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Abstract

The vast majority of problems in image processing and computer
vision lead to non-convex minimization problems that possess local
minima, thus making it very difficult to obtain a global solution. In
this paper, we establish a method for solving a class of non-convex
vector-valued optimization problems by reformulating them as convex
problems that are equivalent in a way that is made precise. We pro-
vide detailed conditions under which the technique introduced in [14]
guarantees a solution of the original problem and then apply the gen-
eral framework to multi-phase image segmentation problems. More
precisely, we show that the multi-phase segmentation model of Vese
and Chan [32] and the piecewise constant Mumford-Shah model [21]
can be formulated as problems of this class. We provide several ex-
perimental results to demonstrate that our convex algorithm yields
approximate global solutions to these well known non-convex models.

1 Introduction

Energy minimization problems have become increasingly popular for im-
age processing and computer vision applications, including the models of
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Mumford-Shah [21] for image segmentation, Rudin-Osher-Fatemi [29] for im-
age restoration, and Horn-Schunck [15] for image registration. The basic un-
derlying principle is that minimizers of the energy functional correspond to
optimal configurations in the particular model. As a result, there has been
significant research focusing on minimization techniques for these types of
problems. The primary challenge is often a result of the non-convexity of the
energy functional, a common property of a number of widely used models.

In general, non-convex functionals are much more difficult to minimize
than convex functionals. An important reason is the fact that when a con-
vex function is minimized over a convex set, every locally optimal solution
is globally optimal. Moreover, first-order necessary conditions for optimality
turn out to be sufficient. As the noted optimizer Rockafellar is often quoted,
“the great watershed in optimization isn’t between linearity and nonlinear-
ity, but convexity and non-convexity.” [28] One of the earliest methods for
handling non-convex problems is the technique of LP-relaxation, in which a
0-1 integer program is replaced with the weaker constraint that each vari-
able belong to the interval [0, 1], hence resulting in a linear program whose
solution can be used to gain information about the solution to the original
integer program.

In the context of image processing, Chan et al. [10] introduced a relax-
ation method for globally solving the image segmentation problem in which
the image is partitioned into two regions, in part based on a result of Strang
[30] on continuous maximal flows. For more complicated optimization prob-
lems, however, one must first reformulate the problem before invoking a
relaxation technique. One such method is to increase the dimension of the
problem to remove the non-convexity, an idea often attributed to Ishikawa
[16] in the Markov Random Field setting. Pock et al. [24] provided the ana-
logue in the continuous setting and applied the technique to computer vision
applications. It turns out this is a particular case of a more general theory,
related to the concepts of Cartesian currents [13] and calibration theory [1]
in the calculus of variations.

Later, the work of Goldstein et al. [14] attempted to generalize the previ-
ous approach of [24] to the case in which the unknown is vector-valued rather
than scalar-valued. However, the extension to the vector-valued case is quite
non-trivial and the authors could not prove an exact correspondence between
the original problem and the embedded higher-dimensional convex formula-
tion. In this work, we state and prove several conditions that are sufficient
to guarantee the original non-convex problem can be solved globally. While
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the conditions do not hold in the general case, this provides a certificate of
optimality that can be quickly verified for a given application.

In this paper, we focus on two particular applications, both of which are
multi-phase image segmentation problems, which was our original motivation
for studying this class of problems. First, we show that the multi-phase
model of Vese and Chan [32] is a direct application of our general framework
and demonstrate the effectiveness of our approach. Next, we show that by
introducing variables and enforcing constraints via an augmented Lagrangian
method, the piecewise constant Mumford-Shah (PCMS) model [21] can be
posed as a vector-valued minimization problem in the required form. In this
case, it depends on the specific image whether the method produces a global
minimizer, which shows a limitation of the general framework. Nevertheless,
this provides an important method that adds to the vast literature of convex
relaxation approaches [9, 33, 17, 6], none of which can guarantee a global
minimizer to PCMS in all cases.

This paper is organized as follows. In Section 2, we describe the class
of non-convex problems we will consider and prove conditions under which
these problems can be globally solved using a convex formulation. Then, in
Section 3, we give the details of an efficient algorithm to solve the convex
problem that has well-known convergence results. We apply our method
and algorithm to multi-phase image segmentation problems in Section 4,
establishing some important new results. Finally, in Section 5, we give some
concluding remarks.

2 General Framework

In this section, we describe a method to formulate a class of non-convex opti-
mization problems as equivalent convex optimization problems. Our method
closely follows the work of Goldstein et al. [14], which generalizes previous
approaches [16, 24] to the case in which the unknown is vector-valued rather
than scalar-valued. In short, the idea is to embed the optimization problem
into a higher dimensional space. However, significant care is needed to pre-
serve the equivalence between solutions of the embedded problem and of the
original problem. Indeed, the main contribution of our work is to provide
the technical conditions required for the reformulation and to establish the
equivalence rigorously.
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The optimization problem we consider is of the form

min
−→u

E(−→u ) :=
m∑

i=1

∫

Ω

|∇ui| dx+

∫

Ω

ρ(x,−→u (x)) dx, (1)

where −→u = (u1, . . . , um) : Ω → Γ := {0, 1, . . . , N1} × · · · × {0, 1, . . . , Nm}.
In other words, the unknown is a function −→u = (u1, . . . , um) defined on a
continuous domain Ω ⊂ Rd, and each of its components ui takes values in the
discrete set {0, 1, . . . , Ni}. In fact, we could take the co-domain of ui to be
any totally ordered finite set and choose consecutive non-negative integer sets
beginning at 0 simply for ease of presentation. We assume that the function
ρ : Ω×Rm → R is bounded from below, so that without loss of generality we
may assume that ρ is non-negative by adding a constant to E if necessary.
However, we make no other assumptions on ρ; in particular, ρ may be non-
convex. As was mentioned in Section 1, a wide variety of problems arising
in image processing and computer vision can be written in the form (1); see
Section 4 for specific applications to image segmentation.

Let us begin to describe the reformulation procedure. To embed (1) into
a higher dimensional space, we introduce the function

1{−→u (x)�−→γ } := 1{u1≥γ1,...,um≥γm}(x,
−→γ ) =

{
1 if u1 ≥ γ1, . . . , um ≥ γm,

0 otherwise.
(2)

We call such a function a box function, since for fixed x ∈ Ω, the set of
points −→γ in the non-negative orthant of Rm where 1{−→u �−→γ } is equal to 1
is a hypercube. We call the point −→u the principal vertex, which is on the
opposite corner of the hypercube from the origin. This is a multi-dimensional
generalization of what is often called a super-level set function in the case
m = 1. It should be clear that there is a one-to-one correspondence between
−→u and its associated box function. In particular, we may use the formula

ui(x) =

Ni∑

ℓ=1

1{−→u (x)�−→γ }(x, ℓ
−→ei )

to recover −→u from the box function, where −→ei ∈ Rm denotes the ith standard
basis vector.

To study properties of box functions more thoroughly, we introduce the
set

Γ̃ := {0, . . . , N1 + 1} × · · · × {0, . . . , Nm + 1},
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which is simply an augmented version of Γ, the co-domain of −→u . We use
this set in order to deal with boundary conditions, and we will work with
functions φ defined on Ω× Γ̃. Let the forward difference operators be defined
by

(Diφ)(x,−→γ ) =

{
0 if γi = Ni + 1,

φ(x,−→γ + −→ei ) − φ(x,−→γ ) otherwise.
(3)

Finally, we will often work with the set

C =
{
φ : Ω × Γ̃ → [0, 1] : φ(x,

−→
0 ) = 1 and

φ(x,−→γ ) = 0 whenever γi = Ni + 1 for some i} .
(4)

Note that box functions with principal vertex −→u : Ω → Γ belong to C.
We point out a few properties of box functions in order to rewrite (1) in

terms of the box function (2). First, observe that

1{ui≥γi} = 1{−→u �−→γ }(x, γi
−→ei )

for each i = 1, . . . , m. Thus, by a discrete version of the coarea formula [12],

∫

Ω

|∇ui| dx =

Ni∑

ℓ=1

∫

Ω

∣∣∇1{−→u �ℓ−→ei}

∣∣ dx. (5)

Next, we examine the result when difference operators are applied to 1{−→u �−→γ }.
We see that the mth order mixed difference Dm

1,...,m := Dm · · ·D1 maps every
−→γ ∈ Γ to 0 except the principal vertex, which gets mapped to (−1)m, i.e.,

(Dm
1,...,m1{−→u �−→γ })(x,

−→γ ) =

{
(−1)m if −→γ = −→u ,

0 otherwise.

We illustrate this difference operator in Figure 1.
Consequently,

(−1)m
∑

−→γ ∈Γ

ρ(x,−→γ )Dm
1,...,m1{−→u �−→γ } = ρ(x,−→u (x)),

and so we can rewrite problem (1), using the identities (5) and (2), as

min
φ=1{−→u �−→γ }

F (φ), (6)
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(a) (b)

Figure 1: An illustration of the difference operator Dm
1,...,m when m = 2

applied to binary functions. In (a), we see that if φ is a box function, then
the support of Dm

1,...,mφ is a single point (the principal vertex). On the other
hand, in (b) we see that the support of Dm

1,...,mφ will include multiple points
for functions φ that are not box functions.

where

F (φ) :=

m∑

i=1

Ni∑

ℓ=1

∫

Ω

|∇φ(x, ℓ−→ei )| dx+ (−1)m
∑

−→γ ∈Γ

∫

Ω

ρ(x,−→γ )Dm
1,...,mφ dx. (7)

That is, (1) is equivalent to an optimization problem over box functions
defined on a space with an additional m dimensions. Moreover, while the
original objective function was possibly non-convex in −→u (due to the function
ρ), the reformulated objective function is convex in φ = 1{−→u �−→γ }. However,
the minimization is conducted over the non-convex set of box functions. In
order to obtain a convex minimization problem, we must change the set over
which the minimization is conducted to a set which is convex.

The procedure of allowing the optimization to be taken over a larger set
is known as relaxation. In general, relaxation introduces minimizers that lie
outside the original constraint set and that have no relationship to minimizers
of the original minimization problem. Under some special circumstances, a
solution of the original problem may be obtained precisely from a solution of
the relaxed problem. In this case, the relaxation is said to be exact.

Our goal is to find the conditions under which we have an exact relaxation
of our problem. To this end, we will establish a series of several preliminary
results. The first result is that the functional F defined in (7) satisfies a
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generalized coarea formula of the form

F (φ) =

∫ 1

0

F (1{φ≥t}) dt. (8)

Let us remark that most versions of the coarea formula use strict thresholding
and instead write

F (φ) =

∫ 1

0

F (1{φ>t}) dt.

The reason for our unconventionality is in view of the other results through-
out this section.

Lemma 1. Let F be defined by (7). Then F satisfies the generalized coarea
formula (8).

Proof. Recall that the coarea formula [12] for functions g of bounded varia-
tion states that ∫

Ω

|∇g| dx =

∫ ∞

−∞

∫

Ω

∣∣∇1{g>t}

∣∣ dx dt.

Using some elementary facts about total variation, namely that
∫

Ω

|∇g| dx =

∫

Ω

|∇(−g)| dx =

∫

Ω

|∇(g + c)| dx

for any constant c ∈ R, we see that
∫

Ω

|∇g| dx =

∫ ∞

−∞

∫

Ω

∣∣∇1{−g>t}

∣∣ dx dt =

∫ ∞

−∞

∫

Ω

∣∣∇1{g<t}

∣∣ dx dt

=

∫ ∞

−∞

∫

Ω

∣∣∇(1 − 1{g≥t})
∣∣ dx dt =

∫ ∞

−∞

∫

Ω

∣∣∇1{g≥t}

∣∣ dx dt.

Since φ ∈ [0, 1], we obtain

m∑

i=1

Ni∑

ℓ=1

∫

Ω

|∇φ(x, ℓ−→ei )| dx =

∫ 1

0

m∑

i=1

Ni∑

ℓ=1

∫

Ω

∣∣∇1{φ(x,ℓ−→ei )≥t}

∣∣ dx dt.

We also have φ(x,−→γ ) =
∫ φ(x,−→γ )

0
dt =

∫ 1

0
1{φ≥t} dt, often referred to as the

layer-cake formula [19, p.26-27]. Thus, by linearity,

(−1)m
∑

−→γ ∈Γ

∫

Ω

ρ(x,−→γ )Dm
1,...,mφ(x,−→γ ) dx

=

∫ 1

0

(−1)m
∑

−→γ ∈Γ

∫

Ω

ρ(x,−→γ )Dm
1,...,m1{φ≥t} dx dt,
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and (8) follows.

The use of coarea formulas is a ubiquitous tool in convex relaxation meth-
ods found in the literature because it can be used to prove properties about
minimizers of the functional.

Lemma 2. Let Y be any subset of functions φ : Ω × Γ̃ → [0, 1] and let
φ∗ be any minimizer of F over Y . If 1{φ≥t} ∈ Y for all t ∈ [0, 1], then
F (φ∗) = F (1{φ≥t}) for all t ∈ (0, 1] and thus 1{φ≥t} is a minimizer of F over
Y for all t ∈ (0, 1].

Proof. Let φ∗ be a minimizer of F over Y and let φ′ be a minimizer of F
over Y ′ = Y ∩ {φ ∈ {0, 1}}. Since Y ′ ⊂ Y , we have F (φ∗) ≤ F (φ). By
minimality, F (φ∗) ≤ F (1{φ∗≥t}), and so from (8) it follows that

F (φ∗) =

∫ 1

0

F (1{φ∗≥t}) dt ≥

∫ 1

0

F (φ′) dt = F (φ′) ≥ F (φ∗).

Hence, all inequalities in the above expression are equalities, and 1{φ∗≥t} is a
minimizer of F for almost every t ∈ [0, 1]. But for all t ∈ (0, 1] there exists
a strictly increasing sequence {ti}

∞
i=1 converging to t such that 1{φ∗≥tn} is a

minimizer of F for all n and 1{φ∗≥tn} converges to 1{φ∗≥t} almost everywhere
as n→ ∞. Invoking lower semi-continuity of total variation and Lebesgue’s
dominated convergence theorem, we may conclude that 1{φ∗≥t} is a minimizer
of F for all t ∈ (0, 1].

We would like to apply the previous lemma to a convex set Y so that
minφ∈Y F (φ) is a convex minimization problem. We would also want binary
sets in Y to be box functions to preserve the correspondence to (6), and hence
to (1). Recall the difference operator property of box functions, namely, that
Dm

1,...,m1{−→u �−→γ } vanishes everywhere except at the principal vertex, where it
equals (−1)m. It is thus natural to consider the set

X = {φ ∈ C : (−1)mDm
1,...,mφ ≥ 0}. (9)

In particular, if φ is binary, then φ ∈ X if and only if φ is a box function.
This leads to the following proposition.

Proposition 3. Let φ∗ be a minimizer of minφ∈X F (φ). If 1{φ∗≥t} is a box
function for all t ∈ (0, 1], then 1{φ∗≥t} is a minimizer of (6) for all t ∈ (0, 1].
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There are many shortcomings of this proposition. In general, there is no
guarantee that all of the thresholded functions will be box functions unless
the minimizer φ∗ happens to be binary. Otherwise, verifying the hypothesis
involves checking infinitely many conditions. Alternatively, we can construct
a minimizer of (6) without appealing to the coarea formula (5).

Proposition 4. Let φ∗ be a minimizer of minφ∈X F (φ). Suppose that there
exists t ∈ [0, 1] such that 1{φ∗≥t} is a box function and F (φ∗) = F (1{φ∗≥t}).
Then 1{φ∗≥t} is a minimizer of (6).

The reason this proposition is useful is that when φ ∈ X, we can prove
there exists t ∈ (0, 1] such that 1{φ≥t} is a box function (although it should
be noted that 1{φ≥t} is not necessarily a box function for all t). In fact, we
will show that 1{φ≥1} is a box function.

Lemma 5. For all x ∈ Ω, suppose that φ : Ω × Γ̃ → [0, 1] lies in the set X
defined in (9), i.e. φ satisfies the boundary conditions

(a) φ(x,
−→
0 ) = 1,

(b) φ(x, γ1, . . . , γm) = 0 whenever γi = Ni + 1 for some i,

and φ satisfies the difference condition

(−1)mDm
1,...,mφ ≥ 0. (10)

Then 1{φ≥1} is a box function, i.e., there exists a unique −→u (x) such that
1{φ≥1} = 1{−→u (x)�−→γ }.

Proof. We split up the proof into two parts. First, we show that (10) implies
an analogous condition for all differences of all lower orders. Then, we use
the conditions on all first and second order differences to prove the desired
result.

The first claim is that the difference condition (10) implies

(−1)kDk
Sφ ≥ 0 for all 1 ≤ k ≤ m and S ⊂ {1, . . . , m} with |S| = k. (11)

Inductively, and by relabeling indices if necessary, it suffices to show that
(10) implies (−1)m−1Dm−1

1,...,m−1φ ≥ 0. By way of contradiction, we suppose
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that there exists x ∈ Ω and −→γ ∈ Γ such that (−1)m−1Dm−1
1,...,m−1φ(x,−→γ ) < 0.

We see that

0 ≥ (−1)m−1Dm
1,...,mφ(x,−→γ )

= (−1)m−1
(
Dm−1

1,...,m−1φ(x,−→γ + −→em) −Dm−1
1,...,m−1φ(x,−→γ )

)

> (−1)m−1Dm−1
1,...,m−1φ(x,−→γ + −→em).

Applying this recursively, we conclude that there exists −→γ ′ = (γ′1, . . . , γ
′
m)

with γ′m = Nm + 1 such that (−1)m−1Dm−1
1,...,m−1φ(x,−→γ ′) < 0. However, from

the boundary conditions we must haveDm−1
1,...,m−1φ(x,−→γ ′) = 0, a contradiction.

Our previous work has shown that, in particular,

(c) Diφ ≤ 0 for all 1 ≤ i ≤ m, and

(d) D2
ijφ ≥ 0 for all i 6= j.

We now use (c) and (d) to prove the lemma. To help explain the rest of the
proof, we illustrate the remaining steps in Figure 2.

Recall the boundary conditions required by (a) and (b); see Figure 2(a).
For each x ∈ Ω, let φx(

−→γ ) = φ(x,−→γ ). Observe that for all 1 ≤ i ≤ m,
there exists ni, depending on x, such that φx(ni

−→ei ) = 1, φx(j
−→ei ) = 1 for

all 0 ≤ j < ni, and φx(j
−→ei ) < 1 for all ni < j ≤ Ni + 1. Indeed, this is

an immediate consequence of (a), which requires φx(
−→
0 ) = 1, and (c), which

requires the list of values

φx(
−→
0 ), φx(

−→ei ), . . . , φx((Ni + 1)−→ei )

to be non-increasing. See Figure 2(b).
Next, we claim that 1{φ≥1} is a box function with principal vertex −→n :=

(n1, . . . , nm). The second order property (d) yields the implication

φx(
−→γ + −→ei ) = 1 and φx(

−→γ + −→ej ) = 1 =⇒ φx(
−→γ + −→ei + −→e j) = 1 (12)

for all −→γ and indices i 6= j in which these expressions are defined. Note that
the left-hand side implicitly means that φx(

−→γ ) = 1, due to (a). One can
visualize the (i, j)-plane of the values of φx as a matrix whose first column
and last row are equal to 1 from the first observation of this proof. Property
(12) forces the remaining interior entries to be subsequently filled with 1’s
until we form the “box” of 1’s. See Figure 2(c).
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(a) (b)

(c) (d)

Figure 2: An illustration of the proof of Lemma 5. See the proof for the
explanations of each of the steps (a)-(d). In particular, (d) shows ~n, which
we see is the principal vertex of 1{φ≥1}.
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(a) (b) (c)

Figure 3: The function φ(x, ·) in (a) satisfies the hypotheses of Lemma 5.
However, in (b) we see that 1{φ≥ 1

2
} is not a box function. As shown in (c),

1{φ≥1} is a box function, as guaranteed by the lemma.

More formally, consider the following contradiction argument. Suppose
there exists −→γ � −→n such that φx(

−→γ ) < 1. Applying the contrapositive of
(12), we see that either φx(

−→γ −−→ei ) < 1 or φx(
−→γ −−→ej ) < 1. This procedure

can be used successively to all pairs of distinct indices until we eventually
have φx(

−→α ) < 1 and −→α equal to αi
−→ei for some i with αi ≤ ni. This violates

our first observation. Consequently, we have now established that φx(
−→γ ) = 1

for all −→γ � −→n .
Finally, we need only show that if −→γ is such that γi > ni for some i

(i.e., −→γ 6� −→n ), then necessarily φx(
−→γ ) < 1. But this follows quickly from

(a) once more, since otherwise this would force φx(γi
−→ei ) = 1, which conflicts

with the construction of ni. See Figure 2(d). We conclude that 1{φ≥1} is a
box function with principal vertex −→n , and the proof is complete.

As we noted before this lemma, it is not necessarily the case that 1{φ≥t}

is a box function for all t ∈ (0, 1], even when φ satisfies our assumptions.
Indeed, consider the example shown in Figure 3. We see that φ satisfies the
hypotheses of Lemma 5, but that, for example, 1{φ≥ 1

2
} is not a box function.

However, as guaranteed by the lemma, 1{φ≥1} is a box function. In contrast,
when m = 1, the assumption on φ is simply that it is non-increasing in γ,
and it is immediately evident this is sufficient to guarantee 1{φ≥t} is a box
function for all t (cf. [14, Lemma 1]). In fact, it turns out that when m = 1,
minimizers of F are automatically non-increasing in γ, since it can be shown
that F (Πφ) ≤ F (φ) where Π is projection onto the set where Dφ ≥ 0 (cf.
[9, Proposition 4.3]). This is not the case for m > 1 and illustrates further
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that there are many subtleties to consider when extending the theory to the
vector-valued setting.

Combining Proposition 4 and Lemma 5, we can now state our main result.

Theorem 6. Let φ∗ be a minimizer of F over X, the convex set of functions
φ : Ω × Γ̃ → [0, 1] such that

φ(x,
−→
0 ) = 1 and φ(x, γ1, . . . , γm) = 0 whenever γi = Ni + 1 for some i

and
(−1)mDm

1,...,mφ ≥ 0.

Then

ui(x) =

Ni∑

ℓ=1

1{φ∗≥1}(x, ℓ
−→ei )

is a minimizer of (1) provided F (φ∗) = F (1{φ∗≥1}).

We consider this theorem the main result of this section because it pro-
vides us with an optimality certificate. We may solve a convex minimization
problem and perform one straightforward computation to check whether we
can obtain a global solution to the original vector-valued non-convex mini-
mization problem (1). We will see in Section 4 that for many applications
the certificate condition is nearly satisfied, leading to approximate solutions
to non-convex minimization problems that are very close to optimal and
independent of the initial condition.

When m = 1, the results of this section reduce to the method proposed
in Pock et al. [24]. In that case, we need not verify the certificate condition
of the theorem. Instead, we observe that 1{φ≥t} ∈ X whenever φ ∈ X for all
t ∈ (0, 1], which means we may simply apply Proposition 3 since we know
the hypotheses are satisfied. However, when m > 1, this is no longer the
case.

Let us reiterate that the boundary conditions demanded by the set X is
exactly the set C defined in (4). These conditions are quite natural, since
they are satisfied by box functions, and they are invariant under thresholding
(i.e., if φ satisfies the boundary conditions, so does 1{φ≥t} for all t).

Lastly, consider the ramifications of the implication (10) ⇒ (11). In
particular, this means that instead of minimizing over X, we could obtain
the same result by minimizing over X ′ ( X, the set of φ such that Diφ ≤ 0
for all i and D2

i,jφ ≥ 0 for all i 6= j with the appropriate boundary conditions.
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In fact, we can minimize over any convex set containing X ′. However, the
single constraint (−1)mDm

1,...,mφ ≥ 0 is elegant as well as practical from a
computational point of view; we have just one difference constraint to enforce,
rather than, say, the m(m− 1)/2 second order constraints.

3 Algorithm

In this section, we describe an algorithm to solve the discrete version of our
convex problem

min
φ∈X

F (φ), (13)

where F is given by (7). We write (13) as a saddle point problem

min
φ∈C

max
|−→pi|≤1,(−1)mpγ≤ρ





m∑

i=1

Ni∑

ℓ=1

∫

Ω

−→pi · ∇φ(x, ℓ−→ei ) dx+ (−1)m
∑

−→γ ∈Γ

pγD
mφ




(14)

and solve it using a primal-dual algorithm. Recall the set C was defined in
(4). Since the difference condition required by the set X is enforced by the
dual variable pγ, we need only enforce the boundary conditions on the primal
variable φ.

To see (14), we may use the Legendre-Fenchel transformation [27]. Con-
sider the function

f(z) =

{
∞ (−1)mz < 0,

(−1)mzρ (−1)mz ≥ 0.

We see that the Legendre-Fenchel transform (or convex conjugate), f ∗(p), is
equal to

max
z

{pz − f(z)} = max
(−1)mz≥0

{pz − (−1)mzρ} = max
(−1)mz≥0

{z(p− (−1)mρ)} .

If m is even, we have

f ∗(p) = max
z≥0

{z(p− ρ)} =

{
0 p ≤ ρ,

∞ else,
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and if m is odd,

f ∗(p) = max
z≤0

{z(p+ ρ)} =

{
0 p ≥ −ρ,

∞ else.

In either case,

f ∗(p) =

{
0 (−1)mp ≤ ρ,

∞ else.

Since F is convex, we have

f(z) = f ∗∗(z) = max
p

{zp− f ∗(p)} = max
(−1)mp≤ρ

zp.

We apply this to the case where z = Dm
1,...,m. For the other terms of the

functional, we may either use the dual formulation of total variation [8] or
the Legendre-Fenchel transform applied to f(z) = |z|.

We discretize the problem in the usual way and consider for simplicity
the case d = 2 and Ω = [0, 1]2. Let Ωh = {0, . . . , Nx} × {0, . . . , Ny}. The
discrete version of (14) is thus

min
φh∈Ch

max
−→p ∈Dh





m∑

i=1

Ni∑

ℓ=1

∑

xh∈Ωh

−→pi · ∇
hφh(xh, ℓ−→ei ) + (−1)m

∑

−→γ ∈Γ

∑

xh∈Ωh

pγD
m
1,...,mφ

h



 ,

where ∇h is the discrete gradient operator,

Ch =
{
φh : Ωh × Γ̃ → [0, 1] : φh(xh,

−→
0 ) = 1 and

φh(xh,−→γ ) whenever γi = Ni + 1 for some i
}
,

and

Dh =
{
−→p = (−→p1 , . . . ,

−→pm, pγ) : Ωh × Γ̃ → R2 × · · · × R2 × R = R2m+1 :

|−→pi | ≤ 1, (−1)mpγ ≤ ρ and −→pi (x
h,−→γ ) = 0 if γi 6= 0

}
.

This can be written
min

φh∈Ch
max
−→p ∈Dh

〈Aφh,−→p 〉R2m+1 , (15)

where A is the linear operator that maps

φh 7→ (∇hφh, . . . ,∇hφh, Dm
1,...,mφ

h) ∈ R2m+1.
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Following [23, 31], we use the following modified Arrow-Hurwicz-Uzawa al-
gorithm [25, 2]; see [11] for an excellent overview of primal-dual algorithms.
Choose time steps τφ, τp > 0 such that τφτp ‖A‖

2 < 1, where

‖A‖ = sup
φh 6=0

∥∥Aφh
∥∥

‖φh‖

is the operator norm of A. Along the same lines as [31, Theorem 4.1], we see
that

‖A‖2 =
4

h2
x

+
4

h2
y

+
4m

∏m

i=1 h
2
γi

,

where hx and hy are the spatial step sizes of Ωh and hγ1
, . . . , hγm

are the step

sizes of Γ̃. In our case, hx = 1/Nx, hy = 1/Ny, and hγi
= 1, and the time

step requirement reduces to

τφτp <
1

4N2
x + 4N2

y + 4m
.

Choose any initial values ((φh)0, (−→p )0) ∈ Ch×Dh and put (φ
h
)0 = (φh)0.

Then for n > 0 use the update scheme




(−→p )n+1 = ΠDh

(
(−→p )n + τpA(φ

h
)n
)

(φh)n+1 = ΠCh

(
(φh)n − τφA

∗(−→p )n+1
)

(φ
h
)n+1 = 2(φh)n+1 − (φh)n

,

where A∗ is the adjoint of A. The operators ΠDh and ΠCh are the projections
onto the convex sets Dh and Ch, respectively. Explicitly,

ΠDh(−→p ) =

(
p1

max(|(p1, . . . , pm)| , 1)
, . . . ,

p1

max(|(p1, . . . , pm)| , 1)
, p̂γ

)
,

with

p̂γ =

{
max(pγ,−ρ) if m odd,

min(pγ, ρ) if m even.

The projection ΠCh(φh) is a simple truncation of φh to the interval [0,1] and

setting the boundary conditions φh(x,
−→
0 ) = 1 and φh(x,−→γ ) = 0 if γi = Ni+1

for some i. As n → ∞, this scheme is guaranteed to converge to a solution
of (15) (cf. [23, Theorem 4.1]).
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4 Applications to Image Segmentation

In this section, we apply the general framework and algorithm developed
in the previous sections to multi-phase image segmentation problems. In
particular, our focus will be on non-convex energy minimization problems
based on the Mumford-Shah model [21]

inf
f,K

∫

Ω

(I(x) − f(x))2 dx+ ν

∫

Ω\K

|∇f(x)|2 dx+ µ|K| (16)

to find an optimal piecewise smooth approximation of an image I : Ω → R,
where ν and µ are fixed parameters. The edge set K ⊂ Ω is a closed set that
defines a partition Ω = ∪iΩi such that the restrictions of the function f to
the phases Ωi are differentiable. If the function f is taken to be constant on
each phase, this reduces to the piecewise constant Mumford-Shah problem

inf
ci,K

{
∑

i

∫

Ωi

(ci − I(x))2 dx+ µ |K|

}
,

where f =
∑

i ci1Ωi
. We will assume that the optimal constants ci are known

a priori and the number of segments (say, n) is fixed. Even making this
assumption leaves us with the difficult non-convex problem

inf
Ω0,...,Ωn−1

{
n−1∑

i=0

µ

2
|∂Ωi| +

∫

Ωi

(ci − I(x))2 dx

}
, (17)

where it is implicit that Ω = ∪iΩi and the Ωi are pairwise disjoint. This is
known as the Potts model [26] in the discrete setting and has been shown to
be an NP-hard problem [5].

We first consider the Vese-Chan multi-phase model [32], which we will see
is a direct application of the framework established in the previous sections.

4.1 Vese-Chan multi-phase segmentation

In [32], Vese and Chan proposed a level-set method [22] to solve the piece-
wise constant problem (17). They suppose n = 2m and introduce functions
ϕ1, . . . , ϕm : Ω → R. The boundaries of the phases are represented by the
zero-level sets, i.e.,

n−1⋃

i=0

∂Ωi =
m⋃

k=1

{x ∈ Ω: ϕk(x) = 0}.

17



Each x ∈ Ω belongs to the phase Ωi if and only if i =
∑m

k=1 2kH(ϕk(x)),
where H is the Heaviside function

H(z) =

{
1 if z ≥ 0,

0 else.

Let
−→
b (i) = (b1, . . . , bm) be the binary representation of i ∈ {0, . . . , n − 1}.

Let ω0(z) = z and ω1(z) = 1−z. Then the Vese-Chan minimization problem
is

min
ϕ1,...,ϕm : Ω→R

m∑

k=1

∫

Ω

|∇H(ϕk)| dx+
n−1∑

i=0

∫

Ω

m∏

k=1

ωbk(i)(H(ϕk)) dx.

Since the functional depends only on H(ϕk) for each k, this can be rewritten

min
u1,...,um : Ω→{0,1}

m∑

k=1

∫

Ω

|∇uk| dx+

n−1∑

i=0

∫

Ω

m∏

k=1

ωbk(i)(uk) dx. (18)

For example, when m = 2 (four phases), we have

min
u1,u2 : Ω→{0,1}

{∫

Ω

|∇u1| dx+

∫

Ω

|∇u2| dx+

∫

Ω

(c0 − I(x))2u1(x)u2(x) dx

+

∫

Ω

(c1 − I(x))2u1(x)(1 − u2(x)) dx+

∫

Ω

(c2 − I(x))2(1 − u1(x))u2(x) dx

+

∫

Ω

(c3 − I(x))2(1 − u1(x))(1 − u2(x)) dx

}
.

We see that it is straightforward to apply our general framework to the Vese-
Chan functional (18). Indeed, the previous minimization problem can be
written

min
−→u : Ω→{0,1}2

{
2∑

i=1

∫

Ω

|∇ui| dx+

∫

Ω

ρ(x, u1(x), u2(x)) dx

}
,

where

ρ(x, u1(x), u2(x)) = (c0 − I(x))2u1(x)u2(x) + (c1 − I(x))2u1(x)(1 − u2(x))

+(c2 − I(x))2(1 − u1(x))u2(x) + (c3 − I(x))2(1 − u1(x))(1 − u2(x)).

In the original work [32], a solution was obtained using gradient descent
on the time-dependent Euler-Lagrange equations of the energy functional,
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yielding a local solution. On the other hand, using our convex technique, we
may attempt to find a global solution and use straightforward calculations
provided by Theorem 6 to determine whether our algorithm was successful.
We should mention that the recent work of [3] proposes a graph-cut method
in the discrete setting to globally solve the Vese-Chan model. We elect to
develop our method in the spatially continuous setting.

Let us examine the extent to which our method will yield global solutions
through some numerical examples. In Figure 4, we demonstrate our method
on a synthetic image with noise taken from the original work of Vese and
Chan [32, p. 17, Figure 5(b)]. The authors remark that the initial condi-
tion in Figure 4 causes their algorithm to compute only a local minimum,
but that other initial conditions result in the global solution. On the other
hand, our algorithm computes the global solution (or at least a very close
approximation), no matter what initial condition is provided. The global
minimizer for our algorithm φ∗ gives the energy value 0.213989. which be-
comes 0.214023 after thresholding at 1. In contrast, The energy value for the
obtained minimizer from the original Vese-Chan method is 0.223683.

In Figure 5, we show more experimental results for this synthetic image.
The histogram in Figure 5(a) shows that the obtained minimizer φ∗ is close
to binary. Furthermore, we see from Figure 5(b) that nearly all of the pixels
x in the image are such that φ∗(x, ·) is a box function. The ratio of pixels
which are non-box functions to the total number of pixels in the image is
0.0012.

We also demonstrate the effectiveness of our algorithm on a medical im-
age segmentation application in Figure 6. Like the case of the synthetic
segmentation example, our method is able to accurately segment the brain
image into four phases. Again we see that the histogram of the minimizer φ∗

is close to binary and the number of pixels where φ∗ is not a box function is
relatively small. The ratio of non-box function points to total points in φ∗

in this case is 0.0141.
The Vese-Chan representation corresponds exactly to piecewise constant

Mumford-Shah if and only if the zero-level sets do not overlap nontrivially,
i.e.,

Hd−1

(
m⋂

k=1

{x ∈ Ω: ϕk(x) = 0}

)
= 0,

where Hd−1 denotes (d − 1)-dimensional Hausdorff measure. In particular,
consider the triple junction example shown in Figure 7(a), the representa-

19



(a) Initial condition (b) Result using Vese-Chan

(c) Initial condition (d) Result using our method

Figure 4: A comparison of our algorithm and the original Vese-Chan method.
For some images and initial conditions, the Vese-Chan method computes only
a local minimum, whereas our algorithm is guaranteed to find the global
solution under the conditions of Theorem 6.
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(a) Histogram (b) Indicator of non-box functions

Figure 5: (a) Histogram of minimizer φ∗ of the functional F for the synthetic
image in Figure 4. (b) A display indicating the spatial points x ∈ Ω for which
φ∗(x, ·) is a box function; black (resp. white) indicate box (resp. non-box)
funtions.

tion uses two functions whose zero-level sets necessarily have an intersection
that coincides with exactly one of the boundaries. The effect is a non-uniform
weighting of the boundaries, causing an incorrect segmentation, and thus the
model cannot be used to segment the triple junction. We show the results in
Figure 7. Notice in (c) and (d) that the boundaries determined by the func-
tions u1 and u2 overlap non-trivially on the horizontal portion on the right
side of the segmentation result. This means that portion of the boundary is
weighted by a factor of two, causing the functional to be minimized when
that boundary is shorter relative to the other boundaries. On the other hand,
the Vese-Chan framework can correctly represent a quadruple junction; the
results of our method are shown in Figure 8.

Let us examine the extent to which the hypotheses of Theorem 6 are sat-
isfied. More precisely, for each of the numerical examples, we check whether
the certificate condition F (φ∗) = F (1{φ∗≥1}) holds. The results are shown in
Table 1.

Finally, we show that under certain circumstances, we can prove that the
vector-valued minimization method proposed in Section 2 is guaranteed to
yield global solutions.
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(a) Input (b) Result

(c) u1 (d) u2

(e) Histogram (f) Box function indicator

Figure 6: (a)-(d): Segmentation of an MRI brain image into four phases using
our method applied to the Vese-Chan model. (e) Histogram of minimizer φ∗

(f) A display indicating the spatial points for which 1{φ∗(x,·)} is a box function;
black (resp. white) indicate box (resp. non-box) funtions.
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(a) Input (b) Result (c) u1 (d) u2

Figure 7: Segmentation of a triple junctions using our method applied to the
Vese-Chan model. A triple junction cannot be represented in the Vese-Chan
framework so that the boundaries are evenly weighted, so the desired 120◦

intersection is not obtained.

(a) Input (b) Result (c) u1 (d) u2

Figure 8: Segmentation of a quadruple junction using our method applied
to the Vese-Chan model. Unlike a triple junction, a quadruple junction can
be represented so that the boundaries are evenly weighted, resulting in the
correct segmentation.

Image F (φ∗) F (1{φ∗≥1})
Synthetic 0.2139 0.2140
Brain 0.38 0.45
Quadruple 0.054 0.054
Triple 7.087 7.088

Table 1: Numerical values for the certificate condition of Theorem 6.
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Proposition 7. Suppose that ρ ≥ 0 and that for all x ∈ Ω, the minimization
problem

min
−→γ ∈Γ

ρ(x,−→γ )

has a unique solution −→u (x). Then

min
φ∈X

F (φ) =

∫

Ω

∑

−→γ ∈Γ

(−1)mρ(x,−→γ )Dmφ

has a unique minimizer φ∗ = 1{−→u �−→γ }(x,
−→γ ).

Proof. The constraint φ ∈ X is pointwise in x as is the functional F , so it
suffices to minimize

∑

−→γ ∈Γ

(−1)mρ(x,−→γ )Dmφ(x,−→γ )

for fixed x. Since
∑

−→γ (−1)mDmφ(x,−→γ ) = 1 and (−1)mDmφ ≥ 0, we

see that F =
∫
Ω
Fx dx with Fx =

∑
−→γ c−→γ ρ(x,

−→γ ), where the coefficients

c−→γ := (−1)mDmφ(x,−→γ ) form a convex combination of ρ(x,−→γ ). Since, by as-
sumption, the function ρ(x,−→γ ) has a unique minimizer −→u (x) for each x ∈ Ω,
it follows that the minimizer φ∗ of F over all φ ∈ X has the property that
(−1)mDmφ∗(x,−→u (x)) = 1 and (−1)mDmφ∗(x,−→γ ) = 0 for all −→γ 6= −→u (x),
which implies that φ∗ is the box function 1{−→u �−→γ }.

Of course, the total variation regularization is an important aspect of the
segmentation model. In practice, there is often a parameter µ > 0 in the
Vese-Chan model that multiplies the regularization term, which we omitted
from our description of the minimization problem for ease of presentation.
However, it is worthwhile to investigate the effect changing this parameter
has on our algorithm. For the brain image experiment, we used our algorithm
for different values of µ. The results are shown in Table 2.

We see that as the magnitude of the total variation term increases, the
amount by which the certificate condition fails increases. For images without
much noise, accurate segmentations may be obtained with relatively small
values of µ. As µ gets small, we can be more confident our algorithm produces
a global minimizer of the problem.
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µ F (φ∗) F (1{φ∗≥1}) F (1{φ∗≥1}) − F (φ∗)
0 0.432 0.432 0
0.5 0.384 0.453 0.069
1 0.374 0.478 0.104
2 0.399 0.537 0.138

Table 2: Numerical values for the certificate condition of Theorem 6 as the
regularization parameter µ changes.

4.2 Piecewise Constant Mumford-Shah

We now use the general framework in Section 2 to develop a method to
globally solve the piecewise constant Mumford-Shah problem (17). We use
the framework of Lie et al. [18] to represent (17) as a minimization problem
over a function u : Ω → {0, . . . , n − 1} with the property that u = i on Ωi.
Then (17) becomes

min
u : Ω→{0,...,n−1}

{
n−1∑

i=0

∫

Ω

|∇ψi(u)| + ψi(u)gi(x) dx

}
, (19)

where gi(x) = (ci − I(x))2 and

ψi(u) := 1{u=i} =
∏

i6=j

(u− j)

(i− j)
.

We cannot simply apply our framework to (19) in the case m = 1 (i.e.,
the scalar-valued case of Pock et al. [24]), due to the regularization terms
involving

∫
Ω
|∇ψi(u)| dx; see [6] for more discussion.

Instead, we use a splitting technique. For i = 0, . . . , n − 1, we let vi =
ψi(u) to obtain the problem

min
u : Ω→{0,...,n−1}, vi : Ω→{0,1}

{
n−1∑

i=0

∫

Ω

|∇vi| + vigi(x) dx

}
s.t. vi = ψi(u). (20)

The constraints vi = ψi(u) may be enforced using an augmented Lagrangian
approach [4]. For each i = 0, . . . , n − 1, choose a sequence of multipliers

{λ
(j)
i ∈ L2(Ω)}∞j=1 and penalty parameters {r

(j)
i > 0}∞j=1 such that {λ

(j)
i }∞j=1
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is bounded and r
(j)
i → ∞ as j → ∞. For each j, let (u(j), v

(j)
0 , . . . , vn−1(j))

be a global solution of

min
u,v0,...,vn−1

n−1∑

i=0

∫

Ω

|∇vi|+ vigi(x) + λ
(j)
i (vi −ψi(u)) + r

(j)
i (vi −ψi(u))

2 dx, (21)

where the minimization is taken over u : Ω → {0, . . . , n − 1} and vi : Ω →
{0, 1}. Then u(j) converges to the solution of (17); see [6] for a proof (based
on [4]) in a similar setting. Hence, it suffices to globally solve (21) for fixed
j.

Observe that (21) can be written as

min
u : Ω→{0,...,n−1},vi : Ω→{0,1}

n−1∑

i=0

∫

Ω

|∇vi| dx+

∫

Ω

ρ(x, u, v0, . . . , vn−1) dx

with

ρ(x, u, v0, . . . , vn−1) =

n−1∑

i=0

vigi(x) + λ
(j)
i (vi − ψi(u)) + r

(j)
i (vi − ψi(u))

2,

to which may apply the results established in Section 2. When the hypotheses
of Theorem 6 are met, we can guarantee a global solution of (21), which yields
a sequence converging to a global solution of (17).

We now consider some numerical examples. In Figure 9, we show our
method on the brain MRI image we considered in the previous subsection,
except here we segment the image into three phases.

Unlike the case when our algorithm applied to the four-phase Vese-Chan
model for this image, we find that the certificate condition holds exactly.
That is, for the energy

F (φ) =

n−1∑

ℓ=1

∫

Ω

|∇φ(x, ℓ−→e1 )| dx+

4∑

i=2

∫

Ω

|∇φ(x,−→ei )| dx

+

∫

Ω

∑

−→γ ∈Γ

ρ(x,−→γ )D4φ(x,−→γ ) dx,

where

ρ(x, u1, u2, u3, u4) =

2∑

i=0

ui+2(ci−I(x))
2+λi(ui+2−ψi(u1))+ri(ui+2−ψi(u1))

2,
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(a) Input (b) Result

(c) v0 (Phase 1) (d) v1 (Phase 2) (e) v2 (Phase 3)

Figure 9: Segmentation of an MRI brain image into three phases using the
method of Section 4.2.
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(a) Input (b) Result

(c) v0 (Phase 1) (d) v1 (Phase 2) (e) v2 (Phase 3)

Figure 10: The method of Section 4.2 applied to the triple junction example,
obtained by thresholding at 1

2
.

the minimizer φ∗ of F over X satisfies the condition F (φ∗) = F (1{φ∗≥1}),
which both are equal to 0.33. In fact, in this case, the function φ∗ itself is
a box function, whose principal vertex corresponds to the minimizer of the
original problem.

We also demonstrate the method developed in this section on the syn-
thetic triple junction example we considered in Section 4.1. The results are
shown in Figure 10 and should be compared with the results in Figure 7.
We know that the piecewise constant Mumford-Shah model has the desired
triple junction as its minimizer, while the model of Vese-Chan does not. The
results of our method on the triple junction example are interesting. In this
case, the certificate condition fails miserably: the energy of 1{φ∗≥1} is an as-
tronomical 148 compared with the 0.32 of the optimal solution. On the other
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(a) Result for threshold t = 0.1. (b) Result for threshold t = 1.

Figure 11: The method of Section 4.2 yields suboptimal results on the triple
junction example for certain thresholds.

hand, in this case 1{φ∗≥ 1

2
} is a box function that equals the optimal solution.

For comparison, we show some results for other thresholds in Figure 11 that
yield suboptimal results.

We cannot fully explain why thresholding at 1
2

provides the global solution
for this example. But it is interesting to examine the values of the minimizer
at spatial points near the triple junction intersection. For example, we took a
point x near this intersection and found the following values of the minimizer:
φ∗(x, 0, 1, 0, 0) = 0.5966, φ∗(x, 0, 0, 1, 0) = 0.0561, φ∗(x, 0, 0, 0, 1) = 0.3439.
The sum of these values is approximately 1, showing that a convex sim-
plex constraint similar to that of the other relaxation methods [6, 33, 17]
is appearing implicitly in our model. We leave further examination of this
phenomenon for future work.

5 Conclusion

In this paper, we have established a general framework for solving certain
vector-valued non-convex minimization problems that arise in image pro-
cessing and computer vision applications. The method reformulates the non-
convex functional as an equivalent convex functional in a higher dimensional
space, where then a specific convex relaxation taken. Under certain condi-
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tions, a global minimizer of the original problem can be guaranteed. More
precisely, we propose to solve non-convex minimization problems of the form

min
−→u

E(−→u ) :=
m∑

i=1

∫

Ω

|∇ui| dx+

∫

Ω

ρ(x,−→u (x)) dx (22)

by reformulating the problem as

min
φ=1{−→u �−→γ }






m∑

i=1

Ni∑

ℓ=1

∫

Ω

|∇φ(x, ℓ−→ei )| dx+ (−1)m
∑

−→γ ∈Γ

∫

Ω

ρ(x,−→γ )Dm
1,...,mφ dx




 .

We then relax the problem in a specific way to obtain a convex minimization
problem. The relaxation is shown to be exact under certain circumstances,
which are explained in detail. The most useful of these conditions is the
equality F (φ∗) = F (1{φ∗≥1}), where F is the functional of the reformulated
problem above and φ∗ is its minimizer over the relaxed set. In this case, our
method can guarantee a global minimizer.

However, the luxury of an optimal solution comes at a considerable price.
Indeed, the difficulty of the non-convexity has been transformed into a diffi-
culty of dimensionality. Even for some modest non-convex problems, the con-
vex counterpart can be so computationally burdensome that the method at
present may prove to be impractical. Still, with our framework in hand, fur-
ther research on the topic may uncover improvements that allow our method
to be as meaningful in practice as it is in theory.

In Section 1, we made the remark that the method of Pock et al. [24],
which can be seen as the m = 1 case in our framework, is also related to
calibration theory [1] and a general framework [7] whereby functionals of the
form ∫

Ω

f(x, u(x),∇u) dx

with f convex in its last argument, can be reformulated in a higher dimension
as the convex functional

sup
−→p ∈K

∫

Ω×R

−→p · ∇1u>γ,

with K a convex set that can be written in terms of the convex conjugate f ∗

(taken with respect to its last argument). The theory has been generalized
to the case in which u is vector-valued rather than scalar valued [20]. It
would be interesting to examine the relationship this theory has with our
framework. We leave this for future work.
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