is equivalent to the generalized matrix

eigen-problem:




Ahx = λhBhx, where x = (x1, · · · , xN)T

φh =
∑N

i xiψ
h
i

(6.15)

This can be solved with existing numerical packages such as MATLAB.
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6.3.2 Implementation of the spectral l2-distance

The implementation of the spectral l2-distance includes two parts, the distance

itself and the optimal embedding basis. To implement the spectral l2-distance

in general form is computationally not tractable. However, Uhlenbeck [100]

proved that surfaces with simple eigen-systems are generic. In other words, most

surfaces in practice have simple eigen-systems. In particular, our applications

will focus on studying anatomical brain structures, which usually have simple

eigen-systems in our experience. We describe here how to compute the spectral

l2-distance between surfaces with simple eigen-systems.

Let (M, g) and (M,′ g′) be two surfaces with simple eigen-systems Φ = {(λi, φi)}∞i=0

and Φ′ = {(λ′i, φ′i)}∞i=0 respectively. Then the only freedom in determining

the optimal basis is the sign of the eigenfunctions. If we write Γ = {γ =

(γ0, γ1, · · · ) | γi ∈ {1,−1}} and Φ′
γ = {(λ′i, γiφ

′
i)}∞i=0, the spectral l2-distance

will have the following form:

d(M, M ′) = max
{

inf
γ∈Γ

∫

M

d
Φ′γ
Φ (x, M ′)dvolM(x) ,

inf
γ∈Γ

∫

M ′
d

Φ′γ
Φ (M, y)dvolM ′(y)

}
(6.16)

For surfaces with simple eigen-systems, this shows that the computation of the

spectral l2-distance is a combinatorial optimization problem.

For two surfaces M = {V = {vi}N
i=1, T = {Tl}L

l=1} and M ′ = {V ′ = {v′i}N ′
i=1, T

′ =

{T ′
l }L′

l=1}, it is numerically intractable to compute infinite number of eigenfunc-

tions to obtain the exact embedding defined in (6.4). However, since {φi(x)/
√

λi}∞i=1

is l2 convergent, we can approximate the spectral l2-distance to the theoretical

definition by using the first n eigenfunctions in the following way.
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Let us write

I
Φ(n)
M (x) = {φi(x)√

λi

}n
i=1, I

Φ′γ(n)

M ′ (x) = {γiφ
′
i(x)√
λ′i

}n
i=1

d
Φ′(n)
Φ(n) (x,M ′) = min

y∈M ′
||IΦ(n)

M (x)− I
Φ′γ(n)

M ′ (y)||2 ,

d
Φ′γ(n)
Φ(n) (M, y) = min

x∈M
||IΦ(n)

M (x)− I
Φ′γ(n)

M ′ (y)||2 ,

dn(M, M ′) = max{inf
γ∈Γ

∫

M

d
Φ′γ(n)

Φ(n) (x,M ′)dvolM(x) ,

inf
γ∈Γ

∫

M ′
d

Φ′γ(n)

Φ(n) (M, y)dvolM ′(y) }. (6.17)

The integral on M can be approximated by:

∫

M

d
Φ′γ(n)

Φ(n) (x, M ′)ds ≈ 1

area(M)

N∑
i=1

d
Φ′γ(n)

Φ(n) (vi,M
′) · Ai (6.18)

where Ai = 1
3

∑
vi∈Tl

area(Tl). One can further show that:

dn(M, M ′) −→ d(M,M ′), when n →∞ (6.19)

because {φi(x)/
√

λi}∞i=1 and {γiφ
′
i(x)/

√
λ′i}∞i=1 are l2 convergent, and φi(x)/

√
λi

and φ′i(x)/
√

λ′i approach zero quickly. This means the spectral l2-distance actu-

ally is dominated by the first n eigenfunctions. In this case, the optimal embed-

ding basis of dn(·, ·) will be the first n basis functions of the optimal embedding

basis of the spectral l2-distance. Therefore, we just need to compute dn(·, ·) to

obtain the first n eigenfunctions of the optimal embedding basis.

To demonstrate the approximated distance and its ability of picking the opti-

mal embedding basis for shape analysis, we show in Fig. 6.2 the embedding of two

cortical surfaces with the first three eigenfunctions. Out of the eight possible em-

beddings, the one achieving the distance d3(M, M ′) is highlighted inside the red

circle. While the two surfaces have significantly different poses in the Euclidean
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space, their embeddings are very close to each other, which reflects the fact that

these two surfaces share very similar geometry. This example clearly illustrates

the power of the optimal embedding in characterizing the intrinsic geometry of

surfaces.

Figure 6.2: The first column: two input surfaces for computing their spectral l2 dis-

tance. The last four columns: 8 possible embedding due to sign ambiguity of the first

three eigenfunctions.

Because the spectral l2-distance depends completely on the intrinsic geome-

try of surfaces, we expect intuitively its value will reflect the similarity between

surfaces. To show this property, we computed the pairwise spectral l2-distance of

six surfaces: two vervet cortical surfaces, two caudate and two hippocampal sur-

faces using the first 20 LB eigenfunctions. To visualize the embedding, we used

the multi-dimension scaling (MDS) to project these surfaces into a 2D plane as

shown in Fig. 6.3. It clearly shows that similar surfaces cluster together under

the spectral l2-distance.
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Figure 6.3: MDS embedding results with the spectral l2-distance.

6.4 Applications: Sulci Identification on Vervet Cortical

Surfaces

With the spectral l2-distance and the resulting optimal embedding, we can com-

pare surfaces in a common space. This is a critical component in many different

applications such as identifying meaningful and stable parts across a large group

of surfaces with similar intrinsic geometry, constructing correspondences between

surfaces, and classifying surfaces. As a demonstration, we apply our spectral l2-

distance to the problem of automated sulci identification in 3D medical image

analysis. The identification of major sulci is one of the critical steps in cortical

surface analysis [90]. However, the manual labeling of sulcal regions becomes

impractical with the increasing availability of large data set. Therefore, it is im-

portant to find a robust way to identify the major sulci automatically. In this

section, we develop a robust approach to identify sulcal regions based on the

spectral l2-distance.
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6.4.1 Cortical parcellation

To identify sulcal regions of a given cortical surface, the first step is to parcellate

the cortical surface into sulcal and gyral regions. Using the mean curvature as

an image defined on the surface, we extend the convexified version of Chan-Vese

(CV) [20, 18] model to 3D triangulated surfaces for the extraction of sulcal regions

(see Chapter 2). Let I : M → R be an image on a surface M . The parcellation

Figure 6.4: First column: two different views of CV segmentation. The surfaces are

color coded with its mean curvature and the red contours mark the boundary of the

sulcal and gyral regions. Second column: sulcal regions (top) and the corresponding

sulcal lines (bottom).

of the cortical surfaces then can be obtained by solving the following convexified

version of CV segmentation model on M ;

arg min
06u61
c1,c2

(∫

M

|∇Mu|+ µ

∫

M

u((c1 − I)2 − (c2 − I)2)

)
(6.20)
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Once we have the sulcal regions, we can compute the sulcal lines with the Reeb

graph of their eigenfunctions [88]. In Fig. 6.4, we show the segmentation re-

sult obtained by applying the CV segmentation model to a vervet cortex. The

resulting sulcal region and sulcal lines are also shown.

6.4.2 Sulci identification

Because all cortical surfaces share similar geometry, they will cluster together in

the embedding space determined by the spectral l2-distance. As we illustrated

in section 3, these surfaces overlap quite well in the embedding space. For major

sulci on cortical surfaces, their relative positions on the cortex are stable and so

are their locations in the embedding space. This suggests that the same sulcal

line from different cortical surfaces will form clusters in the embedding space. To

achieve the sulcal identification task, then the natural question is how many basis

functions we should choose to find the optimal embedding and achieve robust

performance. The intuition is that it suffices to choose a number n such that

corresponding sulcal regions are well clustered in the embedding space and the

distance among clusters is much larger than the distance between the surfaces.

As shown in Fig. 6.5, we find in our experience that n = 3 or 4 works well to

identify sulcal regions of vervet cortical surfaces.

Assuming we have a large group of cortical surfaces, we use template matching

to build an automated approach to label sulci on vervet cortical surfaces. Let M

denote a template cortical surface that has a set of manually labeled sulci to be

identified. For an arbitrary vervet cortical surface M ′, we find the major sulci on

M ′ by comparing it with M in the embedding space determined by the spectral l2-

distance. The detailed algorithm for the automated sulcal identification process

is as follows:
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Figure 6.5: The first column: two vervet cortical surfaces with CV segmentation

results; the second column top: sulcal regions in the Euclidean space; the second

column bottom: sulcal regions embedded into eigen-spaces by the first three functions

of optimal embedding basis.

1. Use the CV segmentation model to extract sulcal regions for both M and

M ′. Let the sulcal regions of M, M ′ be denoted by {l1, · · · , lk}, {l′1, · · · , l′k′},
respectively. For the template cortical surface M , the labeling of its sulci

is known a priori.

2. Compute the spectral l2-distance between M and M ′ to obtain the optimal

embedding basis {φi/
√

λi}, {φ′i/
√

λ′i} for M,M ′ respectively.

3. To identify the sulcal regions {l′1, · · · , l′k′} of M ′, we compute the sul-

cal region correspondence σ : {l′1, · · · , l′k′} → {l1, · · · , lk}. For each sul-

cal region l′j of the target surface M ′, we compute its spectral pre-l2-

distance in the embedding space to each sulcal region of M with respect to

{φi/
√

λi}, {φ′i/
√

λ′i}. We label l′j to a sulcal region σ(l′j) of M who attains

the shortest distance to l′j.
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4. To find the sulcal lines, the Reeb graph of the LB eigenfunction is computed

for each sulcal region.

6.5 Experimental Results

In this section, we present experimental results to demonstrate our sulcal identifi-

cation method using the spectral l2-distance. In the first experiment, we demon-

strate the pose and scale invariance of our method by applying it to identify sulci

on cortical surfaces that have very different Euclidean coordinate representations.

In the second experiment, we apply our method to a large data set of 698 vervet

cortical surfaces to validate the robustness of our method and demonstrate its

potential in brain mapping studies.

6.5.1 Invariance of our method

In the first experiment, we illustrate the pose and scale invariance of our method

by comparing a template brain and five other brains with different poses and

scales. The results are shown in Fig 6.6. To visualize the embedding images

of two surfaces, we choose the first three eigenfunctions and compute d3(·, ·)
to obtain the optimal embedding basis. The five surfaces shown in the second

row have various pose and scales differences in the Euclidean space as compared

to the template. As shown in the third row, the positions of similar sulci in the

Euclidean spaces are misaligned. However, similar sulci will automatically cluster

together in the embedding space under the optimal basis as shown in the fourth

row. This demonstrates that the spectral l2-distance and the embedding based

on its associated optimal basis reflect intrinsic geometry and they are rotation,

translation and scale invariant.
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Figure 6.6: The first row: the template cortical surface with sulcal regions marked in

red; the second row: target cortical surfaces with sulcal regions marked by different

colors; the third row: sulcal regions of the template and target cortical surfaces in

the Euclidean space; the fourth row: sulcal regions of the template and target cortical

surfaces in the embedding space.

110



Figure 6.7: Green: central sulcus;Red: arcuate sulcus; Blue: principal sulcus.

6.5.2 Application to brain mapping studies

In this experiment, we apply our algorithm to a large data set to demonstrate its

robustness and application in brain mapping studies. The input data are cortical

surfaces from 349 vervet brains in a study of genetics and brain morphometry.

Because left and right cortical surfaces are separated for each brain, we have

overall 698 surfaces. To label the major sulci on all the brains, we pick a template

surface whose sulci are manually labeled and then apply the template matching

approach to identify corresponding landmark curves on the whole data set. For

all the 698 cortical surfaces, the approximated spectral l2-distance d4 was used

to compute the optimal embedding basis.

As an illustration, we show in Fig. 6.7 the identification results of eight sur-

faces. The template is shown in the center with manually labeled sulcal lines.

Guided by the template matching process, our method automatically found the
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sulcus mean length (mm) p-value

central sulcus (L) 26.5253

central sulcus (R) 24.9897 5.2386e-17

arcuate sulcus (L) 22.5437

arcuate sulcus (R) 21.2125 3.1261e-10

principal sulcus (L) 16.1234

principal sulcus (R) 14.8789 3.4633e-008

Table 6.1: Statistics of sulcal lines on the 698 surfaces.

sulcal lines on the eight surfaces as shown in Fig. 6.7. We can clearly see that

our method is robust to different poses and local variations.

Using the extracted sulcal lines, we can derive geometric measurement and

perform statistical analysis for group studies. To demonstrate the potential of

our results for brain mapping studies, we computed the length of the central

sulcus, arcuate sulcus and principal sulcus for all cortical surfaces and compared

the asymmetry of these three sulci between the left and right hemisphere. For all

349 brains, the length differences of the three sulci on the left and right cortical

surface are plotted in Fig. 6.8. For the length difference of each sulcus, we applied

a t-test to test the statistical significance. In Table 6.1, we list the mean length of

all sulci and the p-values obtained from testing the left/right asymmetry. We can

see from the results that the central sulcus, arcuate sulcus and principal sulcus on

the left cortical surface of vervet brains are longer than the corresponding sulci

on the right cortical surface.
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Figure 6.8: Length differences of central sulcus(◦), arcuate sulcus(+) and principal

sulcus(·) for the 349 vervet brains.

6.6 Conclusions and Future Work

In summary we proposed a general frame work to define a mathematically rigor-

ous distance between surfaces by using the eigen-system of the LB operator. This

distance captures the intrinsic geometry of surfaces and is invariant to pose and

scale differences. As an application, we developed a robust approach to identify

major sulci of vervet cortical surfaces. In our future research, we will investigate

more applications of the spectral l2-distance, such as surface mapping and surface

classification, and extend our sulci identification method to human brains.
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[30] M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Anisotropic feature
preserving denoising of height fields and bivariate data. Graphics Interface,
2000.
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