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Abstract The active contours without edges model of

Chan and Vese [15] is a popular method for computing

the segmentation of an image into two phases, based

on the piecewise constant Mumford-Shah model. The

minimization problem is non-convex even when the op-

timal region constants are known a priori. In [14], Chan,

Esedoḡlu, and Nikolova provided a method to compute

global minimizers by showing that solutions could be

obtained from a convex relaxation. In this paper, we

propose a convex relaxation approach to solve the case

in which both the segmentation and the optimal con-

stants are unknown for two phases and multiple phases.

In other words, we propose a convex relaxation of the

popular K-means algorithm. Our approach is based on

the vector-valued relaxation technique developed in [11,

23]. The idea is to consider the optimal constants as

functions subject to a constraint on their gradient. Al-

though the proposed relaxation technique is not guar-

anteed to find exact global minimizers of the original

problem, our experiments show that our method com-

putes tight approximations of the optimal solutions.

Particularly, we provide numerical examples in which

our method finds better solutions than the method pro-

posed in [14], whose quality of solutions depends on the

choice of the initial condition.
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1 Introduction

Image segmentation is a fundamental problem in image

processing and computer vision. The goal is to divide

the image into regions that belong to distinct objects

in the given image. Many successful approaches to im-

age segmentation involve variational models and partial

differential equations. These models are well suited to

impose regularity constraints for the solutions.

The Mumford-Shah model [31] is one of the most in-

fluential image segmentation models. In particular, the

two-phase, piecewise constant case has been extensively

studied. Under this model, the image is partitioned into

two phases (i.e., object and background) and is approx-

imated by a function that takes only two values. The al-

gorithm of Chan and Vese [15] is one of the most widely

used methods for two-phase image segmentation. Their

method, also known as active contours without edges,

is based on techniques of curve evolution and the level

set method [32].

However, as is the case for many variational image

processing models, the energy functional to be mini-

mized is non-convex and therefore has local minima.

This is a serious difficulty because the local minima

of segmentation models often provide poor results. The

Chan-Vese method, as well as many other solution tech-

niques, is based on gradient descent and is prone to

getting stuck in such local minima. Consequently, to

obtain satisfactory results, the initialization in these al-

gorithms is very important.

The important work of Chan, Esedoḡlu, and Nikolova

[14] showed that this non-convex optimization problem

can be solved by a convex relaxation method when the

two piecewise constant values are known. Namely, the

source of the non-convexity is the non-convex collection

of characteristic functions of sets. Based on the obser-



2 Ethan S. Brown, Tony F. Chan, and Xavier Bresson

vations of Strang [39], the idea is to relax this con-

straint in such a way that the characteristic function

minimizers can be obtained from minimizers of the re-

laxed problem by a simple thresholding procedure. This

allows the non-convex Chan-Vese problem to be glob-

ally solved using standard convex minimization meth-

ods. Note also that the idea of using characteristic func-

tions rather than level set functions to represent regions

in geometric problems has been first proposed by Lie,

Lysaker, and Tai in [28].

When the piecewise constant values are unknown,

the situation becomes more difficult. It is no longer pos-

sible to apply the aforementioned method to globally

solve the two-phase piecewise constant segmentation

problem. Instead, the standard approach would be use

to alternate between globally solving the problem for

fixed constant values, and updating these values. Un-

fortunately, this removes any guarantee that a global

solution is obtained. There is extensive literature on

global methods for segmentation in the case in which

the values are known (most notably, attempts to ex-

tend the ideas of [14] to the multi-phase case [42,26,

12,10,11,5,6,25,27,4,21]). However, except the recent

work of Strandmark, Kahl, and Overgaard [38], there is

surprisingly little work done in the direction of global

methods in which the values are unknown. This is the

subject of our present work.

In this paper, we propose a completely convex for-

mulation of the Chan and Vese model, i.e. we look for

solutions of the Chan and Vese model when the con-

stant values for each phase are not known a priori.

Our approach relies on a convex relaxation method for

solving total variation-based vector-valued minimiza-
tion problems introduced by Goldstein, Bresson and

Osher [23] for image registration problems and expanded

upon in [11] for multi-phase image segmentation prob-

lems, based originally on the ideas of Pock et. al. [35]

and Ishikawa [24]. The idea is to embed the problem

in a higher-dimensional space and then perform a con-

vex relaxation. To employ this vector-valued optimiza-

tion technique, we consider the piecewise constant val-

ues in each phase as functions whose gradients vanish

everywhere. From the perspective of a two-phase seg-

mentation problem, the unknown vector is a triple con-

sisting of one binary-valued function that describes the

segmentation, and two functions (enforced to be con-

stant) that describe the piecewise constant value in each

phase. Once we develop our method, we demonstrate

examples where our approach obtains solutions close to

the global solution but the alternating method of [14]

does not (because it strongly depends on the choice of

the initial condition). Although the proposed relaxation

technique is not guaranteed to find exact global mini-

mizers of the original Chan-Vese problem, our experi-

ments show that our method computes tight approxi-

mations of the optimal solutions. Indeed, we propose a

certificate that guarantees the relaxed solution to be the

exact, i.e. the solution of the original non-convex prob-

lem. Our method provides solutions close to the optimal

solutions in the sense that the error on the optimality

certificate is only 0.01-1.8% for all experiments.

The outline of the paper is as follows. In Section 2,

we introduce the segmentation problem and describe

the convex relaxation method of [14] that solves the

problem when the optimal constants are known. Next,

in Section 3, we review the main ideas of the total

variation-based vector-valued convex relaxation method

described in [11], which serves as our primary tool to

develop our convex relaxation method. The central idea

of the paper is in Section 4, where we propose a method

to globally solve the Chan-Vese problem even when the

region constants are unknown. We give experimental

results in Section 5 that, in particular, show that our

method can obtain better minimizers than the previous

method [14]. Finally, we end the paper with a conclud-

ing section. Throughout the paper, the mathematical

space that we consider is the space of functions with

bounded variation (BV) (we refer the reader e.g. to [2]

for more details).

2 Chan-Vese with Known Constants

The problem considered in this paper is the piecewise

constant two-phase Mumford-Shah segmentation model

[31]. The problem can be expressed as the minimization

problem

min
Σ⊂Ω, c1,c2∈R

MS(Σ, c1, c2), (1)

where

MS(Σ, c1, c2) := Per(Σ;Ω) +

λ

∫
Σ

(c1 − I(x))2 dx+ λ

∫
Ω\Σ

(c2 − I(x))2 dx, (2)

where Per(Σ;Ω) denotes the perimeter of the set Σ ⊂
Ω (throughout the paper, the setΩ ⊂ Rn is supposed to

be open and bounded with ∂Ω Lipschitz [18]). In other

words, we seek the best approximation to the given im-

age I : Ω → R among all functions that can take only

two values. The unknowns of the optimization problem

are the values, c1 and c2, and the sets where each value

is taken, Σ and Ω\Σ. As usual, there is a regularization

term that penalizes size of the boundary ∂Σ that sep-

arates the two phases. In the seminal work [15], Chan

and Vese proposed a level-set based algorithm for solv-

ing (1). Due to the popularity of their algorithm, the

problem (1) itself is often referred to Chan-Vese and we
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too often follow this precedent. In their approach, the

boundary ∂Σ is represented by the zero-level set of a

function ϕ : Ω → R. In terms of ϕ, the energy (2) can

be written

CV (ϕ, c1, c2) =

∫
Ω

|∇H(ϕ)|

+λ

∫
Ω

H(ϕ)(c1 − I(x))2 dx

+λ

∫
Ω

(1−H(ϕ))(c2 − I(x))2 dx, (3)

where the gradient operator ∇ is taken in the distribu-

tional sense. To compute the variation of (3) with re-

spect to ϕ, a smooth regularization Hε of the Heaviside

function H is introduced to obtain the approximation

CVε(ϕ, c1, c2) =

∫
Ω

|∇Hε(ϕ)|

+λ

∫
Ω

Hε(ϕ)(c1 − I(x))2 dx

+λ

∫
Ω

(1−Hε(ϕ))(c2 − I(x))2 dx. (4)

Variations of (4) lead to the gradient descent scheme

ϕt = H ′ε(ϕ)
{

div

(
∇ϕ
|∇ϕ|

)
−λ((c1 − I(x))2 − (c2 − I(x))2)

}
. (5)

We return now to the minimization problem (1).

Observe that if Σ is fixed, the values of c1 and c2 that

minimize MS(Σ, ·, ·) are simply

c1 =
1

|Σ|

∫
Σ

I(x) dx, c2 =
1

|Ω \Σ|

∫
Ω\Σ

I(x) dx, (6)

that is, c1 and c2 are the mean values of the image

I(x) in the regions Σ and Ω \ Σ, respectively. A nat-

ural method to minimize MS is an alternating scheme
that first computes the values c1 and c2 using (6), and

second solves the minimization problem MS(·, c1, c2)

for the unknown set Σ. But even the minimization

MS(·, c1, c2) for fixed c1, c2 is difficult because it is a

non-convex problem.

In [14], Chan, Esedoḡlu, and Nikolova proposed a

convex relaxation method to solve this non-convex prob-

lem. The authors observed that (5) has the same sta-

tionary solutions as

ϕt = div

(
∇ϕ
|∇ϕ|

)
− λ((c1 − I(x))2 − (c2 − I(x))2), (7)

which in turn is the gradient descent for the energy∫
Ω

|∇ϕ|+ λ

∫
Ω

((c1 − I(x))2 − (c2 − I(x))2)ϕdx. (8)

Since this energy is homogeneous of degree 1, it does

not have a minimizer in general, but does when the

minimization of ϕ is restricted to the interval [0, 1]. Fol-

lowing the ideas of Strang [39], they were able to show

the following result.

Theorem 1 [14, Theorem 2] Given fixed c1, c2 ∈ R, a

global minimizer for MS(·, c1, c2) can be found by con-

ducting the convex minimization

min
0≤u≤1

{
ECEN(u) =

∫
Ω

|∇u|+

λ

∫
Ω

u(x)(c1 − I(x))2 + (1− u(x))(c2 − I(x))2 dx
}

(9)

and setting Σ = {x ∈ Ω : u(x) ≥ t} for almost any

t ∈ (0, 1].

Once we have a convex minimization problem, there

is a wide catalogue of methods we can use to find a

global minimizer. For example, (9) is equivalent to the

unconstrained problem

min
u

∫
Ω

|∇u|+
∫
Ω

αν(u) + λs(x)u dx, (10)

where ν(ξ) = max(0, 2
∣∣ξ − 1

2

∣∣−1), α > λ
2 ‖s‖L∞(Ω) and

s(x) = (c1 − I(x))2 − (c2 − I(x))2. The first variation

of (10) with respect to u leads to the Euler-Lagrange

equation

div

(
∇u
|∇u|

)
− λs(x)− αν′(u) = 0, (11)

which can be solved using a straightforward gradient

descent scheme, using a regularized version of ν to smooth

its non-differentiable points at 0 and 1, and using a reg-

ularized version of total variation to avoid degeneracy

when |∇u| = 0. In fact, this method is both slow (being

an explicit scheme) and inaccurate (due to the regu-

larizations). More accurate and efficient algorithms for

problems such as (10) were provided in [9,22,41,16,13].

In summary, we have an alternating algorithm for

solving the Chan-Vese problem (1), shown in Algorithm 1.

Each step in the body of the while loop of the algorithm

finds a global minimizer with the other variables fixed.

Nevertheless, this alternating algorithm does not nec-

essarily find a global minimizer of (1). To this end, we

develop a different approach in the sections that follow.

Algorithm 1 Alternating Chan-Vese algorithm
c1 ← init1
c2 ← init2
while not converged do

Σ ← argminΣMS(·, c1, c2)
c1 ← 1

|Σ|
∫
Σ
I(x) dx

c2 ← 1
|Ω\Σ|

∫
Ω\Σ I(x) dx

end while
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(a) Domain Ω (b) Domain Γ

Fig. 1 Fig. (a): Image domain Ω. Fig. (b): Domain Γ with
m = 2: at each pixel x in the image domain, the vector field
ū = (u1, u2) is dicretized in the Γ domain.

3 Total Variation-based Vector-valued

Minimization

In this section, we describe a method to formulate a

class of total variation-based non-convex optimization

problems as equivalent convex optimization problems

by embedding the problem into a higher dimensional

space. The method was introduced in Goldstein, Bres-

son and Osher [23], which generalized the ideas of [24,

35] to the case in which the unknown is vector-valued

rather than scalar-valued. The approach was expanded

upon in [11], where it was applied to multi-phase im-

age segmentation problems. In this paper, we will even-

tually use this minimization technique to formulate a

convex relaxation of the Chan-Vese problem (1), and

provide tight approximations of the optimal solutions.

3.1 Theory

The class of optimization problems we consider in this

section are of the form

min−→u
E(−→u ) :=

m∑
i=1

∫
Ω

|∇ui|+
∫
Ω

ρ(x,−→u (x)) dx, (12)

where −→u = (u1, . . . , um) : Ω → Γ := {0, 1, . . . , N1} ×
· · · × {0, 1, . . . , Nm} (see Figure 1). In other words, the

unknown is a function −→u = (u1, . . . , um) defined on a

continuous domain Ω ⊂ Rd, and each of its components

ui takes values in the discrete set {0, 1, . . . , Ni}. In fact,

we could take the co-domain of ui to be any totally

ordered finite set and choose consecutive non-negative

integer sets beginning at 0 simply for ease of presenta-

tion. We assume that the function ρ : Ω × Rm → R is

continuous and bounded from below, so that without

loss of generality we may assume that ρ is non-negative

by adding a constant to E if necessary. However, we

make no convexity assumption on ρ; thus ρ may be

non-convex.

To embed (12) into a higher dimensional space, we

introduce the function

1{−→u (x)�−→γ } := 1{u1≥γ1,...,um≥γm}(x,
−→γ ) ={

1 if u1 ≥ γ1, . . . , um ≥ γm,
0 otherwise.

(13)

We call such a function a box function, since for fixed

x ∈ Ω, the set of points −→γ in the non-negative orthant

of Rm where 1{−→u�−→γ } is equal to 1 is a hypercube. We

call the point −→u the principal vertex, which is on the

opposite corner of the hypercube from the origin. This

is a multi-dimensional generalization of what is often

called a super-level set function in the case m = 1. It

should be clear that there is a one-to-one correspon-

dence between −→u and its associated box function. In

particular, we may use the formula

ui(x) =

Ni∑
`=1

1{−→u (x)�−→γ }(x, `
−→ei ) (14)

to recover −→u from the box function, where −→ei ∈ Rm
denotes the ith standard basis vector.

To study properties of box functions more thor-

oughly, we introduce the set

Γ̃ := {0, . . . , N1 + 1} × · · · × {0, . . . , Nm + 1}, (15)

which is simply an augmented version of Γ , the co-

domain of −→u . We use this set in order to deal with

boundary conditions, and we will work with functions

φ defined on Ω×Γ̃ . Let the forward difference operators

be defined by

(Diφ)(x,−→γ ) =

{
0 if γi = Ni + 1,

φ(x,−→γ +−→ei )− φ(x,−→γ ) otherwise.

(16)

Finally, we will often work with the set

C =
{
φ : Ω × Γ̃ → [0, 1] : φ(x,

−→
0 ) = 1 and

φ(x,−→γ ) = 0 whenever γi = Ni + 1 for some i} .
(17)

Note that box functions with principal vertex −→u : Ω →
Γ belong to C.

We point out a few properties of box functions in

order to rewrite (12) in terms of the box function (13).

First, observe that

1{ui≥γi} = 1{−→u�−→γ }(x, γi
−→ei ) (18)

for each i = 1, . . . ,m. Thus, by the coarea formula [19,

20],∫
Ω

|∇ui| =
Ni∑
`=1

∫
Ω

∣∣∇1{−→u�`−→ei}
∣∣ . (19)
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(a)

(b)

Fig. 2 An illustration of the difference operator Dm1,...,m when
m = 2 applied to binary functions. In (a), we see that if φ
is a box function, then the support of Dm1,...,mφ is a single
point (the principal vertex). On the other hand, in (b) we see
that the support of Dm1,...,mφ will include multiple points for
functions φ that are not box functions.

Next, we examine the result when difference opera-

tors are applied to 1{−→u�−→γ }. We see that the mth or-

der mixed difference Dm
1,...,m := Dm · · ·D1 maps every

−→γ ∈ Γ to 0 except the principal vertex, which gets

mapped to (−1)m, i.e.,

(Dm
1,...,m1{−→u�−→γ })(x,

−→γ ) =

{
(−1)m if −→γ = −→u ,
0 otherwise.

(20)

We illustrate this difference operator in Figure 2.

Consequently,

(−1)m
∑
−→γ ∈Γ

ρ(x,−→γ )Dm
1,...,m1{−→u�−→γ } = ρ(x,−→u (x)), (21)

and so we can rewrite problem (12), using the identities

(19) and (21), as

min
φ=1{−→u�−→γ }

F (φ), (22)

where

F (φ) :=

m∑
i=1

Ni∑
`=1

∫
Ω

|∇φ(x, `−→ei )|

+(−1)m
∑
−→γ ∈Γ

∫
Ω

ρ(x,−→γ )Dm
1,...,mφdx. (23)

That is, (12) is equivalent to an optimization problem

over box functions defined on a space with an addi-

tional m dimensions. Moreover, while the original ob-

jective function was possibly non-convex in −→u (due to

the function ρ), the reformulated objective function is

convex in φ = 1{−→u�−→γ }. However, the minimization is

conducted over the non-convex set of box functions.

In order to obtain a convex minimization problem, we

must change the set over which the minimization is con-

ducted to a set which is convex.

The procedure of allowing the optimization to be

taken over a larger set is known as relaxation. In gen-

eral, relaxation introduces minimizers that lie outside

the original constraint set and that have no relationship

to minimizers of the original minimization problem. Un-

der some special circumstances, a solution of the origi-

nal problem may be obtained precisely from a solution

of the relaxed problem. In this case, the relaxation is

said to be exact.

Our goal is to find the conditions under which we

have an exact relaxation of our problem. We will de-

velop a series of several preliminary results. The first

result is that the functional F defined in (23) satisfies

a generalized coarea formula of the form

F (φ) =

∫ 1

0

F (1{φ≥t}) dt. (24)

Lemma 2 Let F be defined by (23). Then F satisfies

the generalized coarea formula (24).

Proof: See the appendix.

The use of coarea formulas is a ubiquitous tool in

convex relaxation methods found in the literature be-

cause it can be used to prove properties about minimiz-

ers of the functional.

Lemma 3 Let Y be any subset of functions φ : Ω ×
Γ̃ → [0, 1] and let φ∗ be any minimizer of F over Y . If

1{φ≥t} ∈ Y for all t ∈ [0, 1], then F (φ∗) = F (1{φ≥t})

for almost all t ∈ (0, 1] and thus 1{φ≥t} is a minimizer

of F over Y for all t ∈ (0, 1].

Proof: See the appendix.

We would like to apply the previous lemma to a con-

vex set Y so that minφ∈Y F (φ) is a convex minimization

problem. We would also want binary sets in Y to be

box functions to preserve the correspondence to (22),

and hence to (12). Recall the difference operator prop-

erty of box functions, namely, that Dm
1,...,m1{−→u�−→γ } van-

ishes everywhere except at the principal vertex, where

it equals (−1)m. It is thus natural to consider the set

X = {φ ∈ C : (−1)mDm
1,...,mφ ≥ 0}. (25)

Observe that the set of all box functions is a subset of

X. This leads to the following proposition.
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Lemma 4 Let φ∗ be a minimizer of minφ∈X F (φ). If

1{φ∗≥t} is a box function for all t ∈ (0, 1], then 1{φ∗≥t}
is a minimizer of (22) for all t ∈ (0, 1].

Proof: See the appendix.

There are many shortcomings of this proposition. In

general, there is no guarantee that all of the thresholded

functions will be box functions unless the minimizer φ∗

happens to be binary. Otherwise, verifying the hypoth-

esis involves checking infinitely many conditions. Alter-

natively, we can construct a minimizer of (22) without

appealing to the coarea formula (19).

Lemma 5 Let φ∗ be a minimizer of minφ∈X F (φ). Sup-

pose that there exists t ∈ [0, 1] such that 1{φ∗≥t} is a

box function and F (φ∗) = F (1{φ∗≥t}). Then 1{φ∗≥t} is

a minimizer of (22).

Proof: See the appendix.

The reason this proposition is useful is that when

φ ∈ X, we can prove there exists t ∈ (0, 1] such that

1{φ≥t} is a box function (although it should be noted

that 1{φ≥t} is not necessarily a box function for all t).

In fact, we will show that 1{φ≥1} is a box function.

Lemma 6 For all x ∈ Ω, suppose that φ : Ω × Γ̃ →
[0, 1] lies in the set X defined in (25), i.e. φ satisfies

the boundary conditions

(a) φ(x,
−→
0 ) = 1,

(b) φ(x, γ1, . . . , γm) = 0 whenever γi = Ni + 1 for some

i,

and φ satisfies the difference condition

(−1)mDm
1,...,mφ ≥ 0. (26)

Then 1{φ≥1} is a box function, i.e., there exists a unique
−→u (x) such that 1{φ≥1} = 1{−→u (x)�−→γ }.

Proof: See the appendix.

As we noted before this lemma, it is not necessarily

the case that 1{φ≥t} is a box function for all t ∈ (0, 1],

even when φ satisfies our assumptions. Indeed, consider

the example shown in Figure 3. We see that φ satis-

fies the hypotheses of Lemma 6, but that, for example,

1{φ≥ 1
2}

is not a box function. However, as guaranteed by

the lemma, 1{φ≥1} is a box function. In contrast, when

m = 1, the assumption on φ is simply that it is non-

increasing in γ, and it is immediately evident this is suf-

ficient to guarantee 1{φ≥t} is a box function for all t (cf.

[23, Lemma 1]). In fact, it turns out that when m = 1,

minimizers of F are automatically non-increasing in γ,

since it can be shown that F (Πφ) ≤ F (φ) where Π is

projection onto the set where Dφ ≥ 0 (cf. [12, Proposi-

tion 4.3]). This is not the case for m > 1 and illustrates

(a) (b)

(c)

Fig. 3 The function φ(x, ·) in (a) satisfies the hypotheses of
Lemma 6. However, in (b) we see that 1{φ≥ 1

2
} is not a box

function. As shown in (c), 1{φ≥1} is a box function, as guar-
anteed by the lemma.

further that there are many subtleties to consider when

extending the theory to the vector-valued setting.

Combining Proposition 5 and Lemma 6, we can now

state the main result of this section.

Theorem 7 Let φ∗ be a minimizer of F over X, the

convex set of functions φ : Ω × Γ̃ → [0, 1] such that

φ(x,
−→
0 ) = 1 and φ(x, γ1, . . . , γm) = 0

whenever γi = Ni + 1 for some i (27)

and

(−1)mDm
1,...,mφ ≥ 0. (28)

Then

ui(x) =

Ni∑
`=1

1{φ∗≥1}(x, `
−→ei ) (29)

is a minimizer of (12) provided F (φ∗) = F (1{φ∗≥1}).

We consider this theorem the main result of this

section because it provides us with an optimality cer-

tificate. We may solve a convex minimization problem

and perform one straightforward computation to check

whether we can obtain a global solution to the original

vector-valued non-convex minimization problem (12).

When m = 1, the results of this section reduce to

the method proposed in Pock et al. [35]. In that case,
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we need not verify the certificate condition of the the-

orem. Instead, we observe that 1{φ≥t} ∈ X whenever

φ ∈ X for all t ∈ (0, 1], which means we may simply

apply Proposition 4 since we know the hypotheses are

satisfied. However, when m > 1, this is no longer the

case.

3.2 Algorithm

To conclude this section, we mention an algorithm to

solve the minimization problem using the main theo-

rem.

min
φ∈X

F (φ), (30)

where F is given by (23). We write (30) as a saddle

point problem

min
φ∈C

max
|−→pi|≤1,(−1)mpγ≤ρ

{ m∑
i=1

Ni∑
`=1

∫
Ω

−→pi · ∇φ(x, `−→ei )

+(−1)m
∑
−→γ ∈Γ

pγD
mφ
}

(31)

and solve it using a primal-dual algorithm. Recall the

set C was defined in (17). Since the difference condition

required by the set X is enforced by the dual variable

pγ , we need only enforce the boundary conditions on

the primal variable φ.

We discretize the problem in the usual way and con-

sider for simplicity the case d = 2 and Ω = [0, 1]2. Let

Ωh = {0, . . . , Nx} × {0, . . . , Ny}. The discrete version

of (31) is thus

min
φh∈Ch

max−→p ∈Dh

{ m∑
i=1

Ni∑
`=1

∑
xh∈Ωh

−→pi · ∇hφh(xh, `−→ei )

+(−1)m
∑
−→γ ∈Γ

∑
xh∈Ωh

pγD
m
1,...,mφ

h
}
, (32)

where ∇h is the discrete gradient operator,

Ch =
{
φh : Ωh × Γ̃ → [0, 1] : φh(xh,

−→
0 ) = 1 and

φh(xh,−→γ ) whenever γi = Ni + 1 for some i
}
,

(33)

and

Dh =
{−→p = (−→p1, . . . ,

−→pm, pγ) : Ωh × Γ̃ →

R2 × · · · × R2 × R = R2m+1 :

|−→pi | ≤ 1, (−1)mpγ ≤ ρ and −→pi (xh,−→γ ) = 0 if γi 6= 0
}
. (34)

This can be written

min
φh∈Ch

max−→p ∈Dh
〈Aφh,−→p 〉R2m+1 , (35)

where A is the linear operator that maps

φh 7→ (∇hφh, . . . ,∇hφh, Dm
1,...,mφ

h) ∈ R2m+1. (36)

Following [13,33,34], we use the following modified Arrow-

Hurwicz-Uzawa algorithm [36,3]; see [17] for an overview

of primal-dual algorithms. Choose time steps τ0
φ, τ

0
p > 0

such that τ0
φτ

0
p ‖A‖

2
< 1, where

‖A‖ = sup
φh 6=0

∥∥Aφh∥∥
‖φh‖

(37)

is the operator norm of A. Along the same lines as [34,

Theorem 4.1], we see that

‖A‖2 =
4

h2
x

+
4

h2
y

+
4m∏m
i=1 h

2
γi

, (38)

where hx and hy are the spatial step sizes of Ωh and

hγ1 , . . . , hγm are the step sizes of Γ̃ . The time step re-

quirement reduces to

τ0
φτ

0
p <

1
4
h2
x

+ 4
h2
y

+ 4m∏m
i=1 h

2
γi

.

Choose any initial values ((φh)0, (−→p )0) ∈ Ch ×Dh

and put (φ
h
)0 = (φh)0. Then for n > 0 use the update

scheme
(−→p )n+1 = ΠDh

(
(−→p )n + τnp A(φ

h
)n
)

(φh)n+1 = ΠCh

(
(φh)n − τnφA∗(

−→p )n+1
)

θn = 1/
√

1 + 2ητnφ , τ
n+1
φ = θnτ

n
φ , τ

n+1
p = τnp /θn, η > 0

(φ
h
)n+1 = (φh)n+1 + θn((φh)n+1 − (φh)n)

,

(39)

where A∗ is the adjoint of A. The operators ΠDh and

ΠCh are the projections onto the convex sets Dh and

Ch, respectively. Explicitly,ΠDh(−→p ) =
(

p1
max(|(p1,...,pm)|,1) ,

. . . , pm
max(|(p1,...,pm)|,1) , p̂γ

)
, with

p̂γ =

{
max(pγ ,−ρ) if m odd,

min(pγ , ρ) if m even.

The projection ΠCh(φh) is a simple truncation of φh

to the interval [0,1] and setting the boundary condi-

tions φh(x,
−→
0 ) = 1 and φh(x,−→γ ) = 0 if γi = Ni + 1

for some i. As n → ∞, this scheme is guaranteed to

converge to a solution of (35) (cf. [13, Theorem 2]). Fi-

nally, note that we have used the acceleration technique

of [34] for first-order primal-dual algorithms to acceler-

ate the convergence. The acceleration is designed to be

efficient only if the objective function has some smooth-

ness (uniform convexity of one of the two terms in the

saddle-point problem). Our proposed energy (32) does

not hold this property. However, experiments showed

that the accelerated algorithm is still 5-10% faster than

a regular primal-dual algorithm.
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4 Completely Convex Chan-Vese Model

In Section 2, we described the method from [14] to find

global minimizers of the Chan-Vese problem

min
Σ⊂Ω

MS(Σ, c1, c2) (40)

where c1, c2 ∈ R are fixed. Now, using the vector-valued

minimization technique developed in Section 3, we pro-

pose a method to compute tight approximations of the

optimal solutions of the Chan-Vese problem when the

values c1, c2 are no longer fixed.

The idea is that the constants c1, c2 ∈ R can be rep-

resented by functions v1, v2 : Ω → R provided ∇v1 =

∇v2 = 0. Suppose the image is normalized so that

I : Ω → [0, 1]. Since our framework requires each com-

ponent of the unknown vector-valued function to take

values in a discrete set, we choose a discretization of

the unit interval with step size h = 1
Nv

, yielding the

minimization problem

min
u : Ω→{0,1},v1,v2 : Ω→{0,1,...,Nv}

{
EBCB(u, v1, v2) =∫

Ω

|∇u|+
∫
Ω

u(hv1 − I)2 + (1− u)(hv2 − I)2 dx
}

subject to ∇v1 = ∇v2 = 0.(41)

To enforce the constraints, we use method similar to

the augmented Lagrangian method used in [10]. In this

case, we set all the multipliers equal to zero and thus

the method is simply a penalty method. More precisely,

to solve the minimization problem

min−→u : Ω→Γ
F (−→u ) subject to H(−→u ) = 0, (42)

we solve the sequence of minimization problems

min−→u : Ω→Γ
Fj(
−→u ) := F (−→u ) + rj ‖H(−→u )‖2L2(Ω) (43)

for j = 1, 2, . . .. Suppose that the penalty parameters

are such that 0 < r1 < r2 < · · · with rj → ∞. If
−→u j is a global minimizer of Fj , then any limit point
−→u ∗ of {−→u j}∞j=1 is a global solution of F subject to the

constraint H = 0.

Let −→u = (u, v1, v2). Observe that ∇v1 = ∇v2 = 0 if

and only if

H(−→u ) := (|∇v1|+ |∇v2|)1/2
= 0, (44)

and the L2 norm of H(−→u ) is simply the sum of the total

variations of v1 and v2, i.e.,

‖H(−→u )‖2L2(Ω) =

∫
Ω

|∇v1|+
∫
Ω

|∇v2| . (45)

Hence, we have reduced the global Chan-Vese problem

(1) to a sequence of minimization problems

min
u,v1,v2

{∫
Ω

|∇u|+ u(hv1 − I)2 + (1− u)(hv2 − I)2 +

rj |∇v1|+ rj |∇v2|
}
, (46)

where the rj are strictly increasing and tend to infin-

ity. The minimization is taken over u : Ω → {0, 1} and

v1, v2 : Ω → {0, 1, . . . , Nv}. For fixed j, this minimiza-

tion problem is in the class of non-convex problems that

can be solved using the general framework of Section 3.

We have
−→u = (u1, u2, u3) = (u, v1, v2) : Ω →

Γ := {0, 1} × {0, 1, . . . , Nv}2 (47)

and

Er(
−→u ) =

∫
Ω

|∇u1|+ r

∫
Ω

|∇u2|+ r

∫
Ω

|∇u3|

+

∫
Ω

ρ(x, u1, u2, u3) dx (48)

where

ρ(x, u1, u2, u3) = u1(hu2−I(x))2+(1−u1)(hu3−I(x))2.

(49)

Using the method of Section 3, we obtain the minimiza-

tion problem minφ∈X Fr(φ), where

Fr(φ) =

∫
Ω

|∇φ(x,−→e 1)|

+r

Nv∑
`=1

3∑
i=2

∫
Ω

|∇φ(x, `−→e i)| −∫
Ω

∑
−→γ ∈Γ

ρ(x,−→γ )D3φdx (50)

and X is the set defined in (25). This leads to our al-

gorithm for globally solving the Chan-Vese problem,

shown in Algorithm 2.

Algorithm 2 Completely Convex Chan-Vese
Initialize variables {Algorithm is independent of initial-
ization}
while not converged do

φ∗ = argminφ∈X Fr(φ)
increase r

end while

(u, c1, c2)← vertex(1{φ∗≥1})

The final step of the algorithm indicates that our

solution is given by the principal vertex of the func-

tion 1{φ∗≥1}, which is guaranteed to be a box function

by Lemma 6. Due to Theorem 7, we obtain a global

minimizer whenever the certificate condition

F (φ∗) = F (1{φ∗≥1}) (51)

holds.

When the certificate condition is approximately sat-

isfied, i.e. when the values of the functions F (φ∗) and

F (1{φ∗≥1}) are close, we can make precise statements

about the approximation of the obtained solution to the

global minimizer of the original problem.
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Proposition 8 Let ε > 0. Suppose that for j = 1, 2, . . .,

we have the bound∣∣∣Frj (φ∗j )− Frj (1{φ∗j≥1})
∣∣∣ < ε, (52)

where φ∗j is the global minimizer of Frj over φ ∈ X.

Then the sequence of functions

uj :=

∫
γ1

1{φ∗j≥1}(x, γ1, γ2=0, γ3=0) dγ1

v1j :=

∫
γ2

1{φ∗j≥1}(x, γ1=0, γ2, γ3=0) dγ2

v2j :=

∫
γ3

1{φ∗j≥1}(x, γ1=0, γ2=0, γ3) dγ3

contains a subsequence that converges to functions ũ, ṽ1, ṽ2

such that ∇ṽ1 = ∇ṽ2 = 0 and

|EBCB(ũ, ṽ1, ṽ2)− E∗| < ε,

where E∗ is the optimal value of EBCB or equivalently

energy MS in (1).

Proof: The proof is given in the appendix and is mainly

based on Lemma 7 (also provided in the appendix).

5 Numerical results

5.1 Original Chan-Vese Model

This section illustrates the problem of non-convexity

of the original Chan-Vese method [15]. The alternat-

ing Chan-Vese algorithm based on [14] is given in Algo-

rithm 1. The inputs cinit
1 , cinit

2 are computed from an ini-

tial function uinit using (6). The output function ufinal

is thresholded at 0.5, which provides a binary function

u� := 1{ufinal≥0.5}. It is clear on Figures 4 and 5 that

the choice of the initial function uinit leads to different

segmentation results with different energy values. This

shows that the alternating Chan-Vese method is not

guaranteed to provide global solutions of the original

non-convex minimization problem (1).

5.2 Completely Convex Chan-Vese Model

In this section, we illustrate our segmentation method

on several images taken from the Berkeley and Weiz-

mann data sets [7,40], see Figures 6-16. We remind that

the proposed relaxation method is guaranteed to com-

pute a global minimizer of the Chan-Vese model un-

der certain conditions, which are represented by the F-

certificate in Theorem 7, i.e. F (φ∗) = F (1{φ∗≥1}). If the

F-certificate does not hold exactly but is still approx-

imately satisfied, i.e. F (φ∗) being close to F (1{φ∗≥1}),

then Proposition 8 states that the thresholded solution

is close (in terms of the value of the objective func-

tion) to the optimal solution of the original non-convex

problem. Therefore, we will check the values of energies

(a) Image (b) uinit

(c) u� (d) Chan-Vese en-
ergy (9) E(u�) =
0.080

(e) Image (f) uinit

(g) u� (h) Chan-Vese en-
ergy (9) E(u�) =
0.100

Fig. 4 Standard alternating Chan-Vese segmentation
method [15]. Rows 1 and 2 present two segmentation results
for two different initial functions u.

F (φ∗) and F (1{φ∗≥1}) in all experiments. The closer

these two values are the closer the relaxed solution is

to the optimal solution.

The first experiment we considered is the camera-

man image on Figure 6(a). Using the algorithm pro-

posed in Section 3.2, we obtained φ?, the non-thresholded

function u†(x) :=
∫
γ1
φ?(x, γ1, γ2=0, γ3=0)dγ1 on Fig-

ure 6(b) and the thresholded/binary segmentation func-

tion u?(x) :=
∫
γ1

1{φ?≥1}(x, γ1, γ2=0, γ3=0)dγ1 on Fig-

ure 6(c). The solution 1{φ?≥1} is a global solution of

the original Chan-Vese problem (1) if the F-certificate,

which is a sufficient condition of optimality, holds. For

the cameraman experiment, the F-certificate does not

hold exactly but relatively well as we have F (φ∗) =
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(a) Image (b) uinit

(c) u� (d) Chan-Vese en-
ergy (9) E(u�) =
0.1650

(e) Image (f) uinit

(g) u� (h) Chan-Vese en-
ergy (9) E(u�) =
0.1651

Fig. 5 Standard alternating Chan-Vese segmentation
method [15]. Rows 1 and 2 present two segmentation results
for two different initial functions u.

27.08 and F (1{φ∗≥1}) = 27.59, i.e. 1.8% of relative dif-

ference between the two energy values. Note that the

first coordinate of the vertex 1{φ∗≥1} is the minimizer

u, which corresponds to the two-phase segmentation

and is shown in Figure 6(b). The second and third co-

ordinates of the vertex are the minimizers v1 and v2,

which are constants due to the constraint enforced by

the penalty term. The value of the Chan-Vese energy is

computed using (9) and (6) for c1, c2.

Figures 7-13 present other segmentation results for

which the F-certificate also holds relatively well mean-

ing that the computed solutions are tight approxima-

tions of the global solutions of the original Chan-Vese

problem. Tables 1 and 2 provide the memory allocation

(i.e. image size) and the running time for the different

segmentation results.

Next, we consider the extension of the two-phase

Chan-Vese segmentation model to three phases, see Fig-

ure 14(a). We consider the natural extension of (1), that

(a) Image (b) u† (non-
thresholded so-
lution)

(c) u? (thresholded
solution)

(d) Chan-Vese en-
ergy (9) E(u?) =
0.066

Fig. 6 Our segmentation method provides a tight approxi-
mation of the original Chan-Vese optimal solution (1) because
the F-certificate of optimality holds relatively well as energies
F (φ∗) = 27.08 and F (1{φ∗≥1}) = 27.59 have 1.8% of relative
difference.

(a) Image (b) u† (non-
thresholded so-
lution)

(c) u? (thresholded
solution)

(d) Chan-Vese en-
ergy (9) E(u?) =
0.0862

Fig. 7 Our segmentation method provides a tight approxi-
mation of the original Chan-Vese optimal solution (1) because
the F-certificate of optimality holds relatively well as energies
F (φ∗) = 17.07 and F (1{φ∗≥1}) = 17.15 have 0.4% of relative
difference.

is

min
Σ1,Σ2,Σ3,c1,c2,c3

3∑
i=1

Per(Σi) +

∫
Σi

(ci − I(x))2 dx

s.t. ∪3
i=1 Σi = Ω, Σi ∩Σj = ∅ ∀i 6= j. (53)
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Image Cameraman Squirrel Boat Leaf
Size Nx×Ny×Nu×N2

v 128×127×2×52 144×105×2×52 128×187×2×52 128×87×2×52

F (φ∗) 27.08 17.07 12.98 14.884
F (1{φ∗≥1}) 27.59 17.15 13.15 14.886

Relative difference 1.8% 0.4% 1.2% 0.01%
# iterations to converge 9000 14500 7000 9500

CPU (sec) 950 1711 1092 684

Table 1 Memory allocation (i.e. image size) and running time for the original (two-phase) Chan-Vese segmentation model

Image Lung Plane Banzai Planes
Size Nx×Ny×Nu×N2

v 128×106×2×52 192×128×2×52 191×128×2×52 190×126×2×52

F (φ∗) 21.55 11.65 23.01 25.63
F (1{φ∗≥1}) 21.56 11.66 23.32 25.66

Relative difference 0.04% 0.08% 1.3% 0.1%
# iterations to converge 2000 16000 9500 7000

CPU (sec) 172 3008 1482 1260

Table 2 Memory allocation (i.e. image size) and running time for the original (two-phase) Chan-Vese segmentation model

(a) Image (b) u? (c) Segmentation

Fig. 8 Tight approximation of the original Chan-Vese opti-
mal solution as F (φ∗) = 12.98 and F (1{φ∗≥1}) = 13.15, i.e.
1.2% of relative difference.

(a) Image (b) u? (c) Segmentation

Fig. 9 Tight approximation of the original Chan-Vese opti-
mal solution as F (φ∗) = 14.884 and F (1{φ∗≥1}) = 14.886, i.e.
0.01% of relative difference.

(a) Image (b) u? (c) Segmentation

Fig. 10 Tight approximation of the original Chan-Vese op-
timal solution as F (φ∗) = 21.55 and F (1{φ∗≥1}) = 21.56, i.e.
0.04% of relative difference.

(a) Image (b) u? (c) Segmentation

Fig. 11 Tight approximation of the original Chan-Vese op-
timal solution as F (φ∗) = 11.65 and F (1{φ∗≥1}) = 11.66, i.e.
0.08% of relative difference.

(a) Image (b) u? (c) Segmentation

Fig. 12 Tight approximation of the original Chan-Vese op-
timal solution as F (φ∗) = 23.01 and F (1{φ∗≥1}) = 23.32, i.e.
1.3% of relative difference.

(a) Image (b) u? (c) Segmentation

Fig. 13 Tight approximation of the original Chan-Vese op-
timal solution as F (φ∗) = 25.63 and F (1{φ∗≥1}) = 25.66, i.e.
0.1% of relative difference.

A good relaxation problem of (53) is given by [28]:

min
u∈{1,2,3},c1,c2,c3

∫
Ω

|∇u|+
3∑
i=1

ψi(u)(ci − I)2, (54)

where ψi are indicator functions of the region {u =

i}. Here ψ1 = 1
2 (u − 2)(u − 3), ψ2 = (1 − u)(u − 3),

and ψ3 = 1
2 (u− 1)(u− 2). The relaxed problem (54) is

equivalent to (53) if and only if the zero-level sets do
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(a) Image (b) u?

Fig. 14 Our segmentation method provides a tight approxi-
mation of the three-phase Chan-Vese problem because the F-
certificate of optimality holds well as energies F (φ∗) = 19.90
and F (1{φ∗≥1}) = 19.91 have 0.05% of relative difference.

not overlap nontrivially, see [11]. We now consider the

straightforward extension of (41) to three phases:

min
u∈{1,2,3},v1,v2,v3∈{0,1,...,Nv}

{∫
Ω

|∇u|+

3∑
i=1

ψi(u)(hvi − I)2 dx
}

subject to ∇vi = 0 ∀i = {1, 2, 3}. (55)

Using the method of Section 3, we obtain a convex

minimization problem minφ∈X Fr(φ) to solve (55). Fig-

ure 14(b) presents the segmentation/binary function

u?(x) :=
∫
γ1

1{φ?≥1}(x, γ1, γ2=0, γ3=0, γ4=0)dγ1. Again,

the solution 1{φ?≥1} is a global solution of the three-

phase Chan-Vese problem if the F-certificate holds. For

the brain experiment, the F-certificate holds relatively

well as we have F (φ∗) = 19.46 and F (1{φ∗≥1}) = 19.47,

i.e. 0.05% of relative difference between the two en-

ergy values. Note that the first coordinate of the vertex
1{φ∗≥1} is the minimizer u, which corresponds to the

three-phase segmentation and shown on Figure 14(b).

The second, third and fourth coordinates of the vertex

are the minimizers v1, v2, and v3 which are constants

due to the constraint enforced by the penalty term.

Figures 15 and 16 present other segmentation re-

sults, for which the proposed solutions are also tight

approximations of the optimal solutions of the three-

phase Chan-Vese problem. Table 3 provides the mem-

ory allocation (i.e. image size) and the running time for

the different segmentation results.

5.3 Discussions

In this section, we provide some details and observa-

tions regarding the proposed algorithm.

The convergence of the minimization algorithm is checked

with two standard stopping conditions. If the L2 differ-

ence between two functions s.a. ||φk+500−φk||2, φk+500

(a) Image (b) u?

Fig. 15 Tight approximation of the three-phase Chan-Vese
optimal solution as F (φ∗) = 37.84 and F (1{φ∗≥1}) = 37.85,
i.e. 0.02% of relative difference.

(a) Image (b) u?

Fig. 16 Tight approximation of the three-phase Chan-Vese
optimal solution as F (φ∗) = 18.673 and F (1{φ∗≥1}) = 18.675,
i.e. 0.01% of relative difference.

being the value of φk after 500 iterations, is below an ar-

bitrary threshold then the iterative scheme stops and if

the number of iterations is larger than a maximum num-

ber (30, 000) then the iterative scheme stops as well.

We observed in the experiments that one single itera-

tion of the augmented Lagrangian-based scheme in Al-

gorithm 2 is actually enough to satisfy the constraints

∇vi = 0 (after thresholding) at each pixel, which cor-

responds to constant functions representing the con-

stants ci. More precisely, a single (fixed) value of r large

enough (r = 1, 000 or r = 10, 000) can satisfy the con-

straints ∇vi = 0 at each pixel. Note that when the con-

straints ∇vi = 0 hold, then increasing the value r does

not change the minimizing solution. Indeed, increasing

the value of r does not change the energy value of F (φ)

because the penalty term r
∫
|∇vi| is zero ∀r when the

constraints ∇vi = 0 are satisfied.

We also observed that if the algorithm is run for a long

time then the minimizer φ? will be equal to 1 for all pix-

els. However, the computational time to reach the value

1 is too large, so we decided to threshold φ? at 0.99 in

all experiments to save time. Thresholding at 0.99 in-

stead of 1 may affect Theorem 7 and Proposition 8 but

experiments showed that the solutions thresholding at

0.99 are still close to the optimal solutions w.r.t. the

F-certificate.

The proposed energy to minimize is convex but not

strictly convex, which means that there may be more

than one global minimizer. However, experiments show

that the algorithm is attracted by one global minimizer.

The speed and the memory allocation of the proposed
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Image Brain Landscape Swan
Size Nx×Ny×Nu×N3

v 128×128×3×43 192×128×3×43 128×85×3×53

F (φ∗) 19.90 37.84 18.673
F (1{φ∗≥1}) 19.91 37.85 18.675

Relative difference 0.05% 0.02% 0.01%
# iterations to converge 5000 2000 30000

CPU (sec) 6890 16000 25800

Table 3 Memory allocation (i.e. image size) and running time for the three-phase Chan-Vese segmentation model

segmentation method can be an issue. The memory al-

location is O(Nx ·Ny ·Nu ·N2
v ) for the two-phase seg-

mentation model and O(Nx ·Ny ·Nu ·N3
v ) for the three-

phase model. Nx, Ny are the size in pixel units of the

image. The function u is discretized with 2 or 3 values

depending the number of phases, so Nu ∈ {2, 3}. The

problem is the number Nv. How many discretization

levels do we need for the mean values ci? The more the

better but we cannot choose a large Nv value otherwise

the memory allocation of our algorithm is too large.

Therefore we decided to take Nv = 5 for the two-phase

problem and Nv = 4 for the three-phase problem, to al-

low reasonable memory allocation and processing time.

Improving this part is part of our future work.

We tested different degrees of smoothness on Figure

17 and Table 4. For small and medium values of the

smoothness parameter then the F-certificate holds rather

well. For large values of the smoothness parameter then

the difference between F (φ?) and F (1{φ?≥1}) increases.

We do not know exactly why. It may be related with the

running time of the algorithm. It is indeed known that

large smoothness parameters can increase significantly

the running time of TV-based algorithms. Therefore

the F-certificate may be not satisfied because the algo-

rithm may have not converged. It can be also intrinsic

to our method, i.e. the difference between F (φ?) and

F (1{φ?≥1}) increases when the smoothness parameter

increases. Fortunately, we have noticed that the rela-

tive difference between the two energy values F (φ?) and

F (1{φ?≥1}) does not vary much, between 0.01-1.8%, for

images borrowed from the Berkeley and the Weizmann

data sets.

Finally, observe that the discretization using the `2

norm may lead to a finite-dimensional problem where

the (generalized) coarea formula does not hold for the

discretized energy. Therefore, most of the lemma/theorems

do not apply directly to the discretized energy, although

experiments agreed with the continuous theory devel-

oped in this paper.

(a) λTV = 1 (b) λTV = 10

(c) λTV = 100 (d) λTV = 200

Fig. 17 Segmentation results for different regularization pa-
rameters

λTV F (φ∗) F (1{φ∗≥1})

1 19.805 19.807
10 19.90 19.91
100 23.55 23.67
200 28.78 29.71

Table 4 Values of energies for different regularization param-
eters

6 Concluding Remarks

In this paper, we have considered the Chan-Vese prob-

lem

min
Σ⊂Ω,c1,c2∈R

MS(Σ, c1, c2), (56)

and its multiphase version in (53). In the original work

of Chan and Vese [15], the authors developed a novel

level-set approach to efficiently compute solutions. Later,

Chan, Esedoḡlu, and Nikolova introduced in [14] a con-

vex relaxation method that guarantees global solutions

to the problem when c1 and c2 are fixed. This yields

an alternating scheme between the global solution and
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updating c1 and c2. We have proposed a completely

convex method to solve this problem. The method is

guaranteed to compute a global minimizer under cer-

tain conditions. These conditions do not hold exactly

in practice, so we cannot guarantee to find exact global

minimizers of the original Chan-Vese problem. How-

ever, our experiments show that our method computes

tight approximations of the optimal solutions as the er-

ror on the certificate of optimality is only 0.01-1.8% for

all experiments.

We can view the problem considered in this paper

as the K-means problem [30], which is a special case of

maximum likelihood estimation (MLE). In particular,

consider the case of a mixture model of two distribu-

tions of the same family with different unknown param-

eters. We have have observed data x = x1, . . . , xn that

is assumed to be independently drawn from the distri-

butions and latent variables z = z1, . . . , zn determine

the distribution from which each datum originates. The

aim is to estimate the unknown parameters θ of the dis-

tributions and the mixture of the data. In other words,

we seek to determine θ and z that maximize the like-

lihood of the observed data. Since this optimization

problem is often intractable, other approaches, such as

the expectation-maximization (EM) algorithm, are of-

ten used. EM is an iterative method that alternates be-

tween computing the expectation (E) of the likelihood

using the current estimate of the latent variables, and

maximizing (M) the expected value with respect to the

unknown parameters, which then determines the dis-

tribution of the latent variables in the next iteration.

To see the relationship with our setting, consider the

observed data x as the image I, the latent variables

z as the labeling Σ (i.e., the binary labeling function

u), and the unknown parameters θ as the optimal con-

stants c1 and c2. Continuing with the analogy, we can

view Algorithm 1 as an EM algorithm. The E step is

finding the segmentation by globally solving the convex

optimization problem when the constants are fixed; the

M step is the straightforward calculation of updating

the constants for the given segmentation. Furthermore,

solving the overall MLE problem is analogous to solv-

ing the global Chan-Vese problem. We leave for future

work the task of attempting to generalize our methods

to global optimization problems similar to those in the

MLE setting.

It was recently introduced in [33] a convex relax-

ation technique based on the calibration theory [1] that

computes an approximate global solution to the orig-

inal Mumford-Shah energy, i.e. the piecewise smooth

case. Mumford and Shah showed in [31] that the piece-

wise constant energy (the one considered in this paper)

is the natural limit energy of the piecewise smooth en-

ergy when the data fidelity parameter tends to zero

(equivalently when the regularization parameter goes

to infinity). So in this sense, our proposed approach

can be considered as a limiting case of [33]. It would be

an interesting work to study the limit case of the algo-

rithm proposed in [33] and see what discrete continua-

tion principle (that increases the regularization param-

eter to infinity) may produce the same solutions.

It was also recently proposed in [38] another method

to compute global solutions to the two-phase Chan-Vese

segmentation problem. The proposed method is based

on the convex relaxation method [14] and threshold-

ing techniques. Their overall algorithm performs most

likely faster than our segmentation technique. How-

ever, our segmentation method is more general than

[38] because it is not restricted to the two-phase seg-

mentation problem. Our framework was originally de-

veloped to solve the multi-phase segmentation problem

[11]. Therefore, in order to illustrate the generality of

our framework, we considered solutions to the three-

phase segmentation problem. The proposed preliminary

three-phase segmentation algorithm is rather slow and

memory consuming. Nevertheless, it was important to

show the generality of our segmentation framework to

compute solutions to more than two phases.

Future work will focus on improving the computa-

tional efficiency of the proposed method. Indeed, al-

though the proposed method is the first completely

convex relaxation method for the 2-phase and multi-

phase Chan-Vese model, it is still limited in practice as

the number of discretized values for the feature c1, c2
is only Nv = 5. However, new techniques s.a. [37,21]

are promising to increase significantly the number of

discretized values for c1, c2.
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Appendix

Lemma 2 Let F be defined by (23). Then F satisfies

the generalized coarea formula (24).

Proof. Recall that the coarea formula [20] for functions

g of bounded variation states that∫
Ω

|∇g| =
∫ ∞
−∞

∫
Ω

∣∣∇1{g>t}
∣∣ dt.

Using some elementary facts about total variation, namely

that∫
Ω

|∇g| =
∫
Ω

|∇(−g)| =
∫
Ω

|∇(g + c)|

for any constant c ∈ R, we see that∫
Ω

|∇g| =
∫ ∞
−∞

∫
Ω

∣∣∇1{−g>t}
∣∣ dt

=

∫ ∞
−∞

∫
Ω

∣∣∇1{g<t}
∣∣ dt

=

∫ ∞
−∞

∫
Ω

∣∣∇(1− 1{g≥t})
∣∣ dt

=

∫ ∞
−∞

∫
Ω

∣∣∇1{g≥t}
∣∣ dt.

Since φ ∈ [0, 1], we obtain
m∑
i=1

Ni∑
`=1

∫
Ω

|∇φ(x, `−→ei )| =

∫ 1

0

m∑
i=1

Ni∑
`=1

∫
Ω

∣∣∇1{φ(x,`−→ei )≥t}
∣∣ dt.

We also have φ(x,−→γ ) =
∫ φ(x,−→γ )

0
dt =

∫ 1

0
1{φ≥t} dt, of-

ten referred to as the layer-cake formula [29, p.26-27].

Thus, by linearity,

(−1)m
∑
−→γ ∈Γ

∫
Ω

ρ(x,−→γ )Dm
1,...,mφ(x,−→γ ) dx

=

∫ 1

0

(−1)m
∑
−→γ ∈Γ

∫
Ω

ρ(x,−→γ )Dm
1,...,m1{φ≥t} dx dt,

and (24) follows. �

Lemma 3 Let Y be any subset of functions φ : Ω×
Γ̃ → [0, 1] and let φ∗ be any minimizer of F over Y . If

1{φ≥t} ∈ Y for all t ∈ [0, 1], then F (φ∗) = F (1{φ≥t})

for almost all t ∈ (0, 1] and thus 1{φ≥t} is a minimizer

of F over Y for all t ∈ (0, 1].

Proof. Let φ∗ be a minimizer of F over Y and let φ′ be a

minimizer of F over Y ′ = Y ∩ {φ ∈ {0, 1}}. Since Y ′ ⊂
Y , we have F (φ∗) ≤ F (φ′). By minimality, F (φ∗) ≤
F (1{φ∗≥t}), and so from (24) it follows that

F (φ∗) =

∫ 1

0

F (1{φ∗≥t}) dt

≥
∫ 1

0

F (φ′) dt = F (φ′) ≥ F (φ∗).

Hence, all inequalities in the above expression are equal-

ities, and 1{φ∗≥t} is a minimizer of F for almost every

t ∈ [0, 1]. But for all t ∈ (0, 1] there exists a strictly

increasing sequence {ti}∞i=1 converging to t such that

1{φ∗≥tn} is a minimizer of F for all n and 1{φ∗≥tn}
converges to 1{φ∗≥t} almost everywhere as n → ∞.

Invoking lower semi-continuity of total variation and

Lebesgue’s dominated convergence theorem, we may

conclude that 1{φ∗≥t} is a minimizer of F for all t ∈
(0, 1]. �

Lemma 4 Let φ∗ be a minimizer of minφ∈X F (φ). If

1{φ∗≥t} is a box function for all t ∈ (0, 1], then 1{φ∗≥t}
is a minimizer of (22) for all t ∈ (0, 1].

Proof. We apply Lemma 3 to the minimizer φ∗ of F

over the set Y = X. By assumption, 1φ∗≥t is a box

function for all t ∈ (0, 1], and thus, since box functions

are a subset of X, we have 1φ∗≥t in X for all t ∈ (0, 1].

Applying the lemma, it follows that 1φ∗≥t is a mini-

mizer of F over Y , and thus is a minimizer of F over

the set of all box functions, i.e., 1φ∗≥t is a minimizer of

(22) for all t ∈ (0, 1]. �

Lemma 5 Let φ∗ be a minimizer of minφ∈X F (φ).

Suppose that there exists t ∈ [0, 1] such that 1{φ∗≥t} is

a box function and F (φ∗) = F (1{φ∗≥t}). Then 1{φ∗≥t}
is a minimizer of (22).

Proof. By assumption, φ∗ is a minimizer of F over X,

F (φ∗) = F (1φ∗≥t), and 1φ∗≥t is a box function. Since

box functions are a subset of X, we see that 1φ∗≥t is a

minimizer of F over X, and again by the subset prop-

erty 1φ∗≥t must be a minimizer of F over box functions,

i.e., 1φ∗≥t is a minimizer of (22). �

Lemma 6 For all x ∈ Ω, suppose that φ : Ω× Γ̃ →
[0, 1] lies in the set X defined in (25), i.e. φ satisfies the

boundary conditions

(a) φ(x,
−→
0 ) = 1,

(b) φ(x, γ1, . . . , γm) = 0 whenever γi = Ni + 1 for some

i,

and φ satisfies the difference condition

(−1)mDm
1,...,mφ ≥ 0.

Then 1{φ≥1} is a box function, i.e., there exists a unique
−→u (x) such that 1{φ≥1} = 1{−→u (x)�−→γ }.
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Proof. We split up the proof into two parts. First, we

show that (26) implies an analogous condition for all

differences of all lower orders. Then, we use the condi-

tions on all first and second order differences to prove

the desired result.

The first claim is that the difference condition (26)

implies

(−1)kDk
Sφ ≥ 0 for all 1 ≤ k ≤ m

and S ⊂ {1, . . . ,m} with |S| = k. (57)

Inductively, and by relabeling indices if necessary, it suf-

fices to show that (26) implies (−1)m−1Dm−1
1,...,m−1φ ≥ 0.

By way of contradiction, we suppose that there exists

x ∈ Ω and−→γ ∈ Γ such that (−1)m−1Dm−1
1,...,m−1φ(x,−→γ ) <

0. We see that

0 ≥ (−1)m−1Dm
1,...,mφ(x,−→γ )

= (−1)m−1
(
Dm−1

1,...,m−1φ(x,−→γ +−→em)−Dm−1
1,...,m−1φ(x,−→γ )

)
> (−1)m−1Dm−1

1,...,m−1φ(x,−→γ +−→em).

Applying this recursively, we conclude that there ex-

ists −→γ ′ = (γ′1, . . . , γ
′
m) with γ′m = Nm + 1 such that

(−1)m−1Dm−1
1,...,m−1φ(x,−→γ ′) < 0. However, from the bound-

ary conditions we must have Dm−1
1,...,m−1φ(x,−→γ ′) = 0, a

contradiction.

Our previous work has shown that, in particular,

(c) Diφ ≤ 0 for all 1 ≤ i ≤ m, and

(d) D2
ijφ ≥ 0 for all i 6= j.

We now use (c) and (d) to prove the lemma. To help

explain the rest of the proof, we illustrate the remaining

steps in Figure 18.

Recall the boundary conditions required by (a) and

(b); see Figure 18(a). For each x ∈ Ω, let φx(−→γ ) =

φ(x,−→γ ). Observe that for all 1 ≤ i ≤ m, there exists ni,

depending on x, such that φx(ni
−→ei ) = 1, φx(j−→ei ) = 1

for all 0 ≤ j < ni, and φx(j−→ei ) < 1 for all ni < j ≤
Ni+1. Indeed, this is an immediate consequence of (a),

which requires φx(
−→
0 ) = 1, and (c), which requires the

list of values

φx(
−→
0 ), φx(−→ei ), . . . , φx((Ni + 1)−→ei )

to be non-increasing. See Figure 18(b).

Next, we claim that 1{φ≥1} is a box function with

principal vertex −→n := (n1, . . . , nm). The second order

property (d) yields the implication

φx(−→γ +−→ei ) = 1 and φx(−→γ +−→ej ) = 1

=⇒ φx(−→γ +−→ei +−→e j) = 1

for all −→γ and indices i 6= j in which these expres-

sions are defined. Note that the left-hand side implicitly

means that φx(−→γ ) = 1, due to (a). One can visualize

the (i, j)-plane of the values of φx as a matrix whose

first column and last row are equal to 1 from the first

(a) (b)

(c) (d)

Fig. 18 An illustration of the proof of Lemma ??. See the
proof for the explanations of each of the steps (a)-(d). In
particular, (d) shows n, which we see is the principal vertex
of 1{φ≥1}.

observation of this proof. Property (58) forces the re-

maining interior entries to be subsequently filled with

1’s until we form the “box” of 1’s. See Figure 18(c).

More formally, consider the following contradiction

argument. Suppose there exists−→γ � −→n such that φx(−→γ ) <

1. Applying the contrapositive of (58), we see that ei-

ther φx(−→γ −−→ei ) < 1 or φx(−→γ −−→ej ) < 1. This procedure

can be used successively to all pairs of distinct indices

until we eventually have φx(−→α ) < 1 and −→α equal to

αi
−→ei for some i with αi ≤ ni. This violates our first ob-

servation. Consequently, we have now established that

φx(−→γ ) = 1 for all −→γ � −→n .

Finally, we need only show that if −→γ is such that

γi > ni for some i (i.e., −→γ 6� −→n ), then necessarily

φx(−→γ ) < 1. But this follows quickly from (a) once more,

since otherwise this would force φx(γi
−→ei ) = 1, which

conflicts with the construction of ni. See Figure 18(d).

We conclude that 1{φ≥1} is a box function with princi-

pal vertex −→n , and the proof is complete. �

The following lemma is used to prove Proposition 8.

Lemma 7 Let

Erj (u, v1, v2) = EBCB(u, v1, v2) +

rj

∫
Ω

|∇v1|+ rj

∫
Ω

|∇v2|, (58)

with 0 < r1 < r2 < · · · with rj → ∞. Any sequence

{uj , v1j , v2j} of global minimizers of Erj contains a sub-

sequence that converges in L1 (and pointwise almost

everywhere) to a function u, v1, v2 ∈
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BV (Ω; [0, 1]) that is a global solution of

min
u,v1,v2∈BV (Ω;[0,1])

EBCB(u, v1, v2) =

∫
Ω

|∇u|+

u(hv1 − I)2 + (1− u)(hv2 − I)2

s.t. ∇v1 = ∇v2 = 0 (59)

and consequently

min
u∈BV (Ω;[0,1]),c1,c2∈[0,1]

ECEN(u, c1, c2) =

∫
Ω

|∇u|+

u(c1 − I)2 + (1− u)(c2 − I)2, (60)

assuming without loss of generality that I ∈ [0, 1] and

so are the average values c1, c2.

Proof. Our argument is based on the proof of [8, Prop.

2.1], which establishes the result in the finite dimen-

sional setting.

By assumption, each function uj , v1j , v2j is a global

minimizer of Erj (u, v1, v2), which means that

Erj (uj , v1j , v2j) ≤ Erj (u, v1, v2)

for all u, v1, v2 ∈ BV (Ω; [0, 1]) (61)

Let E∗ denote the optimal value of (59). Then, for any

fixed j ≥ 1,

E∗ = inf {EBCB(u, v1, v2) : u, v1, v2 ∈ BV (Ω; [0, 1]),

∇v1 = ∇v2 = 0}
= inf {Erj (u, v1, v2) : u, v1, v2 ∈ BV (Ω; [0, 1]),

∇v1 = ∇v2 = 0}
Taking the infimum of (61) over u, v1, v2 ∈ BV (Ω; [0, 1])

such that ∇v1 = ∇v2 = 0 yields

EBCB(uj , v1j , v2j) + rj

∫
Ω

|∇v1j |+ rj

∫
Ω

|∇v2j |

≤ E∗ (62)

First we show convergence of a subsequence of the

sequences {uj , v1j , v2j}. To proceed, let us show that

for j = 1, 2, . . . the sequence of integrals∫
Ω

|∇uj |,
∫
Ω

|∇v1j |,
∫
Ω

|∇v2j |

is uniformly bounded. Let ρ(u1, u2, u3) = u1(hu2−I)2+

(1−u1)(hu3−I)2. Choosing u, v1, v2 ≡ 0 in the inequal-

ity (61) yields∫
Ω

|∇uj |+ ρ(uj , v1j , v2j) + rj

∫
Ω

|∇v1j |+ rj

∫
Ω

|∇v2j |

≤
∫
Ω

I2 = M, 0 < M <∞

since the function ρ is bounded, which implies∫
Ω

|∇uj |+ rj

∫
Ω

|∇v1j |+ rj

∫
Ω

|∇v2j | ≤M.

Therefore the sequence {uj , v1j , v2j} is uniformly bounded

in BV (Ω; [0, 1]). Thus, by a well-known BV compact-

ness theorem (see, e.g., [18, p. 176]), there exists a sub-

sequence {unj , v1nj , v2nj} converging in L1 to u, v1, v2 ∈
BV (Ω; [0, 1]). Moreover, by lower semicontinuity of the

BV seminorm and by passing to a subsequence if nec-

essary, we have∫
Ω

|∇u| ≤ lim
j→∞

∫
Ω

|∇uj | (63)

Continuity of ρ together with Lebesgue’s dominated

convergence theorem implies that∫
Ω

ρ(uj , v1j , v2j)→
∫
Ω

ρ(u, v1, v2)

which, together with (63), establishes that

EBCB(u, v1, v2) ≤ lim
j→∞

EBCB(uj , v1j , v2j).

Consequently, taking the limit superior of (62), we have

EBCB(u, v1, v2) +

lim sup
j→∞

rj

∫
Ω

|∇v1j |+ lim sup
j→∞

rj

∫
Ω

|∇v2j | ≤ E∗ (64)

But since
∫
Ω
|∇v1j | ≥ 0,

∫
Ω
|∇v2j | ≥ 0, rj → ∞, and

E∗ < ∞, we must have
∫
Ω
|∇v1j | → 0,

∫
Ω
|∇v2j | → 0

and ∇v1 = ∇v2 = 0, otherwise the left-hand side of

(64) is infinite. It follows that EBCB(u, v1, v2) ≤ E∗, as

was to be shown. �

Proposition 8 Let ε > 0. Suppose that for j =

1, 2, . . ., we have the bound∣∣∣Frj (φ∗j )− Frj (1{φ∗j≥1})
∣∣∣ < ε,

where φ∗j is the global minimizer of Frj over φ ∈ X.

Then the sequence of functions

uj :=

∫
γ1

1{φ∗j≥1}(x, γ1, γ2=0, γ3=0) dγ1

v1j :=

∫
γ2

1{φ∗j≥1}(x, γ1=0, γ2, γ3=0) dγ2

v2j :=

∫
γ3

1{φ∗j≥1}(x, γ1=0, γ2=0, γ3) dγ3

contains a subsequence that converges to functions ũ, ṽ1, ṽ2

such that ∇ṽ1 = ∇ṽ2 = 0 and

|EBCB(ũ, ṽ1, ṽ2)− E∗| < ε,
where E∗ is the optimal value of EBCB or equivalently

energy MS in (1).

Proof. The bound (52) implies that Frj (1{φ∗j≥1}) <

Frj (φ
∗
j ) + ε. Since 1{φ∗j≥1} is a box function, we may

define

u′j :=

∫
γ1

1{φ∗j≥1}(x, γ1, γ2=0, γ3=0) dγ1

v1
′
j :=

∫
γ2

1{φ∗j≥1}(x, γ1=0, γ2, γ3=0) dγ2

v2
′
j :=

∫
γ3

1{φ∗j≥1}(x, γ1=0, γ2=0, γ3) dγ3

and have Frj (1{φ∗j≥1}) = Erj (u
′
j , v1

′
j , v2

′
j). Moreover,

Erj (u
′
j , v1

′
j , v2

′
j) < Erj (uj , v1j , v2j)+ε, where uj , v1j , v2j

is a global minimizer of Erj . Lemma 7 shows that any

limit point of the functions u′j , v1
′
j , v2

′
j , say ũ, ṽ1, ṽ2, sat-

isfies the constraint∇ṽ1 = ∇ṽ2 = 0. Since we know that

∇v∗1 = ∇v∗2 = 0 and E∗ = EBCB(u∗, v∗1 , v
∗
2), the desired

bound follows. �
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