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Abstract. The Bregman method is utilized to quantitatively improve the simultaneous reconstruction 

of absorption and scattering coefficients for both Jacobian-based and gradient-based methods in 

quantitative photoacoustic tomography with multiple optical excitations. It is the synergistic 

combination of Bregman method and the total-variation regularization in achieving the desired 

quantitative improvement. In particular, the Bregman method is directly applied to the minimization of 

the nonlinear and nonconvex functional in the gradient-based method, which is efficiently solved via 

split Bregman method with limited-memory BFGS as inner loops. We show in simulations the 

feasibility of 3D simultaneous reconstruction. 

 

 

1. Introduction 

Diffuse optical tomography (DOT) (Arridge and Scotland 2009) allows the non-invasive mapping of 

absorption and scattering coefficients through boundary measures. It has great potential for functional 

imaging, such as brain and breast imaging. In addition, it can provide accurate in vivo optical 

environment to optical molecular imaging for successful visualization of cellular and molecular 

activities. However, it remains extremely difficult to improve the DOT performance for more accurate 

and reliable quantification with higher resolution, due to the diffusive light after numerous scattering 

events. 

 

1.1. Quantitative photoacoustic tomography 

Photoacoustic tomography (PAT) (Wang 2009), a synergistic combination of ultrasound and optical 

imaging, has emerged recently as a potential multi-modality imaging for accurate quantification and 

high resolution. Through PAT, photoacoustic pressure can be spatially resolved through inversion of 

the acoustic wave, which has already found a wide range of in vivo applications. In quantitative PAT, 

the absorption coefficient can be further recovered from photoacoustic pressure, which is proportional 

to the product of absorption coefficient and optical energy density. 

Despite significant advances in PAT, the research for quantitative PAT (Cox et al 2005, Ripoll 

and Ntziachristos 2005, Yin et al 2007, Banerjee et al 2008, Cox et al 2009) is still preliminary, 

especially for simultaneous reconstruction of absorption and scattering coefficients. The difficulty 

originates both intrinsically and mathematically. 

• Physically, the simultaneous reconstruction of both parameters is non-unique in the traditional 

setting with single optical excitation. As a result, without precisely knowing the underlying 

scattering property, neither of absorption and scattering coefficients can be accurately 

reconstructed. Lately, the reconstruction uniqueness and stability was rigorously studied by 

Bal and Uhlmann (2010), who establishes the stability result when the object is illuminated 

with two excitations with additional geometric constraints or with d2 excitations without 

additional constraints. 

• Computationally, it is far from trivial to recover high-resolution scattering coefficient 

quantitatively as well as absorption coefficient. In (Gao and Zhao 2010), Bregman method 

was utilized to achieve and improve the reconstruction of both parameters in two dimensions 



(2D). However, it is challenging to extend the method to three dimensions (3D) since it is 

based on Jacobians, which impose significant requirement on both memory storage and 

computer speed. In this study, we shall develop the Bregman method for gradient-based 

reconstruction and show its computational feasibility in 3D. 

Let us start to formulate the quantitative PAT problem with the following notations: aµ for 

absorption coefficient, sµ for (reduced) scattering coefficient, k and N for the index and the number of 

variable pairs ),(: saX µµ= on the discretized mesh, i and sN for the index and the number of optical 

excitations, j and dN for the index and the number of measuring locations, iφ for optical energy 

density, jP for measuring functional acting on iφ , φµaY =: for the data (recovered through PAT or 

given as priors) with individual component ijy , and )(XF
�

for the composite of forward operator and 

measuring functional with individual component i
T
jP φ . Here, we assume the measures are specified 

for each variable pair, i.e., NNd = . Then quantitative PAT can be formulated as to minimize the 

difference between the model outcome and the data, ∑∑
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called data fidelity,  
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Due to the illposed nature of the inverse problem (1.1) or the noise in the data, the solution needs 

to be regularized and the data fidelity should be combined with appropriate regularization, which will 

be introduced later. 

 

1.2. linearized Jacobian-based method 

A popular approach for solving (1.1) is to treat it as a nonlinear least-square problem that can be 

solved with many standard optimization techniques (Nocedal and Wright 1999), among which 

Levenberg-Marquardt method (LM) is perhaps the most commonly used one, i.e., the Gauss-Newton 

method with L2 regularization. We shall describe LM briefly as follow. 

Given the initial guess 0X , we linearize the vector-valued function F
�

with the Jacobian ][: ijx FJ
k

�
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which is indeed a good approximation when 0X is close to the true value. As a result, (1.1) is 

transformed to the convex problem 
2
200 ||))(()(||minarg XFYXXJX

X

�

−−= δδ
δ

.        (1.3) 

The optimal condition of (1.3) implies that ))(()( 0XFYJXJJ
TT

�

−=δ . However, the solution Xδ  

may not be unique due to the ill-conditioning of JJ T . Therefore L2 regularization 2
22 |||| Xδλ is added 

to improve the conditioning, which can also be regarded as to improve the approximation of Hessian. 

In practice, (1.2) can be solved iteratively for more accurate approximation of (1.1). Hence, the 

iterative Jacobian-based method via LM is 
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which can be solved through optimal condition ))(()( ,2 n
T

n
T XFYJXIJJ

�

−=+ δλ with adaptive 

regularization parameter n,2λ . 

The advantages of Jacobian-based method include: 



• it is simple to implement and many existing optimization techniques can be utilized to 

improve the convex problem (1.3) or (1.4), such as Bregman method discussed below; 

• it shares the typical quadratic convergence from Newton method when nX is close to the true 

value. 

The concerns are: 

• the computation of Jacobian J can be very expensive, especially in the context of this study as 

explained in Appendix A; 

• the explicit form of J leads to memory issues and the inversion of dense matrix JJ T is 

expensive, which makes the 3D generalization difficult. 

 

1.3. Nonlinear gradient-based method 

Alternatively, (1.1) can also be treated as directly minimizing nonlinear functional f , for example, 

solved by Quasi-Newton method (Nocedal and Wright 1999), so that the computation of Jacobian J is 

avoided and only the gradient ][: ff
kx

∂=∇  needs to be computed. Compared with the Jacobian-based 

method, although the gradient-based method in general has superlinear convergence, it is efficient in 

computation speed and economic in memory storage, which suits the large-scale 3D problem. 

Similarly as in the previous situation, regularization should be incorporated into the algorithm to 

reduce the ill-conditioning. In the case with L2 regularization, a counterpart of iterative scheme for the 

gradient-based method as (1.4) for the Jacobian-based method is 
2
2,21 ||||)(minarg nn

X
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where n,2λ is decreasing during iterations so that the regularized solution converges to the true solution. 

A simple update strategy is 2/,21,2 nn λλ =+ . 

A popular Quasi-Newton method for solving (1.5) is limited-memory BFGS method (L-BFGS) 

with details given in Appendix B. 

 

1.4. Regularizations 

The appropriate choice of regularizations depends on a priori knowledge of X . Although L2 

regularization is a natural choice for its simplicity, it is by no means the optimal strategy. For example, 

when X is sparse, it is well known that L1 regularization is more efficient than L2 regularization in 

reconstructing the sparse solution (Gao and Zhao 2010a, b).  

In this study, piecewise constants are used to approximate optical parameters, which is genuinely 

appropriate in most situations. For piecewise constant approximation, it is well known that the 

regularization through bounded total variation (TV) overperforms L2 regularization. TV (Rudin et al 

1992) has been studied over decades in image processing and has evolved into a fruitful field with 

many effective and efficient algorithms. With TV, the edges or the shape are well preserved while the 

artifacts are significantly penalized. Moreover, the power of TV, in terms of improving both accuracy 

and efficiency, can be significantly enhanced when combined with Bregman methods as introduced 

later. 

Our problem is unique in the sense that TV needs to be defined on unstructured grids. In (Gao and 

Zhao 2010b), one innovation is to use the coarea formula of TV to acquire the following simple and 

exact TV on 2D triangular grids or 3D tetrahedral grids 
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in which the summation is with respect to uniquely-ordered internal edges of elements with the 

total eN , kl is the length or the area of the k th edge, lkx , and rkx , are two adjacent variables sharing 



the k th edge. Notice that we assume the grid is conforming, i.e., each internal edge is shared by two 

elements. In matrix form on the discretized grid, TV is simply  

|||||| MXX TV = ,      (1.7) 

whereM is a sparse NNe × matrix with kl ’s as entries and || ⋅ is the conventional L1 norm. 

Similarly, to account for mesh non-uniformity, we use the following weighted L2 norm 
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in which the summation is with respect to elements with the total N , kw is the area or the volume of 

the k th element, and kx is the variable on the k th element. In another form, 

WXXX
T=2

2|||| ,      (1.9) 

where W is a diagonal matrix with kw ’s as entries. 

Notice that, since there are two parameters to be recovered in quantitative PAT, each parameter 

of aµ and sµ has a counterpart of (1.7) or (1.9) in the minimization problem we are considering. 

 

1.5. Bregman method 
To be consistent with conventional notations, now we consider the minimization problem with the 

data fidelity )(XH and the regularization )(XR , i.e., 

 )()(minarg XRXHX
X

+= .    (1.10) 

The motivation for the Bregman method comes from a long-standing denoising problem via 

Rudin-Osher-Fatemi (ROF) model (Rudin et al 1992), which is one of the most successful and popular 

models, yet can be further improved in terms of both accuracy and computational efficiency. ROF is 

defined as follow 

TV
X

XYXX ||||||||minarg 2
2 λ+−= ,     (1.11) 

in which the first term is the data fidelity with the noisy data Y and the second term is TV 

regularization with parameterλ . Here the use of TV is essential for the recovery of images with edges, 

which would be impossible for the regularization ∫ ∇ pX || with any 1>p  . 

However, the major weakness of ROF (1.11) is that the contrast can not be fully recovered. One 

interesting illustrative example given by Meyer (2001) is as follow. Let ),(),( yxyxY Rαχ= , 

where ),( yxRχ is a typical support function in 2D such that 1),( =yxRχ  if Ryx ≤+ 2/122
)( , 

0),( =yxRχ otherwise. It was shown that through ROF (1.11), when λα ≥R , RRX χλα )/( −= ; 

otherwise, 0=X . Notice that the loss of contrast R/λ is independent of the true valueα . 

Inspired by the improvement of geometric processing via normal maps, the following two-stage 

iterative TV regularization procedure was proposed by Osher et al (2005) with 00 =v  
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That is, the residual nv computed through ROF should be added back to the dataY to be corrected in 

the next ROF. Surprisingly, for the above simple example, when λα ≥R , the loss of contrast can be 

exactly recovered through (1.12) in two iterations! When λα <R , there exists the 

smallest nwith λα ≥Rn , such that nkX k <= ,0 , Rn RX χλα )/( −= and nkX Rk >= ,αχ . From this, 

one can tell that (1.12) has a strongly nonlinear feature in the sense that a sequence of restored images, 

all of which are totally black, can go from “nothing” to the true result in two steps! In general cases, 

this add-residual-back algorithm (1.12) can recover the lost contrast from (1.11) to a large degree. 



One notable difference in (1.12) is thatλ is fixed, while it may be adaptively adjusted in LM (1.4). 

However, if TVX |||| were replaced by 2
2|||| X , the algorithm (1.12) coincides with LM (with the fixed 

regularization parameter) as explained in Appendix C. 

In (Osher et al 2005), it was also shown that (1.12) is a special case of the following general 

iterative regularization procedure, which will be observed shortly 
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where D is the Bregman distance defined by >−<−−= nnnn XXPXRXRXXD ,)()(:),( with a 

subgradient nP . This is why the algorithm is named after Bregman. In an simpler form, Bregman 

iterations is 
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The well-definedness and the convergence of (1.14) were proved when )(XR is convex and 

2
2||||)( YAXXH −=  with A as a bounded linear operator whose kernel does not include the space of 

continuous functions. 

With this specific least-square form ofH , )( YAXAH
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. Hence, (1.14) is transformed to the following add-

residual-back form 
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Notice that, when TVXXR ||||)( λ= and IA = , (1.15) is exactly (1.12). 

In (Bachmayr and Burger 2009), the Bregman method was analyzed for the nonconvex problem 

with nonlinear dependence, such as )(XF
�

in (1.1). However, it is not clear how the required 

nonlinearity condition can be satisfied in quantitative PAT. 

In the following, we will mainly show the superiority of iterative TV regularization procedure 

through Bregman method, i.e., (1.14) or (1.15), from numerical and practical aspects. The theoretical 

justifications will be studied in the future. 

Last, it is worthy of mentioning that the similar Bregman ideas can be used in designing a 

computationally efficient solver of TV-regularized minimization problem, such as the one appearing in 

(1.15). This is what so called split Bregman method (Goldstein and Osher 2009), which is 

implemented in this study with necessary modifications. The details of the method are given in 

Appendix E. 

 

2. Algorithms 

 

2.1. Bregman method for Jacobian-based method 

 

2.1.1. L2 regularization. As discussed in section 1.2, a popular solution strategy for quantitative PAT 

is via iterative linearizations, in each step of which we first compute the Jacobian J and then minimize 

a convex regularized least-square problem. The computation of J can be found in Appendix A. The 

minimization with L2 regularization can be solved similarly as (1.4). However, the algorithm we use is 

slightly different from (1.4) considering both efficiency and robustness. 

In the elaborated version of (1.4), we first consider only the linearization part of the original 

problem (1.1) via (1.2) to arrive at 
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Then L2 regularization is applied to the minimization in (2.1) to deal with its illposed nature. To 

simplify the discussion, let )( nXJA = , Xu δ= and )( nXFYB
�

−= , that is we consider the problem 

2
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In the case of L2 regularization, (2.2) can be efficiently solved through 
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Notice that (2.3) is a Bregman formulation, however it is equivalent to LM in this case of L2 

regularization for reasons explained in Appendix C. The main difference is thatλ is fixed in (2.3). 

Comparing the new version (2.3) with the traditional version (1.4), the linearization and the 

regularization are enforced at the same time in (1.4); additionally, the regularization parameterλ  is 

decreased in order for the regularized solution to converge to the true solution. However, (1.4) has two 

drawbacks.  

• First, in early iterations, the large value ofλmay prevent the computed solution 1+nX as a close 

approximation of the model, i.e., the data fidelity. Therefore the convergence of algorithm is 

slow. As a result the computation burden is significantly increased since not only more 

minimizations need to be solved, but also more Jacobian J needs to be computed, which is 

very expensive in quantitative PAT, as explained in Appendix A.  

• Second, asλ is decreasing, it may happen in latter iterations that the regularization is too weak 

to be able to regularize the solution, which causes the stability issue.  

In contrast, the linearization and the regularization are performed independently through (2.2) and 

(2.3) in the improved version. 

• First, each linearization (2.2) is solved to the extreme so that 1+nX is indeed a good 

approximation of the model. Notice that the minimization in (2.3) is much cheaper than 

computation of J .  

• Second, λ is fixed in (2.3) so that the algorithm is robust. 

  

2.1.2. TV regularization. Despite its popularity, L2 regularization is by no means the optimal one 

overall. As an alternative, TV regularization (Rudin et al 1992) has been studied over decades and its 

superiority over L2 regularization in recovering images with sharp edges and less artifacts has been 

well recognized. Despite its existing success and popularity, TV is defect in the sense that the contrast 

cannot be fully recovered as analyzed in detail (Meyer 2010). To solve this loss-of-contrast issue, 

Bregman method with TV regularization was proposed (Osher et al 2005) and it has been proved to be 

capable of improving the restored contrast quantitatively. The novel idea is to add the residual, i.e., the 

error made at the current iteration step, back to the data for the next iteration to be corrected. In the 

context of quantitative PAT, in contrast of (2.3) for L2-regularized problem, the Bregman method with 

TV regularization is as follow with 00 =v  
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That is, to solve the original problem (1.1), we first linearize the problem by (2.1) and solve the 

linearized subproblem by Bregman method with TV via (2.4) instead of L2 norm via (2.3). 

Notice that no similar equivalence between Bregman and LM exists for TV regularization. It is the 

synergistic combination of TV and Bregman method through (2.4) to achieve the desired quantitative 



improvement, which will be shown through simulations later. Actually, when TV were combined with 

LM, i.e., L2 norm were replaced by TV in (1.4), the common loss-of-contrast pitfall would occur (Gao 

and Zhao 2010) although the performance would be better than with L2 norm. 

On the other hand, TV problem is one of the most difficult optimizations to be solved 

computationally, which sometimes limits the interest of using TV in practice. Fortunately, besides its 

capability of improving quantitative accuracy with TV, Bregman method can also be used to design 

efficient algorithm to solve L1-type problems, including TV, what is so called split Bregman method 

(Goldstein and Osher 2009). Since the method is similar to what we have discussed, the technical 

details are given in Appendix E. 

 

2.1.3. Sensitivity scaling. Another computational challenge, which is quite different from 

abovementioned algorithms, is due to the significant difference between sensitivity of data to the 

absorption coefficient aµ and that to the scattering coefficient sµ . In the Jacobian-based method, this 

sensitivity difference is reflected through Jacobian J , which is explained in Appendix A. 

In order to balance the sensitivity, appropriate scaling needs to be introduced so that the 

simultaneous reconstruction of aµ and sµ is feasible. This can be done through the following 

NkJssJJ
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Here we use the same notations introduced in section 1.1. That is we scale J for each variable (column) 

by dividing the L2 norm of that variable (column) to get new Jacobian newJ , which has uniform 

magnitude across all variables. After the scaling of the Jacobian, all the previous algorithms still apply 

to the following instead of (2.1) 

 

SXXX

XFYXXJX

nnn

nn
new

X
n

/

||))(()(||minarg

11

2
21

++

+

+=

−−=

δ

δδ
δ

�

,  (2.6) 

where 1+nXδ is rescaled accordingly by the scaling vector ][ ksS = . 

 

2.1.4. Summary. With multiple optical excitations, the simultaneous reconstruction of absorption and 

scattering coefficients can be achieved through the aforementioned algorithms with proper sensitivity 

scaling, such as (2.5). The feasibility was first shown numerically in (Gao and Zhao 2010). The benefit 

of the Jacobian-based method is that the minimization problem (2.2) after the linearization commonly 

appears and many existing algorithms, such as TV and Bregman method, can be easily modified to 

potentially improve the performance. However, there are two major concerns for the Jacobian-based 

method (2.1), which make its practical use a challenge task from computational perspectives, 

especially in 3D quantitative PAT. 

• First, the computation of J requires solving forward model at least ds NN +  times. In 

quantitative PAT, dN is roughly on the same order as N , the number of variables to be 

recovered. Therefore, the computation of J is very expensive, even in the case with diffusion 

approximation as forward model. See Appendix A for detailed explanations.  

• Second, J is dense and overdetermined, which imposes significant challenge for memory 

storage. Besides, the computation involving J is time-consuming. 

 

2.2. Bregman method for gradient-based method 

The aforementioned limitation of the Jacobian-based method motivates the study of the gradient-based 

method. Here the computation of J is not necessary, hence the storage is not an issue any more and the 

generalization to 3D is possible. Rather we compute the gradient instead of Jacobian and each one 



requires the computation of forward solver only sN2 times, which saves a lot on computational time 

since sN has single digit or at most the order of tens. 

The main purpose of this paper is to study the gradient-based method with TV and Bregman 

method to reach the similar quantitative improvement as Jacobian-based method. In the following, we 

will develop an effective and efficient Bregman algorithm for directly solving nonlinear problem (1.1), 

and the improvement is demonstrated through numerical tests in section 3. 

 

2.2.1. Formulation. As discussed previously, the minimization (1.1) needs to be regularized due to its 

ill-posed nature or the noise in the data, which can be realized through L2 regularization (1.5). For the 

similar reasons explained in section 2.1.1., we actually solve the following Bregman version of (1.5) 
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which is adapted from the original form of Bregman method (1.14) with f defined in (1.1). Notice that 

the regularization parameter λ is fixed in (2.7) in contrast of the decreasing λ in (1.5), which is a 

unique feature of Bregman method. The convergence and stability has been studied (Bachmayr and 

Burger 2009) that, with certain nonlinear condition on F
�

, the regularized solution of (2.7) with a 

fixedλ  converges. Although it is not clear how the condition can be satisfied in our situation, the 

improvement can be observed in simulations as in section 3. In practice, largeλ is preferred for both 

the stability and the performance of the algorithm. 

Similarly, with TV regularization, the Bregman method is 
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We shall compare (2.7) and (2.8) though simulations in section 3, which will show once again that it is 

the synergetic combination of TV and Bregman to achieve the desirable quantitative improvement in 

the gradient-based method. 

 

2.2.2. Algorithms. The solution to the following nonlinear minimization problem with differentiable 

function )(Xh  serves as a building block to either of (2.7) and (2.8) 

)(minarg XhX
X

= .        (2.9) 

Here we choose the limited-memory BFGS (L-BFGS) for solving (2-9), which is suitable for large-

scale optimization problem. For the flow of the presentation, the technical details are given in 

Appendix B. Notice that the proper scaling is again introduced in Appendix B in order for the 

simultaneous reconstruction of absorption and scattering coefficients similar as in section 2.1.3. 

For (2.7) with L2 regularization, ><−+= XPXXfXh n ,||||)(:)( 2
2λ is differentiable and the 

algorithm for (2.9) can be directly applied to subproblems of (2.7). For (2.8) with TV regularization, 

the L-BFGS solution for (2.9) can be incorporated in the split Bregman method as a solver of the 

subproblems appearing in (E.7). 

Regarding the implementation difference, the Bregman method is used to solve the linearized 

subproblems (2.1) in the Jacobian-based method, while it is utilized directly for solving the original 

nonlinear problem (1.1) in the gradient-based method. 

 

3. Results 
The comparison of the Bregman method with LM have been done previously (Gao and Zhao 2010) for 

the Jacobian-based method with the conclusion that Bregman method gives better quantitative results 



than LM with less artifacts in the case of TV regularization. The similar conclusion exists for the 

gradient-based method, however will not be presented here. 

In the following, we will mainly compare “L2”, the Bregman method with L2 regularization, and, 

“TV”, the Bregman method with TV regularization, for both Jacobian-based and gradient-based 

methods. Meanwhile, we will show the feasibility of 3D reconstruction using gradient-based method. 

Diffusion approximation is used as forward model for simplicity with numerical solution by finite 

element method (Appendix A). Light density iφ is approximated piecewise-linearly and the 

variable ),( saX µµ= is approximated piecewise-constantly. The mesh for data generation is different 

from the one for reconstruction to avoid inverse crime. 5% Gaussian noise is added to the synthetic 

data. The initial guess 0X for reconstructions is the same as the true background. Notice that the 

reconstructions with wrong background value as initial guesses have been reported previously (Gao 

and Zhao 2010), which shows that the Bregman method is not highly sensitive to the choice of initial 

guesses. In all figures and tables, the recovered value is the contrast with respect to the true 

background. 

 

3.1. 2D results 

The 2D simulations are performed on a circular phantom (table 1). Four optical excitations are 

simulated, i.e., the homogenous light sources are assigned at the boundary of each quadrant 

successively. 

First, we compare “L2” (2.3) and “TV” (2.4) for the Jacobian-based method. Notice that “L2” is 

equivalent to LM with L2 regularization as explained in Appendix C. The reconstruction results are 

plotted in figure 1 and the recovered mean contrast of inclusions with respect to the true background is 

summarized in table 1. From the results, “TV” gives better quantitative results than “L2” (or LM) with 

less artifacts. Therefore, it is the synergistic combination of TV and Bregman method through (2.4) to 

achieve the desired quantitative improvement. 

Next, we compare “L2” (2.7) and “TV” (2.8) for the gradient-based method. The reconstruction 

results are plotted in figure 2 and the recovered mean contrast of inclusions with respect to the true 

background is summarized in table 1. Once again, the simulations confirm the quantitative 

improvement through the synergistic combination of TV and Bregman method via (2.8). Notably, with 

“TV”, the inclusions are visually separable as in figure 2 in contrast of smoothed inclusions with “L2”. 

For the completeness, we will describe the stopping criterions briefly in the following. 

In the Jacobian-base method, the stopping criterion for the outer loop, i.e., the linearization 

through (2.1), is by the mean of ratio difference between successive iterations, i.e., 

01.0||/)(|| 2
1 <−+ nnn

XXX , and it takes around ten iterations for the presented tests. For inner loop 

(2.3) or (2.4) for solving each step in (2.1), the number of iterations is fixed empirically for the reasons 

explained in (Osher et al 2005). That is without interference the computed solution would eventually 

converge to “the true solution” defined by the data with noise. Since no priors are assumed on the 

noise level, we use large regularization parameter with a fixed number of iterations. In this study, 3 

iterations are used with 1=λ . Besides, in “TV”, there is another loop for solving TV-regularized 

problems in (2.4) via split Bregman method (Appendix E), for which the algorithm takes around 10 

iterations with the similar abovementioned incremental change as the stop criterion. 

Next we comment on the gradient-base method. For “L2”, the outer loop, i.e., the Bregman 

iteration (2.7), is with fixed number of iterations starting with a large regularization parameter for the 

similar reason explained above. In this study, 6 iterations are used with 01.0=λ . In the inner loop for 

solving the nonlinear optimization problem in (2.7) via L-BFGS (Appendix B), 01.0|||| 2<∇h is used 

as the stopping criterion and it takes around 30 iterations. For “TV”, there are three major loops 

instead of two: it is similar for the outer loop (2.8), i.e., 6 iterations with 1=λ ; in the intermediate loop 

for solving TV-regularized problems in (2.8) via split Bregman method (Appendix E), the algorithm 

takes around 10 iterations with the same aforementioned relative change as the stop criterion; in the 



inner loop for the nonlinear minimization subproblems in Split Bregman method, L-BFGS is used 

with the same stopping criterion as in “L2” and it takes around 30 iterations. 

Regarding the computation efficiency in this study, it is clear that gradient-based method saves a 

lot of memory due to the circumvention of Jacobian. On the other hand, gradient-based method is 

faster than Jacobian-based method, which can be justified as follow. Take L2-regularized algorithms 

in 2D for example. In our simulations, each computation of Jacobian takes thousands of number of 

computing forward solver while each computation of gradient takes eight computations of forward 

solver. Although the total number of computing the gradient is about ten times of that of computing 

the Jacobian, the gradient-based method is still be able to save the computation time by at least 10 

times. This gain due to the computation of the gradient instead of the Jacobian would be further 

announced in 3D. Besides, the minimization (L-BFGS) in the gradient-based method only involves 

sums or multiplications of vectors while it is expensive to perform operations of the Jacobian in the 

Jacobian-based method, which is dense and overdetermined. As a sacrifice, it seems that the gradient-

based method does not give as accurate results as the Jacobian-based method both visually and 

quantitatively. 

 

Table 1. 2D reconstruction results. The recorded value ),( sa µµ are the contrast with respect to the true 

background value (0.01, 1). The circular phantom of diameter 40 is centered at (0, 0) with nine 3-

diameter circular inclusions centered at (x, y). The length unit is in millimeter. 

Inclusion (x, y) True Value 
Jacobian-based Method Gradient-based Method 

L2 TV L2 TV 

1 (-16, 0) (2, 1) (1.9, 1.1) (2.0, 1.0) (2.0, 1.2) (2.0, 0.9) 

2 (-12, 0) (2, 1) (1.9, 1.1) (2.0, 1.0) (2.0, 1.1) (2.0, 0.9) 

3 (-8, 0) (2, 1) (1.9, 1.0) (2.0, 1.0) (2.0, 1.0) (2.0, 1.0) 

4  (-4, 0) (2, 1) (1.9, 0.9) (2.0, 1.0) (2.0, 1.0) (2.0, 1.0) 

5 (0, 0) (2, 2) (1.9, 1.8) (2.0, 2.3) (2.1, 1.7) (2.0, 2.0) 

6 (4, 0) (1, 2) (1.0, 2.0) (1.0, 2.5) (1.0, 1.8) (1.0, 2.3) 

7 (8, 0) (1, 2) (1.0, 2.1) (1.0, 2.1) (1.0, 2.1) (1.0, 2.4) 

8 (12, 0) (1, 2) (1.0, 1.7) (1.0, 2.0) (1.0, 1.8) (1.0, 2.0) 

9 (16, 0) (1, 2) (1.0, 2.2) (1.0, 2.1) (1.1, 1.3) (1.1, 1.5) 

 

 

 
 

Figure 1. 2D reconstruction results from Bregman method for Jacobian-based method. 



 

 
 

Figure 2. 2D reconstruction results from Bregman method for gradient-based method. 

 

3.2. 3D results 

The main purpose here is to show the feasibility of 3D quantitative PAT. In this setting, since it is 

beyond our ability to run Jacobian-based simulations on a desktop computer due to its memory 

requirement, we will only show the results with gradient-based method. 

The 3D simulations are performed on a cylindrical phantom (table 2). Six optical excitations are 

simulated, i.e., two homogenous excitations are simulated from the top and the bottom, and four 

homogenous excitations, similar as in 2D, surround the cylinder with each one covering each quadrant 

with respect to transverse plane. 

Here we compare “L2” (2.7) and “TV” (2.8) for the gradient-based method. The reconstruction 

results are plotted in figure 3 and the recovered mean contrast of inclusions with respect to the true 

background is summarized in table 2. The conclusion is consistent with both theory and previous 

simulations. That is “TV”, Bregman method with TV regularization, is quantitatively better than “L2”. 

The 3D reconstruction mesh we use contains approximately 25000 elements and 5000 nodes, and 

the variables we need to recover are roughly 50000. On a Desktop computer with Intel Core 2 Duo 

E6850 3.0GHz CPU, with “TV” for the gradient-based method, the computation takes one to two 

hours in 3D in contrast of minutes in 2D on MATLAB as the simulation platform. On the other hand, 

the computational time for “L2” is around one tenth of that of “TV”, since solving “TV” brings extra 

cost through split Bregman method, each iteration of which is equivalent of solving a “L2” problem. 

 

Table 2. 3D reconstruction results. The recorded value ),( sa µµ are the contrast with respect to the true 

background value (0.01, 1). The cylindrical phantom with diameter 40 and height 40 is centered at (0, 

0, 20) with ten 3-diameter spherical inclusions centered at (x, y, z). The length unit is in millimeter. 

Inclusion (x, y, z) True Value 
Gradient-based Method 

L2 TV 

1 (-16, 0, 28) (2, 1) (1.9, 1.2) (1.9, 1.1) 

2 (-12, 0, 28) (2, 1) (1.9, 1.1) (2.0, 1.0) 

3 (-8, 0, 28) (2, 1) (2.3, 1.0) (2.0, 1.0) 

4  (-4, 0, 28) (2, 1) (1.7, 1.0) (2.0, 1.0) 

5 (0, 0, 28) (2, 1) (1.8, 1.0) (2.0, 1.0) 

6 (0, 0, 12) (1, 2) (1.0, 1.5) (1.0, 1.7) 



7 (4, 0, 12) (1, 2) (1.1, 1.9) (1.0, 2.0) 

8 (8, 0, 12) (1, 2) (1.0, 2.2) (1.0, 2.1) 

9 (12, 0, 12) (1, 2) (1.1, 1.8) (1.0, 2.0) 

10 (16, 0, 12) (1, 2) (1.0, 1.7) (1.0, 1.7) 

 

 
Figure 3. 3D reconstruction results from Bregman method for gradient-based method. 
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Appendix A. Computation of Jacobian and gradient 
Let us first formulate the finite element method for diffusion approximation (DA) (Arridge 1999) 

before computing Jacobian and gradient. Here we consider the following DA as forward model with 

Robin boundary condition for each optical excitation iq , sNi ≤ , 

0/2

)(

=∂∂+

=+∇⋅∇−

nAD

qD a

φφ

φµφ
,      (A.1) 

whereD is the diffusion coefficient defined by )3/(1: sD µ= and A  is boundary constant specified by 

the medium. 

Let },{ pj Nj ≤ϕ be the piecewise-linear bases for φ and },{ Nkk ≤χ be the piecewise-constant 

bases for )],(:[ ,, kskakxX µµ== . Then (A.1) is discretized to the following linear system 

QF =φ ,              (A.2) 

with ∫∫ Ω∂Ω
++∇⋅∇= ADF ijijaijssaij 2/])([),( ϕϕϕϕµϕϕµµµ and ∫Ω= jj qQ ϕ . Differentiating 

(A.2) with respect to the variable kx , we have 

φ
φ

)(
kk x

F

x
F

∂
∂

−=
∂
∂

.      (A.3) 

Now let us compute the Jacobian by noticing that the measuring functional jP is a linear 

interpolation jkδ ofφ multiplied by ka,µ . That is the following via (A.3) 
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where jϕ is a adjoint solution for the j th detector, i.e, j
T

j PF 1)( −=ϕ . Here the second term of (A.4) 

only exists for ka,µ . Therefore, the data is much more sensitive to aµ than to sµ , and the proper scaling 

needs to be introduced in order for the simultaneous reconstruction of both parameters, such as (2.5). 

Next, let us compute ]/[: kxff ∂∂=∇ . 
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i

T
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1
)(
−=ϕ be the adjoint solution for the i th adjoint source. 

Using (A.3) and adjoint solution, (A.5) is simplified to 
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Similarly, the second term of (A.6) exists only for ka,µ . As a result, the special consideration is 

required in the algorithm for the simultaneous reconstruction of aµ and sµ , such as for L-BFGS in 

Appendix B. 

For comparison, the computation of the gradient via (A.6) requires solving linear system (A.2) 

sN2 times while the computation of the Jacobian via (A.4) requires ds NN + times. In quantitative 

PAT, since NNN ds ≈<< , the gradient is computationally much cheaper than the Jacobian.  

 

Appendix B. BFGS and L-BFGS 

For notation convenience, we use f to represent the sum of data fidelity and (differentiable) 

regularization. Notice that the following method requires the differentiability of f . In the case with 

TV regularization, although the method does not directly apply, it can be utilized as a solver of 

subproblems in Split Bregman method (Appendix E). The following description of BFGS is adapted 

from (Nocedal and Wright 1999) with necessary modifications for our purpose. 

BFGS is an iterative scheme to minimize f . At the current step nX , f is approximated 

quadratically as 

XBXXfXfXh n
TT

nnn δδδδ
2

1
)()( +∇+= ,    (B.1) 

in which nf∇ is the gradient at nX , nB is an positive symmetric definite matrix to mimic the Hessian 

that will be updated during iterations. From the optimal condition of (B.1), we have 

nnn fBX ∇−= −1δ .      (B.2) 

Then, we update nnnn XXX δα+=+1 , in which nα is the step length found through some line 

search methods. The backtracking line search with the Armijo condition is used in this study. 



Although Wolfe conditions may accelerate the algorithm, the extra computation of f∇ would be 

required. 

Next we discuss the update of 1+nB from nB . First, by the requirement that the gradient 

of 1+nh should match the gradient of f at both nX and 1+nX , one can derive the well-known secant 

equation nnn ysB =+1 , with nnn XXs −= +1: and nnn ffy ∇−∇= +1: . Then, 1+nB can be uniquely 

determined among all symmetric matrices satisfying secant equation through minimizing the 

difference between 1+nB and nB , for which the weighted Frobenius norm is used due to its simplicity. 

The similar approach to update nB can be used to update the inverse matrix 1: −= nn BH , which can 

be multiplied directly in (B.2) to get the search direction instead of through matrix inversion. Then 

with definitions T
nnnn syIV ρ−=: and n

T
nn sy/1:=ρ , we arrive at the following famous BFGS updating 

formula of 1+nH from nH   

T
nnnnn

T
nn ssVHVH ρ+=+1 .        (B.3) 

Despite its computation advantage, BFGS is still not applicable for large-scale computation due to 

the explicit form of nH . In L-BFGS, a modification of BFGS, nH does not appear explicitly and only a 

few vectors needs to stored. Briefly, the computation of nn fH ∇ for search direction nXδ through (B.2) 

and (B.3) can be regarded as an iterative process. In L-BFGS, this iterative procedure is truncated 

involving only the most recentm pairs of ),( ys instead of all pairs. This approximate computation of 

nn fH ∇ can be elegantly realized through a two-loop recursion algorithm, which involves only the 

multiplication of vectors. In this study, 5=m is fairly robust. 

Last but not the least, due to the sensitivity difference between absorption and scattering 

coefficient in quantitative PAT, that is f
aµ

∂ is much larger than f
sµ

∂ , the scattering coefficient sµ can 

not be recovered as well as the absorption coefficient aµ unless the appropriate scaling is taken into 

consideration. Here and in the following, f denotes only the data fidelity term. 

The idea is to balance f
aµ

∂ and f
sµ

∂ through weighting aµ and sµ to achieve simultaneous 

reconstruction of two parameters. The scaling goes as follow: 

• Step 1: Given 0X , compute 20,0 ||)(|| Xfw
aa µµ ∂= and 20,0 ||)(|| Xfw

ss µµ ∂= , and then scale 

regularization parameters by
aaa

ww
µµµ λλ ,0= and

sss
ww

µµµ λλ ,0= ; 

• Step 2: at each current step nX , first compute the weight ),(: ,, sa nnn www µµ= with 

2, ||)(|| nn Xfw
aa µµ ∂= and 2, ||)(|| nn Xfw

ss µµ ∂= , and then consider the weighted nonlinear 

optimization problem with nn
w
n XwX = , for which the corresponding modifications for L-

BFGS are kn
w
k sws =: and nk

w
k wyy /:= , 1,, −−= nmnk ⋯ . 

 

Appendix C. LM as a special case of Bregman method with L2 regularization 

Here we consider the following Jacobian-based Bregman method with L2 regularization with 00 =v  
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2
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nnn

n
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AXYvv

XvYAXX λ
.     (C.1) 

Claim: with 00 =X , (C.1) is equivalent to the following LM scheme 

2
2

2
21 ||||||)(||minarg XYXXAXX n

X
nn δδλ

δ
+−++=+ .    (C.2) 

Proof: First notice that (C.2) is equivalent to 



2
2

2
21 ||||||||minarg n

X
n XXYAXX −+−=+ λ .    (C.3) 

We therefore only need to prove the equivalence of (C.1) and (C.3), which is by induction. 

When 0=n , the equivalence is obvious. 

Suppose the statement is true for all nk ≤ , from the optimal condition of (C.3), we have 

)(1 k
T

kk AXYAXX −+= − λ , for all nk ≤ .     (C.4) 

Thus, 

n
T

n

k
k

T
n vAAXYAX λλ =−= ∑

=1

)( .      (C.5) 

The first equality is from the summation of (C.4) up to n  and the second equality is from the 

summation of the second equality of (C.1) up to n . 

Plug (C.5) into (C.3), we have 
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Therefore, we have shown the equivalence of Bregman method (C.1) and LM (C.2) in the case 

with L2 regularization. 

 

Appendix D. Solving L2-regularized minimization 

For the completeness, we shall describe the method for solving L2-regularized problem, which also 

serves as a build block for L1-type regularization in Split Bregman method (Appendix E). That is we 

consider the problem 
2
2

2
2 ||||||||minarg MuBAuu

u

λ+−= ,    (D.1) 

whereM comes from TV or weighted L2 norm and 2||.|| is understood as the usual non-weighted L2 

norm. From optimal condition, the solution of (D.1) is 

 

)()(
1

BAMMAAu
TTT −+= λ .     (D.2) 

(D.2) is efficient when (D.1) is overdetermined, which is usually the case in quantitative PAT. 

However, there are many other situations that the system is underdetermined, for which a more 

efficient solution than (D.2) can be derived as follow.  

First, notice that MM T
is symmetric positive definite so that a Cholesky factorization exists, i.e., 

LLMM TT = for a square matrix L . Next let Lux = and 1−=′ ALA , then (D.1) is transformed into 

]||||||||minarg[ 2
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1 xBxALu
x
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Therefore,  
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That is we invert IAA T λ+′′ instead of MMAA TT λ+ for each L2 minimization problem with a minor 

additional cost from Cholesky factorization, which can potentially speed up significantly for the 

underdetermined systems. 

 

Appendix E. Split Bregman method for TV-regularized minimization 



The problem we are considering is as follow: 

TV
X

XXHX ||||)(minarg λ+= .         (E.1) 

Due to the simplification of TV via coarea formulation (1.7), we are to minimize 

||)(minarg MXXHX
X

λ+= .          (E.2) 

The motivation of split Bregman method (Goldstein and Osher 2009) comes from two aspects: 

first the functional (E.2) is non-differentiable; second the solution of 1D problem 

||)(
2

1
min 2 xyx
x

λ+− can be explicitly computed through “the shrinkage”, i.e., 

 )0,|max(|
||

),( λλ −= y
y

y
yshrink .     (E.3) 

A natural way is to “split” the data fidelity term and the non-differentiable TV regularization. 

In the first step, we introduce the variable MXd =: to modify (E.3) into a constrained optimization 

problem, and then penalize the constraints through 

2
2

),(

||||
2

||)(minarg),( MXddXHdX
dX

−++=
α

λ ,    (E.4) 

whereα is the penalization parameter. As ∞→α , the solution of (E.4) goes to that of the original 

problem (E.2). Now, instead of increasingα , we equivalently apply the Bregman method with a fixed 

value forα  ( 1=α in this study) through a similar add-residual-back iterative two-stage algorithm 
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The minimization subproblems of (E.5) can be iteratively solved by splitting into the minimizations 

of X and d separately as 
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Notice that the second minimization of (E.6) can be solved efficiently through the component-wise 

shrinkage (E.3), i.e., )/,( 11 αλnnn vMXshrinkd −= ++ . 

For Jacobian-based approach, 2
2||||

2

1
)( YJXXH −= formally. From the optimal condition, 

)]([)( 1
1 nn

TTTT
n vdMYJMMJJX +++= −
+ αα  for the first minimization subproblem of (E.6). 

However, this may not be optimal when J is underdetermined, and we refer the readers to Appendix 

D for a discussion of the efficient solution method to L2 problem. 

In implementation, it is not necessary to compute the exact ),( 11 ++ nn dX  by solving (E.6) 

iteratively until the solution converges. The convergence, efficiency and robustness of the algorithm 

with only one iteration of (E.6) have been rigorously proven (Cai et al 2009) and also practically 

observed (Goldstein and Osher 2009). This suggests the following three-stage iterative split Bregman 

algorithm combining (E.5) and (E.6) for solving (E.2) 
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For gradient-based approach, )()( XfXH = . Similarly to (E.7), we have 
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The only difference in (E.8) from (E.7) is the first nonlinear minimization problem, which can be 

solved through the aforementioned L-BFGS method with proper scaling. Algorithm (E.8) with L-

BFGS is numerically robust, despite the lack of convergence proof, which will be studied in the 

future work. 
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