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Abstract

We tackle the problem of detecting occluded regions in a video stream. Under assumptions of Lam-
bertian reflection and static illumination, the task can be posed as a variational optimization problem,
and its solution approximated using convex minimization. We describe efficient numerical schemes that
reach the global optimum of the relaxed cost functional, for any number of independently moving objects,
and any number of occlusion layers. We test the proposed algorithm on benchmark datasets, expanded
to enable evaluation of occlusion detection performance, in addition to optical flow.

1 Introduction

Occlusion phenomena are a critical component of the image formation process, and play a role in shaping the
statistics of natural images, in priming visual recognition of detached objects, in navigation and interaction
with natural objects and environments. Occlusions arise when a portion of the scene is visible in one image,
but not another. In Da Vinci Steropsis, portions of the scene that are visible from the left eye are not visible
from the right eye, and vice-versa. In a video-stream, occlusions occur at depth discontinuities. We are
interested in determining the occluded regions, that is the subset of an image domain that back-projects onto
portions of the scene that are not co-visible from a temporally adjacent image.1 The occluded region is, in
general, multiply connected, and can be quite complex, as the example of a barren tree illustrates.

Portions of the scene that are co-visible can be mapped onto one another by a domain deformation
[34], called optical flow. It is, in general, different from the motion field, that is the projection onto the
image plane of the spatial velocity of the scene [37], unless three conditions are satisfied: (a) Lambertian
reflection, (b) constant illumination, and (c) constant visibility properties of the scene. Most surfaces with
benign reflectance properties (diffuse/specular) can be approximated as Lambertian almost everywhere under
sparse illuminants (e.g., the sun). In any case, widespread violation of Lambertian reflection does not enable
correspondence, so most optical flow methods embrace (a), either implicitly or explicitly. Similarly, constant
illumination (b) is a reasonable assumption for ego-motion (the scene is not moving relative to the light
source), and even for objects moving (slowly) relative to the light source. Assumption (c) is needed in order
to have a dense flow field: If an image contains portions of its domain that are not visible in another image,
these can patently not be mapped onto it by optical flow vectors; (c) is often assumed because optical flow
is defined in the limit where two images are sampled infinitesimally close in time, in which case there are no
occluded regions, and one can focus solely on discontinuities2 of the motion field. Thus, the great majority of

∗Research supported by AFOSR, ARO, and ONR.
†M. Raptis and A. Ayvaci contributed equally to this work.
1This process could be generalized to global co-visibility, resulting in a model of the world with topologically distinct “layers”

[38]. This is beyond the scope of this paper and has already been addressed in a variational setting, the first example being
[18, 17].

2In occluded regions, the problem is not that optical flow is discontinuous; it is simply not defined; it does not exist. Motion
in occluded regions can be hallucinated or extrapolated, based on the prior or regularizer. However, whatever motion is assigned
to an occluded region cannot be validated from the data.
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variational motion estimation approaches provide an estimate of a dense flow field, defined at each location
on the image domain, including occluded regions. In their defense, it can be argued that for small parallax
(slow-enough motion, or far-enough objects, or fast-enough temporal sampling) occluded areas are small.
However, small does not mean absent, nor unimportant, as occlusions are critical to perception [13] and a
key for developing representations for recognition. For this reason, we focus on occlusion detection in video
streams.

Occlusion detection would be easy if the motion field was known. Vice-versa, optical flow estimation
would be easy if the occluded domain was known. As often in vision problems, one knows neither, so in the
process of inferring the object of inference (the occluded domain) we will estimate optical flow, the “nuisance
variable,” as a byproduct.

In this manuscript we (I) show that, starting from the standard assumptions (a)-(b), the problem of
detecting (multiply-connected) occlusion regions can be formulated as a variational optimization problem
(section 2). We then (II) show how the functional to be minimized can be relaxed into a sequence of convex
functionals and minimized using re-weighted `1 optimization (appendix A and eq. (16)). At each iteration,
the functional to be minimized is related to those used for optical flow estimation, but the minimization
is with respect to the indicator function of the occluded region, not just the (dense) optical flow field. We
then bring to bear two different approaches to optimize these functionals, one is (III) an optimal first-order
method, due to Nesterov (section 3), and the other one is (IV) an alternating minimization technique, known
as split-Bregman method (section 4). We evaluate our approach empirically in sections 5 and 1.2, and discuss
its strengths and limitations of in section 6.

To the best of our knowledge, neither the formulation of occlusion detection and motion estimation as a
joint minimization problem under sparsity prior on the occluded regions (I), nor the use of re-weighted `1
(II), Nesterov’s algorithm (III), or split-Bregman method (IV) have ever been presented before in the optical
flow literature. A preliminary conference version of this paper has appeared in [2]. The current version
provides an additional optimization method, split-Bregman, for improving the computation speed. We have
also included extensive experiments analyzing re-weighting steps and compares proposed method to robust
flow estimation methods.

1.1 Prior Related Work

Several algorithms have been proposed recently to tackle the issue of occlusion detection. One class of
methods define occlusion as the region of mismatch in forward and backward motion estimation. Proesmans
et al. [25] and Alvarez et al. [1] explicitly detected occlusions with this approach, however, they did not
put any effort to fix the motion estimates affected by outliers (occlusions). Others [21, 20, 33] formulated
joint motion estimation and occlusion detection problem as a NP-hard problem in a discrete setting, and
find an approximate solution with a combinatorial optimization algorithm. Others [16, 5] also exploited
motion symmetry to detect occlusions and suppress the effects of occlusions on the data term by weighting
it with a monotonically decreasing function. These methods rely on the prior to “inpaint” the optical flow
in the occluded region (where correspondence cannot be established) and then test for inconsistencies in the
inpainted flow.

A second class of methods uses the residual from optical flow estimation to decide whether a region
is occluded. Strecha et al. [31] proposed a probabilistic formulation to detect occluded regions using the
estimated noise model and histogram of occluded pixel intensities. Xiao et al. [44] threshold the residual
obtained using level-set methods to find occluded areas. Both try to minimize a non-convex energy function
by iterating between two subproblems, occlusion detection and motion estimation.

Occlusion phenomena have also been a concern in the optical flow community since the first global
formulation was proposed by Horn and Schunck [15]. Black and Anandan [6] proposed replacing the `2 norm
of the residual with a non-convex Lorentzian penalty. Another common criterion used for this purpose is
the `1 norm of the residual, which is non-trivial to minimize since it is non-smooth. [8, 7] use Charbonnier’s
penalty that is a differentiable approximation of the `1 norm; others [41, 40, 43] solved the non-smooth
problem with primal-dual methods decoupling the matching and regularization terms. However, none of
these robust flow estimation methods focus on the detection of occlusions.
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1.2 Evaluation

Optical flow estimation is a mature area of computer vision, and benchmark datasets have been developed,
the best known example being the Middlebury [3]. Unfortunately, no existing benchmark provides ground
truth for occluded regions, nor a scoring mechanism to evaluate the performance of occlusion detection
algorithms. Unfortunately, this also biases the motion estimation scoring mechanism as ground truth motion
is provided on the entire image domain, including occluded regions, where it can be extrapolated using the
priors/regularizers, but not validated from the data.

To overcome this gap, we have produced a new benchmark by taking a subset of the training data in the
Middlebury dataset, and hand-labeling occluded regions. We then use the same evaluation method of the
Middlebury for the (ground truth) regions that are co-visible in at least two images. This provides a motion
estimation score. Then, we provide a separate score for occlusion detection, in terms of precision-recall
curves. This dataset (that at the moment is limited by our ability to annotate occluded regions to a subset
of the full Middlebury, but that we will continue to expand over time), as well as the implementation of
our algorithm in source format will be released publicly after the anonymous review process is successfully
completed.

2 Joint Occlusion Detection and Optical Flow Estimation

In this section and in appendix A, we show how the assumptions (a)-(b) can be used to formulate occlusion
detection and optical flow estimation as a joint optimization problem. We assemble a functional that penalizes
the (unknown) optical flow residual in the (un-known) co-visible regions, as well as the area of the occluded
region. The resulting optimization problem has to be solved jointly with respect to the unknown optical flow
field, and the indicator function of the occluded region.

Let I : D ⊂ R2 × R+ → R+; (x, t) 7→ I(x, t) be a grayscale time-varying image defined on a domain D.
Under the assumptions (a)-(b), the relation between two consecutive frames in a video {I(x, t)}Tt=0 is given
by

I(x, t) =

{
I(w(x, t), t+ dt) + n(x, t), x ∈ D\Ω(t; dt)

ρ(x, t), x ∈ Ω(t; dt)
(1)

where w : D × R+ → R2;x 7→ w(x, t)
.
= x + v(x, t) is the domain deformation mapping I(x, t) onto

I(x, t+dt) everywhere except at occluded regions. Usually optical flow denotes the incremental displacement
v(x, t)

.
= w(x, t) − x. The occluded region Ω can change over time depending on the temporal sampling

interval dt and is not necessarily simply-connected; so even if we call Ω the occluded region (singular), it is
understood that it can be made of several disconnected portions. Inside Ω, the image can take any value
ρ : Ω × R+ → R+ that is in general unrelated to I(w(x), t + dt)|x∈Ω

. In the limit dt → 0, Ω(t; dt) = ∅.
Because of (almost-everywhere) continuity of the scene and its motion (i), and because the additive term
n(x, t) compounds the effects of a large number of independent phenomena3 and therefore we can invoke the
Law of Large Numbers (ii), in general we have that

(i) lim
dt→0

Ω(t; dt) = ∅, and (ii) n
IID∼ N (0, λ) (2)

i.e., the additive uncertainty is normally distributed in space and time with an isotropic and small variance
λ > 0. We define the residual e : D → R on the entire image domain x ∈ D, via

e(x, t; dt)
.
= I(x, t)− I(w(x, t), t+ dt) (3)

=

{
n(x, t), x ∈ D\Ω
ρ(x, t)− I(w(x, t), t+ dt), x ∈ Ω

3n(x, t) collects all unmodeled phenomena including deviations from Lambertian reflection, illumination changes, quantiza-
tion error, sensor noise, and later also linearization error. It does not capture occlusions, since those are explicitly modeled.
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which we can write as the sum of two terms, e1 : D → R and e2 : D → R, also defined on the entire domain
D in such a way that {

e1(x, t; dt)
.
= ρ(x, t)− I(w(x, t), t+ dt), x ∈ Ω

e2(x, t; dt)
.
= n(x, t), x ∈ D\Ω.

(4)

Note that e2 is undefined in Ω, and e1 is undefined in D\Ω, in the sense that they can take any value there,
including zero, which we will assume henceforth. We can then write, for any x ∈ D,

I(x, t) = I(w(x, t), t+ dt) + e1(x, t; dt) + e2(x, t; dt) (5)

and note that, because of (i) e1 is large but sparse,4 while because of (ii) e2 is small but dense4. We will use
this as an inference criterion for w, seeking to optimize a data fidelity term that minimizes the number of
nonzero elements of e1 (a proxy of the area of Ω), and the negative log-likelihood of n.

ψdata(w, e1)
.
= ‖e1‖L0(D) +

1

λ
‖e2‖L2(D) subject to (5)

=
1

λ
‖I(x, t)− I(w(x, t), t+ dt)− e1‖L2(D) + ‖e1‖L0(D) (6)

where ‖f‖L0(D)
.
= |{x ∈ D|f(x) 6= 0}| and ‖f‖L2(D)

.
=
∫
D
|f(x)|2dx. Unfortunately, we do not know

anything about e1 other than the fact that it is sparse, and that what we are looking for is χ(Ω) ∝ e1, where
χ : D → R+ is the characteristic function that is non-zero when x ∈ Ω, i.e., where the occlusion residual is
non-zero. So, the data fidelity term depends on w but also on the characteristic function of the occlusion
domain Ω. For a sufficiently small dt, we can approximate5, for any x ∈ D\Ω,

I(x, t+ dt) = I(x, t) +∇I(x, t)v(x, t) + n(x, t) (9)

where the linearization error has been incorporated into the uncertainty term n(x, t). Therefore, following
the same previous steps, we have

ψdata(v, e1) = ‖∇Iv + It − e1‖L2(D) + λ‖e1‖L0(D). (10)

Since we typically do not know the variance λ of the process n, we will treat it as a tuning parameter, and
because ψdata or λψdata yield the same minimizer, we have attributed the multiplier λ to the second term.
In addition to the data term, because the unknown v is infinite-dimensional and the problem is ill-posed, we
need to impose regularization, for instance by requiring that the total variation (TV) be small

ψreg(v) = µ‖v1‖TV + µ‖v2‖TV (11)

where v1 and v2 are the first and second components of the optical flow v, µ is a multiplier factor to weight
the strength of the regularizer and the weighted isotropic TV norm is defined by

‖f‖TV (D) =

∫
D

√
(g1(x)∇xf(x))2 + (g2(x)∇yf(x))2dx,

4Sparse stands for almost everywhere zero on D. Similarly, dense stands for almost everywhere non-zero.
5In a digital image, both domains D and Ω are discretized into a lattice, and dt is fixed. Therefore, spatial and temporal

derivative operators are approximated, typically, by first-order differences. We use the formal notation

∇I(x, t)
.
=

 I

(
x +

[
1
0

]
, t

)
− I(x, t)

I

(
x +

[
0
1

]
, t

)
− I(x, t)


T

(7)

It(x, t)
.
= I(x, t + dt)− I(x, t). (8)
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where g1 and g2 are given by

g1(x) = exp(−ζ‖∇xI(x)‖2) + ν, (12)

g2(x) = exp(−ζ‖∇yI(x)‖2) + ν. (13)

where ν is small constant, preventing g1 and g2 to take the value 0 and ζ is a normalizing factor. TV is
desirable in the context of occlusion detection because it does not penalize motion discontinuities significantly.
The overall problem can then be written as the minimization of the cost functional ψ = ψdata + ψreg, which
is

v̂1, v̂2, ê1 = arg min
v1,v2,e1

‖∇Iv + It − e1‖2L2(D) + λ‖e1‖L0(D) + µ‖v1‖TV (D) + µ‖v2‖TV (D) (14)

In a digital image, the domain D is quantized into an M ×N lattice Λ, so we can write (14) in matrix form
as:

v̂1, v̂2, ê1 = arg min
v1,v2,e1

1

2
‖A[v1, v2, e1]T + b‖2`2 + λ‖e1‖`0 + µ‖v1‖TV + µ‖v2‖TV (15)

where e1 ∈ RMN is the vector obtained from stacking the values of e1(x, t) on the lattice Λ on top of
one another (column-wise), and similarly with the vector field components {v1(x, t)}x∈Λ and {v2(x, t)}x∈Λ

stacked into MN -dimensional vectors v1, v2 ∈ RMN . The spatial derivative matrix A is given by

A = [diag(∇xI) diag(∇yI) − I],

where I is the MN ×MN identity matrix, and the temporal derivative values {It(x, t)}x∈Λ are stacked into
b. For finite-dimensional vectors u ∈ RMN , ‖u‖`2 =

√
〈u, u〉, ‖u‖`0 = |{ui|ui 6= 0}| and ‖u‖TV is defined as

‖u‖TV =
∑√

((g1)i(ui+1 − ui))2 + ((g2)i(ui+M − ui))2

where g1 and g2 are the stacked versions of {g1(x)}x∈Λ and {g2(x)}x∈Λ.
The problem (15) is NP-hard when solved with respect to the variable e1 whose nonzero elements indicates

the occluded region at each pixel in the image. A straightforward relaxation into a convex would simply
replace the `0 norm with `1. Unfortunately, this implies that “bright” occluded regions are penalized more
than “dim” ones, which is clearly not desirable. Therefore, we relax the `0 norm with the weighted-`1 norm
such that

v̂1, v̂2, ê1 = arg min
v1,v2,e1

1

2
‖A[v1, v2, e1]T + b‖2`2 + λ‖We1‖`1 + µ‖v1‖TV + µ‖v2‖TV . (16)

where W is a diagonal matrix and resort to an iterative procedure called reweighted-`1, proposed by Candès
et al. [9] to adapt the weights so as to better approximate the `0 norm. W is initially set to be the identity
matrix, and correspondingly (16) is the customary convex relaxation6 of the original NP-hard problem [36].
Each iteration has a globally optimal solution that can be reached efficiently from any initial condition. An
improved approximation of the l0 norm can be obtained by adapting the weight W iteratively, for instance
choosing W to be a diagonal with elements w(x) ≈ 1/(|e1(x)|+ ε) as proposed in [9]. The resulting solution
of (16) greatly improves sparsity, and the residual e1 is closer to a piecewise constant (indicator) function,
as shown in Fig. 1.

Note that the residual e1 in (5) is sometimes referred to as modeling illumination changes [28, 22, 35, 19].
However, even though the model (5) appears similar, the priors on e1 are rather different. They favor smooth
illumination changes; we favor sparse occlusions. While sparsity follows directly from the assumption (i),
illumination changes would require a reflectance function to be modeled. Instead, all models of the form (5)
lump reflectance and illumination into a single irradiance term [30].

6This norm has been previously used in optical flow estimation, and it makes sense in that context where occlusions are
the “nuisance factors.” In our context, however, occlusions are the object of inference, and we do not wish to suppress them
in order to provide an optical flow reading in the occluded region, where it is undefined. Instead, optical flow is the nuisance.
Therefore, while interesting, this interpretation offers no insight. Instead, we prefer using the reweighted approach as a better
approximation of the original problem (16) that does not penalize bright occlusions.
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3 Minimization with Nesterov’s Algorithm

In this section, we describe an efficient algorithm to solve (16) based on Nesterov’s first order scheme [23]
which provides O(1/k2) convergence in k iterations, whereas for standard gradient descent, it is O(1/k), a
considerable advantage for a large scale problem such as (16). To simplify the notation we let (e1)i

.
= wi(e1)i,

so that A
.
= [diag(∇xI) diag(∇yI) −W−1]. The main steps of the algorithm are shown in the following

table

Initialize v01 , v
0
2 , e

0
1. For k ≥ 0

1. Compute ∇ψ(vk1 , v
k
2 , e

k
1)

2. Compute αk and βk

αk = 1/2(k + 1), τk = 2/(k + 3)

3. Compute yk

yk = [vk1 , v
k
2 , e

k
1 ]T − (1/L)∇ψ(vk1 , v

k
2 , e

k
1),

4. Compute zk

zk = [v01 , v
0
2 , e

0
1]T − (1/L)

k∑
i=0

αi∇ψ(vi1, v
i
2, e

i
1),

5. Update [vk1 , v
k
2 , e

k
1 ]T = τkzk + (1− τk)yk.

Stop when the solution converges.

In order to implement this scheme, we need to address the nonsmooth nature of `1. This is done in [24],
that has already been used profitably for noise reduction, inpainting and deblurring [42, 12], and incorporated
in software libraries for sparse recovery [4]. In our case, we write ψ(v1, v2, e1) as a summation of terms

ψ(v1, v2, e1) = ψ1(v1, v2, e1) + λψ2(e1) + µψ3(v1) + µψ4(v2),

and compute the gradient of each term separately: The first is straightforward

∇v1,v2,e1ψ1(v1, v2, e1) = ATA[v1, v2, e1]T +AT b.

The other three, however, require smoothing. ψ2(e1) = ‖e1‖`1 can be rewritten in terms of its conjugate
ψ2(e1) = max‖u‖∞≤1 〈u, e1〉. The smooth approximation proposed in [24] is

ψσ2 (e1) = max
‖u‖∞≤1

〈u, e1〉 −
1

2
σ‖u‖2`2 (17)

which is differentiable; its gradient is uσ, the optimal solution of (17). Consequently, ∇e1ψσ2 (e1)) is given by

uσi =

{
σ−1(e1)i, |(e1)i| < σ,

sgn((e1)i), otherwise.
(18)

Following the lines of [4], ∇v1
ψ3 is given by is given by

∇v1ψ
σ
3 (v1) = GTuσ (19)

where G = [G1, G2]T , G1 and G2 are weighted horizontal and vertical differentiation operators, and uσ has
the form [u1, u2] where

u1,2
i =

{
σ−1(G1,2v1)i, ‖[(G1v1)i (G2v1)i]

T ‖`2 < σ,

‖[(G1v1)i (G2v1)i]
T ‖−1

`2
(G1,2v1)i, otherwise.

(20)
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∇v2ψ4 can also be computed in the same way. We now have all the terms necessary to compute

∇ψ(v1, v2, e1) = ∇ψ1 + [λ∇e1ψ2, µ∇v1
ψ3, µ∇v2

ψ4]T . (21)

We also need the Lipschitz constant L to compute the auxiliary variables yk and zk to minimize ψ. Since
‖GTG‖2 is bounded above [12] by 8, given the coefficients λ and µ, L is given by

L = max(λ, 8µ)/σ + ‖ATA‖2.

A crucial element of the scheme is the selection of σ. It trades off accuracy and speed of convergence. A
large σ yields a smooth solution, which is undesirable when minimizing the `1 norm. A small σ causes slow
convergence. We have chosen σ empirically, although the continuation algorithm proposed in [4] could be
employed to adapt σ during convergence.

4 Minimization with Split-Bregman

We also describe an alternative method for solving the optimization problem (16) based on the split-Bregman
method proposed by Goldstein and Osher [14], by decoupling the differentiable and non-differentiable por-
tions of the cost function (16).

We replace Gxv(1,2) by d
(1,2)
x and Gyv(1,2) by d

(1,2)
y yielding to a constrained problem,

v̂1, v̂2, ê1 = argmin
v1,v2,e1

1

2µ
‖A[v1, v2, e1]T + It‖2`2

+
λ

µ
‖We1‖`1

+ ‖(d1
x, d

1
y)‖`1 + ‖(d2

x, d
2
y)‖`1

subject to:

d1
x = Gxv1, d

1
y = Gyv1,

d2
x = Gxv2, d

2
y = Gyv2.

(22)

where for finite dimensional vectors u1, u2 ∈ RMN , ‖(u1, u2)‖`1 =
∑MN
i=1

√
(u1)2

i + (u2)2
i . By relaxing the

hard constraints, the cost function (22) takes a form that can be minimized by split-Bregman such that

v̂1, v̂2, ê1, d̂
(1,2)
(x,y) =

argmin
v1,v2,e1,d

(1,2)

(x,y)

1

2µ
‖A[v1, v2, e1]T + It‖2`2

+
λ

µ
‖We1‖`1 + ‖(d1

x, d
1
y)‖`1 + ‖(d2

x, d
2
y)‖`1

+
β

2
‖d1
x −Gxv1 − b1x‖2`2 +

β

2
‖d1
y −Gyv1 − b1y‖2`2

+
β

2
‖d2
x −Gxv2 − b2x‖2`2 +

β

2
‖d2
y −Gyv2 − b2y‖2`2

(23)

where β indicates the amount of relaxation. To solve (23), we divide the optimization problem into three
subproblems and solve them iteratively. The first subproblem is

v̂k+1
1 , v̂k+1

2 = argmin
v1,v2

1

2µ
‖A[v1, v2, e

k
1 ]T + It‖2`2

+
β

2
‖(d1

x)k −Gxv1 − (b1x)k‖2`2 +
β

2
‖(d1

y)k −Gyv1 − (b1y)k‖2`2

+
β

2
‖(d2

x)k −Gxv2 − (b2x)k‖2`2 +
β

2
‖(d2

y)k −Gyv2 − (b2y)k‖2`2

(24)
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The solution of this problem is straightforward. From the optimality conditions, we reach to the following
system of equations ( 1

µ
ITx Ix + β(GxTGx +GTyGy)

)
v1 +

1

µ
ITx Iyv2 =

− 1

µ
ITx (−e1 + It) + β

(
GTx (d1

x − b1x) +GTy (d1
y − b1y)

)
,( 1

µ
ITy Iy + β(GTxGx +GTyGy)

)
v2 +

1

µ
ITy Ixv1 =

− 1

µ
ITy (−e1 + It) + β

(
GTx (d2

x − b2x) +GTy (d2
y − b2y)

)
.

where to simplify the notation we have defined the diagonal matrices Ix = diag(∇xI) and Iy = diag(∇xI).
Following [14], to achieve efficiency, we solve the system of equations using Gauss-Seidel’s method. The
component-wise Gauss-Seidel solution to this problem is given by

(v1)i =
−µ(k2)i(Iy)i(Ix)i + (k1)i(µ(Iy)2

i + (k3)i))

(k3)i
(
µ(Ix)2

i + µ(Iy)2
i + (k3)i

) = G1
i

(v2)i =
−µ(k1)i(Iy)i(Ix)i + (k2)i(µ(Ix)2

i + (k3)i))

(k3)i
(
µ(Ix)2

i + µ(Iy)2
i + (k3)i

) = G2
i

(25)

where k1, k2 and k3 are given by

(k1)i =− µ(Ix)i(−(e1)i + (It)i)

+ β
(

(GTxGxv1)i + (GTyGyv1)i

)
+ β

(
(GTx d

1
x)i + (GTy d

1
y)i + (GTx b

1
x)i + (GTy b

1
y)i

)
(k2)i =− µ(Iy)i(−(e1)i + (It)i)

+ β
(

(GTxGxv2)i + β(GTyGyv2)i

)
+ β

(
(GTx d

2
x)i + (GTy d

2
y)i + (GTx b

2
x)i + (GTy b

2
y)i

)
k3 =β diag(GTxGx +GTyGy).

Subsequently, we need to solve the second subproblem which is given by(
d̂(1,2)
x

)k+1

,
(
d̂(1,2)
y

)k+1

=

argmin
d

(1,2)
x ,d

(1,2)
y

‖(d(1,2)
x , d(1,2)

y )‖`1

+
β

2
‖(d(1,2)

x )−Gxv(1,2) − (b(1,2)
x )k‖2`2

+
β

2
‖(d(1,2)

y )−Gyv(1,2) − (b(1,2)
y )k‖2`2 .

(26)

This problem can be solved analytically using the generalized shrinkage formula [39] such that

(
d̂(1,2)
x

)k+1

= max(sk − 1/β, 0)
Gxv

k
(1,2) + (b

(1,2)
x )k

sk(
d̂(1,2)
y

)k+1

= max(sk − 1/β, 0)
Gyv

k
(1,2) + (b

(1,2)
y )k

sk

(27)
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where sk(1,2) is given by

(sk)i =
√
|Gxvk(1,2) + (b

(1,2)
x )k|2 + |Gyvk(1,2) + (b

(1,2)
y )k|2.

The remaining subproblem is

ê1 = argmin
e1

1

2µ
‖A[v1, v2, e1]T + It‖2`2 +

λ

µ
‖We1‖`1 . (28)

and can also be solved using shrinkage operator. The solution is

(e1)k+1
i =

rki
|rki |

max(|rki | − λwi, 0). (29)

where rk = Ixv
k
1 + Iyv

k
2 + It.

The main steps of the algorithm can be summarized as follows

Initialize v1, v2, e1, d
1
x, d

1
y, d

2
x and d2

y with 0. For k ≥ 0

vk+1
1 = Gk1 , v

k+1
2 = Gk2(

d(1,2)
x

)k+1

= max(sk − 1/β, 0)
Gxv

k
(1,2) + (b

(1,2)
x )k

sk(
d(1,2)
x

)k+1

= max(sk − 1/β, 0)
Gyv

k
(1,2) + (b

(1,2)
y )k

sk(
b(1,2)
x

)k+1

=
(
b(1,2)
x

)k
+

(
Gxv

k+1
(1,2) −

(
d(1,2)
x

)k+1
)

(
b(1,2)
y

)k+1

=
(
b(1,2)
y

)k
+

(
Gyv

k+1
(1,2) −

(
d(1,2)
y

)k+1
)

(e1)k+1
i =

rki
|rki |

max(|rki | − λwi, 0)

Stop when the solution converges.

5 Experiments

Following Section 1.2, evaluation of our algorithm on standard datasets is not straightforward, because these
typically do not provide ground-truth occlusions. The only benchmark that provides occlusion, in at least
parts of the dataset, is [3], so we used it as a starting point, and generated occlusion maps as follows: for
each training sequence, we computed the residual given the ground truth motion and marked the regions
where the residual is high. Next, we annotated the regions where ground truth is not defined. Finally, we
manually fixed obvious errors in the occlusion maps. In this section, we evaluate the motion estimation
and occlusion detection performance of our approach on this dataset and on the well-known Flower Garden
sequence. We have also compared our algorithm to [41], [6] and [20] quantitatively.

To handle the large motion, we run our method on a Gaussian pyramid with a scale factor 0.5 up to 5
levels. We also apply 5 warping steps at each pyramid level. In all the experiments, the coefficient λ is fixed
at 0.01 while µ is increased gradually from 0.00008 to 0.01 with each warping step at each pyramid level.
Relying less on the prior of the flow field at the early warping steps results in more accurate flow estimates.
For the re-weighting step, we have also fixed the coefficient ε to 0.001. In our experiments, we also use a
non-linear pre-filtering of the images to reduce the influence of illumination changes [27, 41, 32] to initialize
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the re-weighting stage with an accurate flow field. However, at re-weighting steps we use the original images
since pre-filtering reduces the occlusion detection accuracy.

We start with unit weights W = I and solve the convex problem (16) (referred as Huber-`1 model in
our experiments). We then adapt the weights iteratively, thus improving sparsity and achieving a better
approximation of the indicator function e1 of the occluded domain, Fig. 1. One can also observe a gradual
improvement of the sparsity of |We| after each re-weighting iteration, Fig. 2. At each step, the accuracy of
occlusion detection also improves.

Figure 1: The result of the proposed approach on “Venus” from [3] and “Flower Garden.” The first column
shows the motion estimates, color-coded as in [3], the second is the residual I(x, t) − I(w(x), t + dt) before
re-weighting stage; the third shows |We1| after re-weighting, and the fourth is the sparse error term e1.

Figure 2: This figure illustrates the initial estimate of the error term e1 (first column) and how sparsity of
|We1| improves with each of the three re-weighting iterations.

Representative results for the Flower Garden sequence are shown in Fig. 3, where the complex occlusions
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produced by the foliage are also detected successfully.

Figure 3: Occlusion and motion estimates for more frames of the Flower Garden. Left to right: initial frame,
flow estimate (left), initial estimate of the error term e1 (middle), and occluded region (right).

In Fig. 5 and Fig. 6 we show the effects of re-weighting on the Middlebury data set. The weighted e1 is
not only sparser compared to the residual |I(x, t)− I(w(x), t+ dt)| computed before the re-weighting steps
but also has a superior occlusion detection accuracy unlike the residual which contains regions that are not
occluded. One might think that the residual could just be thresholded, instead of iteratively re-weighted.
To evaluate that, we have generated precision-recall curves and observed the change of occlusion detection
performance in terms of F-measure by thresholding both signals while varying the threshold value in the
interval [0, 1], Fig. 4. In most cases, the accuracy of the re-weighting approach is superior and more stable
under the varying threshold values since |We1| better approximates an indicator function. Therefore, one
can just choose non-zero elements of e1

7 to detect occluded regions instead of searching for a global threshold.
Note that here the weight matrix W is the one computed at the previous re-weighting step. We have also
observed that the precision-recall curves for |We1| does not span the whole recall range, since recall value 1
is not reachable unless all the zero-elements added to the decision which is not meaningful for the analysis
of a sparse signal (Fig. 4, PR-curves). We have also compared our approach to the robust flow estimation
methods proposed by Black and Anandan [6], using the improved version by Sun et al. [32](Classical-L),
and Wedel et al. [41] by evaluating the occlusion detection accuracy on the residual |I(x, t)− I(w(x), t+dt)|
computed using their flow fields.

One might be tempted to regularize the geometry of the occluded region, for instance by adding a
regularizing term ‖We1‖TV to (16). We have also evaluated this model, Fig. 4. However, occlusions can
manifest themselves with very complex geometry and topology, as the Hydrangea in Fig. 6 and Fig. 4
illustrate. In such cases, a geometric regularizer is counter-productive as it generates a large number of

7Notice that w(x) > 0, ∀x. Therefore, We1 6= 0 ⇐⇒ e1 6= 0
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Figure 4: Comparison of occlusion detection accuracy with [6] and [41] in terms of precision-recall curves
and F-measure.

missed detections.
We have compared our occlusion detection results to [20], using the code provided on-line by the authors.

Table 1 shows that we outperform [20]. Comparing motion estimates gives an unfair advantage to our
algorithm because their approach is based on quantized disparity values, so the accuracy of our motion
estimates is predictably superior.

We have also compared the accuracy of the solution of Nesterov’s algorithm and split-Bregman’s method
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Figure 5: This figure presents the occlusion and motion estimates on the sequences Venus, Grove2 and
Grove3 from Middlebury dataset. Each sequence occupies two rows. The odd rows, left to right: ground
truth optical flow, flow estimates before re-weighting stage and flow estimates after reweighing with Nesterov’s
algorithm and split-Bregman method. The even rows, left to right: ground truth occluded regions, the initial
estimate of the error term e1, the estimate of |We1| after the reweighting step with Nesterov’s algorithm
and split-Bregman method.
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Venus RubberWhale Hydrangea Grove2 Grove3 Urban2 Urban3
F-measure [20] 0.63 0.28 0.31 0.62 0.52 0.43 0.53
F-measure (our method) 0.77 0.52 0.37 0.67 0.60 0.69 0.83

Table 1: A comparison of the F-measure of our algorithm and [20] on the Middlebury dataset. Since
Kolmogorov et al. [20] provide an occlusion detector whose output is binary, we simply compute the precision
and recall of the output and report the F-measure based on these values. For comparison, we chose non zero
elements of e1 as detected occlusions and provide F-measure with respect to them.

and their convergence speed, Fig. 5, Fig. 6, Fig. 4, Table 2 and Table 3. Both methods provide similar
performance both in occlusion detection and motion estimation. However, split-Bregman method converges
significantly faster, Table 2.

We have evaluated the accuracy of the flow estimates of our method and compared to other robust
flow estimation techniques [6, 32, 41], Table 3. Huber−`1−TV model minimized with Nesterov’s algorithm
provides superior accuracy. However, once the re-weighting stage is initialized with these estimates, and flow
estimation is performed on the original images instead of the pre-filtered ones, the accuracy decreases.

Venus RubberWhale Hydrangea Grove2 Grove3 Urban2 Urban3
Nesterov’s algorithm 222 secs 342 secs 355 secs 463 secs 494 secs 499 secs 483 secs
Split Bregman method 90 secs 111 secs 133 secs 260 secs 360 secs 288 secs 277 secs

Table 2: The comparison of convergence time of the split-Bregman method and Nesterov’s algorithm.

6 Discussion

We have presented an algorithm to detect occlusions and establish correspondence between two images. It
leverages on a formulation that, starting from standard assumptions (Lambertian reflection, constant diffuse
illumination), arrives at a variational optimization problem. We have shown how this problem can be relaxed
into a sequence of convex optimization schemes, each having a globally optimal solution, and presented two
efficient numerical schemes for solving it.

We emphasize that our approach does not assume a rigid scene, or a single moving object. It also does not
assume that the occluded region is simply connected. Instead, our model is general under the assumptions
(a)-(b) as we show in Appendix A, and allows arbitrary (piece-wise diffeomorphic) domain deformations,
corresponding to an arbitrary number of moving or deforming objects, and an arbitrary number of simply
connected occluded regions (jointly represented by a multiply-connected domain Ω).

The fact that occlusion detection reduces to a two-phase segmentation of the domain into occluded

Venus RubberWhale Hydrangea Grove2 Grove3 Urban2 Urban3
Huber−`1−TV (Nesterov) 3.99/0.28 2.94/0.09 2.09/0.17 2.19/0.15 6.78/ 0.67 2.59/0.29 4.35/0.66
`2−reweighted−`1−TV (Nesterov) 3.96/0.31 5.09/0.16 2.36/0.19 2.60/0.17 7.71/0.78 3.41/0.38 4.91/0.76
`2−reweighted−`1−TV (split-Bregman) 4.09/0.33 4.91/0.16 2.34/0.19 2.31/0.15 7.72/0.75 2.86/0.35 4.20/0.63
Black & Anandan[6] 7.81/0.44 5.06/0.14 2.48/0.21 2.76/0.20 6.90/0.75 4.06/0.54 11.18/0.94
Classic-L [32] 4.75/0.29 3.15/0.09 2.06/0.17 2.49/0.17 6.49/0.66 2.96/0.37 4.72/0.60
Wedel et al. (Improved L1-TV) [41] 4.45/0.30 3.61/0.11 2.25/0.18 3.26/0.23 7.07/0.69 2.74/0.36 6.26/0.64

Table 3: Quantitative comparison of the proposed models and other robust flow estimation methods [6, 32, 41]
in terms of Average Angular Error (AAE) / Average End Point Error (AEPE)
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Ω and visible region D\Ω should not confuse the reader familiar with the image segmentation literature
whereby two-phase segmentation of one object (foreground) from the background can be posed as a convex
optimization problem [11]. Note that in the approach of [11] the problem can be made convex only in
occluded region term, e1, but not jointly in both e1 and the motion field, v. Therefore, such an approach
does not in general yield a global minimum.

The limitations of our approach stand mostly in its dependency from the regularization coefficients λ, µ
and coefficient σ in the optimization. In the absence of some estimate of the variance coefficient λ, one is
left with painstakingly tuning it by trial-and-error. Similarly, µ is a parameter that, like in any classification
problem, trades off missed detections and false alarms, and therefore no single value is “optimal” in any
meaningful sense. These limitations are shared by most variational optical flow estimation algorithms.
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A Ambient-Lambert model

In this section we show how to go from the assumptions (a)-(c) in section 1 to eq. (6). Let the scene {S, ρ}
be described by shape S ⊂ R3 (a collection of piece-wise smooth surfaces) and reflectance ρ : S :→ Rk
(diffuse albedo). Deviations from diffuse reflectance will not be modeled explicitly and lumped as error
(inter-reflection, sub-surface scattering, specular reflection, cast shadows). Coarse illumination changes are
modeled as a contrast transformation of the image range, and all other illumination effects are lumped into
the additive error. The large number of independent phenomena being aggregated into such an error make
it suitable to be modeled as a Gaussian random process (eq. (2)-ii). Under these assumptions, the radiance
ρ emitted by an area element around a point p ∈ S is modulated by a monotonic continuous transformation
m to yield the irradiance I measured at a pixel element x, except for the discrepancy n : D → Rk+, and the
correspondence between the point p ∈ S and the pixel x ∈ D is due to the motion of the viewer g ∈ SE(3),
the special Euclidean group of rotations and translations in three dimensional (3-D) space:

I(x, t) = m(t) ◦ ρ(p) + n(x, t); p ∈ S
x = π(g(t)p); x ∈ π(g(t)S)

I(x, t) = ν(x, t) x | g−1(t)π−1(x) /∈ S
(30)
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where π : R3 → R2;x 7→ [x1/x3, x2/x3]T is a central perspective projection. Away from the co-visible
portion of the scene S, the image can take any value ν(x, t). Without loss of generality, the co-visible
portion of the scene S can be parametrized as the graph of a function (depth map), p(x0) = x̄0Z(x0), then
the composition of maps

w : D → R2; x0 7→ x = w(x0)
.
= π(gx̄0Z(x0)) (31)

spans the entire group of diffeomorphisms. This is the motion field, which is approximated by the optical flow
when assumptions (a)-(c) are satisfied. Here a bar x̄ ∈ P2 denotes the homogeneous (projective) coordinates
of the point with Euclidean coordinates x ∈ R2. Combining the two equations above, we have the two
equivalent representations: I(w(x0)) = m ◦ ρ(x0) + n(w(x0)), x0 ∈ w−1(D\Ω), or

I(x) = m ◦ ρ(w−1(x)) + n(x) x ∈ D\Ω (32)

with a slight abuse of notation since we have parametrized ρ : S → Rk with one of the image planes, via
ρ(x) ← ρ(p(x)), and we have re-defined n(x) ← n(w−1(x)). Here D is the domain of the image, and Ω is
the subset of the image where the object of interest is not visible (partial occlusion).

It can be shown that m can be eliminated via pre-processing by designing a representation that is a
complete invariant statistic, that is a function of the image that is equivalent to it but for the effects of a
contrast transformation [10]. There are several such functionals, including the curvature of the level sets
of the image, or its dual (the gradient direction), or a normalization of contrast and offset of the image
intensity, or spectral ratios if color images are available. In any case, we indicate this pre-processing via

φ(I) = φ(m ◦ I). (33)

Correspondence between two image regions can be established when they back-project onto the same portion
of the scene S, or when that portion of the scene is co-visible. Therefore, establishing correspondence means,
essentially, finding a scene (a shape S and an albedo ρ) that, under proper viewing conditions including a
motion w and a contrast transformation h, yields a portion of each of the (two or more) images. This can
be posed as an optimization problem, which under the assumptions (a)-(b) can be successively reduced into
fewer and fewer unknowns:

arg min
m,ρ,g,S

∫
D\Ω
|I(x, t)−m ◦ ρ ◦ π(gS)|dx = (thm. 7.4, [26])

= arg min
ρ,w

∫
D\Ω
|φ(I(x, t))− φ(ρ ◦ w)|dx = (thm. 1, [29])

= arg min
w

∫
D\Ω
|φ(I(x, t))− φ(I(x, t− dt) ◦ w)|dx

Of course, the (possibly multiply-connected) region Ω is also unknown, and can be represented via its
characteristic function:

e1(x) = χ(Ω) (34)

where χ : D → R+ is such that χ(x) = 1 if x ∈ Ω, and χ(x) = 0 elsewhere.
To ease the notational burden, we will assume that contrast has been eliminated via pre-processing, and

drop the use of the function φ, so we re-define I ← φ(I). Writing explicitly the dependency of the “next
image” on the occlusion domain, we have

arg min
w

∫
D\Ω
|I(x, t+ dt)− I(w(x, t), t)|2dx (35)

which is the L2 component of ψdata in (6).
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Figure 6: This figure presents the occlusion and motion estimates on the sequences RubberWhale, Hydrangea,
Urban2 and Urban3 from Middlebury dataset. Each sequence occupies two rows. The odd rows, left to right:
ground truth optical flow, flow estimates before re-weighting stage and flow estimates after reweighing with
Nesterov’s algorithm and split-Bregman method. The even rows, left to right: ground truth occluded regions,
the initial estimate of the error term e1, the estimate of |We1| after the reweighting step with Nesterov’s
algorithm and split-Bregman method.
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