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Abstract. We introduce a second-order method for solving L1 regularized

minimization problems. In most situations, this method finds the exact so-

lution to an L1 regularized minimization in a finite number of steps. This is
done by exploiting the fact that, when recovering a sparse signal, the basis

pursuit problem is equivalent to a quadratic minimization problem involving a

low-rank matrix. The novel method takes advantage of this property by apply-
ing a conjugate gradient partan scheme to the underlying low-rank problem.

This new algorithm has several advantages over other basis-pursuit schemes.

In particular, it requires no time-step parameters as input, and the speed of
the algorithm is almost completely insensitive to the condition number of the

problem. This allows for the fast solution of basis pursuit problems involving
convolution matrices.

1. Introduction

Basis pursuit refers to the reconstruction of sparse signals by solving an L1
regularized problem of the following form:

(1) min
u∈RN

F (u) = µ|u|+ 1
2
‖Au− f‖2

where A ∈ RM×N is a linear operator, f is a vector of observed data, | · | denotes
the L1 norm, and ‖ · ‖ denotes the L2 norm.

Problems of this form arise frequently in compressed sensing(CS), where we wish
to reconstruct u from a small subset of its Fourier/DCT coefficients [4, 5, 6, 10,
23, 27]. Problems of this form also arise in signal processing [8], analog-to-digital
conversion [28, 15] and statistical regression [26].

Another class of problems that can be represented in the form (1) are sparse
deconvolution problems. Sparse deconvolution problems have the form

(2) min
u
µ|u|+ µ

2
‖Ku− f‖2

where K is a convolution matrix. These problems arise, for example, in heat-source
identification, seismology, and medical imaging applications [17, 19, 20, 21, 25, 12,
11].

Problems of the form (1) are traditionally solved using techniques of the gradient-
descent type. This is because fast algorithms can be used to evaluate the Fourier
transform of u. Methods of the gradient descent type have several drawbacks. First,
these methods require a-priori knowledge of the spectrum of A in order to choose
an appropriate timestep. Also, gradient descent methods are often very sensitive
to the condition number of the sensing matrix A.

In this manuscript, we proposed a method which uses conjugate gradient acceler-
ation to improve the convergence of standard first-order methods. The organization
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of this paper is as follows: We first review some common techniques for basis-
pursuit problems. We then introduce the conjugate gradient partan method, and
explain how it can be used to accelerate conventional forward-backward splitting
techniques. We next introduce the CGIST method, which uses conjugate gradient
acceleration to quickly solve problems of the form (1) without any knowledge of the
spectrum of A. Finally, we show numerical results demonstrating the efficiency of
the CGIST method.

2. Gradient-Based Methods for Basis Pursuit

In this section we review commonly used gradient-based methods for finding
sparse solutions to systems of equations. Note that algorithms of this type only
require that we be able to evaluate the linear operator A and its adjoint. In case
the operator A involves a Fourier transform, step 3 of the FBS algorithm can be
evaluated quickly using the fast Fourier transform (FFT). This makes gradient-
based methods advantageous for problems involving fast transforms (e.g. Fourier,
wavelet, DCT, etc...). Another advantage of the these methods is that they have
simple implementation.

FBS. One of the simplest and most commonly used gradient-descent-type meth-
ods is the Forward-Backward Splitting (FBS). This approach has also been called
iterative shrinkage/thresholding (IST) in the L1 literature. Algorithms of this form
were originally proposed for by Lions and Mercier [16] and Passty [22], and were
later studied extensively by others [9, 7, 18, 29]. Rigorous results for L1-regularized
problems were proposed by Hale, Yin, and Zheng in [13].

Like other forward-backward splitting techniques, FBS is a two stage algorithm
that operates on some initial guess uk. During the first stage, we obtain ūk using
a gradient descent step on the differentiable term in (1).

ūk = uk − tAT (Auk − f).

During the second stage, we update the value of ūk by solving the “proximal”
problem

uk+1 = argminµ|u|+ 1
2t
‖u− ūk‖

The overall algorithm can be written as

Algorithm 1 Forward-Backward Splitting (FBS)

1: Initialize: u0 ∈ RN
2: for k = 0, 1, · · · do
3: ūk = uk − tAT (Auk − f)
4: uk+1 = argminµ|u|+ 1

2t‖u− ū
k‖

5: end for

For the problems considered here, the minimization in step 4 of the above algo-
rithm has a simple closed form solution. For L1 regularized problems, we take

(3) uk+1 = argminµ|u|+ 1
2t
‖u− ūk‖ =

u

|u|
max{u− tµ, 0} = shrink(ūk, tµ).
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To see the relationship between FBS and gradient descent, consider the case
when sign(uk+1) = sign(uk). In this case, we have

uk+1 = uk − t(µsign(uk) +AT (Auk − f)) = uk − t∂
{
µ|u|+ 1

2
‖Au− f‖2

}
|(uk).

In simple words, when sign(uk+1) = sign(uk), the non-differentiability of the en-
ergy (1) does not come into play, and the FBS algorithm is equivalent to marching
down the gradient of (1). The relationship between FBS and gradient descent is
the basis of many techniques for accelerating the algorithm.

2.1. TwIST. Several techniques have been proposed for accelerating the forward
backward splitting. The first of these we shall consider is the Two-Step-Iterative-
Shrinkage/Thresholding (TwIST) method, proposed and analyzed by Bioucas-Dias
and Figueiredo [2, 3]. The TwIST algorithm is build from more conventional two-
step methods for solving linear systems. These algorithms proceed in two stages: 1)
a gradient descent step is performed, and 2) Over-relaxation is applied to accelerate
convergence. When this concept is applied to the algorithm (1), we get a method
of the following form:

Algorithm 2 TwIST

1: Initialize: u0 ∈ RN
2: u1 = shrink(u0 − tAT (Au0 − f), tµ)
3: for k = 0, 1, · · · do
4: ūk = shrink(uk − tAT (Auk − f), tµ)
5: uk+1 = (1− α)uk−1 + (α− β)uk + βūk

6: end for

This algorithm can be interpreted as performing one FBS step, and then over-
relaxing by adding the difference between the last two iterates.

It still remains to choose the relaxation parameters α and β in the algorithm (2).
In the case that A is invertible, this can be done in the following way: Choose ξl
and ξu to be a lower and upper bounds for the Eigenvalues of ATA. Furthermore,
define ξ̄u = max(ξu, 1), and κ = ξl/ξ̄u. The authors of [2] then suggest to choose

α =
(

1−
√
κ

1 +
√
κ

)2

+ 1, β =
2α

ξ̄u + ξl
.

For the case of invertible A, it can be shown that these parameter choices guar-
antee convergence. When A is a non-invertible matrix, this rule breaks down and
parameters may have to be chosen by hand.

The authors of [2] also suggest that the asymptotic convergence rate of the
TwIST algorithm is substantially faster than FBS. Using FBS, the number of it-
erations required to reduce the error by an order of magnitude is approximately
− log10

1−κ
1+κ . On the other hand, TwIST takes approximately − log10

1−
√
κ

1+
√
κ

steps to
achieve the same error reduction, which is considerably faster FBS.

2.2. FPC AS. All algorithms discussed so far are first order methods. A method
which incorporated higher-order information is the FPC AS algorithm [31]. The
FPC AS method is based on the standard forward-backward splitting technique.
FPC AS, however, does not rely on a fixed timestep. Rather, a Barzilai-Borwein
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rule is used to adaptively choose the stepsize [1]. In addition, when the active set
stabilizes, a conjugate gradient or BFGS based subspace optimization routine is
called in order to speed up convergence. This subspace optimization step makes
FPC AS a very efficient choice for ill-conditioned problems, such as deconvolutions,
for which first-order methods tend to stall. However, for well-conditioned problems
(e.g. compressed sensing) the overhead of the subspace optimization step can make
this method slow. For a detailed description of subspace optimization and adaptive
timestepping for FBS, we refer the reader to [31].

Note that FPC AS was originally designed to solve problems with small µ by
using a continuation process - e.g. by solving a sequence of problems with decreasing
values of µk, such that µk → µ). For comparison purposes, the continuation portion
of the algorithm was deactivated for this study.

3. Gradient PARTAN Algorithm

One of the most effective ways of minimizing quadratic energies is the method
of conjugate gradients (CG) [14]. The CG method in its standard form, however,
cannot be directly viewed as a means of accelerating gradient descent routines. The
reason for this is that the standard CG algorithm requires that descent steps be
taken in directions which are not gradients. This is fine when solving standard
quadratic minimization problems because we are free to move in any direction.
For basis pursuit problems, however, this does not work so well. It is difficult to
descend in arbitrary directions because we encounter the non-differentiable points
of the energy (1). Furthermore, in order to be able to take consistent descent steps
without regularizing the energy (1) we need to be able to use the shrinkage formula
(3), which only allows us to move along the gradient of the energy (1).

Fortunately, there exists a special conjugate gradient routine which only requires
moves along gradient directions. This variant of CG, introduced by Shah, Buehler,
and Kempthorne, is called gradient partan [24].

An iteration of the partan algorithm consists of two stages: Starting with an
approximate solution uk, we 1) Find the minimum point, ūk, of the energy in the
gradient direction. 2) Find the minimizer, uk+1, of the energy in the direction of
the vector r̄ = uk−1 − ūk. This process is depicted diagrammatically in Figure 3.

We formalize this algorithm below. Note that the partan algorithm was orig-
inally designed to minimize arbitrary convex quadratic energies. The version of
the method presented below has been reformulated to solve problems of the special
form

(4) min
u

1
2
‖Au− f‖2 + 〈u, s〉
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Figure 1. A diagrammatic depiction of the gradient partan al-
gorithm. Starting from point uk, we first compute the gradient
vector, rk. We then find the minimizer of the energy, ūk along
this direction. The next approximation, uk+1, is then obtained by
minimizing in the direction r̄ = uk−1 − ūk.
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Algorithm 3 Partan Algorithm for solving (4)

1: Initialize: u0 = 0
2: r0 = AT (Au0 − f) + s

3: α0 = ‖r0‖2
‖Ar0‖2

4: u1 = u0 − α0r0

5: r1 = r0 + α0ATAr0

6: for k = 1, 2, 3, · · · do
7: αk = ‖rk‖2

‖Ark‖2

8: ūk = uk − αkrk
9: r̄k = rk + αkATArk

10: βn = 〈r̄k,rk−1〉
‖rk−1‖2

11: uk+1 = ûk−βkuk−1

(1−β)

12: rk+1 = r̂k−βkrk−1

(1−β)

13: end for

At the start of the algorithm, two iterates are initialized because the conjugate
gradient acceleration step requires two successive iterates. Once the “for” loop has
been entered, the algorithm proceeds to minimize the energy (4) along the direction
of the gradient vector, rk. This is done by first computing the optimal step-length,
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αk, and then taking the corresponding gradient descent step. This minimizer is
denoted ūk. The next step of the algorithm is to minimize the energy along the
line between ūk and uk−1. This is done by first computing the optimal step size
parameter, β. The minimizer, uk+1, in this new direction is then computed using a
linear combination of ūk and uk−1.

This partan algorithm has several valuable properties for solving quadratic min-
imization problems that the two-step methods do not. Because it is a conjugate
gradient routine, partan converges to the exact minimizer in a number of steps
which is less than or equal to the dimension of the problem. For problems with
large dimension, a good approximation to the solution is often found quickly be-
cause partan (like all CG algorithms) has super-linear convergence properties that
other gradient-descent methods do not. Finally, the partan algorithm does not
require the user to choose any time step parameters that depend on the (possibly
unknown) spectral properties of the matrix A.

3.1. The Contribution of This Paper. As noted above, forward-backward split-
ting methods for L1 regularized problems behave like gradient descent for quadratic
problems. The key observation we wish to exploit is that, when solving sparse prob-
lems, the dimensionality of the gradient descent problem is very small. For example,
if there are only 5 non-zero elements in an iterate of the FBS method, then the
method behaves like gradient descent on a problem with dimension 5. In this case,
the conjugate gradient routine described above could solve the minimization ex-
actly in at most 5 steps, regardless of the condition number of A. Gradient descent,
on the other hand, could take hundreds of steps if the matrix A is ill-conditioned.

In this manuscript we will develop a method which exploits this low-dimensionality
property using the conjugate gradient partan method. This is done by adding an
acceleration term to the FBS iteration. This new term will allow the algorithm to
minimize the energy (1) over its active set in a finite number of steps.

4. High-Order Methods for Basis Pursuit

In this section, we will show how to interpret problems of the form (1) in such
a way that algorithm (3) can be applied. We introduce two new algorithms. The
first uses an adaptive rule to choose an optimal step length. The second uses
conjugate gradient acceleration in addition to the adaptive step size rule. Be-
cause these methods work by applying conjugate gradient acceleration to iterative
shrinkage/thresholding (i.e. FBS) methods, we call the new algorithms CGIST0
and CGIST, respectively.

4.1. Reformulation as a Low-Rank Problem. Suppose that for two successive
iterates of the FBS method we have sign(uk−1) = sign(uk). Let D = (uk−1! = 0)
be the diagonal matrix with Dii = 1 if uk−1 6= 0, and Dii = 0 otherwise. Then the
process of obtaining uk from uk−1 using FBS is equivalent to a gradient descent
step on the differentiable quadratic problem

(5) uk = arg min
u∈RN

1
2
‖Au− f‖2 + 〈u, s〉, such that Du = 0,

where s = µsign(uk−1).
We now wish to remove the constraint Du = 0. Note that, when this constraint

is satisfied, we have u = Du. We can therefore replace the constrained problem (5)
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with the problem

(6) uk = arg min
u∈RN

‖ADu− f‖2 + 〈u, s〉

The energy (6) has derivative

(7) r = DAT (ADu− f) + s

Note that, if uk−1
i = 0, then the derivative of the energy (6) with respect to ui

is zero. It follows that a gradient descent step on the energy (6) will give us
uki = uk−1

i = 0. Therefore, provided sign(uk−1) = sign(uk), gradient descent on
(6) is equivalent to FBS on (1).

Note the dimensionality reduction that has occurred by reformulating the basis-
pursuit problem (1) in the form (6). The rank of the matrix AD is less than or
equal to the number of non-zeros in the iterate uk−1. Consequently, if uk−1 is sparse,
then we would expect a conjugate gradient method to solve (6) exactly in a small
number of steps.

We can write the derivative of (6) in a more convenient way. We have

ri =

{
(DAT (ADu− f) + s)i, if ui 6= 0
shrink(DAT (ADu− f)i, µ), otherwise

,

or equivalently

(8) r = DAT (ADu− f) + s+ (I −D)shrink(AT (Au− f), µ).

Suppose that for some index i we have uki = uk+1
i = 0. Then we must have

shrink(AT (Au− f), µ)i = 0. It follows that, when the active set does not change,
the two expressions for the derivative (8) and (7) are equivalent.

The derivative definition (8) is advantageous because it is nonzero for every
non-optimal u. To see this, suppose that we have r = 0. Then we have{

(DAT (ADu− f) + s)i = 0, if ui 6= 0
(DAT (ADu− f))i ∈ [0, 1], if ui = 0

which is the optimality condition for (1). Later on, will use the derivative (8) of the
quadratic problem in order to compute the optimal step size for the FBS iteration.
Using the definition (8) will help prevent this technique from breaking down.

4.2. Optimal Adaptive Time-stepping. Before we can apply the conjugate gra-
dient partan method to the basis pursuit problem, we must establish a method of
performing gradient descent. Note that, when performing a gradient descent step,
there is no guarantee that sign(uk) = sign(uk−1). For this reason, we must perform
gradient descent steps using the FBS algorithm (which incorporates a shrinkage op-
erator). This guarantees that, in the case when the active set changes, our iterates
still decrease the energy (1).

We therefore wish to compute the gradient step using the FBS formula

gk = AT (Au− f)(9)

ūk = shrink(uk − αgk, αµ)(10)

where α denotes the stepsize. We will choose the optimal step size such that the
quadratic energy (6) is minimized in the gradient direction. To compute this step
size, we must use the gradient of the quadratic energy as defined by equation (8).
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Using the definition gk given above, this derivative can be written in the condensed
form

(11) rk = Dkgk + µsign(uk) + (I −Dk)shrink(gk, µ).

The optimal step size which minimizes the quadratic energy is then given by

(12) αk =
‖rk‖2

‖Ark‖2

When we incorporate this step size rule into the FBS algorithm, we get the
following method:

Algorithm 4 CGIST0: FBS with Optimal Adaptive Time Steps

1: Initialize: u0

2: for k = 1, 2, 3, · · · do
3: gk = AT (Auk − f)
4: Dk = (uk 6= 0)
5: rk = Dkgk + µsign(uk) + (1−Dk)shrink(gk, µ)
6: αk = ‖rk‖2

‖Ark‖2

7: uk+1 = shrink(uk − αkgk, αkµ)
8: end for

Note that algorithm (4) does not require any time-step parameters as inputs.
This can be very advantageous when A is an unstructured matrix and we have
little information about the spectrum of ATA to choose a time-step. Also note
that the adaptive algorithm (4) requires 3 matrix multiplications per iteration, as
opposed to 2 per iteration for conventional FBS. We will see later that, despite
this extra cost, the optimal time-stepping method (4) substantially outperforms
conventional methods for many problems.

4.3. Conjugate Gradient Acceleration. We now wish to apply conjugate gra-
dient acceleration to the FBS method by exploiting its equivalence to the quadratic
problem (6). We will do this using the partan gradient descent method (3). The
complete algorithm with conjugate gradient acceleration is listed in Algorithm 5.
This algorithm has a more sophisticated sequence of steps than the previous algo-
rithms we have discussed, and we will address the function of each of these steps
below.
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Algorithm 5 CGIST: High Order Algorithm for Basis Pursuit

1: Initialize: u0

2: D0 = (u0 6= 0)
3: e0 = Au− f
4: g0 = AT e0

5: r0 = D0g0 + µsign(u0)) + (1−D0)shrink(g0, µ)
6: α0 = ‖r0‖2

‖Ar0‖2

7: u1 = shrink(u0 − α0g0, α0µ)
8: D1 = (u1 6= 0)
9: e1 = Au1 − f

10: g1 = AT e1

11: for k = 1, 2, 3, · · · do
12: rk = Dkgk + µsign(uk)) + (1−Dk)shrink(gk, µ)
13: αk = ‖rk‖2

‖Ark‖2

14: ūk = shrink(uk − αkgk, αµ)
15: if sign(ūk) == sign(uk) == sign(uk−1) then
16: ēk = ek − αArk
17: ḡk = AT ēk

18: r̄k = rk +Dk(ḡk + gk)
19: β̄k = 〈r̄k,rk−1〉

‖rk−1‖2

20: βk = min(β̄k, Dkūk/uk−1)
21: uk+1 = ūk−βkuk−1

(1−βk)

22: ek+1 = ēk−βkek−1

(1−βk)

23: Dk+1 = (uk+1 6= 0)
24: gk+1 = ḡk−βkgk−1

(1−βk)

25: rk+1 = r̄k−βkrk−1

(1−βk)

26: else
27: uk+1 = ūk

28: Dk+1 = (uk 6= 0)
29: ek+1 = Auk+1 − f
30: gk+1 = AT ek+1

31: rk = Dk+1gk+1 + µsign(uk+1)) + (1−Dk+1)shrink(gk+1, µ)
32: end if
33: end for

Because the acceleration step in the partan algorithm requires knowledge of the
two most recent iterates, we must initialize two iterates before entering the loop.
This initialization is done by starting with an arbitrary u0, and then applying a
single iteration of FBS with optimal time step. The algorithm then enters the “for”
loop. The first action taken in the loop is to compute ūk using an FBS step with
optimal parameter.

Note that the problems (1) and (6) are only equivalent if sign(uk) = sign(uk+1).
Consequently, we only wish to apply the conjugate gradient acceleration when this
condition is satisfied. Once ūk has been computed, the first “if” statement tests
whether sign(uk) = sign(ūk). If this condition fails, then we accept uk+1 = ūk as
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our next iterate, and continue to the next iteration of the “for” loop. In this case,
it is also necessary to re-compute the gradient gk+1 to be used in the next iteration.

If the compatibility condition is satisfied, then the active set of our problem has
not changed, and the algorithm proceeds to compute the conjugate gradient accel-
eration step. The algorithm computes the gradient at the current approximation,
and the constant β̄k just as is done in the partan algorithm (3). However, our
acceleration formula is only correct as long as the active set of our problem remains
constant. To ensure that the acceleration step does not alter the active set, we
must compute the maximal value of β for which sign(uk+1) = sign(ūk+1). It is
easily seen that the active set does not change as long as β ≤ ūk/uk−1(uk+1! = 0).
We therefore define min(β̄k, ūk/uk−1(uk+1! = 0)) to ensure that the active set does
not change. Finally, the values of uk+1, gk+1, and rk+1 are computed for the next
iterate.

5. Convergence Results

In this section we address two issues related to the convergence of the above
methods. First, we discuss conditions that must be met for the CGIST/CGIST0
methods to be guaranteed to converge. Next, we discuss the finite convergence
property of the CGIST method.

The methods described above use the conjugate gradient step size to perform
FBS. In the case that the active set does not change, this step size can be shown to
be optimal. However, when the active set does change, this rule is purely heuristic
and there is no guarantee of optimality. For this reason, some care must be taken
in order to guarantee convergence of the above algorithms for all possible inputs.
In this section, we discuss a simple modification of the above methods that can
be used to guarantee convergence. These modifications are mostly of theoretical
interest, as we have found both algorithms 4 and 5 to be extremely stable.

Convergence of algorithms 4 and 5 can be guaranteed by incorporating a non-
monotonic line search of Wen, Yin, Goldfarb and Zheng [31, 30]. Given the current
iterate uk, we first generate ūk using a step of FBS with the conjugate gradient step
size αk. We then define the search direction dk = ūk − uk, and choose a 0 < γ < 1
such that uk+1 = uk + αdk does not significantly increase the energy (1). This is
done using Algorithm (6).

Algorithm 6 Backtracking Line Search

1: Initialize: uk, ūk, ν ∈ [0, 1), C0 ≥ F (u0), Q0 = 1, c ∈ (0, 1)
2: Qk = νQk−1 + 1
3: Ck = Qk−1

Qk Ck−1 + 1
QkF (uk−1)

4: dk = ūk − uk
5: ∆k = gk

T
dk + µ(|ūk| − |uk|)

6: γ = 1
7: while F (uk + γdk) > Ck + cγ∆k do
8: γ ← γ/2
9: end while

10: Set uk+1 = uk + γdk
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The application of this line search to FBS-type methods is considered in [30],
where a convergence result is given. Note that the line search does not force each
iteration to decrease the objective function. Rather, the energy of each iteration
must be sufficiently less than some upper threshold, Ck, which evolves by a re-
cursive formula. The parameter ν controls how severely each iterate can violate
the monotonicity condition. Note that the line search can be made monotone by
letting ν = 0. Non-monotone line search is often preferable to monotone line search
because it is less likely that the line search will become active.

The next issue that must be addressed is that the step size rule (12) can break
down if Ark = 0. In this case, we can simply perform an FBS step with step size
equal to unity, and then apply the backtracking line search to guarantee a decrease
in energy. We emphasize that these precautions are only necessary in extreme
circumstances, as the empirical behavior of algorithms 4 and 5 is very stable. In
fact, the line search was never activated in any of the numerical examples considered
in this manuscript.

The next issue we address is the finite convergence of the CGIST algorithm. This
finite convergence property arises because of the rank reduction property discussed
in section 4.1. When the active set of the problem remains constant, the energy
behaves like a low rank quadratic energy. In this case, the conjugate gradient
method minimizes the energy over its active set in a finite number of steps. This
concept is formalized below:

Theorem. Suppose that the CGIST algorithm (5) converges to a minimizer of (1).
Then the algorithm obtains an exact minimizer in a finite number of steps.

Proof. Let u∗ = argminu F (u). We begin by proving the following claim: There
exists an ε > 0 such that, for any u satisfying F (u) < F (u∗) + ε, we have sign(u) =
sign(u∗). Stated more simply, we wish to prove that any u with sufficiently small
energy must have the same active set as the true minimizer u∗. Since sign(u) can
only take on finitely many values, this will be true as long as there does not exist
another minimizer ū∗ with sign(u∗) 6= sign(ū∗).

We therefore assume for contradiction that we have distinct minimizers satisfying
sign(u∗) 6= sign(ū∗). Consider the vector û = 1

2 (u∗ + ū∗). Since the differentiable
(i.e. L2) part of the energy (1) is weakly convex, we have

(13) ‖Aû− f‖2 ≤ 1
2

(‖Aū∗ − f‖2 + ‖Au∗ − f‖2).

Also, since sign(u∗) 6= sign(ū∗) we have the strict inequality

(14) |û| < 1
2

(|u∗|+ |ū∗|).

Adding (13) to (14) yields

F (û) <
1
2

(F (u∗) + F (ū∗)) = F (u∗)

which is a contradiction since u∗ is a minimizer. This, together with the remarks
above, shows the validity of the claim.

It follows that, once the objective function gets sufficiently small, the active set
of the iterates of CGIST remains constant. Once the active set of the iterates
stabilizes, CGIST reduces to the standard conjugate gradient partan method for
quadratic objectives, which is known to converge in a finite number of steps [14,
24]. �
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Note that in the above proof, we have neglected the effect of roundoff errors
on the conjugate gradient method. For large-rank problems, these errors can ac-
cumulate, causing the conjugate gradient method to behave more like an iterative
method than an exact solver. However, because of the rank reduction property
described in section 4.1, the effective rank of sparse reconstruction problems tends
to be very small. For this reason, we have found that the finite convergence is
observed in practice.

6. Numerical Results

To demonstrate the performance of this algorithm, we compare it to several other
L1 minimization algorithms. For this purpose, we will use three categories of test
problems. The first type of problem involves the discrete cosine transform (DCT-
II). Problems of this type are compressed sensing problems, for which the sensing
matrix A ∈ RM×N is formed by selecting M rows of the discrete cosine transform
matrix. The goal of the problem is to recover a K-sparse signal of length N . The
sparsity pattern, as well as the row sampling, are generated uniformly at random.
For the trials reported below, we choose N = 1000, N = 200, and K = 20. Recovery
was performed with regularization parameter µ = 0.04. The measurements were
contaminated with Gaussian noise of standard deviation σ = 0.01 before recovery.

The second problem category is once again a compressed sensing problem. How-
ever, this time we use a random Gaussian matrix – i.e. a matrix whose elements
are drawn from a Gaussian distribution with zero mean and unit variance. The
problem is to reconstruct a K-sparse signal from an MxN Gaussian matrix, with
N = 1000, M = 100, and K = 10. Recovery was performed with regularization pa-
rameter µ = 10. Measurements were contaminated with noise of standard deviation
σ = 0.01.

The final problem we consider is an ill conditioned deconvolution problems. The
goal of these problems is to recover a 20-sparse vector of length N from convolution
data. The sensing matrix for this application is of the form RC, where C denotes
the N -point cosine transform, and R is a diagonal matrix with Rii = i−0.7. The
fidelity parameter for this problem is µ = 0.002. Because deconvolution results are
highly sensitive to noise, the measurement were contaminated with random noise
with standard deviation σ = 10−5.

The CGIST algorithm is compared to FBS, TwIST, and FPC AS. The FBS algo-
rithm was performed using a constant time step equal to 1.9/ρ(ATA). Parameters
for the TwIST algorithm were chosen to be α = 1.9, and β = 3.9, which are simi-
lar to those suggested in [2, 3]. In the results displayed below, “CGIST” refers to
the partan accelerated algorithm 5, while “CGIST0” refers to the non-accelerated
version, algorithm 4. The results displayed below were created by generating 100
random instances of each problem type, and averaging results over all trials.

Note that the FBS and TwIST algorithms require knowledge of the spectrum of
A in order to choose a stable stepsize. For this reason, FBS and TwIST require a
setup phase in which the eigenvalues of A are pre-computed. This setup phase is
frequently much more costly than solving the underlying L1 minimization. However,
this setup phase can in some situations be precomputed and stored for later use,
or amortized over the cost of many similar L1 minimizations. For this reason, we
do not report this setup time in the results below.
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Convergence curves for all three problems are displayed in Figure 2. The hor-
izontal axis in these curves displays the total number of matrix multiplications
needed to attain each level of convergence. By “Matrix multiplications,” we mean
the number of times the algorithm has evaluated the linear sensing operator, A,
or its transpose. We have found that for all algorithms considered here, virtually
all of the computation time is consumed by evaluating the sensing operator. For
this reason, the number of matrix multiplications is an accurate way of comparing
the performance of each method. Furthermore, matrix multiplications provide a
measure of performance that is independent of the computer, operating system,
and programming language used.

For all three problems considered here, the CGIST and CGIST0 algorithms out
performed the other methods considered. The performance advantage of CGIST
was particularly apparent for problems involving the DCT. For the other two prob-
lems, however, there is another algorithm with similar convergence properties. For
Gaussian matrices, the performance gap between CGIST and TwIST did not be-
come prominent until high levels of precision were attained. Also, for the decon-
volution problem, FPC AS is almost as efficient as CGIST. It was found that the
CGIST and CGIST0 methods exhibit similar performance until relatively high lev-
els of precision are attained (e.g. < 1% relative error). However, once a certain level
of precision is attained, CGIST accelerates substantially and outperforms CGIST0.

The compressed sensing problem is investigated further in Figure 3. Here,
the number of iterations needed to attain a relative error below 10−6 is plotted
for various sparsity levels. It can be seen that for this problem, the high-order
CGIST/CGIST0 and FPC AS methods consistently outperform the lower order
methods. As the number of non-zero elements increases, the CGIST computing
time seems to scale slightly better than the other high-order schemes. For large
numbers of non-zeros, the FBS method was by far the slowest of the schemes.

For a quantitative performance comparison, Table 1 displays the number of ma-
trix multiplications needed to reduce the relative error below 10−6 for a variety of
problems.



14 TOM GOLDSTEIN AND SIMON SETZER

Figure 2. Convergence curves for the FBS, TwIST, CGIST0,
CGIST, and FPC AS methods. The vertical axis measures the log
error, defined as log(‖uk − u∗‖2). Convergence curves are shown
for the DCT (top), Gaussian (center), and deconvolution (bottom)
problems.
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Figure 3. Number of iterations required to reach 10−6 relative
error as a function of sparsity, for the compressed sensing problem.
For the compressed sensing problem, it was found that CGIST
method remained the most efficient as the number of non-zeros
increased.
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Table 1. Matrix multiplications needed to attain 10−6 relative error

Algorithm DCT Gaussian Deconvolution
FBS 126.9 824.8 1980.2

TwIST 131.2 209.8 1168.0
FPC AS 47.9 316.3 182.5
CGIST0 48.1 121.8 226.8
CGIST 38.0 100.4 144.2

7. Conclusion

We introduce a new set of methods for solving L1-regularized minimization prob-
lems. Unlike conventional first order methods, the newly proposed methods use high
order information to achieve extremely fast convergence rates. Because conjugate-
gradient acceleration is used, the methods also exploit the low-rank properties of
sparse vectors, allowing L1 problems to be solved exactly in finitely many steps.
The proposed schemes are compared to several other methods, demonstrating the
efficiency of the high-order approach.
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