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Abstract Approximations of geometric optics type are commonly used in
simulations of high frequency wave propagation. This form of technique fails
when there is strong local variation in the wave speed on the scale of the
wavelength or smaller. We propose a domain decomposition approach, cou-
pling Gaussian beam methods where the wave speed is smooth with finite
difference methods for the wave equations in domains with strong wave speed
variation. In contrast to the standard domain decomposition algorithms, our
finite difference domains follow the energy of the wave and change in time. A
typical application in seismology presents a great simulation challenge involv-
ing the presence of irregularly located sharp inclusions on top of a smoothly
varying background wave speed. These sharp inclusions are small compared
to the domain size. Due to the scattering nature of the problem, these small
inclusions will have a significant effect on the wave field. We present examples
in two dimensions, but extensions to higher dimensions are straightforward.

1 Introduction

In this paper, we consider the scalar wave equation,

�u = utt − c2(x)4u = 0 (t, x) ∈ [0, T ]× Rd

u(0, x) = f(x) (1)

ut(0, x) = g(x) ,
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where d is the number of space dimensions. We will mainly focus on d = 2,
though the extension of the methods presented here to three or more spatial
dimensions is straight forward. The wave equation (1) is well-posed in the
energy norm,

‖u(t, ·)‖2E =

∫
Rd

[ |ut(t, x)|2
c2(x)

+ |∇u(t, x)|2
]
dx , (2)

and it is often useful to define the point-wise energy function,

E[u](t, x) =
|ut(t, x)|2
c2(x)

+ |∇u(t, x)|2 , (3)

and the energy inner product,

< u, v >E =

∫
Rd

[
ut(t, x)v̄t(t, x)

c2(x)
+∇u(t, x) · ∇v̄(t, x)

]
dx

High frequency solutions to the wave equation (1) are necessary in many
scientific applications. While the equation has no scale, “high frequency”
in this case means that there are many wave oscillations in the domain of
interest and these oscillations are introduced into the wave field from the
initial conditions. In simulations of high frequency wave propagation, di-
rect discretization methods are notoriously computationally costly and typi-
cally asymptotic methods such as geometric optics [4], geometrical theory of
diffraction [8], and Gaussian beams [2, 5, 6, 7] are used to approximate the
wave field. All of these methods rely on the underlying assumption that the
wave speed c(x) does not significantly vary on the scale of the wave oscil-
lations. While there are many interesting examples in scientific applications
that satisfy this assumption, there are also many cases in which it is violated,
for example in seismic exploration, where inclusions in the subsurface com-
position of the earth can cause the wave speed to vary smoothly on the scale
of seismic wavelengths or even smaller scales. In this paper, we are interested
in designing coupled simulation methods that are both fast and accurate for
domains in which the wave speed is rapidly varying in some subregions of the
domain and slowly varying in the rest.

In typical domain decomposition algorithms, the given initial-boundary
value problem (IBVP) is solved using numerical solutions of many similar IB-
VPs on smaller subdomains with fixed dimensions. The union of these smaller
domains constitutes the entire simulation domain. In our settings, there are
two major differences to the case above. First, the equations and numerical
methods in the subdomains are different: we have subdomains in which the
wave equation is solved by a finite difference method while in other subdo-
mains the ODEs defined by the Gaussian beam method are solved. Second,
we consider situations in which the wave energy concentrates on small sub-
regions of the given domain, so our domain decomposition method requires
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subdomains which follow the wave energy propagation and thus change size
and location as a function of time. Since our method couples two different
models of wave propagation, we will refer to it as the hybrid method. These
types of methods are also often called heterogeneous domain decomposition
[11]. We will describe how information is exchanged among the subdomains
as well as how to change the subdomain size without creating instability and
undesired numerical effects.

Our strategy will be to use an asymptotic method in subregions of the
domain that satisfy the slowly varying sound speed assumption and a local
direct method based on standard centered differences in subregions that do
not. This hybrid domain decomposition approach includes three steps. The
first is to translate a Gaussian beam representation of the high frequency
wave field to data for a full wave equation finite difference simulation. Since
a finite difference method needs the values of the solution on two time levels,
this coupling can be accomplished by simply evaluating the Gaussian beam
solution on the finite difference grid. The next step is to perform the finite
difference simulation of the wave equation in an efficient manner. For this,
we design a local finite difference method that simulates the wave equation
in a localized domain, which moves with the location of a wave energy. Since
this is a major issue, we have devote a section of this paper to its description
and provide some examples. The last step is to translate a general wave field
from a finite difference simulation to a superposition of Gaussian beams.
To accomplish this, we use the method described in [14] for decomposing
a general high frequency wave field (u, ut) = (f, g) into a sum of Gaussian
beams. The decomposition algorithm is a greedy iterative method. At the
(N + 1) decomposition step, a set of initial values for the Gaussian beam
ODE system is found such that the Gaussian beam wave field given by these
initial values will approximates the residual between the wave field (f, g) and
the wave field generated by previous (N) Gaussian beams at a fixed time.
These new initial values are directly estimated from the residual wave field
and are then locally optimized in the energy norm using the Nelder-Mead
method [10]. The procedure is repeated until a desired tolerance or maximum
number of beams is reached.

Since Gaussian beam methods are not widely known, we begin with a
condensed description of Gaussian beams. After this presentation, we give two
examples that show the strengths and weaknesses of using Gaussian beams.
We develop the local finite difference method as a stand alone method for
wave propagation. Finally, we combine Gaussian beams and the local finite
difference method to form the hybrid domain decomposition method. We
present two examples to show the strength of the hybrid method.
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2 Gaussian beams

Since Gaussian beams play a central role in the hybrid domain decomposition
method, we will briefly describe their construction. For a general construction
and analysis of Gaussian beams, we refer the reader to [12, 13, 9].

Gaussian beams are approximate high frequency solutions to linear PDEs
which are concentrated on a single ray through space–time. They are closely
related to geometric optics. In both approaches, the solution of the PDE is
assumed to be of the form a(t, x)eikφ(t,x), where k is the large high frequency
parameter, a is the amplitude of the solution, and φ is the phase. Upon
substituting this ansatz into the PDE, we find the eikonal and transport
equations that the phase and amplitude functions have to satisfy, respectively.
In geometric optics φ is real valued, while in Gaussian beams φ is complex
valued. To form a Gaussian beam solution, we first pick a characteristic ray
for the eikonal equation and solve a system of ODEs in t along it to find the
values of the phase, its first and second order derivatives and amplitude on the
ray. To define the phase and amplitude away from this ray to all of space–time,
we extend them using a Taylor polynomial. Heuristically speaking, along each
ray we propagate information about the phase and amplitude that allows us
to reconstruct them locally in a Gaussian envelope.

For the wave equation, the system of ODEs that define a Gaussian beam
are

φ̇0(t) = 0 ,

ẏ(t) = −c(y(t))p(t)/|p(t)| ,
ṗ(t) = |p(t)|∇c(y(t)) ,

Ṁ(t) = −A(t)−M(t)B(t)−BT(t)M(t)−M(t)C(t)M(t) ,

ȧ0(t) = a0(t)

(
− p(t)

2|p(t)| ·
∂c

∂x
(y(t))− p(t) ·M(t)p(t)

2|p(t)|3 +
c(y(t))Tr[M(t)]

2|p(t)|

)
,

where

A(t) = −|p(t)| ∂
2c

∂x2
(y(t)) ,

B(t) = − p(t)

|p(t)| ⊗
∂c

∂x
(y(t)) ,

C(t) = −c(y(t))

|p(t)|

(
Idd×d −

p(t)⊗ p(t)
|p(t)|2

)
.

The quantities φ0(t) and a0(t) are scalar valued, y(t) and p(t) are in Rd,
and M(t), A(t), B(t), and C(t) are d × d matrices. Given initial values, the
solution to this system of ODEs will exists for t ∈ [0, T ], provided that M(0)
is symmetric and its imaginary part is positive definite. Furthermore, M(t)
will remain symmetric with a positive definite imaginary part for t ∈ [0, T ].
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For a proof, we refer the reader to [12]. Under the restriction on M(0), the
ODEs allow us to define the phase and amplitude for the Gaussian beam
using:

φ(t, x) = φ0(t) + p(t) · [x− y(t)] +
1

2
[x− y(t)] ·M(t)[x− y(t)]

a(t, x) = a0(t) . (4)

Furthermore, since φ̇0(t) = 0, for fixed k, we can absorb this constant phase
shift into the amplitude and take φ0(t) = 0. Thus, the Gaussian beam solution
is given by

v(t, x) = a(t, x)eikφ(t,x) . (5)

We will assume that the initial values for these ODEs are given and that
they satisfy the conditions on M(0). The initial values for the ODEs are tied
directly to the Gaussian beam wave field at t = 0, v(0, x) and vt(0, x). As can
be easily seen, the initial conditions for the Gaussian beam will not be of the
general form of the conditions for the wave equation given in (1). However,
using a decomposition method such as the methods described in [14] or [1],
we can approximate the general high frequency initial conditions for (1) as
a superposition of individual Gaussian beams. Thus, for the duration of this
paper, we will assume that the initial conditions for the wave equation (1)
are the same as those for a single Gaussian beam:

u(0, x) = a(0, x)eikφ(0,x)

ut(0, x) = [at(0, x) + ikφt(0, x)a(0, x)] eikφ(0,x) . (6)

Note that at(0, x) and φt(0, x) are directly determined by the Taylor polyno-
mials (4) and the ODEs above.

3 Motivating Examples

We begin with an example that shows the strengths of using Gaussian beams
and, with a small modification, the shortcomings. Suppose that we consider
the wave equation (1) in two dimension for (t, x1, x2) ∈ [0, 2.5]× [−1.5, 1.5]×
[−3, 0.5], sound speed c(x) =

√
1− 0.05x2, and the Gaussian beam initial

conditions given in (6) with,

φ(0, x) = (x2 − 1) + i(x1 − 0.45)2/2 + i(x2 − 1)2/2 ,

a(0, x) = 1 .

We take the high frequency parameter k = 100. To obtain a numerical so-
lution to the wave equation (1), we can use either a direct method or the
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Gaussian beam method. As the direct method, we use the standard second
order finite difference method based on the centered difference formulas for
both space and time:

un+1
`,m − 2un`,m + un−1`,m

∆t2
(7)

= c2`,m

[
un`+1,m − 2un`,m + un`−1,m

∆x2
+
un`,m+1 − 2un`,m + un`,m−1

∆y2

]
,

where n is the time level index, ` and m are the x and y spatial indices
respectively.

Since we need to impose artificial boundaries for the numerical simulation
domain, we use first order absorbing boundary conditions (ABC) [3]. The
first order ABC amount to using the appropriate one-way wave equation,

ut = ±c(x, y)ux or ut = ±c(x, y)uy , (8)

on each of the boundaries, so that waves are propagated out of the simulation
domain and not into it. For example, on the left boundary, x = −1.5, we use
ut = cux with upwind discretization,

un+1
`,m − un`,m

∆t
= c`,m

[
un`+1,m − un`,m

∆x

]
, (9)

for ` equal to its lowest value.
To resolve the oscillations, using 10 points per wavelength, for this par-

ticular domain size and value for k, we need roughly 500 points in both the
x1 and x2 directions. However, to maintain low numerical dispersion for the
finite difference solution, we need to use a finer the grid. The grid refine-
ment will the given in terms of the coarse, 10 points per wavelength, grid.
For example, a grid with a refinement factor of 3 will have 30 points per
wavelength. Note that such grid refinement is not necessary for the Gaussian
beam solution. Thus, while we compute the finite difference solution on the
refined grid, we only use the refined solution values on the coarser grid for
comparisons. For determining the errors in each solution, we compare with
the “exact” solution computed using the finite difference method with a high
refinement factor of 10.

For this particular example, the sound speed, the finite difference solution
and Gaussian beam solution at the final time are shown in Figure 1. In order
to have a meaningful comparison, the grid refinement for the finite difference
solution was chosen so that the errors in the finite difference solution are
comparable to the ones in the Gaussian beam solution. Both the accuracy
and computation times are shown in Table 1. The Gaussian beam solution was
computed more than 3500 times faster than the finite difference solution and
the total error for both the Gaussian beam and the finite difference solution
is ≈ 10%. Near the center of the beam, where the Gaussian beam envelope is
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greater than 0.25, the Gaussian beam solution is slightly more accurate with
a local error of ≈ 7%. The Gaussian beam solution is an asymptotic solution,
thus its error decreases for larger values of k. In terms of complexity analysis,
as we are using a fixed number of points per wavelength to represent the wave
field, the Gaussian beam solution is computed in O(1) steps and evaluated
on the grid in O(k2). The finite difference solution is computed in O(k3)
steps. Additionally, for larger values of k, we would need to increase the grid
refinement for the finite difference solution in order to maintain the same
level of accuracy as in the Gaussian beam solution. Therefore, it is clear why
the Gaussian beam solution method is advantageous for high frequency wave
propagation.

t=0.625 t=1.25 t=1.875 t=2.5 Loc Err C Time

FD 1.9% 3.8% 5.6% 7.3% 7.4% 7773.1

GB 2.4% 4.8% 7.2% 9.7% 7.0% 1.6

Table 1 Comparisons of the finite difference (FD) method and Gaussian beam (GB)

method with sound speed with no inclusion. Shown are the total error for each method in
the energy norm as a percent of the total energy at each time, the local error (Loc Err)

as a percent of the local energy at t = 2.5, and the total computational time (C Time)

for obtaining the solution at each time. The local error is computed near the beam center,
where the Gaussian envelope is greater than 0.25. The finite difference solution is computed

with a refinement factor of 6.

Now, suppose that we modify the sound speed to have an inclusion, so that
the sound speed changes on the same scale as the wave oscillations as shown in
Figure 1 and that we use the same initial conditions as before. The inclusion
is positioned in such a way, so that the ray mostly avoids the inclusion, while
the wave field on the left side of the ray interacts with the inclusion. Since
all of the quantities that define the Gaussian beam are computed on the ray,
the Gaussian beam coefficients are similar to the coefficients in the example
without the inclusion. However, as can be seen from the full finite difference
calculation in Figure 1, the wave field at t = 2.5 is very different from the
wave field at t = 2.5 for the sound speed with no inclusion shown in the
same figure. The solution errors shown in Table 2 demonstrate that, while
the Gaussian beam computation time is again more than 3500 times faster,
the error renders the solution essentially useless. Thus, the Gaussian beam
solution is not a good approximation of the exact solution in this case. This,
of course, is due to the fact that the asymptotic assumption, that the sound
speed is slowly varying, is violated. Therefore, for a sound speed with an
inclusion of this form, the Gaussian beam method cannot be used and we
have to compute the wave field using a method that does not rely on this
asymptotic assumption.
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Sound speed

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

FD solution at t=2.5

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

GB solution at t=2.5

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

Sound speed

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

FD solution at t=2.5

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

GB solution at t=2.5

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

Fig. 1 The first column shows the wave field for simulations with sound speed without
an inclusion: sound speed, the finite difference (FD) solution at the final time, and the

Gaussian beam (GB) solution at the final time. The second column shows the same graphs
for simulations with sound speed containing an inclusion. The line shows the ray for the

Gaussian beam. At t = 0, the Gaussian beam is centered at the beginning of the line and
at t = 2.5, it is centered at the end of the line. The dotted circle outlines the location of

the inclusion in the sound speed. For each of the wave fields, only the real part is shown.
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t=0.625 t=1.25 t=1.875 t=2.5 Loc Err C Time

FD 1.9% 3.9% 5.6% 7.0% 7.3% 7717.8

GB 6.1% 94.5% 91.2% 90.9% 43.9% 1.5

Table 2 Comparisons of the finite difference (FD) method and Gaussian beam (GB)

method for a sound speed with inclusion. Shown are the total error for each method in

the energy norm as a percent of the total energy at each time, the local error (Loc Err)
as a percent of the local energy at t = 2.5, and the total computational time (C Time)

for obtaining the solution at each time. The local error is computed near the beam center,

where the Gaussian envelope is greater than 0.25. The finite difference solution is computed
with a refinement factor of 6.

4 Local Finite Difference Method

By examining the example in the previous section, it is clear that a large
portion of the computational time for the finite difference solution is spent
simulating the wave equation where the solution is nearly zero. To exploit
this property of the solution, we propose to use finite differences to compute
the solution only locally where the wave energy is concentrated. Since the
wave energy propagates in the domain, the region in which we carry out the
local wave equation simulation must also move with the waves. We emphasize
that we are not using Gaussian beams at this stage.

To be more precise, we propose to simulate the wave equation in a domain
Ω(t), that is a function of time and at every t, Ω(t) contains most of the
wave energy. For computational ease, we select Ω(t) to be a rectangular
region.The initial simulation domain Ω(0) is selected from the initial data
by thresholding the energy function (3) to contain most of the wave energy.
Since solutions of the wave equation (1) have finite speed of propagation,
the energy moves at the speed of wave propagation and thus the boundaries
of Ω(t) do not move too rapidly. In terms of finite difference methods, this
means that if we ensure that the Courant-Friedrichs-Lewy (CFL) condition is
met, the boundaries of Ω(t) will not move by more than a spatial grid point
between discrete time levels t and t+∆t. Whether Ω(t) increases or decreases
by one grid point (or stays the same) at time level t + ∆t is determined by
thresholding the energy function (3) of u at time level t near the boundary
of Ω(t).

Using the standard second order finite difference method, we discretize the
wave equation (1) using a centered in time, centered in space finite difference
approximation (7). Since the solution is small near the boundary of Ω(t),
there are several different boundary conditions that we could implement to
obtain a solution. The easiest and most straightforward approach is to sim-
ply use Dirichlet boundary conditions with u = 0. Another approach is to
use absorbing boundary conditions. We investigate the case where absorbing
boundary conditions are applied to a single layer of grid nodes immediately
neighboring the outer most grid nodes of Ω(t) (single layer ABC) and ab-
sorbing boundary conditions are applied again to the layer of grid nodes
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immediately neighboring the first ABC layer (double layer ABC). For exam-
ple, for the depicted grid nodes in Figure 2, un+1

`+1,m and un+1
`,m are computed

by

un+1
`+1,m = un`+1,m + c`+1,m

∆t

∆x

[
un`+2,m − un`+1,m

]
un+1
`,m = un`,m + c`,m

∆t

∆x

[
un`+1,m − un`,m

]
.

For both Dirichlet and absorbing boundary conditions, when the domain Ω(t)
is expanding, the finite difference stencils will need to use grid nodes that are
outside of Ω(t) and the boundary layers. We artificially set the wave field to
be equal to zero at such grid nodes and we will refer to them as “reclaimed
grid nodes”. Figure 2 shows the domain of influence of the reclaimed nodes for
the Dirichlet boundary conditions and the double layer ABC. In this figure,
solid lines connect the reclaimed nodes with nodes whose values are computed
directly using the reclaimed nodes. Dashed lines connect the reclaimed nodes
with nodes whose values are computed using the reclaimed nodes, but through
the values of another node. Finally, dotted lines indicate one more level in
the effect of the reclaimed nodes. The point of using double layer ABC is to
minimize the influence of the reclaimed nodes, as can be seen in Figure 2.
Note that there are no solid line connections between the reclaimed nodes and
the nodes in Ω(t) for double layer ABC. Furthermore, the artificial Dirichlet
boundary conditions reflect energy back into the computational domain Ω(t)
which may make it larger compared to Ω(t) for the solution obtained by
double layer ABC as shown in Figure 3.

Dirichlet Boundary Conditions

space discretization
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n+ 1
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ℓ− 2 ℓ− 1 ℓ ℓ+ 1 ℓ+ 2 ℓ+ 3

Double Layer Absorbing Boundary Conditions
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Fig. 2 A comparison between the domains of influence of the reclaimed grid nodes for
Dirichlet and double layer absorbing boundary conditions. The wave field is computed at

the square grid nodes using centered in time centered in space finite differences and at

the circle grid nodes using absorbing boundary conditions. The triangle grid nodes are
the reclaimed grid nodes with artificial zero wave field. The lines indicate how the finite

differences propagate these artificially values from the n-th time level to later time levels.

Finally, we note that due to finite speed of wave propagation, we can design
boundary conditions that will not need reclaimed grid nodes. However, these
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Dirichlet Boundary Conditions
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Fig. 3 A comparison between Dirichlet boundary conditions and double layer absorbing

boundary conditions for the local finite difference method. The absolute value of the differ-
ence between each solution and the finite difference solution for the full domain is plotted

at time t = 0.625. The domain Ω(0.625) is outlined in white. Note that overall the double
layer absorbing boundary conditions solution is more accurate than the Dirichlet bound-

ary condition solution. Also, note that Ω(0.625) is smaller for the double layer absorbing

boundary conditions.

boundary conditions may have a finite difference stencil that spans many time
levels and this stencil may need to change depending on how Ω(t) changes
in time. Numerically, we observed a large improvement when using double
layer ABC instead of Dirichlet boundary conditions. However, using triple or
quadruple layer ABC did not give a significant improvement over the double
layer ABC. Thus, for computational simplicity, we use the above double layer
absorbing boundary conditions for the simulations that follow.

Using the local finite difference method, we compute the solution to the
wave equation (1) as in the previous section for the example with a sound
speed with inclusion, using a refinement factor of 6. To determine Ω(0), we
threshold the energy function (3) at 1/100 of its maximum. For computational
time comparison, we also compute the full finite difference solution, also with
a refinement factor of 6. These parameters were chosen so that the final error
is ≈ 7% and comparable for both solutions. The wave field, along with Ω(t),
are shown in Figure 4 at t = {0, 0.625, 1.25, 1.875, 2.5}. The comparisons of
accuracy and computation time between the local and full finite difference
solutions are shown in Table 3. The error in both solutions is equivalent, but
the local finite difference solution in computed 5 times faster. Furthermore,
if the local finite difference method is used to simulate the wave field from
a Gaussian beam, we need O(k) steps in time as in the full finite difference
method, but the local finite difference method requires O(k) grid points in
space as opposed to O(k2) grid points that the full finite difference method
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requires. This is because the energy from a Gaussian beam is concentrated
in a k−1/2 neighborhood of its center and this is a two dimensional example.

Local FD solution at t = 0
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Fig. 4 This figure shows the wave field computed using the local finite difference method
for the sound speed with inclusion. The black rectangle outlines the local computational

domain, Ω(t), and the dotted circle outlines the location of the inclusion in the sound
speed. Only the real part of the wave fields is shown.
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t=0.625 t=1.25 t=1.875 t=2.5 C Time

FD 1.9% 3.9% 5.6% 7.0% 7717.8

LFD 2.4% 4.4% 6.0% 7.3% 1535.5

Table 3 Comparisons of the full finite difference (FD) method and the local finite differ-

ence (LFD) method with sound speed with inclusion. Shown are the total error for each

method in the energy norm in as a percent of the total energy and the total computational
time (C Time) for obtaining the solution at t = {0.625, 1.25, 1.875, 2.5}.

Finally, we remark that if instead of finding one rectangle that contains the
bulk of the energy we found several, the solution in each of these rectangles
can be computed independently. On a parallel computer, this would give
another advantage over full finite difference simulations, as there is no need
for information exchange between the computations on each rectangle, even if
these rectangles overlap. The linear nature of the wave equation allows for the
global solution to be obtained by simply adding the solutions from each of the
separate local finite difference simulations. Furthermore, the generalization
to more than two dimensions is straight forward and the computational gain
is even greater in higher dimensions.

5 Hybrid Method

Upon further examination of the inclusion example in Section 3 and the wave
field simulations in Section 4, we note that the Gaussian beam solution has
small error for some time initially (see Table 2) and that after the wave energy
has interacted with the inclusion in the sound speed, it again appears to have
Gaussian beam like characteristics (see Figure 4, t > 2). We can immediately
see the effect of the large variation of the sound speed on the wave field.
The large gradient roughly splits the wave field into two components, one
that continues on nearly the same path as before and one that is redirected
to the side. This also shows why the Gaussian beam solution is not a very
good approximation. For a single Gaussian beam to represent a wave field
accurately, the wave field has to stay coherent; it cannot split into two or more
separate components. However, once the wave field has been split into several
components by the inclusion, it will propagate coherently until it reaches
another region of large sound speed variation. By following the propagation
of wave energy in time, while it is near a region of high sound speed variation,
we employ the local finite different method and the Gaussian beam method
otherwise.

To be able to use such a hybrid method, we need to be able to couple
the two different simulation methods. Switching from a Gaussian beam de-
scription to a local finite difference description is straightforward. The local
finite difference requires the wave field at a time t and t + ∆t, which can
be obtained simply by evaluating the Gaussian beam solution on the finite
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difference grid. The opposite, moving from a local finite difference to a Gaus-
sian beam description, is more difficult to accomplish. For this step we use
the decomposition algorithm given in [14]. As discussed in the introduction,
this decomposition method is a greedy iterative method. At each iteration
the parameters for a single Gaussian beam are estimated and then locally op-
timized using the Nelder-Mead algorithm [10]. The method is then iterated
over the residual wave field. The decomposition is complete when a certain
tolerance is met or a maximum number of Gaussian beams is reached. For
completeness, we give the algorithm of [14] below.

1. With n = 1, let (un, unt ) be the wave field at a fixed t and suppress t to
simplify the notation.

2. Find a candidate Gaussian beam:

• Estimate Gaussian beam center:
→ Let ỹn = arg max{E[un](y)} (see equation (3)).

• Estimate propagation direction:
→ Let G(x) = exp(−k|x− ỹn|2/2)
→ Let pn = arg max{|F [un(x)G(x)]| + |F [unt (x)G(x)/k]|}, with F the

scaled Fourier transform, {x→ kp}
→ Let φ̃nt = c(yn)|p̃n|

• Let M̃n = iI, with I the identity matrix.

3. Minimize the difference between the Gaussian beam and un in the energy
norm using the Nelder–Mead method with (ỹn, φ̃nt , p̃

n, M̃n) as the initial
Gaussian beam parameters:

• Subject to the constraints, Im {M} is positive definite, entries of M are
less than

√
k in magnitude, 1/

√
k ≤ |p| ≤

√
k, and |φt|2 = c2(y)|p|2, let

(yn, φnt , p
n,Mn) = arg min

{∣∣∣∣∣∣∣∣un − < un, B >E
||B||2E

B

∣∣∣∣∣∣∣∣2
E

}
,

where B be the Gaussian beam defined by the initial parameters
(yn, φnt , p

n,Mn) and amplitude 1 (see equations (4) and (5)).
• Let Bn(x, t) be the Gaussian beam defined by the initial parameters

(yn, φnt , p
n,Mn) and amplitude 1.

• Let an = <un,Bn>E

||Bn||2E
.

4. The n-th Gaussian beam is given by the parameters (yn, φnt , p
n,Mn, an).

Subtract its wave field:

un+1 = un − anBn and un+1
t = unt − anBnt .

5. Re-adjust the previous n− 1 beams:

• For the j-th beam, let w = un+1 +ajBj and repeat step 3 with un = w,
n = j, and (yj , φjt , p

j ,M j) as the initial Gaussian beam parameters.
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• Let un+1 = w − ajBj

6. Re-adjust all beam amplitudes together

• Let Λ be the matrix of inner products Λj` =< B`, Bj >E , and
bj =< u1, Bj >E

• Solve Λa = b and let un+1 = u1 −∑n
j=1 a

jBj

7. Repeat steps starting with step 2, until ||un+1||E is small or until a pre-
scribed number of Gaussian beams is reached.

The final step in designing the hybrid method is deciding when and where
to use which method. By looking at the magnitude of the gradient of the
sound speed and the value of k, we can decompose the simulation domain
into two subdomains DG and DL, which represent the Gaussian beam, small
sound speed gradient, subdomain and the local finite difference, large gra-
dient, subdomain respectively. When the Gaussian beam ray enters DL, we
switch from the Gaussian beam method to the local finite difference method.
Deciding when to switch back to a Gaussian beam description is again more
complicated. One way is to monitor the energy function (3) and when a sub-
stantial portion of it is supported in DG, we use the decomposition method
to convert that part of the energy into a superposition of a few Gaussian
beams. Since calculating the energy function is computationally expensive, it
should not be done at every time level of the local finite difference simulation.
From the sound speed and size of DL, we can estimate a maximum speed of
propagation for the wave energy, thus a minimum time to exit DL, and use
that as a guide for evaluating the energy function. Additionally, we can look
at the overlap between DG and the local finite difference simulation domain
Ω(t) as a guide for checking the energy function. A more crude, but faster,
approach is to use the original ray to estimate the time that it takes for the
wave energy to pass through DL. We use this approach in the examples be-
low. Furthermore, we note that the linearity property of the wave equation
allows us to have a joint Gaussian beam and local finite difference description
of the wave field. We can take the part of the local finite difference wave field
in DG and represent it as Gaussian beams. If there is a significant amount
of energy left in DL, we propagate the two wave fields concurrently one us-
ing Gaussian beams and the other using the local finite difference method.
The total wave field is then the sum of the Gaussian beam and local finite
difference wave fields.

There are two advantages of the hybrid method over the full and local finite
difference methods. One is a decrease in simulation time. The other is due
to the particular application to seismic exploration. For seismic wave fields,
the ray based nature of Gaussian beams provides a connection between the
energy on the initial surface and its location at the final time. Furthermore,
this energy is supported in a tube in space–time and thus it only interacts
with the sound speed inside this tube. Unfortunately, for finite difference
based methods there is only the domain of dependence and this set can be
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quite large compared to the Gaussian beam space–time tube. For example,
if the sound speed model is modified locally, only Gaussian beams that have
space–time tubes that pass through the local sound speed modifications will
need to be re-computed to obtain the total wave field. In contrast, a local
sound speed modification requires that the entire finite difference solution be
re-computed. For the hybrid method, if we decompose the wave field in single
beam whenever we switch back to the Gaussian beam description then at any
given time, we will either have a Gaussian beam wave field or a local finite
difference wave field. After the simulation is complete we can interpolate the
Gaussian beam coefficients to times for which the wave field is given by the
local finite difference. Note that the resulting interpolated wave field will
not satisfy the wave equation, however we will once again have a space–time
tube that follows the energy propagation. Thus, we are interested in using
the hybrid method to obtain a one beam solution that approximates the wave
field better than the Gaussian beam method.

5.1 Example: Double Slit Experiment

In the simplest version of the Hybrid method, we consider an example in
which we first use the local finite difference method to solve the wave equa-
tion for a given amount of time, then we switch to a Gaussian beam repre-
sentation of the field. For this example we are interested in simulating the
wave field in a double slit experiment, where coherent waves pass through
two slits that are spaced closely together and their width is O(k−1), with
k = 50. In the finite difference method, the slits are implemented as Dirich-
let boundary conditions. It is clear that due to the diffraction phenomenon
near the two slits, the Gaussian beam method alone will not give an accurate
representation of the wave field. The wave field simulated using the hybrid
method is shown in Figure 5 and the error and computational time are shown
in Table 4. Note that with 14 Gaussian beams, the computational time for
the hybrid solution is still a factor of 3 faster than the full finite difference
solution and a factor of 2 faster than the local finite difference solution.

t=1.25 t=2.5 t=3.75 t=5 C Time

FD 5.91% 10.6% 14.8% 19.1% 470

LFD 6.13% 11% 15.8% 19.7% 270

H 6.13% 12.7% 24.2% 33.9% 150

Table 4 Comparisons of the full finite difference (FD), the local finite difference (LFD) and
the hybrid (H) methods for the double slit experiment. Shown for each method are the total
error in the energy norm in terms of percent of total energy and the total computational

time (C Time) for obtaining the solution at t = {1.25, 2.5, 3.75, 5}. The norms are computed
only on y < 0, since we are only interested in the wave field that propagates through the

two slits.
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Fig. 5 The wave field obtained by the hybrid method for the double slit experiment. The
first panel shows the sound speed and the double slit Dirichlet boundary condition region.

The local finite difference domain is outlined by the black rectangle at t = {0, 1.25}. At
t = {2.5, 3.75, 5}, the black lines indicate the ray for each of the Gaussian beams.

5.2 Example: Sound Speed with Inclusion

Finally, to demonstrate the hybrid method, we apply it to computing the wave
field for the sound speed with inclusion and compare it to the previously
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discussed methods. For these experiments k = 100. The wave field is first
computed using Gaussian beams until the beam is close to the inclusion at
t = 0.5. Then, the solution is propagated with the local finite difference
method until most of the wave energy has moved past the inclusion at t =
2. The resulting field is then decomposed into one beam (the hybrid one-
beam solution) or into two beams (the hybrid two-beam solution) using the
decomposition algorithm of [14]. The wave fields for the one and two beam
hybrid solutions are shown in Figure 6. The errors and computation times
for the methods discussed in this paper are shown in Table 5. The local finite
difference calculations are done with a refinement factor of 5 and Ω(t) is
obtained by thresholding the energy function at 1/10 of its maximum. This
thresholding was chosen so that the final errors in the local finite difference
solution are similar to the error in the hybrid solution making the comparison
of the computation times meaningful. The errors for the one and two beam
hybrid solutions are ≈ 62% and ≈ 37% respectively at t = 2.5. This may seem
rather large, but we note that this is a large improvement over the Gaussian
beam solution which has an error of ≈ 91%. Furthermore, this is a single
Gaussian beam approximation of the wave field locally and this wave field
is not necessarily of Gaussian beam form. Locally, near the beam centers,
the H1 and H2 solutions are more accurate. The computational time for the
H1 and H2 hybrid solutions is 2 times faster compared to the local finite
difference solution and 10 times faster than the full finite difference solution.

t=0.675 t=1.25 t=1.875 t=2.5 Loc Err 1 Loc Err 2 C Time

FD 3.3% 6.6% 9.4% 11.8% 12.3% 10.8% 4446.1

GB 6.1% 94.5% 91.2% 90.9% 42.2% 99.9% 1.5

LFD 6.6% 9.6% 11.9% 14.4% 12.4% 10.8% 781.0

H1 3.9% 7.4% 10.2% 62.0% 12.7% 100.0% 401.5

H2 3.9% 7.4% 10.2% 36.7% 12.7% 25.9% 417.9

Table 5 Comparisons of the methods for a sound speed with inclusion. Shown for each

method are the total error in the energy norm in terms of percent of total energy at each
time, the local errors as a percent of the local energy near the beam center for the first beam

(Loc Err 1) and near the second beam center (Loc Err 2), and the total computational

time (C Time) for obtaining the solution at each time. The local error is computed near
the beam center, where the Gaussian envelope is greater than 0.25. Legend: GB – Gaussian

beam, LFD – Local finite difference, H1 – Hybrid method with one beam, H2 – hybrid

method with two beams.

6 Conclusion

In this paper, we develop a new hybrid method for high frequency wave prop-
agation. We couple a Gaussian beam approximation of high frequency wave
propagation to a local finite difference method in parts of the domains that



A Coupled FD – GB Method for High Frequency Wave Propagation 19

Hybrid solution at t = 0

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Hybrid solution at t = 0.625

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Hybrid solution at t = 1.25

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Hybrid solution at t = 1.875

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Hybrid 1−beam solution at t = 2.5

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Hybrid 2−beam solution at t = 2.5

 

 

−1 0 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 6 The wave field for the hybrid H1 and H2 solution. The top two rows show the
real part of the wave field which is the same for both the 1–beam and 2–beam hybrid

solutions at t = {0, 0.625, 1.25, 1.875}. Times t = {.625, 1.25, 1.875} are during the local
finite difference calculation and the black rectangle outline the local finite difference domain

Ω(t). The real part of the wave field for the 1–beam and 2-beam hybrid solutions are shown
in the last row at t = 2.5. In each panel, the black lines indicate the ray for each of the

Gaussian beams.
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contain strong variations in the wave speed. The coupling is accomplished
either by translating the Gaussian beam representation into a wave field rep-
resentation on a finite difference grid or by approximating the finite difference
solution with a superposition of Gaussian beams. The local finite difference
computations are performed on a moving computational domain with ab-
sorbing boundary conditions. This direct method is only used at times when
a significant portion of the wave field energy is traveling through parts of the
domain that contain large variations in the wave speed. The rest of the high
frequency wave propagation is accomplished by the Gaussian beam method.

Two numerical test examples show that the hybrid technique can retain the
overall computational efficiency of the Gaussian beam method. At the same
time the accuracy of the Gaussian beam methods in domains with smooth
wave speed field is kept and the accuracy of the finite difference method in
domains with strong variation in the wave speed is achieved. Furthermore,
the hybrid method maintains the ability to follow the wave energy as it prop-
agates from the initial surface through the domain as in traditional Gaussian
beam and other ray based methods.
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