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Abstract. The classical Fokker-Planck equation is a linear parabolic equation
which describes the time evolution of probability distribution of a stochastic pro-
cess defined on a Euclidean space. Corresponding to the stochastic process, there
often exists a free energy functional which is defined on the space of probability
distributions and is a linear combination of a potential and an entropy. In recent
years, it has been shown that Fokker-Planck equation is the gradient flow of the
free energy functional defined on the Riemannian manifold of probability distri-
butions whose inner product is generated by a 2-Wasserstein distance. In this
paper, we consider similar matters for a free energy functional or Markov process
defined on a graph with a finite number of vertices and edges. If N ≥ 2 is the
number of vertices of the graph, we show that the corresponding Fokker-Planck
equation is a system of N nonlinear ordinary differential equations defined on a
Riemannian manifold of probability distributions. However, in contrast to the
case of stochastic processes defined on Euclidean spaces, situation is more subtle
for discrete spaces. We have different choices for inner products on the space
of probability distributions resulting in different Fokker-Planck equations for the
same process. It is shown that there is a strong connection but also substantial
differences between the systems of ordinary differential equations and the clas-
sical Fokker-Planck equation on Euclidean spaces. Furthermore, each of these
systems of ordinary differential equations is a gradient flow for the free energy
functional defined on a Riemannian manifold whose metric is closely related to
certain Wasserstein metrics. Some examples will also be discussed.

1. Introduction

In this paper, we are concerned with the relationships among three concepts
defined on graphs: free energy functional, Fokker-Planck equation and stochastic
process. These concepts have been intensively used and studied on continuous state
space RN in many disciplines and applications. We begin by recalling some of the
well known facts about them.
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Consider a stochastic process defined by the following randomly perturbed differ-
ential equation,

(1.1) dx = −∇Ψ(x)dt +
√

2βdWt, x ∈ RN ,

where Ψ(x) is a given scalar-valued function, β a constant, and dWt the white noise.
This stochastic differential equation (SDE) has been serving as one of the primary
and most effective tools in many practical problems that involve uncertainty or
incomplete information. Examples can be found in many different disciplines such
as finance, physics, chemistry, biology and engineering. Obviously, its solutions (or
trajectories) are stochastic processes that are no longer deterministic. Hence, it is
more desirable to know their probability distribution properties.

The classical Fokker-Planck equation is a partial differential equation describing
the time evolution of the probability density function ρ(x, t) of the trajectories of
the SDE (1.1). It has the form

(1.2)
∂ρ(x, t)

∂t
= ∇ · (∇Ψ(x)ρ(x, t)) + β∆ρ(x, t),

where ∇·(∇Ψ(x)ρ(x, t)) is called drift term, and ∆ρ(x, t) is the diffusion term that is
generated by white noise. This is why the SDE (1.1) is also called a diffusion process
in stochastic literature. Fokker-Planck equation plays a prominent role in physics,
chemical, and biological systems [17, 38, 40], and has been intensively studied.

Unlike the case that there exists a clear relationship between the stochastic pro-
cess (1.1) and Fokker-Planck equation (1.2), their connections to the free energy
functional is much less obvious. The notion of free energy is widely used in many
different subjects, and it usually means different things in different contexts. For
example, free energy in thermodynamics is related to the maximal amount of work
that can be extracted from a system. The concept of free energy is also used in other
fields, such as statistical mechanics, biology, chemistry, image processing, Markov
network. Readers are referred to [27, 41, 48] for more references.

Free energy functionals may carry different names too. For instance, the free en-
ergy is called Helmholtz free energy by physicists and Gibbs free energy by chemists.
Although free energy functionals refer to different things in different areas, they often
have similar formation, namely it is a scalar valued function defined on probabil-
ity distributions and composed by a combination of a potential energy U and an
entropy functional S, i.e. the free energy is expressed as

(1.3) F (ρ) = U(ρ) − βS(ρ),

where β is a constant coefficient called temperature, and ρ is a probability density
function defined on a state space X, which may be “continuous”, such as X = RN ,
or “discrete” X = {a1, · · · , aN} . For a system with state space RN , the potential
energy functional is defined by

U(ρ) :=

∫
RN

Ψ(x)ρ(x)dx,



FOKKER-PLANCK EQUATION ON THE GRAPHS 3

where Ψ(x) is a given potential function. The entropy, also called Gibbs-Boltzmann
entropy, is given by

S(ρ) := −
∫

RN

ρ(x) log ρ(x)dx,

which measures the complexity of the system.
It is well known that the global minimizer of the free energy F is a probability

distribution called Gibbs distribution

(1.4) ρ∗(x) =
1

K
e−Ψ(x)/β, where K =

∫
RN

e−Ψ(x)/β dx.

Here, we note that in order for equation (1.4) to be well defined, Ψ must grow
rapidly enough to ensure that K is finite. In this paper, we only consider potentials
satisfying this condition.

Although historical developments of the free energy and Fokker-Planck equation
are not directly related, there are many studies that reveal some connections between
them. Here, we list some well known results concerning with the relationships among
Fokker-Planck equation, the free energy functional and Gibbs distribution:

(1) The free energy (1.3) is a Lyapunov functional of Fokker-Planck equation
(1.2), i.e, if the probability density ρ(t, x) is a solution of (1.2), then F (ρ(t, x))
is a decreasing function in time.

(2) Gibbs distribution (1.4), the global minimizer of (1.3), is a stationary solution
of Fokker-Planck equation (1.2) [17, 38].

These classical results can also be found in [13, 15, 22, 23, 29].
In recent years, there has been many studies investigating connections among

free energy, Fokker-Planck equation, abstract Ricci curvature and optimal trans-
port theory for continuous state space. For example, a remarkable result has been
reported in [22, 29] that Fokker-Planck equation is the gradient flow of the free en-
ergy functional on a Riemannian manifold that is defined by a space of probability
distributions with a 2-Wasserstein metric on it. More precisely, let the state space
X be a suitable complete metric space with distance d, and P(X) be the space of
Borel probability measures on X. For any given two elements µ1, µ2 ∈ P(X), the
2-Wasserstein distance between µ1 and µ2 is defined by

(1.5) W2(µ1, µ2)
2 = inf

λ∈M(µ1,µ2)

∫
X×X

d(x, y)2dλ(x, y),

where M(µ1, µ2) is the collection of Borel probability measures on X × X with
marginals µ1 and µ2 respectively. Then (P(X),W2) forms a Riemannian manifold
and Fokker-Planck equation (1.2) is the gradient flow of the free energy (1.3) on
this manifold. Clearly, we have two metric spaces (X, d) and (P(X),W2), and there
exists an isometric embedding given as X → P(X) by x → δx. For the origin of
Wasserstein distance, we refer to [12, 47]; and for the modern theory and further
discussions on Wasserstein distance, we refer to the articles [2, 7, 8, 9, 14, 16, 26,
30, 45, 46] and references therein.

More recently, it is found that the 2-Wasserstein distance gives minimal energy
curves on X = RN [31], and the convexity of the entropy on (P(X),W2) is equivalent
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to the nonnegativity of Ricci curvature, which induces the definition of abstract Ricci
curvature on length spaces (spaces that curves can be defined)[11, 36, 37, 42, 43, 44].
Furthermore, it is proved in [21] that if (X, d) is a length space, so is the manifold
with the 2-Wasserstein metric (P(X),W2).

To summarize, we use Figure 1 to illustrate the relationships among the free
energy, Fokker-Planck equation and the stochastic process in the state space RN .
From the free energy point of view, Fokker-Planck equation is the gradient flow of the
free energy on the probability space with 2-Wasserstein metric. From the viewpoint
of the stochastic process, Fokker-Planck equation describes the time evolution of
the probability density function. Therefore, Fokker-Planck equation can be derived
from both ends of Figure 1. Furthermore, if we know any one of the three concepts,
the other two can be derived from it.

Figure 1. Interrelations among the free energy, Fokker-Planck equa-
tion and the stochastic differential equation in RN .

In this paper, we will study similar matters for a discrete state space, such as a
graph. For a system with a discrete state space X = {a1, a2, · · · , aN}, we denote
ρ = {ρi}N

i=1 as a probability distribution on X, i.e.,

N∑
i=1

ρi = 1 ρi ≥ 0,

where ρi is the probability of state ai. Then the free energy functional has the
following expression:

(1.6) F (ρ) =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi,

where Ψi is the potential at the state ai. Obviously, the potential energy functional
is given by

U(ρ) :=
N∑

i=1

Ψiρi,
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and the entropy is

S(ρ) := −
N∑

i=1

ρi log ρi.

The free energy functional has a global minimizer, called Gibbs density, is given by

(1.7) ρ∗
i =

1

K
e−Ψi/β, where K =

N∑
i=1

e−Ψi/β.

Despite of the remarkable developments on the subject on a continuous state
space, much less is known if the state space is discrete, especially when X is a
graph. There are studies reporting results on the mass transport theory for discrete
spaces [3, 28, 39]. However, to the best of our knowledge, Fokker-Planck equation
on a graph has not been established. The notion of “white noise” is also not clear
for a Markov process defined on the graph. They are the main subjects for this
paper.

Due to the developments in the continuous state space, it is natural to apply
spatial discretization schemes, such as the well known central difference scheme, to
Fokker-Planck equation (1.2) to obtain its counterpart for a discrete state space.
This is particularly intuitive if the discrete space is a lattice. The resulting equation
for the discrete state space is a coupled system of ordinary differential equations.
However, a number of problems arise with this approach. For instance, commonly
used discretization schemes often lead to steady states that are different from Gibbs
density (1.7), which is the global minimizer of the free energy. This suggests that
the equations obtained by the discretization schemes do not capture the real energy
landscape of the free energy on the discrete space, and it is not the desired Fokker-
Planck equation. To better illustrate this problem, we give a simple, but detailed
example in the next section .

Inspired by Figure 1, we can define Fokker-Planck equation on a graph X by two
different strategies: (1) From the free energy viewpoint, we will endow a Riemannian
metric d, which depends on the potential as well as the structure of the graph, on
the probability space P(X). Then Fokker-Planck equation can be derived as the
gradient flow of the free energy F on the Rienmannian manifold (P(X), d). (2) From
the stochastic process viewpoint, we will introduce a new interpretation of white
noise perturbations to a Markov process on X, and derive Fokker-Planck equation
as the time evolution equation for its probability density function. We must note
that unlike the continuous state space case, in which two approaches obtain the
same Fokker-Planck equation, we obtain two different Fokker-Planck equations on
the graph following these approaches. It seems one of the reasons we obtain different
Fokker-Planck equations is that graphs are not length spaces in general.

To be more precise on the approaches, we consider a graph G = (V, E), where
V = {a1, · · · , aN} is the set of vertices, and E the set of edges. We denote the
neighborhood of a vertex ai ∈ V as N(i): N(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E}
We further assume that the graph G is a simple graph, i.e., there are no self loops
or multiple edges, and G is connected with |V | ≥ 2. It is worth to mention that
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the results reported in the paper still hold after nominal modifications when these
assumptions on the graph G are invalid.

We let Ψ = (Ψi)
N
i=1 be a given potential function on V , where Ψi is the potential

on ai, β ≥ 0 be the strength of “white noise”. We denote

M = {ρ = (ρi)
N
i=1 ∈ RN |

N∑
i=1

ρi = 1 and ρi > 0 for i = 1, 2, · · · , N},

as the space of all positive probability distributions on V . Then from the free energy
viewpoint as shown in Theorem 4.1, we have a Fokker-Planck equation on M:

dρi

dt
=

∑
j∈N(i),Ψj>Ψi

((Ψj + β log ρj) − (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψj<Ψi

((Ψj + β log ρj) − (Ψi + β log ρi))ρi

+
∑

j∈N(i),Ψj=Ψi

β(ρj − ρi)

(1.8)

for i = 1, 2 · · · , N . If we take the stochastic process viewpoint, we will show in
Theorem 5.2 another Fokker-Planck equation on M:

dρi

dt
=

∑
j∈N(i),Ψ̄j>Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi))ρi

(1.9)

for i = 1, 2, · · · , N , where Ψ̄i = Ψi +β log ρi for i = 1, 2, · · · , N . For convenience, we
call equations (1.8) and (1.9) Fokker-Planck equation I (1.8) and II (1.9) respectively.

On one side, Fokker-Planck equation I (1.8) is the gradient flow of the free energy
(1.6) on the Riemannian manifold (M, dΨ), where dΨ is a Riemannian metric on
M induced by Ψ. A key step is to define the Riemannian metric dΨ generated
by inner products which will be given in Section 3. On the other side, Fokker-
Planck equation II (1.9) is derived from a Markov process on G subject to a “white
noise” perturbation. Although they are different, both (1.8) and (1.9) share similar
properties for β > 0:

• Free energy F decreases along solutions of both equations.
• Both equations are gradient flows of the same free energy on the same prob-

ability space M, but with different metrics.
• Gibbs distribution ρ∗ = (ρ∗

i )
N
i=1 is the stable stationary solution of both

equations.
• Near Gibbs distribution, the difference between two equations is small.
• For both equations, given any initial condition ρ0 ∈ M, there exists a unique

solution ρ(t,ρ0) for t ≥ 0, and ρ(t,ρ0) → ρ∗, as t → +∞.

However, there are differences between equations (1.8) and (1.9). Fokker-Planck
equation I (1.8) is obtained from the gradient flow of the free energy F on the
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Riemannian metric space (M, dΨ). However, its connection to a Markov process
on the graph is not clear. On the other hand, Fokker-Planck equation II (1.9)
is obtained from a Markov process subject to ”white noise” perturbations. This
equation can also be considered as a “gradient flow” of the free energy on another
metric space (M, dΨ̄). However, the geometry of (M, dΨ̄) is not smooth. In fact,
we will show that in this case, M is divided into finite segments, and dΨ̄ is only
smooth on each segments. We also note that the manner we derive Fokker-Planck
equation II (1.9) seems to be related to Onsager’s flux [33, 34, 35].

Formally, if the graph is a lattice, Fokker-Planck equation I (1.8) and II (1.9) can
be viewed as special upwind schemes of a Fokker-Planck equation on the continuous
state space (1.2). However, they are not commonly used schemes, especially the
diffusion term is discretized by a surprising consistent scheme, which, to the best
of our knowledge, has not been reported before. It is worth to mention that most
of the commonly used consistent and stable schemes lead to unexpected problems
similar to the case of the central difference scheme as demonstrated in Section 2.

We also want to mention that results obtained in this paper is largely inspired
by the recent developments in Fokker-Planck equation and 2-Wasserstein metric,
especially the theory reported in [22, 23, 29]. Our results are also influenced by
the upwind schemes for shock capturing in conservation laws [5, 25], as well as
the recent studies on Parrondo’s paradox [18, 19] and flashing ratchet models for
molecular motors [1, 20]. In fact, we will use the flashing ratchet model as an
example to demonstrate that our Fokker-Planck equations can be used to explain
how the ratchet can turn two energy losing processes into an energy gaining process.

This paper is organized as follows: In Section 2, we give a toy example to compare
Fokker-Planck equations I (1.8), II (1.9) and the equation obtained by the standard
central difference discretization. Some basic geometric properties of M are shown in
Section 3. In Section 4, we prove that Fokker-Planck equation I (1.8) is the gradient
flow of free energy, and show some related properties. In Section 5, we show how
we interpret “white noise” in the Markov process to obtain Fokker-Planck equation
II (1.9). In Section 6, we explain the upwind structure in Fokker-Planck equations
I (1.8) and II (1.9). In the last section, we consider the flashing ratchet model as an
application.

2. A Toy Example

In this section, we consider a toy example to compare Fokker-Planck equations
I (1.8) and II (1.9) with an equation obtained by discretizing Fokker-Planck equa-
tion (1.2) with central finite difference scheme. We shall see that the free energy
decreases with time along our Fokker-Planck equations I (1.8) and II (1.9), and
Gibbs distribution is the stationary solution of them. While the equation obtained
by central difference scheme does not have these properties.

Let us consider a continuous potential function Ψ : R → R shown in Figure 2
(A.1). In this example Ψ(x) is a piecewise polynomial function with continuous
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(A.1)

(A.2)

(A.3)

(B.1)

(B.2)

(B.3)

(C.1)

(C.2)

(C.3)

Figure 2. (A.1) Potential Ψ in Fokker-Planck equation (1.2). (A.2)
Gibbs distribution of Fokker-Planck equation (1.2) for β = 0.8. (A.3)
The free energy decreases with time along Fokker-Planck equation
(1.2). (B.1) and (C.1) Potentials on a1 = 1, a2 = 2, a3 = 3, a4 =
4, a5 = 5. (B.2) Gibbs distribution of Fokker-Planck equation (2.1).
(B.3) The free energy decreases with time along Fokker-Planck equa-
tion (2.1). (C.2) Stationary distribution of equation (2.3). (C.3) The
discrete free energy does not decrease with time along equation (2.3).

second order derivative:

Ψ(x) =

{
−1.5x3 + 10.5x2 − 22x + 14 if x ≤ 3

1.5x3 − 16.5x2 + 59x − 67 if x > 3
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We fix the temperature, the level of noise, β = 0.8 through out this example. Before
discussing the discrete example, we show some results for the continuous state space.
In Figure 2, we plot the steady state solution (see (A.2)) of Fokker-Planck equation
(1.2), which is Gibbs distribution. The free energy is a decreasing function along
the solution of Fokker-Planck equation as shown in (A.3). These observations match
well with the existing theory.

We now consider the discrete space X as a 1-D lattice consisting of five points

a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 5.

In other words, we have the graph G = (V, E), where V = {a1, a2, · · · , a5} and
E = {{ai, ai+1} : i = 1, 2, 3, 4}. The potential function at each point is given by:

Ψ1 = 1, Ψ2 = 0, Ψ3 = 2, Ψ4 = 1, Ψ5 = 3

First, we apply Fokker-Planck equation I (1.8) to G to obtain the following equa-
tion:

(2.1)



dρ1

dt
= −ρ1 + 0.8(log ρ2 − log ρ1)ρ1

dρ2

dt
= 2ρ3 + ρ1 + 0.8((log ρ3 − log ρ2)ρ3 − (log ρ2 − log ρ1)ρ1)

dρ3

dt
= −3ρ3 + 0.8((log ρ4 − log ρ3)ρ3 − (log ρ3 − log ρ2)ρ3)

dρ4

dt
= ρ3 + 2ρ5 + 0.8((log ρ5 − log ρ4)ρ5 − (log ρ4 − log ρ3)ρ3)

dρ5

dt
= −2ρ5 − 0.8(log ρ5 − log ρ4)ρ5

We compute the solution of this equation and found that the free energy decreases
in time along the solution (shown in Figure 2 (B.3)), and the solution converges to
Gibbs distribution (see Figure 2 (B.2)) as t → ∞.

Next, we apply equation (1.9) to G to obtain Fokker-Planck Equation II:

(2.2)



dρ1

dt
= (0.8(log ρ2 − log ρ1) − 1)c12(−1.25)

dρ2

dt
= (0.8(log ρ2 − log ρ1) − 1)c12(−1.25) + (0.8(ρ3 − ρ2) + 2)c23(2.5)

dρ3

dt
= (0.8(ρ2 − ρ3) − 2)c23(2.5) + (0.8(ρ4 − ρ3) − 1)c34(−1.25)

dρ4

dt
= (0.8(ρ3 − ρ4) + 1)c34(−1.25) + (0.8(ρ5 − ρ4) + 2)c45(2.5)

dρ5

dt
= (0.8(ρ4 − ρ5) − 2)c45(2.5),

where cij(x) is a number depends on the value of ρi and ρj

cij(x) =

{
ρi if ρi > exρj

ρj if ρi < exρj
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This equation has similar properties as equation (2.1), the free energy decreases
in time along its solution, and its solution also converges to Gibbs distribution as
t → ∞. For comparison purpose, we plot the free energy decaying pattern along the
solutions of equation (2.1) and equation (2.2) in the left (L) and right (R) of Figure
2 respectively. Clearly, both curves decrease to 0 as t → ∞.

(L) (R)

Figure 3. (L) free energy vs time along Equation (2.1). (R) free
energy vs time along Equation (2.2).

We also apply a commonly used finite difference scheme for reaction-diffusion
equations to discretize Fokker-Planck equation (1.2). To be more precise, we use
upwind scheme for the drift term and central difference scheme for the diffusion
term. This yields the following equation,

(2.3)



dρ1

dt
= −ρ1 + 0.8(ρ2 − ρ1)

dρ2

dt
= 2ρ3 + ρ1 + 0.8(ρ3 − 2ρ2 + ρ1)

dρ3

dt
= −3ρ3 + 0.8(ρ4 − 2ρ3 + ρ2)

dρ4

dt
= ρ3 + 2ρ5 + 0.8(ρ5 − 2ρ4 + ρ3)

dρ5

dt
= −2ρ5 − 0.8(ρ5 − ρ4)

We compute the solution of equation (2.3) and found that the discrete free energy
does not decrease in time (see Figure 2 (C.3)), and its stationary distribution (see
Figure 2 (C.2)) is not Gibbs distribution. Obviously, these results are not satisfac-
tory and equation (2.3) should not be considered as Fokker-Planck equation for the
lattice X.

Of course, one may comment that equation (2.3) can produce expected results
if the mesh (lattice) is refined enough and the grid size is sufficiently small. In
that case, the discrete solution converges to the solution of Fokker-Planck equation
(1.2) for continuous state space. Indeed, this is true. However, in this paper, we
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consider problems only defined on discrete spaces. They may not be formulated
by discretizing problems of continuous space, and they may not be refined, such as
graphs.

Finally, we remark that we have tried many other commonly used discretization
schemes for this example. All of them have similar problems as equation (2.3).

3. Metrics on M and Riemannian manifold

In the introduction, we have claimed that Fokker-Planck equation I (1.8) and
Fokker-Planck II (1.9) can be seen as the gradient flows of the free energy with
respect to two specific metrics dΨ, dΨ̄ on M. We will give the definitions of dΨ, dΨ̄

in this section. Note that dΨ, dΨ̄ are dependent on the potential Ψ on V and β > 0.
We will also provide another two Riemannian metrics dm and dM on M, which are
independent of the potential Ψ on V and β > 0, and are upper and lower bounds
of the metrics dΨ, dΨ̄. The Riemannian inner products of dΨ, dΨ̄, dm and dM at
ρ ∈ M are denoted by gΨ

ρ , gΨ̄
ρ , gm

ρ and gM
ρ respectively. For simplicity in notations,

we may omit the sub-index ρ or super-index Ψ (or Ψ̄) and simply let g or gΨ be gΨ
ρ

(and similarly let g or gΨ̄ be gΨ̄
ρ ) if there is no confusion.

Given a graph G = (V, E) with V = {a1, a2, · · · , aN}, we consider all positive
probability distributions on V :

M =

{
ρ = (ρi)

N
i=1 ∈ RN |

N∑
i=1

ρi = 1 and ρi > 0 for i ∈ {1, 2, · · · , N}

}
.

We define its closure as,

M =

{
ρ = (ρi)

N
i=1 ∈ RN |

N∑
i=1

ρi = 1 and ρi ≥ 0 for i ∈ {1, 2, · · · , N}

}
,

and denote ∂M as the boundary of M:

∂M =

{
ρ = {ρi}N

i=1 ∈ RN |
N∑

i=1

ρi = 1, ρi ≥ 0 and
N∏

i=1

ρi = 0

}
The tangent space TρM at ρ ∈ M is defined by

TρM =

{
σ = (σi)

N
i=1 ∈ RN |

N∑
i=1

σi = 0

}
Let d be the standard Euclidean metric on RN . It is clear that d is also a Rie-

mannian metric on M. Now let

(3.1) Φ : (M, d) → (RN , d)

with Φ(ρ) = (Φi(ρ))N
i=1, ρ ∈ M be a given smooth map. Next, we will endow a

metric dΦ on M which is dependent on Φ and the structure of G. Later we will
provide precise definitions of Φ in different cases. In the following, we just consider
Φ as an arbitrary but given smooth map.
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For two values r1 ≥ 0 and r2 ≥ 0, we consider the function:

e(r1, r2) =


r1−r2

log r1−log r2
if r1 ̸= r2 and r1r2 > 0

0 if r1r2 = 0

r1 if r1 = r2

.

It is not hard to show that e is a continuous function on

{(r1, r2) ∈ R2 : r1 ≥ 0, r2 ≥ 0}
and for every r1 ≥ 0, r2 ≥ 0,

min{r1, r2} ≤ e(r1, r2) ≤ max{r1, r2}.
This says that the following function:

r1 − r2

log r1 − log r2

can be extended by continuity from the open first quadrant in the plane to its
closure. For simplicity, we will use its original form instead of the function e(r1, r2).

Given ρ = (ρi)
N
i=1 ∈ M, we now endow an inner product on TρM. We begin by

considering the following equivalence relation “∼ ” in RN :

p ∼ q if and only if p1 − q1 = p2 − q2 = · · · = pN − qN .

We denote W as the vector space RN/ ∼. In other words, for p ∈ RN we consider
its equivalent class

[p] = {(p1 + c, p2 + c, · · · , pN + c) : c ∈ R},
and all such equivalent classes form the vector space W .

For a given Φ (see (3.1)) , we now define an identification τΦ from W to TρM.
Let [p] = [(pi)

N
i=1] ∈ W , define τΦ([p]) = (σi)

N
i=1 ∈ TρM:

σi =
∑

j∈N(i),Φj>Φi

(pi − pj)ρj +
∑

j∈N(i),Φj<Φi

(pi − pj)ρi

+
∑

j∈N(i),Φj=Φi

(pi − pj)
ρi − ρj

log ρi − log ρj

(3.2)

for i = 1, 2, · · · , N , where Φk = Φk(ρ) for k ∈ {1, 2, · · · , N}. By the identification
τΦ, we can express σ ∈ TρM by [p] := τ−1

Φ (σ) ∈ W. When σ = (σi)
N
i=1 is

identified with [(pi)
N
i=1] by τΦ(σ) = [p], we write σ ≃ [(pi)

N
i=1]. It is clear that such

identification is dependent on Φ, the probability distribution ρ and the structure of
the graph G. Now we show that the identification (3.2) is well defined.

Lemma 3.1. If each σi satisfies (3.2), then the map τΦ : [(pi)
N
i=1] ∈ W 7→ σ =

(σi)
N
i=1 ∈ TρM is a linear isomorphism.

Proof. It is clear that

τΦ : [(pi)
N
i=1] ∈ W 7→ τΦ([(pi)

N
i=1]) = (σi)

N
i=1 ∈ TρM

is a well defined linear map. We note that W and TρM are both (N−1)-dimensional
real linear spaces. In order to show the map τΦ is isomorphism, it is sufficient to show
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that the map τΦ is injective, which is equivalent to the fact that if p = {pi}N
i=1 ∈ RN

satisfies ∑
j∈N(i),Φj>Φi

(pi − pj)ρj +
∑

j∈N(i),Φj<Φi

(pi − pj)ρi

+
∑

j∈N(i),Φj=Φi

(pi − pj)
ρi − ρj

log ρi − log ρj

= 0
(3.3)

for i = 1, 2, · · · , N , then p1 = p2 = · · · = pN .
Let (pi)

N
i=1 ∈ RN satisfy (3.3). For {ai, aj} ∈ E, we set

C({ai, aj}) =


ρj if Φi < Φj

ρi if Φi > Φj
ρi−ρj

log ρi−log ρj
if Φi = Φj

.

Then ∑
j∈N(i)

C({ai, aj})(pi − pj) = 0

for i = 1, 2, · · · , N . This implies

(3.4) pi =

∑
j∈N(i)

C({ai, aj})pj∑
j∈N(i)

C({ai, aj})

for i = 1, 2, · · · , N . Let c = max{pi : i = 1, 2, · · · , N}. Now we claim pi = c for all
i = 1, 2, · · · , N , that is, p1 = p2 = · · · = pN . If this is not true, then we can find
{aℓ, ak} ∈ E such that pℓ = c, pk < c, since the graph G is connected. However, by
(3.4),

c = pℓ =

∑
j∈N(ℓ) C({aℓ, aj})pj∑
j∈N(ℓ) C({aℓ, aj})

= c +

∑
j∈N(ℓ) C({aℓ, aj})(pj − c)∑

j∈N(ℓ) C({aℓ, aj})

≤ c − C({aℓ, ak})(c − pk)∑
j∈N(ℓ) C({aℓ, aj})

< c.

This is a contradiction. And the proof is completed. �
Definition 3.2. By the above identification (3.2), we endow an inner product on
TρM as below:

gΦ
ρ (σ1, σ2) =

N∑
i=1

p1
i σ

2
i =

N∑
i=1

p2
i σ

1
i .
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Note that the above definition is equivalent to

gΦ
ρ (σ1, σ2) =

∑
{ai,aj}∈E,Φi<Φj

ρj(p
1
i − p1

j)(p
2
i − p2

j)

+
∑

{ai,aj}∈E,Φi=Φj

(p1
i − p1

j)(p
2
i − p2

j)
ρi − ρj

log ρi − log ρj

,
(3.5)

for σ1 = (σ1
i )

N
i=1,σ

2 = (σ2
i )

N
i=1 ∈ TρM, where [(p1

i )
N
i=1], [(p

2
i )

N
i=1] ∈ W satisfy

σ1 = (σ1
i )

N
i=1 ≃ [(p1

i )
N
i=1] and σ2 = (σ2

i )
N
i=1 ≃ [(p2

i )
N
i=1].

In particular,

gΦ
ρ (σ,σ) =

∑
{ai,aj}∈E,Φi<Φj

ρj(pi − pj)
2

+
∑

{ai,aj}∈E,Φi=Φj

(pi − pj)
2 ρi − ρj

log ρi − log ρj

(3.6)

for σ ∈ TρM, where σ ≃ [(pi)
N
i=1].

We note that the map ρ ∈ M 7→ gΦ
ρ is bounded and measurable, but may not be

continuous. If Φ is a constant map, then the map ρ ∈ M 7→ gΦ
ρ is smooth.

Since ρ ∈ M 7→ gΦ
ρ is measurable, Using the inner product gΦ

ρ , we can define the

distance between two points ρ1 and ρ2 in M by

(3.7) dΦ(ρ1,ρ2) = inf
γ

L(γ(t))

where γ : [0, 1] → M ranges over all continuously differentiable curve with γ(0) =
ρ1, γ(1) = ρ2, and

L(γ(t)) =

∫ 1

0

√
gΦ

γ(t)(γ̇(t), γ̇(t))dt

is the arc length of γ . Although gΦ
ρ is not a smooth inner product with respect to ρ,

the length of any smooth curve is still well defined since ρ ∈ M 7→ gΦ
ρ is measurable.

It can be shown by a lemma (Lemma 3.4 towards the end of this section) that dΦ

is a metric on M. Thus we have a metric space (M, dΦ). If Φ is a constant map,
then (M, gΦ) is a Riemannian manifold and the metric dΦ is a Riemannian metric
on M since the map ρ ∈ M 7→ gΦ

ρ is smooth.

Remark 3.3. This identification (3.2) is motivated by a similar identification intro-
duced by F. Otto in [29] for the case of a continuous state space. We first replace
a corresponding differential operator in [29] by a combination of finite differences
because our state space V is discrete. Next, motivated by the upwind scheme in
the study of numerical methods for entropy solutions in conservation laws and the
structure of Kolmogorov equation (5.1) in section 5, we obtain the identification
(3.2) and call the inner product gΦ

ρ the upwind inner product induced by Φ.

Given ρ = (ρi)
N
i=1 ∈ M. Let the following three matrices

A = [A(i, j)]N×N , Am = [Am(i, j)]N×N , and AM = [AM(i, j)]N×N
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be defined as follows: If i ̸= j, then

A(i, j) =


−ρj if j ∈ N(i), Φj > Φi

−ρi if j ∈ N(i), Φj < Φi

− ρi−ρj

log ρi−log ρj
if j ∈ N(i), Φj = Φi

0 otherwise

,

Am(i, j) =

{
−max{ρi, ρj} if {ai, aj} ∈ E

0 otherwise

and

AM(i, j) =

{
−min{ρi, ρj} if {ai, aj} ∈ E

0 otherwise
.

If i = j, then 
A(i, i) = −

∑
k ̸=i

A(i, k)

Am(i, i) = −
∑
k ̸=i

Am(i, k)

AM(i, i) = −
∑
k ̸=i

AM(i, k)

.

Thus the identification (3.2) can be expressed by

σT = ApT

where σ = (σi)
N
i=1 ∈ TρM and p = (pi)

N
i=1 ∈ RN .

Now we consider two new identifications

(3.8) σT = AmpT

and

(3.9) σT = AMpT .

Similar to Lemma 3.1, the identifications (3.8) and (3.9) are both linear isomor-
phisms between TρM and W . We recall that the identification (3.2) induces the
inner product gΦ

ρ (·, ·) on TρM. Using the inner product gΦ, we get the distance
dΦ(·, ·) on M. Similarly, the identification (3.8)(resp. (3.9)) induces an inner prod-
uct gm

ρ (·, ·) (resp. gM
ρ (·, ·)) on TρM. It is not hard to see that the map ρ 7→ gm

ρ

(resp. ρ 7→ gM
ρ ) is smooth. And using the inner product gm (resp. gM), we obtain

distance dm(·, ·) (resp. dM(·, ·)) on M. Note that (M, gm) and (M, gM) are smooth
Riemannian manifolds.

Lemma 3.4. For any smooth map Φ : (M, d) → (RN , d) and for any ρ1,ρ2 ∈ M,

dm(ρ1,ρ2) ≤ dΦ(ρ1, ρ2) ≤ dM(ρ1,ρ2).

Proof. Let Φ : (M, d) → (RN , d) be a smooth map. Given ρ ∈ M, the identification
(3.2) is given by

σT = ApT
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where σ = (σi)
N
i=1 ∈ TρM and p = (pi)

N
i=1 ∈ RN . Since

N∑
i=1

σi = 0

for (σi)
N
i=1 ∈ TρM, we delete the last row and column of matrix A to get a symmetric

diagonally dominant (N − 1) × (N − 1)-matrix B and the identify (3.2) becomes

σT
∗ = BpT

∗

where σ∗ = (σi)
N−1
i=1 and p∗ = (pi − pN)N−1

i=1 .
Similarly we can get symmetric diagonally dominant matrices Bm and BM from

Am and AM respectively. Moreover, B, Bm and BM are all irreducible matrices since
the graph G is connected. They are all nonsingular and positive definite, because
they all have positive diagonally entries.

The inner products are given as

gΦ
ρ (σ, σ) = σpT = σ∗p

T
∗ = σ∗B

−1σT
∗

gm
ρ (σ, σ) = σpT = σ∗p

T
∗ = σ∗B

−1
m σT

∗

gM
ρ (σ, σ) = σpT = σ∗p

T
∗ = σ∗B

−1
M σT

∗

for σ ∈ TρM. It is well known that a symmetric diagonally dominant real matrix
with nonnegative diagonal entries is positive semidefinite. Since Bm − B, B − BM

are still symmetric diagonally dominant matrices with nonnegative diagonal entries,
we have Bm − B and B − BM are positive semidefinite. Now we claim that: for
σ ∈ TρM,

gm
ρ (σ,σ) ≤ gΦ

ρ (σ,σ) ≤ gM
ρ (σ,σ).

In order to prove this claim, we first prove

gm
ρ (σ, σ) ≤ gΦ

ρ (σ, σ).

We note that
gΦ

ρ (σ, σ) − gm
ρ (σ, σ) = σ∗(B

−1 − B−1
m )σT

∗ .

Therefore, to show that
gm

ρ (σ, σ) ≤ gΦ
ρ (σ, σ),

it is sufficient to show (B−1 − B−1
m ) is positive semi-definite.

Since B is a positive definite symmetric matrix, B−1 is also positive definite
symmetric. Combing this with the fact that (Bm − B) is positive semi-definite, we
know that (B−1 − B−1

m ) is positive semi-definite from the following equality

B−1 − B−1
m = B−1

m {(Bm − B)B−1(Bm − B)T + (Bm − B)}(B−1
m )T .

In a similar fashion, we prove gΦ
ρ (σ, σ) ≤ gM

ρ (σ, σ).
Thus we obtain

dm(ρ1, ρ2) ≤ dΦ(ρ1,ρ2) ≤ dM(ρ1, ρ2)

for any ρ1, ρ2 ∈ M. �
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In the remaining part of this section, we focus on the function Φ used in the
metric derivations. There are two different choices for Φ which are related to Fokker-
Planck equation I (1.8) and II (1.9) respectively. We consider the given potential
Ψ = (Ψi)

N
i=1 on V and β ≥ 0, where Ψi is the potential on vertex ai.

In the first case for Fokker-Planck equation I (1.8), we let

Φ(ρ) ≡ Ψ,

where ρ ∈ M. In this case, for a given ρ ∈ M, the identification (3.2)

σ ≃ [(pi)
N
i=1]

is given by the identification

σi =
∑

j∈N(i),Ψj>Ψi

(pi − pj)ρj +
∑

j∈N(i),Ψj<Ψi

(pi − pj)ρi

+
∑

j∈N(i),Ψj=Ψi

(pi − pj)
ρi − ρj

log ρi − log ρj

(3.10)

the norm (3.6) is given by

gΨ
ρ (σ,σ) =

∑
{ai,aj}∈E,Ψi<Ψj

ρj(pi − pj)
2

+
∑

{ai,aj}∈E,Ψi=Ψj

(pi − pj)
2 ρi − ρj

log ρi − log ρj

(3.11)

for σ ∈ TρM, where σ ≃ [(pi)
N
i=1].

We note that the map ρ ∈ M 7→ gΨ
ρ is smooth, the inner product gΨ generates

a Riemannian metric space (M, dΨ), where dΨ comes from (3.7). We claim that
Fokker-Planck equation I (1.8) is the gradient flow of free energy on the Riemannian
manifold (M, gΨ), which will be proved in section 4.

The second case is for Fokker-Planck equation II (1.9), we have

Φ(ρ) ≡ Ψ̄(ρ)

where Ψ̄(ρ) = (Ψ̄i(ρ))N
i=1 which is defined by

Ψ̄i(ρ) = Ψi + β log ρi.

In this case, for a given ρ ∈ M, the identification (3.2)

σ ≃ [(pi)
N
i=1]

is given by the identification

σi =
∑

j∈N(i),Ψ̄j>Ψ̄i

(pi − pj)ρj +
∑

j∈N(i),Ψ̄j<Ψ̄i

(pi − pj)ρi

+
∑

j∈N(i),Ψ̄j=Ψ̄i

(pi − pj)
ρi − ρj

log ρi − log ρj

(3.12)
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where Ψ̄i = Ψ̄i(ρ) and the inner product (3.5) on TρM is given by

gΨ̄
ρ (σ1, σ2) =

N∑
i=1

p1
i σ

2
i =

N∑
i=1

p2
i σ

1
i

=
∑

{ai,aj}∈E,Ψ̄i<Ψ̄j

ρj(p
1
i − p1

j)(p
2
i − p2

j)

+
∑

{ai,aj}∈E,Ψ̄i=Ψ̄j

(p1
i − p1

j)(p
2
i − p2

j)
ρi − ρj

log ρi − log ρj

(3.13)

for σ1 = (σ1
i )

N
i=1, σ

2 = (σ2
i )

N
i=1 ∈ TρM, where [(p1

i )
N
i=1], [(p

2
i )

N
i=1] ∈ W satisfy σ1 ≃

[(p1
i )

N
i=1] and σ2 ≃ [(p2

i )
N
i=1] by the identification (3.12). Particularly,

gΨ̄
ρ (σ, σ) =

∑
{ai,aj}∈E,Ψ̄i<Ψ̄j

ρj(pi − pj)
2

+
∑

{ai,aj}∈E,Ψ̄i=Ψ̄j

(pi − pj)
2 ρi − ρj

log ρi − log ρj

(3.14)

for σ ∈ TρM, where σ ≃ [(pi)
N
i=1].

The inner product gΨ̄ gives a metric space (M, dΨ̄), where dΨ̄ comes from (3.7).
The map ρ ∈ M 7→ gΨ̄

ρ is not continuous due to the fact that Ψ̄ depends on ρ.

Then (M, gΨ̄) is not a Riemannian manifold. However gΨ̄
ρ is a piecewise smooth

function with respect to ρ, thus the space (M, gΨ̄) comprises finitely many smooth
Riemannian manifolds.

More precisely, the space M is divided into segments by N(N−1)/2 sub-manifolds

Sr,t = {(ρi)
N
i=1 ∈ M : Ψr + β log ρr = Ψt + β log ρt}, 1 ≤ r < t ≤ N.

The inner product gΨ̄ is smooth in each component divided by {Sr,t}1≤r<t≤N , and
gives a smooth Riemannian distance in each and every component. Moreover, all
sub-manifolds Sr,t intersect at one point which is Gibbs distribution ρ∗ = (ρ∗

i )
N
i=1,

where

ρ∗
i =

1

K
e−

Φi
β , K =

N∑
i=1

e−
Φi
β .

With above understandings, Fokker-Planck equation II (1.9) can also be seen as
the ”gradient flow” of free energy on the metric space (M, dΨ̄), which will be shown
in section 5, where by the “gradient flow”, we mean that for every ρ ∈ M that is
not in any Sij, there exists a small neighborhood, such that the solution of Fokker-
Planck equation II (1.9) though ρ is the gradient flow of the free energy with respect
to the metric dΨ̄.

By Lemma 3.4, dΨ and dΨ̄ are bounded by dm and dM . In general, the explicit
expressions of these distances dΨ, dΨ̄, dm and dM are hard to obtain. In the following
example 3.5, we show one explicit expression of the distance function dΨ.

Example 3.5.
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We consider a star graph G = (V, E) with

V = {a1, · · · , aN , aN+1}
and

E = {{ai, aN+1} : i = 1, 2, · · · , N + 1}.
Let the potential Ψ = (Ψi)

N+1
i=1 on V be defined such that

Ψi > ΨN+1, i = 1, · · · , N.

Then the identification (3.10) on the tangent space TρM is

σ1 = (p1 − pN+1)ρ1

· · ·
σN = (pN − pN+1)ρN

σN+1 = −
N∑

i=1

(pi − pN+1)ρi,

where σ = (σi)
N+1
i=1 ∈ TρM ≃ [(pi)

N+1
i=1 ] ∈ W .

By such identification and (3.11), the norm is given by

gΨ
ρ (σ,σ) =

N∑
i=1

(pi − pN+1)
2ρi =

N∑
i=1

σ2
i

ρi

,

for σ = (σi)
N+1
i=1 ∈ TρM, where σ ≃ [(pi)

N+1
i=1 ].

Given ρ1 = (ρ1
1, · · · , ρ1

N+1),ρ
2 = (ρ2

1, · · · , ρ2
N+1) ∈ M, we suppose that

γ(t) = (ρ1(t), · · · , ρN(t), ρN+1(t)) : [0, 1] → M
is a continuously differentiable curve from ρ1 to ρ2. Then

L(γ) =

∫ 1

0

√
gΨ

γ(t)(γ̇(t), γ̇(t))dt

=

∫ 1

0

√√√√ N∑
i=1

(ρ′
i(t))

2

ρi(t)
dt

=

∫ 1

0

√√√√ N∑
i=1

(x′(t))2dt,

where we use the substitution xi(t) =
√

ρi(t) for i = 1, · · · , N . Let α(t) =
(x1(t), x2(t), · · · , xN(t)) for t ∈ [0, 1] and

D = {(x1, x2, · · · , xN) ∈ RN :
N∑

i=1

x2
i < 1 and xi > 0 for i = 1, 2, · · · , N}.
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Then D is a convex subset of unit open ball in RN and α is a continuously differen-
tiable curve in D from η1 = (

√
ρ1

i )
N
i=1 to η2 = (

√
ρ2

i )
N
i=1. Clearly, we have

L(γ) =

∫ 1

0

√√√√ N∑
i=1

(x′(t))2dt

≥ ∥η1 − η2∥

=

√√√√ N∑
i=1

(√
ρ1

i −
√

ρ2
i

)2

.

On the other hand, we take

α∗(t) = (x∗
1(t), · · · , x∗

N(t)) := tη1 + (1 − t)η2

for t ∈ [0, 1]. In fact α∗ is the straight line segment in D from η1 = (
√

ρ1
i )

N
i=1 to η2 =

(
√

ρ2
i )

N
i=1. Let ρ∗

i (t) = (x∗
i (t))

2 for i = 1, 2, · · · , N and ρ∗
N+1(t) = 1 − (

∑N
i=1 ρ∗

i (t)).
Then

γ∗(t) = (ρ∗
i (t))

N+1
i=1 : [0, 1] → M

is a continuously differentiable curve from ρ1 to ρ2. This implies that

L(γ∗) =

∫ 1

0

√√√√ N∑
i=1

((x∗
i (t))

′)2dt = ∥η1 − η2∥ =

√√√√ N∑
i=1

(√
ρ1

i −
√

ρ2
i

)2

.

Therefore, we obtain

dΨ(ρ1, ρ2) = inf
γ

L(γ) =

√√√√ N∑
i=1

(√
ρ1

i −
√

ρ2
i

)2

for ρ1 = (ρ1
1, · · · , ρ1

N+1), ρ
2 = (ρ2

1, · · · , ρ2
N+1) ∈ M. Finally, we note that the metric

dΨ can be extended naturally to the space M, i.e., .

dΨ(ρ1, ρ2) =

√√√√ N∑
i=1

(√
ρ1

i −
√

ρ2
i

)2

for ρ1 = (ρ1
1, · · · , ρ1

N),ρ2 = (ρ2
1, · · · , ρ2

N+1) ∈ M.

4. Fokker-Planck Equation I

In this section, we first show that Fokker-Planck equation I (1.8) defined on a
graph G = (V, E) with potentials Ψ = (Ψi)

N
i=1 on V and β ≥ 0 is the gradient flow

of free energy F on Riemannian manifold (M, gΨ) which is introduced in section 3.
Then some basic properties of Fokker-Planck equation I (1.8) will be given.

With fixed β ≥ 0, we have the free energy F on space M:

(4.1) F (ρ) =
N∑

i=1

Ψiρi + β

N∑
i=1

ρi log ρi
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where ρ = {ρi}N
i=1 ∈ M. Thus, we have the gradient flow of F on (M, gΨ) given

by,

(4.2)
dρ

dt
= −gradF (ρ),

where gradF (ρ) is in the tangent space TρM. Thus we shall prove that equation
(4.2) gives us Fokker-Planck equation I (1.8) on M.

If the differential of F (which is in the cotangent space) is denoted by diffF , then
(4.2) could be expressed as

(4.3) gΨ
ρ (

dρ

dt
, σ) = −diffF (ρ).σ ∀σ ∈ TρM.

It is clear that

diffF ((ρi)
N
i=1) = (Φi + β(1 + log ρi))

N
i=1(4.4)

for (ρi)
N
i=1 ∈ M. Finally, by (4.3) and the identification (3.10) we will obtain the

explicit expression of the vector field on M.
Now we are ready to show our first main result.

Theorem 4.1. Given a graph G = (V,E) with its vertex set V = {a1, a2, · · · , aN},
edge set E, a potential Ψ = (Ψi)

N
i=1 on V and a constant β ≥ 0, let the neighborhood

set of a vertex ai be

N(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E},
then

(1) The gradient flow of free energy F ,

F (ρ) =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi

on the Riemannian manifold (M, gΨ) of probability densities ρ on V is

dρi

dt
=

∑
j∈N(i),Ψj>Ψi

((Ψj + β log ρj) − (Ψi + β log ρi)) ρj

+
∑

j∈N(i),Ψj<Ψi

((Ψj + β log ρj) − (Ψi + β log ρi)) ρi

+
∑

j∈N(i),Ψj=Ψi

β(ρj − ρi)

for i = 1, 2, · · · , N , which is Fokker-Planck equation I (1.8).
(2) Gibbs distribution ρ∗ = (ρ∗

i )
N
i=1 given by

(4.5) ρ∗
i =

1

K
e−Ψi/β with K =

N∑
i=1

e−Ψi/β

is the unique stationary distribution of equation (1.8) in M. Furthermore,
the free energy F attains its global minimum at Gibbs distribution.
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(3) There exists a unique solution

ρ(t) : [0,∞) → M
of equation (1.8) with initial value ρ0 ∈ M, and ρ(t) satisfies:
(a) the free energy F (ρ(t)) decreases as time t increases,
(b) ρ(t) → ρ∗ under the Euclidean metric of RN as t → +∞.

Remark 4.2. Given ρ0 ∈ M and a continuous function

ρ(t) : [0, c) → M
for some 0 < c ≤ +∞, we call such a function a generalized solution of equation
(1.8) with initial value ρ0, if ρ(0) = ρ0 and ρ(t) ∈ M satisfies equation (1.8)
for t ∈ (0, c). In Appendix B, we will give an example of a graph G and a free
energy to show that there may not exist a generalized solution to (1.8) for some
ρ0 ∈ ∂M := M\M. We also note that the equation (1.8) is not well defined on
the boundary ∂M := M\M.

As a direct consequence, we have the following result.

Corollary 4.3. Given the graph G = (V, E) with V = {a1, a2, · · · , aN} and potential
Ψ = (Ψi)

N
i=1 on V , we have

(1) If the noise level β = 0, then Fokker-Planck equation I (1.8) for the discrete
state space is

(4.6)
dρi

dt
=

∑
j∈N(i),Ψj>Ψi

(Ψj − Ψi)ρj +
∑

j∈N(i),Ψj<Ψi

(Ψj − Ψi)ρi

for i = 1, 2, · · · , N .
(2) In a special case when the potential is a constant at each vertices, this equa-

tion is the master equation:

(4.7)
dρi

dt
=

∑
j∈N(i)

β(ρj − ρi)

for i = 1, 2, · · · , N .

Remark 4.4. Equation (4.6) describes the time evolution of probability distribution
due to the potential energy and is also the probability distribution of a time ho-
mogeneous Markov process on the graph G. The master equation is a first order
differential equation that describes the time evolution of the probability distribu-
tion at every vertex in the discrete states space. Its entropy increases along with the
master equation. In some sense, Fokker-Planck equation I (1.8) is a generalization
of master equation. We refer to [4] for more details on master equation.

Proof of Theorem 4.1. 1). We know that the gradient flow of free energy F on
(M, gΨ) is given by equation (4.3),

gΨ
ρ (

dρ

dt
,σ) = −diffF (ρ).σ ∀σ ∈ TρM.



FOKKER-PLANCK EQUATION ON THE GRAPHS 23

The left hand side of equation (4.3) is

(4.8) gΨ
ρ (

dρ

dt
, σ) =

N∑
i=1

dρi

dt
pi

where σ = (σi)
N
i=1 ≃ [(pi)

N
i=1] (see identification (3.10)). By (4.4), the right hand

side of equation (4.3) is

(4.9) −diffF (ρ).σ = −
N∑

i=1

(Ψi + β(1 + log ρi))σi.

Using the identification (3.10), we have

N∑
i=1

(Ψi + β(1 + log ρi))σi

=
N∑

i=1

(Ψi + β log ρi)σi

=
N∑

i=1

(Ψi + β log ρi)(
∑

j∈N(i),Ψj>Ψi

(pi − pj)ρj +
∑

j∈N(i),Ψj<Ψi

(pi − pj)ρi

+
∑

j∈N(i),Ψj=Ψi

(pi − pj)
ρi − ρj

log ρi − log ρj

)

=
∑

{ai,aj}∈E,Ψi<Ψj

{(Ψi − Ψj) + β(log ρi − log ρj)}ρj(pi − pj)

+β
∑

{ai,aj}∈E,Ψi=Ψj

(ρi − ρj)(pi − pj)

=
N∑

i=1

{
∑

j∈N(i),Ψj>Ψi

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)

+β
∑

j∈N(i),Ψj=Ψi

(ρi − ρj)}pi
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This gives
N∑

i=1

(Ψi + β(1 + log ρi))σi

=
N∑

i=1

{
∑

j∈N(i),Ψj>Ψi

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)

+ β
∑

j∈N(i),Ψj=Ψi

(ρi − ρj)}pi.

(4.10)

Combing this equation with equations (4.3), (4.8) and (4.9), we have

N∑
i=1

dρi

dt
pi =

N∑
i=1

{
∑

j∈N(i),Ψj>Ψi

((Ψj − Ψi)ρj + β(log ρj − log ρi)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψj − Ψi)ρi + β(log ρj − log ρi)ρi)

+β
∑

j∈N(i),Ψj=Ψi

(ρj − ρi)}pi.

Since the above equality stands for any (pi)
N
i=1 ∈ RN , we have

dρi

dt
=

∑
j∈N(i),Ψj>Ψi

((Ψj − Ψi)ρj + β(log ρj − log ρi)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψj − Ψi)ρi + β(log ρj − log ρi)ρi)

+
∑

j∈N(i),Ψj=Ψi

β(ρj − ρi)

for i = 1, 2, · · · , N , which is exactly Fokker-Planck equation I (1.8). This completes
the proof of (1).

2). It is well known that F attains its minimum at Gibbs density. By a simple
computation, it is easy to see that Gibbs distribution (4.5) is a stationary distribu-
tion of equation (1.8) in M.
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Let ρ = (ρi)
N
i=1 ∈ M be a stationary distribution of equation (1.8). Then

0 =
∑

j∈N(i),Ψj>Ψi

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)

+
∑

j∈N(i),Ψj=Ψi

β(ρi − ρj),

for any i ∈ {1, 2, · · · , N}. For σ = (σi)
N
i=1 ∈ TρM, we let σ ≃ [(pi)

N
i=1] for some

(pi)
N
i=1 ∈ RN . Then by equation (4.10), we have

N∑
i=1

(Ψi + β(1 + log ρi))σi

=
N∑

i=1

{
∑

j∈N(i),Ψj>Ψi

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)

+
∑

j∈N(i),Ψj=Ψi

β(ρi − ρj)}pi

= 0.

Thus gives

(4.11)
∑

i

(Ψi + β(1 + log ρi))σi = 0

for any σ = (σi)
N
i=1 ∈ TρM. We note that for any (σi)

N−1
i=1 ∈ RN−1, if we take

σN = −
N−1∑
i=1

σi

then (σi)
N
i=1 ∈ TρM. Thus by (4.11), one has

N−1∑
i=1

{(Ψi + β(1 + log ρi)) − (ΨN + β(1 + log ρN))}σi = 0

for any (σi)
N−1
i=1 ∈ RN−1. This implies

(Ψi + β log ρi) − (ΨN + β log ρN) = 0,

which is

ρi = e
ΨN−Ψi

β ρN

for i = 1, 2, · · · , N − 1.
Combing this fact with

∑N
i=1 ρi = 1, we have ρi = 1

K
e−Ψi/β = ρ∗

i for i =

1, 2, · · · , N , where K =
∑N

i=1 e−
Ψi
β . This completes the proof of (2).



26 SHUI-NEE CHOW, WEN HUANG, YAO LI AND HAOMIN ZHOU

3). A continuous function
ρ(t) : [0, c) → M

for some 0 < c ≤ +∞ is a solution of equation (1.8) with initial value ρ0 ∈ M, if
ρ(0) = ρ0 and satisfies equation (1.8) for t ∈ [0, c). For any ρ0 ∈ M, there exists
a maximal interval of existence [0, c(ρ0)) and 0 < c(ρ0)) ≤ +∞. Next we will show
that for any ρ0, c(ρ0) = +∞. In fact, this follows from the claim,

Claim: Given ρ0 ∈ M, there exists a compact subset B of M with respect to
Euclidean metric such that ρ0 ∈ int(B), where int(B) is the interior of B in M with
respect to Euclidean metric. For any ρ ∈ B, if

ρ(t) : [0, c(ρ)) → M
is the solution of the equation (1.8) with initial value ρ on its maximal interval of
existence, then c(ρ) = +∞ and ρ(t) ∈ int(B) for t > 0.

Proof of Claim. Let ρ0 = (ρ0
i )

N
i=1 ∈ M be fixed. Firstly, we construct a compact

subset B of M with respect to Euclidean metric such that ρ0 ∈ int(B). Then it is
sufficient to show for any ρ ∈ B, the solution ρ(t) through ρ remains in int(B) for
small t > 0. Let us denote

M = max{e2|Ψi| : i = 1, 2, · · · , N},
ϵ0 = 1,

and

ϵ1 =
1

2
min{ ϵ0

(1 + (2M)
1
β )

, min{ρ0
i : i = 1, · · · , N}}.

For ℓ = 2, 3, · · · , N − 1, we let

ϵℓ =
ϵℓ−1

1 + (2M)
1
β

.

We define

B = {ρ = (ρi)
N
i=1 ∈ M :

ℓ∑
r=1

ρir ≤ 1 − ϵℓ where ℓ ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < iℓ ≤ N}.
Then B is a compact subset of M with respect to Euclidean metric,

int(B) = {ρ = (ρi)
N
i=1 ∈ M :

ℓ∑
r=1

ρir < 1 − ϵℓ, where ℓ ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < iℓ ≤ N}.
and ρ0 ∈ int(B).

Let ρ = (ρi)
N
i=1 ∈ B and ρ(t) : [0, c(ρ)) → M be the solution to the equation

(1.8) with initial value ρ on its maximal interval of existence. In order to show
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ρ(t) ∈ int(B) for small t > 0, it is sufficient to show that for any ℓ ∈ {1, 2, · · · , N−1}
and 1 ≤ i1 < i2 < · · · iℓ ≤ N , one has

ℓ∑
r=1

ρir(t) < 1 − ϵℓ

for sufficiently small t > 0.
Given ℓ ∈ {1, 2, · · · , N − 1} and 1 ≤ i1 < i2 < · · · iℓ ≤ N , since ρ ∈ B, we have

ℓ∑
r=1

ρir ≤ 1 − ϵℓ.

Then there are two cases. The first one is
ℓ∑

r=1

ρir < 1 − ϵℓ.

It is clear that
ℓ∑

r=1

ρir(t) < 1 − ϵℓ

for enough small t > 0 by continuity.

The second case is
ℓ∑

r=1

ρir = 1 − ϵℓ.

Let A = {i1, i2, · · · , iℓ} and Ac = {1, 2, · · · , N} \ A. Then for any j ∈ Ac,

(4.12) ρj ≤ 1 − (
ℓ∑

r=1

ρir) = ϵℓ.

Since ρ ∈ B, we have
ℓ−1∑
j=1

ρsj
≤ 1 − ϵℓ−1,

for any 1 ≤ s1 < s2 < · · · < sℓ−1 ≤ N . Hence for each i ∈ A,

(4.13) ρi ≥ 1 − ϵℓ − (1 − ϵℓ−1) = ϵℓ−1 − ϵℓ.

Combing equations (4.12),(4.13) and the fact

ϵℓ ≤
ϵℓ−1

1 + (2M)
1
β

,

one has, for any i ∈ A, j ∈ Ac,

(4.14) Ψj −Ψi + β(log ρj − log ρi) ≤ Ψj −Ψi + β(log ϵℓ − log(ϵℓ−1 − ϵℓ)) ≤ − log 2.
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For {ai, aj} ∈ E, we set

(4.15) C({ai, aj}) =


ρj if Ψi < Ψj

ρi if Ψi > Ψj
ρi−ρj

log ρi−log ρj
if Ψi = Ψj

.

Clearly, C({ai, aj}) > 0 for {ai, aj} ∈ E. Since the graph G is connected, there
exists i∗ ∈ A, j∗ ∈ Ac such that {ai∗ , aj∗} ∈ E. Thus

(4.16)
∑

i∈A,j∈Ac,{ai,aj}∈E

C({ai, aj}) ≥ C({ai∗ , aj∗}) > 0.

Now by (4.14) and (4.16), one has

d

dt

ℓ∑
r=1

ρir(t) |t=0 =
∑
i∈A

 ∑
j∈N(i)

C({ai, aj}) (Ψj − Ψi + β(log ρj − log ρi))


=

∑
i∈A

{
∑

j∈A∩N(i)

C({ai, aj}) (Ψj − Ψi + β(log ρj − log ρi)) +

∑
j∈Ac∩N(i)

C({ai, aj}) (Ψj − Ψi + β(log ρj − log ρi))}

=
∑
i∈A

 ∑
j∈Ac∩N(i)

C({ai, aj}) (Ψj − Ψi + β(log ρj − log ρi))


≤

∑
i∈A

 ∑
j∈Ac∩N(i)

−C({ai, aj}) log 2


= − log 2

 ∑
i∈A,j∈Ac,{ai,aj}∈E

C({ai, aj})


≤ −C({ai∗ , aj∗}) log 2 < 0.

Combing this with the fact
ℓ∑

r=1

ρir = 1 − ϵℓ,

it is clear that
ℓ∑

r=1

ρir(t) < 1 − ϵℓ

for sufficiently small t > 0. This completes the proof of Claim. �
Given ρ0 ∈ M, by the above Claim, there exists a unique solution

ρ(t) : [0,∞) → M
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to equation (1.8) with initial value ρ0, and we can find a compact subset B of M
with respect to Euclid metric such that {ρ(t) : t ∈ [0, +∞)} ⊂ B. For t ∈ (0, +∞),

dF (ρ(t))

dt
= diffF (ρ(t)).

dρ

dt
(t)

= −gΨ
ρ(t)(

dρ

dt
(t),

dρ

dt
(t))

≤ 0

and thus
dF (ρ(t))

dt
= 0

if and only if
dρ(t)

dt
= 0.

This is equivalent to ρ(t) = (ρ∗
i )

N
i=1 by (2). This implies that the free energy F (ρ(t))

decreases when time t increases.
Finally, we show that ρ(t) → ρ∗ under the Euclid metric of RN when t → +∞.

We let

ω(ρ0) = {ρ ∈ RN : ∃ ti → +∞ such that lim
i→+∞

ρ(ti) = ρ Euclidean metric}

be the ω-limit set of ρ0. Clearly, ω(ρ0) ⊂ B is a compact set of RN with respect to
Euclidean metric.

To show ρ(t) → ρ∗ under the Euclidean metric of RN when t → +∞, it is sufficient
to show that ω(ρ0) = {ρ∗}. Since ω(ρ0) is a compact set and the free energy F is con-
tinuous on M, we can find ρ1 ∈ ω(ρ0) such that F (ρ1) = max{F (ρ) : ρ ∈ ω(ρ0)}.
Then there exists ti → +∞ such that limi→+∞ ρ(ti) = ρ1 and limi→+∞ ρ(ti−1) = ρ2

for some ρ2 ∈ M . If we let ρ2(t) be the solution to equation (1.8) with initial value
ρ2, then ρ2(0) = ρ2 and ρ2(1) = ρ(1). Note that

dF (ρ2(t))

dt
= diffF (ρ2(t)).

dρ2

dt
(t)

= −gΨ
ρ2(t)(

dρ2

dt
(t),

dρ2

dt
(t))

≤ 0

and thus
dF (ρ2(t))

dt
= 0

if and only if
dρ2(t)

dt
= 0,

which is equivalent to ρ2(t) = ρ∗ by (2). Hence if ρ1 ̸= ρ∗, then F (ρ2) > F (ρ1), a
contradiction with F (ρ1) = max{F (ρ) : ρ ∈ ω(ρ0)}. So ρ1 = ρ∗. Thus,

max{F (ρ) : ρ ∈ ω(ρ0)} = F (ρ∗).
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It is well known that ρ∗ is the unique minimal value point of F . This implies
ω(ρ0) = {ρ∗}. This completes the proof of (3). �

There are many reasons why we consider Fokker-Planck equation I (1.8) on the
manifold M instead of its closure. One of the main reasons is that M is a manifold
with boundary and its tangent space is only well defined in its interior. Another
reason is that the free energy is not differentiable when ρi = 0 for some i. It is also
not clear how the Riemannian metric dΨ on M can be extended to M. Moreover,
even if the distance is well defined on M, there may not be a solution to the equation
(1.8) with initial value on the boundary ∂M (see Appendix B, Example B.1).

Theorem 4.1 (3) guarantees the solution of (1.8) can never attain the boundary
∂M if the initial value is in M. In practice, we still need an equation describe the
transient process if the initial value is on the boundary. Thus, we may need some
procedure to “kick” the solution into M in order for one to use the equation (1.8).

Let us go back to the discrete free energy

F (ρ) =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi.

The gradient of free energy is

∇F (ρ) = (Ψ1 + β + β log ρ1, · · · , ΨN + β + β log ρN).

There is a natural question on what will happen if the probability distribution ρ is
on the boundary ∂M := M\M of M? To answer this, we give some definitions
first.

Given ρ = (ρi)
N
i=1 ∈ M, in order to consider the set of probability densities with

at least one of their components is zero, we let

Z(ρ) = {i ∈ {1, 2, · · · , N}|ρi = 0} .

We also let Z(ρ) denote the “neighborhood” of Z(ρ) as

Z(ρ) = {i ∈ {1, 2, · · · , N}| there exists {ai, aj} ∈ E such that ρi = 0 or ρj = 0}.
When ρ is on the boundary of M,

Ψi + β + β log ρi = −∞
for i ∈ Z(ρ). In this case, we may ignore all the potentials, and all these edges
connecting two nonzero terms. Thus when ρ is on the boundary of M, we consider
the following equation

(4.17)
dρi

dt
=


∑

j∈N(i)

(ρj − ρi) if i ∈ Z(ρ)∑
j∈N(i)∩Z(ρ)

(ρj − ρi) if i ∈ Z(ρ) \ Z(ρ)

0 if i ∈ {1, 2, · · · , N} \ Z(ρ)

as Fokker-Planck equation.
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Remark 4.5. The above computation implies the following: 1) Equation (4.17) has
a unique solution; 2) In an infinitesimal time interval, the solution of (4.17) goes
into M if its initial value ρ0 ∈ ∂M; 3) The free energy decreases along the solution
of (4.17) in a sufficient small time interval.

5. Fokker-Planck Equation II

In this section, we show how Fokker-Planck equation II (1.9) can be derived from
a stochastic process on the graph G. The related geometric properties are also
discussed.

Given a graph G = (V, E) with V = {a1, a2, · · · , aN}, it is known that Fokker-
Planck equation describes the time evolution of probability density function of a
stochastic process that comes from the gradient flow subject to a white noise per-
turbation. For the graph G, we consider a time homogeneous Markov process X(t)
generated by the potential function Ψ = (Ψi)

N
i=1 on V as a ”gradient flow”. More

precisely, the process is the one generated by the potential function Ψ = (Ψi)
N
i=1

and is a time-homogeneous Markov process X(t), t ≥ 0 that takes values on the set
V = {a1, a2, · · · , aN}. If the process starts at a vertex or state ai at time t, then the
transition probability to the state aj at time t + h is given by

Pr(X(t + h) = aj|X(t) = ai)

=


(Ψi − Ψj)h + o(h) if j ∈ N(i), Ψj < Ψi

1 −
∑

k∈N(i),Ψk<Ψi

(Ψi − Ψk)h + o(h) if j = i

0 otherwise

where o(h) represents the usual quantity which goes to zero faster than h. Hence,
over a sufficiently small interval of time, the probability of a particular transition
(between different states) is roughly proportional to the duration of the time interval.

The generating matrix Q = [Qij]N×N for the Markov process is defined by: if
i ̸= j,

Qij =

{
Ψi − Ψj if {ai, aj} ∈ E, Ψj < Ψi

0 otherwise,

which is the transition rate from i to j. Otherwise Qii = −
∑

j ̸=i Qij.

Let ρ(t) = (ρi(t))
N
i=1, where ρi(t) = Pr(X(t) = ai) for i = 1, 2, · · · , N , the time

evolution of probability distribution ρ(t) is given by a system of first-order ordinary
differential equations (forward Kolmogorov Equation){

∂ρ
∂t

(t) = ρ(t)Q

ρ(0) = {ρ0
i }N

i=1,

which is,

(5.1)
dρi

dt
=

∑
j∈N(i),Ψj>Ψi

(Ψj − Ψi)ρj +
∑

j∈N(i),Ψj<Ψi

(Ψj − Ψi)ρi

for i = 1, 2, · · · , N .
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We remark that this is just an analog of a gradient flow in a continuous state
space:

(5.2)
dx

dt
= −∇Ψ(x), x ∈ RN

and the corresponding degenerate Fokker-Planck equation (without any noise)

(5.3)
∂ρ

∂t
= ∇ · (∇Ψρ).

We call the Markov process X(t) the gradient Markov process generated by dis-
crete potential function Ψ on graph G.

The equation (5.1) could also be considered as a discretization of equation (5.3),
with the upwind scheme [25]. The upwind scheme for solving Fokker-Planck equation
numerically is very natural, not only by the numerical reason, but also because it is
consistent with the forward Kolmogorov equation (5.1).

We recall that on the continuous state space RN , Fokker-Planck equation describes
the time evolution of a gradient dynamical system perturbed by white noise. More
precisely, when we add white noise

√
2βdWt into equation (5.2), we obtain the

stochastic differential equation

(5.4) dx = −∇Ψ(x)dt +
√

2βdWt, x ∈ RN .

The time evolution of probability density function of the stochastic differential
equation (5.4) is

(5.5)
∂ρ

∂t
= ∇ · (∇Ψρ) + β∆ρ.

In other words, Fokker-planck equation (5.5) can be obtained by adding white noise
to the degenerate Fokker-Planck equation (5.3) As an analog, the Fokker-Planck
equation on a discrete space can also be obtained by adding a white noise with
strengthen

√
2β into the Markov process or equation (5.1). Then, it is natural to

ask what is the white noise to a Markov process or equation (5.1)?
To answer the question, we look for hints in the continuous state space. We

rewrite Fokker-Planck equation (5.5) in the following fashion:

ρt = ∇ · (∇Ψρ) + β∆ρ

= ∇ · [∇(Ψ + β log ρ)ρ].

and the corresponding free energy:

F =

∫
RN

Ψρ + β

∫
RN

ρ log ρdx

=

∫
RN

(Ψ + β log ρ)ρdx

By comparing the above equalities, we conclude that if white noise
√

2βdWt is
add to the system on RN , we have a new potential

Ψ̄(x, t) = Ψ(x) + β log ρ(x, t).
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As an analogue, if white noise is added to the time homogeneous Markov process
X(t), we have a new potential defined as follows:

Ψ̄i(t) = Ψi + β log ρi(t)

for i = 1, 2, · · · , N .

Remark 5.1. On continuous state space, the new potential function Ψ+β log ρ(x, t)
is called Onsager’s potential, and its derivative is called Onsager thermodynamic
flux [6, 33].

We now have a new Markov process Xβ(t) which is time inhomogeneous, and could
be considered as a “white noise” perturbation from the original Markov process X(t).
Given that the process starts in a state ai at time t, then the transition to state aj

at time t + h with probability is given by

Pr(Xβ(t + h) = aj|Xβ(t) = ai)

=


(Ψ̄i(t) − Ψ̄j(t))h + o(h), if j ∈ N(i), Ψ̄j(t) < Ψ̄i(t)

1 −
∑

k∈N(i),Ψ̄k(t)<Ψ̄i(t)

(Ψ̄i(t) − Ψ̄k(t))h + o(h) if j = i

0, otherwise

where Ψ̄k(t) = Ψk + β log ρk(t) and ρk(t) = Pr(Xβ(t) = ak) for k ∈ {1, 2, · · · , N}.
The time evolution of probability distribution (ρi(t))

N
i=1 of Xβ(t) satisfies the follow-

ing Kolmogorov forward equation:

dρi

dt
=

∑
j∈N(i),Ψ̄j>Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi))ρi,

which is exactly Fokker-Planck equation II (1.9).
For a given potential Ψ = (Ψi)

N
i=1 on V and β ≥ 0, we have obtained the the

inner product gΨ̄ with distance dΨ̄ in section 3. The free energy F on the space M
is given by:

F (ρ) =
N∑

i=1

Ψiρi + β

N∑
i=1

ρi log ρi

where ρ = (ρi)
N
i=1 ∈ M.

Since ρ ∈ M 7→ gΨ̄
ρ may not be continuous, we may have no gradient flow of F on

(M, gΨ̄). However, we may consider a a generalized gradient flow of F on (M, gΨ̄)
of probability densities ρ on V because of the special relationship between M and

its tangent spaces. Note that the derivative dρ(t)
dt

∈ Tρ(t)M is the same as the one
computed using Euclidean metric. Thus, we can consider the the following equation
as our generalized gradient flow:

(5.6) gΨ̄
ρ (

dρ

dt
(t), σ) = −diffF (ρ(t)).σ ∀σ ∈ TρM,
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where diffF is the differential of F (see (4.4)). This also implies:

dF (ρ(t))

dt
= diffF (ρ(t)).

dρ(t)

dt
= −gΨ̄

ρ(t)(
dρ(t)

dt
,
dρ(t)

dt
).(5.7)

We have the following theorem:

Theorem 5.2. Given the graph G = (V, E) with V = {a1, a2, · · · , aN}, potential
Ψ = (Ψi)

N
i=1 on V and β ≥ 0, we consider the gradient Markov process X(t) gener-

ated by the potential Ψ. Then we have

(1) Fokker-Planck equation II (1.9)

dρi

dt
=

∑
j∈N(i),Ψ̄j>Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi))ρi

describes the time evolution of probability distribution of Xβ(t), where Xβ(t)
is the time inhomogeneous Markov process perturbed by “white noise” from
the original Markov process X(t).

(2) Fokker-Planck equation II (1.9) is the generalized gradient flow (5.6) of the
free energy F on the metric space (M, gΨ̄) of probability densities ρ on V .

(3) Gibbs distribution ρ∗ = (ρ∗
i )

N
i=1

ρ∗
i =

1

K
e−Ψi/β with K =

N∑
i=1

e−Ψi/β.

is the unique stationary distribution of equation (1.9) in M, and the free
energy F attains minimum at Gibbs distribution.

(4) There exists a unique solution ρ(t) : [0,∞) → M to equation (1.9) with
initial value ρ0 ∈ M, and ρ(t) satisfies
(a) The free energy F (ρ(t)) decreases when time t increases.
(b) ρ(t) → ρ∗ under the Euclid metric of RN when t → +∞.

Proof. (1). Result in (1) comes from the discussion in the beginning of this section.
(2). A continuously differentiable function ρ(t) : [0, c) → M for some c > 0 or

c = +∞ is called a solution of equation (1.9) with initial value ρ ∈ M, if ρ(0) = ρ
and ρ(t) satisfies equation (1.9) for t ∈ [0, c). Since the Fokker-Planck equation II
(1.9) is Lipschitz continuous, by the existence and uniqueness theorem of ordinary
differential equations, it is clear that for any ρ ∈ M, there exists a maximal interval
[0, c(ρ)) in which the solution to the equation (1.9) with initial value ρ is uniquely
defined with c(ρ) > 0 or c(ρ) = +∞.

Let ρ(t) : [0, c) → M be a solution of (1.9). For σ = (σi)
N
i=1 ∈ Tρ(t)M, we take

(pi)
N
i=1 ∈ RN such that σ ≃ [(pi)

N
i=1] by identification (3.12). Then by (4.4) and
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identification (3.12), we have

N∑
i=1

(Ψi + β(1 + log ρi))σi =
∑

i

(Ψi + β log ρi)σi

=
N∑

i=1

(Ψi + β(1 + log ρi))(
∑

j∈N(i),Ψ̄j>Ψ̄i

(pi − pj)ρj +
∑

j∈N(i),Ψ̄j<Ψ̄i

(pi − pj)ρi

+
∑

j∈N(i),Ψ̄j=Ψ̄i

(pi − pj)
ρi − ρj

log ρi − log ρj

)

=
∑

{ai,aj}∈E,Ψ̄i<Ψ̄j

{(Ψi − Ψj) + β(log ρi − log ρj)}ρj(pi − pj)

+ β
∑

{ai,aj}∈E,Ψ̄i=Ψ̄j

(Ψ̄i − Ψ̄j)(pi − pj)

=
∑

i

{
∑

j∈N(i),Ψ̄j>Ψ̄i

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)}pi

where ρk = ρk(t) and Ψ̄k = Ψk + β log ρk(t) for k = 1, 2, · · · , N . That is

N∑
i=1

(Ψi + β(1 + log ρi))σi(5.8)

=
N∑

i=1

{
∑

j∈N(i),Ψ̄j>Ψ̄i

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)}pi.

Combing this equation with Fokker-Planck equation II (1.9), and by identifications
(3.12) and (3.14), we have

diffF (ρ(t)).σ =
N∑

i=1

(Ψi + β(1 + log ρi))σi

=
N∑

i=1

{
∑

j∈N(i),Ψ̄j>Ψ̄i

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)}pi

= −
N∑

i=1

dρi

dt
pi = −gΨ̄

ρ(t)(
dρ(t)

dt
, σ).
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Hence (5.6) is true, and this finishes the proof of (2).

(3). Using (5.8) and replacing the identification (3.10) by identification (3.12),
the proof of (3) is completely similar to the proof of (2) in Theorem 4.1.

(4). We note that Fokker-Planck equation II (1.9) is Lipschitz continuous. Using
(5.7) and replacing the C({ai, aj}) in (4.15) by

C({ai, aj}) =


ρj if Ψ̄i < Ψ̄j

ρi if Ψ̄i > Ψ̄j
ρi−ρj

log ρi−log ρj
if Ψ̄i = Ψ̄j,

.

the proof of (4) is similar to the proof of (3) in Theorem 4.1. �
In above discussions, we have considered the graph G = (V,E) with potential

Ψ = (Ψi)
N
i=1 on V . We have given a time-homogeneous Markov process as the

gradient Markov process generated by Ψ on graph G, and obtained the Fokker-
Planck equation II (1.9). On the other side, if the potential is not given, and we
are only given a time-homogeneous Markov process, we will show that we can still
define a potential function in certain cases, especially when the transition graph
of Markov process is a weighted directed “gradient like” graph. Let us consider a
weighted directed simple graph G without self-loop or multi-edge. If every directed
path from ai to aj have the same total weight for any two vertices ai and aj, then
we say the graph G is gradient like. In this case, a potential energy function can be
defined on this graph, and it is unique up to a constant. To better explain it, we
use the following example.

Example 5.3.

Given a graph G = (V, E) as shown in Figure 4, which is directed and weighted.
In this graph, V = {a1, a2, a3, a4, a5} and the number in each directed edge is the
transition rate. The transition probability rate matrix Q of this Markov process

Figure 4
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induced by Figure 4 is:

Q =


0 1 0 0 0
0 0 0 0 0
0 2 0 0 1
0 0 1 0 2
0 1 0 0 0


Since the underlying weighted directed graph is gradient like, we may associate the
potential energy on each vertex as in Figure 5:

Figure 5

With this potential function, we can find its free energy and Fokker-Planck equation.

6. Upwind Scheme

From the discussion in previous sections, it is clear that Fokker-Planck equations
(1.8) and (1.9) on a graph are not typical discretizations of Fokker-Planck equation
in continuous state space. Moreover, one cannot obtain Fokker-Planck equation in
discrete state space with desired properties by simply discretizing Fokker-Planck
equation in continuous state space with commonly used finite difference schemes.
However, it is worth to mention that Fokker-Planck equations we have derived are
in fact motivated by well-known strategies in finite difference methods, in particular
the upwind schemes for hyperbolic equations. For readers’ convenience, we give a
brief introduction to the upwind schemes for hyperbolic equations in the Appendix.
In this section, we explain those connections in detail, and show that our discrete
Fokker-Planck equations are actually consistent to Fokker-Planck equation in con-
tinuous state space provided that the discrete space can be refined and converges to
a continuous state space.

For simplicity, let us demonstrate the connections on a 1-D lattice G = (V, E)
with vertex set V = {a1, · · · , aN} (N ≥ 3)and E = {{ai, ai+1} : i = 1, 2, · · · , N−1}.
Since we want to show the relation between Fokker-Planck equation I and II with
the finite difference scheme, we view the lattice as an equal partition points of the
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interval [0, 1] with mesh size h. We also assume that the potential function on V
does not have equal values on adjacent points. Then our discrete Fokker-Planck
equation I at vertex ai, i ∈ {2, 3, · · · , N − 1}, is given by,

dρi

dt
= ((Ψi+1 − Ψi)ρi+1 − (Ψi − Ψi−1)ρi)

+β((log ρi+1 − log ρi)ρi+1 − (log ρi − log ρi−1)ρi)

if Ψi+1 > Ψi > Ψi−1,

dρi

dt
= ((Ψi+1 − Ψi)ρi − (Ψi − Ψi−1)ρi−1)

+β((log ρi+1 − log ρi)ρi − (log ρi − log ρi−1)ρi−1)

if Ψi+1 < Ψi < Ψi−1,

dρi

dt
= ((Ψi+1 − Ψi)ρi+1 − (Ψi − Ψi−1)ρi−1)

+β((log ρi+1 − log ρi)ρi+1 − (log ρi − log ρi−1)ρi−1

if Ψi+1 > Ψi, Ψi−1 < Ψi,

dρi

dt
= ((Ψi+1 − Ψi)ρi − (Ψi − Ψi−1)ρi)

+β((log ρi+1 − log ρi)ρi − (log ρi − log ρi−1)ρi

if Ψi+1 < Ψi, Ψi−1 < Ψi.

First, we consider the drift terms, the ones involve the potentials, on the right
hand side of the equations. It is obvious that when the potential is increasing at
vertex ai, which corresponds to the first scenario as Ψi+1 > Ψi > Ψi−1, the term
(Ψi+1 − Ψi)ρi+1 − (Ψi − Ψi−1)ρi involves density values ρi+1 and ρi, which are from
the right side of position i. If one views the differences in potentials (Ψi − Ψi−1)
and (Ψi+1 − Ψi), which are all positive, as the convection coefficient to determine
the “wind blowing” direction, then it is from right to the left. Thus the right hand
side of the equation only involves information from the upwind (higher potential)
direction. Similarly, the upwind direction for the decreasing potential case with
Ψi+1 < Ψi < Ψi−1 is from left to right. And Fokker-Planck equation only relies on
the values ρi and ρi−1. In the other two cases, there are no clear up wind directions
and therefore central differences are used. Moreover, one can see that the evolution
of ρi only depends on its neighboring values with higher potentials. And this is also
true for general graphs.

The appearance of upwind directions in Fokker-Planck equations I and II becomes
natural if we take a closer look at the working mechanism of the drift terms. If we
ignore the diffusion terms by taking β = 0, then the probability density ρi evolves
according to the gradient descent direction. The consequence is that the probability
is clustered on local minima of the potentials. And therefore, their corresponding
density functions are combinations of Dirac Delta functions sitting on the minima.
This is very similar to the shock (discontinuities in solutions) formation in nonlinear
hyperbolic conservation laws, in which upwind idea is considered as a fundamental
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strategy in designing shock capturing schemes. On the other hand, if one uses central
differences in shock formation, numerical oscillations, which are called Gibbs’ phe-
nomenon, are inevitable. This may explain that the central difference discretization
can not achieve decreasing free energy in the toy example in the previous section.
For more discussion on numerical schemes for nonlinear conservation laws, readers
are referred to books such as [5, 25].

7. The Parrondo’s Paradox

In the last section, we demonstrate an interesting application of Fokker-Planck
equation I (1.8) to explain Parrondo’s paradox in game theory. Roughly speaking,
the paradox states that it is possible to construct a winning strategy by playing two
losing strategies alternately [19]. There exists an extensive literature on the paradox.
And it has been used for many different problems such as a flashing ratchet model
for the molecular motors. We refer to [1, 20, 34, 35] and references therein for more
discussions on the subject. Here, we explain the paradox for the flashing ratchet
model from the free energy point of view.

We begin by reviewing Parrondo’s paradox in a coin toss game [18, 19, 32], in
which a player wins 1 dollar if the head side faces up, and loses 1 dollar otherwise.
Let us assume that we have two strategies:

(1) Game A is to toss a biased coin, the probability of winning is 0.49, and the
probability of losing is 0.51. Hence the expectation is −0.02. Obviously, this
is a losing strategy.

(2) Game B is more complex. If the current capital is a multiple of 3, one toss a
biased coin with winning probability 0.09 and losing probability 0.91. If the
current capital is not a multiple of 3, then the playing toss another biased
coin with winning probability 0.74, losing probability 0.26. The expectation
of Game B is −0.0174, so it is also a losing strategy too.

However, if one plays game A and B randomly, or iteratively plays Game A twice
then plays Game B twice, then it may form a winning strategy. Figure 6 shows
the expectations of capitals by playing the games 200 times. The expectations are
computed by taking the average of 1,000,000 trials. In Figure 6, the red line is
the expectation after each toss when playing strategy A only; the blue line is the
expectation when playing strategy B only. Clearly, both are losing strategies. The
black line shows the expectation of the capital after each toss if playing A and B
alternatively as “AABBAABB...”. And the green line is the expectation of capital
after each toss by playing A and B randomly. Surprisingly, the latter two strategies
are winning strategies.

Parrondo’s paradox has been used to explain the flashing ratchet model for molec-
ular motors. Here, we use our Fokker-Planck equation I to compute the evolution
of the probability distribution and the free energy in the model.

We consider a graph G = (V, E) having 23 vertices:

V = {a1, a2, · · · , a23} and E = {{ai, ai+1} : i = 1, · · · , 22}.
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Figure 6. Capital vs time. Red line is playing Game A 200 times;
Blue line is playing Game B 200 times; Black line is playing Game A
twice, then playing Game B twice, and iterating 50 times; Green line
is playing Game A and B randomly for 200 times.

It is a 1-D lattice. We give two different potential functions ΨA and ΨB on the
graph: ΨA is define on V as in Figure 7 and ΨB

i = 0 for i = 1, 2, · · · , 23. The values
for ΨA are list in Table 1,

Table 1. Potential function ΨA

ai 1 2 3 4 5 6 7 8 9 10 11 12
ΨA

i 5 3.4 2.2 2.5 2.8 3.1 1.9 2.2 2.5 2.8 1.6 1.9

ai 13 14 15 16 17 18 19 20 21 22 23
ΨA

i 2.2 2.5 1.3 1.6 1.9 2.2 1 1.3 1.6 1.9 4

We fix the temperature β = 0.05. Then for a probability density ρ = (ρi)
23
i=1 on

V , the free energy are

FA(ρ) =
23∑
i=1

ΨA
i ρi + 0.05

23∑
i=1

ρi log ρi

FB(ρ) =
23∑
i=1

ΨB
i ρi + 0.05

23∑
i=1

ρi log ρi = 0.05
23∑
i=1

ρi log ρi.

Applying Theorem 4.1 (1) to G with ΨA and β = 0.05, we obtain a discrete Fokker-
Planck equation, denoted as Equation A for Process A (Here we omit the detailed
expression of Equation A for simply). Similarly, applying Theorem 4.1 (1) to G with
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Figure 7. Potential function ΨA.

ΨB and β = 0.05, we obtain Equation B for Process B:

dρ1

dt
= 0.05(ρ2 − ρ1)

dρi

dt
= 0.05(ρi+1 + ρi−1 − 2ρi), 1 < i < 23

dρ23

dt
= 0.05(ρ22 − ρ23)

.

By Theorem 4.1 (3), the free energy FA decreases with time monotonously along
equation A and the free energy FB decreases with time monotonously along equation
B. Thus both processes along Equations A and B are energy dissipative processes,
and the free energy decreases monotonously. However, if we apply two processes A
and B alternatively, then eventually we may observe an energy gaining process.

Figure 8. Initial Distribution Figure 9. Final distribution
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More precisely, we choose an initial probability distribution ρ0 as shown in Figure
8. The peak of ρ0 was on the right. Next, we choose time interval length T = 0.3
and we use Equation A when 0 ≤ t < T , and Equation B when T ≤ t < 2T .
Then we repeat the processes. After taking ABABAB · · · for 400-times, the peak
of probability distribution moved to the left hand side (Figure 9). This indicates a
directed motion from the lower potential places to higher potential regions, which
can be used to explain the directed motions by molecular motors.

Figure 10. first 10 process

To better illustrate the processes, we show the free energy changes in Figure 10
and 11. Figure 10 shows the free energy in first 10 iterations. Process A ends at
time T , and Process B begins. At time 2T , Process B ends, and another Process A
starts. These steps are repeated. Although free energy decreased on each process
A and B, but the free energy at time 3T is still higher that that at time T . So
Applying the two processes A and B alternatively, we observe an energy gaining
process at the end of process A of each iteration at times T , 3T , 5T, · · · . We show
this energy gaining phenomenon in Figure 11. For a similar example in a continuous
state space, see [10].
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Figure 11. The free energy at the end of A process for the first 400 iterations

Appendix A. Up Wind Schemes for Hyperbolic Equations

Here we give a brief introduction to the upwind schemes for hyperbolic equations.
Let us start with a simple linear one-way wave propagation equation,

ut + aux = 0, x ∈ R,

with initial condition given by u(0, x) = u0(x). The convection coefficient a may be
a constant or a function of x. If a is a constant, the solution can be easily verified
as

(A.1) u(t, x) = u0(x − at),

where x = x0 + at for any x0 ∈ R is the so called characteristic line of the solution.
One salient feature is that the solution are constants along the characteristic lines.
In other words, the solution value at one point (t, x) only depends on the initial
condition from which the characteristic line is coming. The characteristic directions
(reverse in time) is often called the upwind directions. To solve the initial value
problem numerically, finite difference methods, including the upwind schemes, have
been one of the most popular choices in practice. For simplicity, let us start with a
discretization of the problem by introducing the spatial and temporal mesh points
xi = i ∗ h (i ∈ Z) and tn = n ∗ k (n ∈ Z+), where h > 0 and k > 0 are spatial
and temporal mesh sizes respectively. We denote un

i as the numerical solution ap-
proximating the exact solution u(t, x) at (tn, xi). Then the upwind scheme is given
by

un+1
i = un

i − a(xi)
k

h

{
un

i − un
i−1 if a(xi) ≥ 0

un
i+1 − un

i if a(xi) < 0.

Here we note that if the coefficient a is a function that changes sign, then the upwind
directions are different from point to point.
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The characteristic lines also exist for nonlinear hyperbolic conservation laws. Let
us consider the following equation,

(A.2) ut + f(u)x = 0,

where f is a given function, and u(0, x) = u0(x) is the initial condition. In this case,
the characteristic line is determined by

dX(t)

dt
= f ′(u(X(t), t)),

which depends on the solution u. It is well-known that singularities (often called
shocks in fluid dynamics) may develop, due to the intersections of the characteristic
lines, at any time even with smooth initial data. The presents of discontinuities
in the solution imposes much tougher challenges in their numerical simulations.
Because most of the finite difference methods are based on polynomial interpolations
of the solution on discrete values, it is almost inevitable to generate oscillations if
one attempts to interpolate the solution across the discontinuities. The oscillations
are related to Gibbs’ phenomenon. In this case, the upwind strategy, which only
interpolates the solution from one-side of the discontinuities, plays a more crucial
role in their numerical simulations. Interesting readers are referred to the book by
LeVeque [25] for more in-depth discussions.

Appendix B. A counterexample

Applying Theorem 4.1 (1) to a graph G with Ψ and β > 0, we obtain Fokker-
Planck equation (1.8) on M. For ρ0 ∈ M, a continuous function ρ(t) : [0, c) → M
for some c > 0 or c = +∞ is a solution of equation (1.8) with initial value ρ0, if
ρ(0) = ρ0 and ρ(t) ∈ M satisfying equation (1.8) for t ∈ (0, c). Here we give an
example to show that for certain graphs and potentials, there may not exist solutions
to equation (1.8) with initial value ρ0 for some ρ0 ∈ ∂M := M\M.

Example B.1.

We consider a graph with 3 vertices:

V = {a1, a2, a3} and E = {{a1, a3}, {a2, a3}}.
In this case, we have

M = {ρ = (ρi)
3
i=1 ∈ R3 : ρ1 + ρ2 + ρ3 = 1 and ρi > 0 for i = 1, 2, 3}

and

M = {ρ = (ρi)
3
i=1 ∈ R3 : ρ1 + ρ2 + ρ3 = 1 and ρi ≥ 0 for i = 1, 2, 3}.

We assign potential Ψ = (Ψi)
3
i=1 on V with Ψ1 > Ψ3 and Ψ2 > Ψ3, and fix β > 0.

Applying Theorem 4.1 (1) for G, Ψi and β, we obtain the Fokker-Planck equation I
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(1.8) on M as follow:

(B.1)



dρ1

dt
= (Ψ3 − Ψ1 + β(log ρ3 − log ρ1)) ρ1

dρ2

dt
= (Ψ3 − Ψ2 + β(log ρ3 − log ρ2)) ρ2

dρ3

dt
=

2∑
i=1

(Ψi − Ψ3 + β(log ρi − log ρ3)) ρi

Now let ρ0 = (0, 1, 0) ∈ ∂M. Then we claim that there is no solution to equation
(B.1) with initial value ρ0.

In fact, if the claim is not true, then there exists a continuous function

ρ(t) = (ρ1(t), ρ2(t), ρ3(t)) : [0, c) → M
for some c > 0 or c = +∞ such that ρ(0) = ρ0 and ρ(t) ∈ M satisfying equation
(B.1) for t ∈ (0, c). By (B.1), one has

d log ρ1(t)

dt
= (Ψ3 − Ψ1) + β(log ρ3(t) − log ρ1(t))

d log ρ2(t)

dt
= (Ψ3 − Ψ2) + β(log ρ3(t) − log ρ2(t))

for t ∈ (0, c). Let x(t) = log ρ1(t) − log ρ2(t) for t ∈ (0, c), then one gets

dx(t)

dt
= Ψ2 − Ψ1 − βx(t)

for t ∈ (0, c). Fix T ∈ (0, c). It is clear that for any 0 < s < T ,

(B.2) eβT x(T ) = eβsx(s) +

∫ T

s

e(Ψ2−Ψ1)tdt.

Since lims↘0 eβsx(s) = −∞ and lims↘0

∫ T

s
e(Ψ2−Ψ1)tdt =

∫ T

0
e(Ψ2−Ψ1)tdt, if one lets

s ↘ 0 in (B.2), then one has eβT x(T ) = −∞, i.e., ρ1(T ) = −∞. This is a contra-
diction with (ρ1(T ), ρ2(T ), ρ3(T )) ∈ M.
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