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Abstract. Minimization of functionals related to Euler’s elastica energy has a wide range of
applications in computer vision and image processing. An issue is that a high order nonlinear partial
differential equation (PDE) needs to be solved and the conventional algorithm usually takes high
computational cost. In this paper, we propose a fast and efficient numerical algorithm to solve
minimization problems related to the Euler’s elastica energy and show applications to variational
image denoising, image inpainting, and image zooming. We reformulate the minimization problem as
a constrained minimization problem, followed by an operator splitting method and relaxation. The
proposed constrained minimization problem is solved by using an augmented Lagrangian approach.
Numerical tests on real and synthetic cases are supplied to demonstrate the efficiency of our method.
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1. Introduction. Euler’s elastica is defined as planar curves γ that minimize
energy functionals of the form

E(γ) =
∫
γ

(a+ bκ2)ds, (1.1)

where κ is the curvature of the curve, s is arc length, a > 0, and b > 0. Because
of importance in various applications, numerous papers have appeared, addressing
their effective computation [9, 10, 29–31, 35]. One of contributions in the variational
approach is due to Mumford, Nitzberg, and Shiota [40], where they proposed a method
for segmenting an image into objects which should be ordered according to their
depth in the scene. In order to connect T-junctions at the occluding boundaries of
objects, they looked for a continuation curve Γ which minimizes (1.1). Following the
work [40] and observing the importance of level lines for image representation, the
authors in [37] adapted their variational continuation framework [40] to the level line
structures. They proposed a variational formulation for the recovery of the missing
parts of a grey level image. They referred to this interpolation process as disocclusion.
After omitting the angular terms and taking a domain D̃ slightly bigger than the
inpainting domain D such that D ⊂⊂ D̃, their minimization criterion becomes

E =
∫ ∞
−∞

∑
Γ∈Fλ

∫
Γ

(a+ b|κ|p) |dH1dλ, (1.2)

where p ≥ 1, H1 denotes the one-dimensional Hausdorff measure, and the elements of
Fλ are the union of completion curves and the restrictions to D̃ \ D of the associated
level lines.

In order to study the inpainting problem from the viewpoint of the calculus of
variations, Ambrosio and Masnou [2] rewrite (1.2), assuming that the curves Γ are
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the level lines of a smooth function u, as

E(u) =
∫ ∞
−∞

(∫
∂{u≥λ}∩D̃

(a+ b|κ|p) dH1

)
dλ. (1.3)

Using the change of variable, the energy functional becomes:

E(u) =
∫
D̃

(
a+ b

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣p) |∇u|. (1.4)

As noted in [2], this criterion makes sense only for a certain class of smooth functions
and needs to be relaxed in order to deal with more general functions. So they extend
the energy functional (1.4) to the whole L1(R2):

E(u) =


∫
D̃

(
a+ b

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣p) |∇u| if u ∈ C2(R2),

∞ if u ∈ L1(R2) \ C2(R2).
(1.5)

Then, they define the relaxed functional associated with (1.5) as:

E(u) = inf
{

lim inf
h→∞

E(uh) : uh → u ∈ L1

}
. (1.6)

They show the existence of an optimal solution and the coincidence between E and the
associated relaxed functional E on C2 functions. The authors in [17] derived the Euler-
Lagrange equation associated with (1.4) in the case N = 2, p > 1, and proposed some
explicit numerical schemes to solve the corresponding Euler Lagrangian equation.
However, their resulting Euler-Lagrange equation is nonlinear fourth order, so the
computational cost becomes an issue. Another approach by relaxation is reported
in [5], where the authors proposed a relaxed formulation of (1.4) and the term ∇u

|∇u|
is replaced with a vector field θ.

In this paper, we propose a fast and efficient algorithm to solve the minimization
problem related to Euler’s Elastica energy. We shall show applications to variational
image denoising, image inpainting, and image zooming with the Euler’s elastica en-
ergy. First, we reformulate it as a constrained minimization problem by introducing a
couple of new variables. In order to solve the constrained minimization problem more
efficiently, we shall employ an operator splitting idea combined with an augmented
Lagrangian functional. Note that many fast algorithms based on dual approach to
efficiently solve total variation (TV) minimization problem have been proposed since
its introduction by Rudin, Osher and Fatemi [42] as a regularization criterion for im-
age denoising. For interested readers, please refer to [14,15,25,26,44–46,49–51,53–55]
and references therein. The approach here is motivated by [46].

The organization of the rest of the paper is as follows. In Section 2, we describe
our proposed algorithm. In Section 3, we explain numerical discretization of the sub-
problems associated with the augmented Lagrangian functional. In Section 4, we show
some numerical experiments to illustrate the efficiency of our proposed algorithm.

2. Augmented Lagrangian method. In this section, we propose a fast and
efficient algorithm for minimization problems related to Euler’s elastica energy. We
shall especially consider applications of this approach for variational image denoising,
image inpainting, and image zooming problems. For clarity of presentation, we will
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only consider two-dimensional problems. However, the approach has no difficulty for
higher dimensional problems. For mathematical notations, we will use the standard
definitions for Sobolev spaces. Following conventions, we will use boldface letters to
denotes vector functions.

Given a domain Ω and a subset Γ ⊂ Ω ⊂ R2, we assume that the following data
is given:

u0 : Γ→ [0, 1].

For applications to image processing, the domain Ω is normally taken as a rectangle
or a grid for a rectangle domain. For different applications, the subset Γ and data
u0 have different meanings. For image denoising, u0 is a noisy image and Γ = Ω.
For image inpainting, we have an inpainting domains D ⊂ Ω where the image data is
missing or degraded. The data u0 is a given image in Γ = Ω\D. For this application,
the values of u0 on boundaries of D need to be propagated into the inpainting domain
via minimization of the Euler’s elastica energy. For image zooming, we have a given
image ū0 whose size is [1,M1] × [1,M2]. For a fixed ratio r ∈ N, we take the image
domain Ω = [1, r(M1 − 1) + 1] × [1, r(M2 − 1) + 1] and define the set of points
Γ = {(i, j) ∈ Ω | i ≡ 1 mod r, j ≡ 1 mod r}. From the values of u0 on Γ assigned by
ū0, we need to construct an enlarged images defined on Ω. The image values on Ω \Γ
are interpolated via Euler’s elastica energy.

In order to use Euler’s elastica energy minimization for the above mentioned
applications, we proposed to minimize the following functional:

∫
Ω

(
a+ b

(
∇ · ∇u
|∇u|

)2
)
|∇u|+ η

s

∫
Γ

(u− u0)s, (2.1)

where u0 is the given data, η > 0, and s ≥ 1. In image denoising, the choice of s is
determined by the type of noise found in u0: e.g. s = 2 for Gaussian white noise and
s = 1 for salt-and-pepper noise. For image inpainting and image zooming, we use
s = 1 to preserve the contrast of a given image. It is also possible to minimize the
following energy functional for image inpainting:

∫
D

(
a+ b

(
∇ · ∇u
|∇u|

)2
)
|∇u| with u|∂D = u0, (2.2)

where D ( Ω is the inpainting domain and ∂D is the boundary of D. If the size of
D is much smaller than Ω, this approach may give faster numerical convergence than
using (2.2) in image inpainting. In this paper, for the sake of simplicity, we will use
the same model given in (2.1) for all applications.

Now, we propose to cast the functional (2.1) into a constrained minimization
problem by introducing two variables p and n:

p = ∇u, n =
∇u
|∇u|

.

The last constraint above can be reformulated as |p|n = p. We could use Lagrangian
or augmented Lagrangian method to solve minimization problem (2.1) under these
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constraints. The corresponding augmented Lagrangian functional is:

L (u,p,n;λ1,λ2) =
∫

Ω

(
a+ b(∇ · n)2

)
|p|+ η

s

∫
Γ

|u− u0|s

+
r1

2

∫
Ω

(|p|n− p)2 +
∫

Ω

λ1(|p|n− p).

+
r2

2

∫
Ω

(p−∇u)2 +
∫

Ω

λ2 · (p−∇u).

(2.3)

One could use some iterative algorithms to find saddle points for this functional.
However, we shall introduce some operator splitting ideas and use some special penal-
ization techniques to get an iterative algorithm that is practically simple to implement
and very fast.

First, we note that the following result follows easily from the well-known Hölder
inequality:

Lemma 2.1. Given two vectors n 6= 0,p 6= 0. If they satisfy

|n| ≤ 1, |p| = n · p, (2.4)

then we have

n =
p
|p|

. (2.5)

In order to obtain an efficient algorithm, we shall use an operator splitting idea
by introducing a new variable m. When s 6= 2 or Γ ( Ω, we also need to introduce
another variable v to split the nonlinearity. In case that s = 2 and Γ = Ω, this
new variable v is not needed and the modifications for the resulting algorithm is
easily obtained by slightly modifying the proposed algorithm. For the case s = 2 and
Γ = Ω, we refer to [46,50,52] for some more details about how to modify the resulting
algorithm.

As a consequence of Lemma 2.1, it is easy to see that minimization of the func-
tional in (2.1) is equivalent to the following minimization problem:

min
v,u,m,p,n

∫
Ω

(
a+ b(∇ · n)2

)
|p|+ η

s

∫
Γ

(v − u0)s

with v = u, p = ∇u, n = m, |p| = m · p, |m| ≤ 1.
(2.6)

Before we show how to solve the proposed constrained minimization (2.6), let us
explain about the variable m. The use of m with |m| ≤ 1 can be viewed as relaxation,
similar to the relaxation approach proposed in [5]. Moreover, the constraint |m| ≤ 1
is very crucial to prevent the unboundedness of m when p = 0. In order to impose
the constraint

|m| ≤ 1 a.e in Ω,

we define a set

R = {m ∈ L2(Ω) | |m| ≤ 1 a.e. in Ω}

and a characteristic function δR(·) on R

δR(m) =
{

0 m ∈ R,
+∞ otherwise.
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As indicated in Lions-Mercier [32], the following minimization problem with a given m0

min
m

∫
Ω

(m−m0)2 + δR(m)

has an explicit solution given by

m = projR(m0) =

{
m0 |m0| ≤ 1,
m0/|m0| otherwise.

(2.7)

In order to efficiently solve the proposed constrained optimization problem (2.6),
we define the following augmented Lagrangian functional:

L (v, u,m,p,n;λ1,λ2, λ3,λ4) =
∫

Ω

(
a+ b(∇ · n)2

)
|p|+ η

s

∫
Γ

|v − u0|s

+ r1

∫
Ω

(|p| −m · p) +
∫

Ω

λ1(|p| −m · p)

+
r2

2

∫
Ω

(p−∇u)2 +
∫

Ω

λ2 · (p−∇u)

+
r3

2

∫
Ω

(v − u)2 +
∫

Ω

λ3(v − u)

+
r4

2

∫
Ω

(n−m)2 +
∫

Ω

λ4 · (n−m) + δR(m),

(2.8)

where λ1, λ2, λ3, and λ4 are Lagrange multipliers and r1, r2, r3, and r4 are positive
penalty parameters. Due to the constraint |m| ≤ 1, we have that

|p| −m · p ≥ 0, a.e. in Ω.

That is the reason why we do not use L2 penalization for the term multiplied by r1.
It is known that one of saddle points for the augmented Lagrangian functional

will give a minimizer for the constrained minimization problem (2.6). In practice, an
iterative algorithm is used to find the saddle points of (2.8). This iterative scheme
is shown in Table 2.1. We initialize Lagrange multipliers λ0

1, λ0
2, λ0

3, and λ0
4 and the

variables v0, u0, m0, p0, and n0 as zero. Note that it is possible to optimally initialize
these variables in each application. For instance, the variables v0, u0, m0, and p0 can
be initialized to a given noisy data u0 in image denoising as follows:

u0 = u0, p0 = ∇u0, and n0 = m0 =
∇u0

|∇u0|
on Ω.

Even though more optimized initialization may give faster numerical results, we simply
use zero to initialize all variables and Lagrange multipliers to make the comparisons
with other methods simpler.

For k ≥ 1, an alternating minimization method is used to approximately find
a minimizer

(
vk, uk,mk,pk,nk

)
of the functional L (v, u,m,p,n;λ1,λ2, λ3,λ4) with

the fixed Lagrange multipliers λ1 = λk−1
1 , λ2 = λk−1

2 , λ3 = λk−1
3 , and λ4 = λk−1

4 and
the previous variables uk−1, vk−1, pk−1, nk−1, and mk−1. The procedure is given in
Table 2.2. First of all, we initialize the variables: ṽ0 = vk−1, ũ0 = uk−1, m̃0 = mk−1,
p̃0 = pk−1, and ñ0 = nk−1. For l = 1, · · · , L, we find minimizers ṽl, ũl, m̃l, p̃l, ñl in
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Table 2.1: Augmented Lagrangian method for the Euler’s elastica model.

1. Initialization: v0, u0, m0, p0, n0, and λ0
1, λ0

2, λ0
3, λ0

4.
2. For k ≥ 1, compute an approximate minimizer

(
vk, uk,mk,pk,nk

)
of the

augmented Lagrangian functional with the fixed Lagrange multipliers λk−1
1 ,

λk−1
2 , λk−1

3 , and λk−1
4 :(

vk, uk,mk,pk,nk
)
≈ arg minL

(
v, u,m,p,n;λk−1

1 ,λk−1
2 , λk−1

3 ,λk−1
4

)
.

(2.9)

3. Update Lagrange multipliers

λk1 = λk−1
1 + r1

(
|pk| −mk · pk

)
, (2.10)

λk2 = λk−1
2 + r2

(
pk −∇uk

)
, (2.11)

λk3 = λk−1
3 + r3

(
vk − uk

)
, (2.12)

λk4 = λk−1
4 + r4

(
nk −mk

)
. (2.13)

4. Measure the relative residuals and stop iteration of k if they are smaller
than εr.

Table 2.2: Alternating minimization method to solve the problem (2.9) in Table 2.1.

1. Initialization: ṽ0 = vk−1, ũ0 = uk−1, m̃0 = mk−1, p̃0 = pk−1, and ñ0 =
nk−1.

2. For l = 1, · · · , L and fixed Lagrange multipliers λ1 = λk−1
1 , λ2 = λk−1

2 ,
λ3 = λk−1

3 , and λ4 = λk−1
4 , solve the following problems alternatively:

ṽl = arg minL
(
v, ũl−1, m̃l−1, p̃l−1, ñl−1;λ1,λ2, λ3,λ4

)
, (2.14)

ũl = arg minL
(
ṽl, u, m̃l−1, p̃l−1, ñl−1;λ1,λ2, λ3,λ4

)
, (2.15)

m̃l = arg minL
(
ṽl, ũl,m, p̃l−1, ñl−1;λ1,λ2, λ3,λ4

)
, (2.16)

p̃l = arg minL
(
ṽl, ũl, m̃l,p, ñl−1;λ1,λ2, λ3,λ4

)
, (2.17)

ñl = arg minL
(
ṽl, ũl, m̃l, p̃l,n;λ1,λ2, λ3,λ4

)
. (2.18)

3.
(
vk, uk,mk,pk,nk

)
=
(
ṽL, ũL, m̃L, p̃L, ñL

)
.

the subproblems from (2.14) to (2.18) by minimizing the following energy functionals:

E1(v) =
η

s

∫
Γ

|v − u0|s +
∫

Ω

r3

2
(
v − ũl−1

)2
+ λ3v, (2.19)

E2(u) =
∫

Ω

r2

2
(
p̃l−1 −∇u

)2 − λ2 · ∇u+
r3

2
(
ṽl − u

)2
+ λ3(−u), (2.20)

E3(m) = δR(m) +
∫

Ω

r4

2
(ñl−1 −m)2 − λ4 ·m, (2.21)

E4(p) =
∫

Ω

(
a+ b

(
∇ · ñl−1

)2) |p|+ (r1 + λ1)
(
|p| − m̃l · p

)
+
r2

2
(
p−∇ũl

)2
+ λ2 · p,

(2.22)

E5(n) =
∫

Ω

b(∇ · n)2
∣∣p̃l∣∣+

r4

2
(
n− m̃l

)2
+ λ4 · n. (2.23)
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Fig. 3.1: The rule of indexing variables in the augmented Lagrangian functional (2.8):
u, v, λ1, and λ3 are defined on •-nodes. The first and second component of p, n, λ2,
and λ4 are defined on ◦-nodes and �-nodes, respectively.

After Lth iterations, we update
(
vk, uk,mk,pk,nk

)
=
(
ṽL, ũL, m̃L, p̃L, ñL

)
. Before

we get into more details of this algorithm, we would like to make the following com-
ments:

• For s = 1 or 2, the minimization problems for E1, E3, and E4, c.f. (2.14),
(2.16),and (2.17) in Table 2.2, can be done by some simple arithmetic calcu-
lations and thresholding at each grid point. There is no need to solve any
equations.

• The minimization problems for E2 and E5, c.f. (2.15) and (2.18), need to solve
a linear equation over the whole domain Ω. For image processing, the mesh
is uniform, FFT and AOS [33, 48] schemes can be used to solve these two
subproblems with very low cost.

In Section 3.2, we show the details for the implementation for the algorithms given
in (2.19) to (2.23). Especially, we shall present the details in a discrete setting. This
will make it more clear for implementations. In this paper, we numerically observe
that L = 1 is enough to obtain desirable results in image denoising, image inpainting,
and image zooming.

3. Numerical discretization. We use a staggered grid system as in Figure 3.1
to solve the energy functional minimization from (2.19) to (2.23) and update the
Lagrange multipliers from (2.10) to (2.13). Unknowns u, v, λ1, and λ3 are defined on
•-nodes. The first and second component of p, n, λ2, and λ4 are defined on ◦-nodes
and �-nodes, respectively. First of all, we introduce notations in Section 3.1. In
Sections3.2 and 3.3, we shall present the details on how to solve the sub-minimization
problems given in Table 2.2.

3.1. Notation. Let Ω = [1, N1] × [1, N2] be a set of N1N2 points in R2. For
simplicity, we denote two inner product vector spaces:

X = RN1N2 and Y = X ×X.

For a given (i, j) ∈ [1, N1]× [1, N2], we see that

u ∈ X, u(i, j) ∈ R and p ∈ Y, p(i, j) = (p1(i, j), p2(i, j)) ∈ R2,
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we equip the standard Euclidean inner products as follows:

(u, v)X ≡
∑
i,j

u(i, j)v(i, j) and (p, q)Y ≡ (p1, q1)X + (p2, q2)X .

Note that the induced norms || · ||V are the `2-norm on vector spaces V = X and Y .
The discrete backward and forward differential operators for u ∈ X are defined

with the periodic condition:

∂−1 u(i, j) ≡

{
u(i, j)− u(i− 1, j), 1 < i ≤ N1,

u(1, j)− u(N1, j), i = 1,

∂−2 u(i, j) ≡

{
u(i, j)− u(i, j − 1), 1 < j ≤ N2,

u(i, 1)− u(i,N2), j = 1,

∂+
1 u(i, j) ≡

{
u(i+ 1, j)− u(i, j), 1 ≤ i < N1,

u(1, j)− u(N1, j), i = N1,

∂+
2 u(i, j) ≡

{
u(i, j + 1)− u(i, j), 1 ≤ j < N2,

u(i, 1)− u(i,N2), j = N2,

We also define the discrete forward(+) and backward(−) gradient operator ∇± : X →
Y :

∇±u(i, j) ≡
(
∂±1 u(i, j), ∂±2 u(i, j)

)
.

Considering inner products on X and Y , the corresponding discrete backward(−) and
forward(+) adjoint operator div∓ : Y → X of −∇± is obtained:

div∓ p(i, j) ≡ ∂∓1 p1(i, j) + ∂∓2 p2(i, j).

When a variable defined on ◦-nodes (or �-nodes) needs to be evaluated at (i, j) ∈�-
nodes (or ◦-nodes), we use the average operators:

A�
i,j(n1) =

n1(i, j + 1) + n1(i− 1, j + 1) + n1(i, j) + n1(i− 1, j)
4

,

A◦i,j(n2) =
n2(i+ 1, j) + n2(i, j) + n2(i+ 1, j − 1) + n2(i, j − 1)

4
,

(3.1)

where n1 and n2 are defined on ◦-nodes and �-nodes, respectively. We also use a
special operator to measure the magnitude of vector p = (p1, p2) at (i, j) ∈ •-nodes,
where p1 and p2 are defined on ◦-nodes and �-nodes, respectively:

|A|•i,j(p) =

((
p1(i, j) + p1(i− 1, j)

2

)2

+
(
p2(i, j) + p2(i, j − 1)

2

)2
) 1

2

, (3.2)

When we compute the divergence of a vector n = (n1, n2) at (i, j) ∈ •-nodes, where
n1 and n2 are defined on ◦-nodes and �-nodes, we use the following operator:

div•i,j(n) = n1(i, j)− n1(i− 1, j) + n2(i, j)− n2(i, j − 1). (3.3)
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3.2. Subproblems. In this subsection, we explain how to find the minimizers of
Ei (1 ≤ i ≤ 5) shown from (2.19) to (2.23). For simplicity of notations, we denote the
fixed Lagrange multipliers in the previous (k−1)th iteration as λ1 = λk−1

1 , λ2 = λk−1
2 ,

λ3 = λk−1
3 , and λ4 = λk−1

4 .

3.2.1. Minimization of E1(v) in (2.19). We denote a fixed variable ũl−1 as
u. We note that one can combine the last two terms in E1(v) into one term. Let
w = u− λ3

r3
. Then we have

E1(v) =
η

s

∫
Γ

|v − u0|s +
r3

2

∫
Ω

(v − w)2 + C̄1.

Since C̄1 does not depend on v, the minimization of E1 can be done by minimizing
the following discrete energy functional for fixed u:

Ẽ1(v) = ẼΩ\Γ(v) + ẼΓ(v),

where

ẼΓ(v) =
∑

(i,j)∈Γ

(η
s
|v(i, j)− u0(i, j)|s +

r3

2
|v(i, j)− w(i, j)|2

)
,

ẼΩ\Γ(v) =
∑

(i,j)∈Ω\Γ

r3

2
|v(i, j)− w(i, j)|2, (i, j) ∈ •-nodes.

For a grid point (i, j) ∈ Ω \ Γ, the minimizer v(i, j) is

v(i, j) = w(i, j).

For a grid point (i, j) ∈ Γ, the minimizer v(i, j) with s = 2 is

v(i, j) =
ηu0(i, j) + r3w(i, j)

η + r3
.

When s = 1, we use the same approach as in [51] to find the closed-form formula for
the minimizer v(i, j) for a grid point (i, j) ∈ Γ:

v(i, j) = u0(i, j) +M(i, j)(w(i, j)− u0(i, j)),

where

M(i, j) = max
{

0, 1− η

r3|w(i, j)− u0(i, j)|

}
.

For s ∈ (0, 1), see more details in [51] on how to find a minimizer v(i, j) for a grid
point (i, j) ∈ Γ. To sum up, the updated ṽl is obtained by the following formulas:

(i, j) /∈ Γ ⇒ ṽl(i, j) = w(i, j),

(i, j) ∈ Γ ⇒

ṽl(i, j) =
ηu0(i, j) + r3w(i, j)

η + r3
, if s = 2,

ṽl(i, j) = u0(i, j) +M(i, j)(w(i, j)− u0(i, j)), if s = 1.

(3.4)
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3.2.2. Minimization of E2(u) in (2.20). We denote fixed variables ṽl and p̃l−1

as v and p, respectively. The Euler-Lagrange equation of (2.20) yields a linear equa-
tions:

−r2 div−∇+u+ r3u = −r2 div− p− div− λ2 + r3v + λ3. (3.5)

Since periodic boundary condition is imposed, it can be efficiently solved by the fast
Fourier transform (FFT). Using the notation in Section 3.1, the above equation can
be written as:

−r2(∂−1 ∂
+
1 + ∂−2 ∂

+
2 )u+ r3u = g,

where g = −r2(∂−1 p1 + ∂−2 p2)− (∂−1 λ21 + ∂−2 λ22) + r3v+ λ3. Introducing the identity
operator If(i, j) = f(i, j) and shifting operators,

S±1 f(i, j) = f(i± 1, j) and S±2 f(i, j) = f(i, j ± 1), (3.6)

the discretization of the equation (3.5) at •-node is as follows:(
−r2

(
S−1 − 2I + S+

1 + S−2 − 2I + S+
2

)
+ r3

)
u(i, j) = g(i, j),

where

g(i, j) =− r2

(
I − S−1

)
p1(i, j)− r2

(
I − S−2

)
p2(i, j)

−
(
I − S−1

)
λ21(i, j)−

(
I − S−2

)
λ22(i, j) + r3v(i, j) + λ3(i, j).

Now, we apply the discrete Fourier transform F . The shifting operator is a discrete
convolution and its discrete Fourier transform is the componentwise multiplication in
the frequency domain. For discrete frequencies, yi and yj , we have

FS±1 f(yi, yj) = e±
√
−1ziFf(yi, yj) and FS±2 f(yi, yj) = e±

√
−1zjFf(yi, yj), (3.7)

where

zi =
2π
N1

yi, yi = 1, · · · , N1 and zj =
2π
N2

yj , yj = 1, · · · , N2. (3.8)

It yields an algebraic equation:

(−2r2 (cos zi + cos zj − 2) + r3)Fu(yi, yj) = Fg(yi, yj),

Note that r3 > 0. The discrete inverse Fourier transform F gives the updated ũl.

3.2.3. Minimization of E3(m) in (2.21). We denote a fixed variable ñl−1 as
n. In a similar way as getting the closed-form solution of (2.19), we also obtain the
close-form solution of (2.21) by re-writing the minimization functional in the form:

E3(m) = δR(m) +
r4

2

∫
Ω

(
(r1 + λ1)p + λ4

r4
+ n−m

)2

dx+ C̄3, (3.9)

where C̄3 does not depend on m. For a fixed variable n, we use (2.7) to obtain the
closed-form solution of (3.9):

m̃l = projR (z) , where z ≡ (r1 + λ1)p + λ4

r4
+ n. (3.10)
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Since the first and second component of p, n, and λ4 are defined at ◦-nodes and
�-nodes respectively, c.f. Figure 3.1, a discretization of z at (i, j) ∈ ◦-node is

z1(i, j) = n1(i, j) +
1
r4

(
λ41(i, j) +

(
λ1(i+ 1, j) + λ1(i, j)

2
+ r1

)
p1(i, j)

)
,

z2(i, j) = A◦i,j(n2) +
1
r4

(
A◦i,j(λ42) +

(
λ1(i+ 1, j) + λ1(i, j)

2
+ r1

)
A◦i,j(p2)

)
.

A discretization of z at (i, j) ∈ �-node is similarly obtained with A�(·):

z1(i, j) = A�
i,j(n1) +

1
r4

(
A�
i,j(λ41) +

(
λ1(i, j + 1) + λ1(i, j)

2
+ r1

)
A�
i,j(p1)

)
,

z2(i, j) = n2(i, j) +
1
r4

(
λ42(i, j) +

(
λ1(i, j + 1) + λ1(i, j)

2
+ r1

)
p2(i, j)

)
.

3.2.4. Minimization of E4(p) in (2.22). We denote fixed variables ũl, m̃l, and
ñl−1 as u, m, and n, respectively. It is easy to see that E4 in (2.22) can be written as

E4(p) =
∫

Ω

(
a+ b(∇ · n)2 + r1 + λ1

)
|p|

+
r2

2

∫
Ω

(
p−

(
∇u+

(
r1 + λ1

r2

)
m− λ2

r2

))2

+ C̄4,

(3.11)

where C̄4 does not depend on p. Let

c = a+ b(∇ · n)2 + r1 + λ1 and q = ∇u+
(
r1 + λ1

r2

)
m− λ2

r2
.

Then, for fixed u, n and m, we apply the same approach in [51] to find the closed-form
solution for the minimization of (3.11):

p̃l(i, j) = max
{

0, 1− c

r2|q(i, j)|

}
q(i, j). (3.12)

According to the rule of indexing variables in Figure 3.1, the first and second
component of p, n, and λ2 are defined at ◦-nodes and �-nodes, respectively. Now, a
discretization of c and q at (i, j) ∈ ◦-node is obtained as follows:

c(i, j) = a+ r1 +
λ1(i+ 1, j) + λ1(i, j)

2

+ b

(
n1(i+ 1, j)− n1(i− 1, j)

2
+
n2(i+ 1, j) + n2(i, j)− n2(i+ 1, j − 1)− n2(i, j − 1)

2

)2

,

q1(i, j) = u(i+ 1, j)− u(i, j) +
(
r1

r2
+

1
r2

(
λ1(i+ 1, j) + λ1(i, j)

2

))
m1(i, j)− 1

r2
λ21(i, j),

q2(i, j) =
1
2

(
u(i+ 1, j + 1) + u(i, j + 1)

2
− u(i+ 1, j − 1) + u(i, j − 1)

2

)
+
(
r1

r2
+

1
r2

(
λ1(i+ 1, j) + λ1(i, j)

2

))
A◦i,j(m2)− 1

r2
A◦i,j(λ22).
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Similarly, a discretization of c and q at (i, j) ∈ �-node is obtained as follows:

c(i, j) = a+ r1 +
λ1(i, j + 1) + λ1(i, j)

2

+ b

(
n1(i, j + 1) + n1(i, j)− n1(i− 1, j + 1)− n1(i− 1, j)

2
+
n2(i, j + 1)− n2(i, j − 1)

2

)2

,

q1(i, j) =
1
2

(
u(i+ 1, j + 1) + u(i+ 1, j)

2
− u(i− 1, j + 1) + u(i− 1, j)

2

)
+
(
r1

r2
+

1
r2

(
λ1(i, j + 1) + λ1(i, j)

2

))
A�
i,j(m1)− 1

r2
A�
i,j(λ21).

q2(i, j) = u(i, j + 1)− u(i, j) +
(
r1

r2
+

1
r2

(
λ1(i, j + 1) + λ1(i, j)

2

))
m2(i, j)− 1

r2
λ22(i, j).

3.2.5. Minimization of E5(n) in (2.23). We denote fixed variables p̃l and m̃l

as p and m, respectively. The Euler-Lagrange equation of (2.23) is given by

−2∇+(b|p|div− n) + r4(n−m) + λ4 = 0. (3.13)

As a uniform grid is normally used for image processing, we shall employ a frozen
coefficient method to solve the above linear equation for the purpose of easier im-
plementations. For properly chosen c, we solve the following problem iteratively for
q = 1, 2, · · · :

−c∇+
(
div− nq

)
+ r4nq = r4m− λ4 −∇+

(
(c− 2b|p|) div− nq−1

)
, (3.14)

where the initial condition nq=0 = ñl−1 is the solution at the previous iteration of the
loop. In our simulations, we choose c as

c ≡ max
(i,j)∈•-nodes

(
2b|A|•i,j(p)

)
.

The coupled linear equations (3.14) is efficiently solved by the FFT. In the frequency
domain, we have N1N2 systems of two linear equations with two unknowns and the
determinant of the coefficients matrix is not zero for all frequencies with a positive
penalty constant r4; see more details in [28]. If the sequence nq satisfies with

||nq − nq−1||L1

||nq−1||L1
< εn, (3.15)

we stop the iteration and update ñl = nq. In this paper, εn = 10−3 is used for all
numerical examples.

Now, we briefly give the details on how to solve the coupled linear equations (3.14).
Using the notation in Section 3.1, the coupled equations (3.14) can be written as:

−c
(
∂+

1 ∂
−
1 n

q
1 + ∂+

1 ∂
−
2 n

q
2

)
+ r4n

q
1 = r4m1 − λ41 − ∂+

1

(
(c− 2b|p|) div− nq−1

)
,

−c
(
∂+

2 ∂
−
1 n

q
1 + ∂+

2 ∂
−
2 n

q
2

)
+ r4n

q
2 = r4m2 − λ42 − ∂+

2

(
(c− 2b|p|) div− nq−1

)
.

(3.16)

Using the shifting operators (3.6), the discretization at (i, j) ∈ ◦-node of the first
equation in (3.16) is:

−c
((
S−1 − 2I + S+

1

)
nq1(i, j) +

(
S+

1 − S
+
1 S
−
2 − I + S−2

)
nq2(i, j)

)
+ r4n

q
1(i, j) = f1(i, j),

(3.17)
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where

f1(i, j) = r4m1(i, j)− λ41(i, j)− (c− 2b|A|•i+1,j(p))div•i+1,j(n) + (c− 2b|A|•i,j(p))div•i,j(n).

Similarly, the second equation in (3.16) is discretized at (i, j) ∈ �-node as:

−c
((
S+

2 − I − S
−
1 S

+
2 + S−1

)
n1(i, j) +

(
S−2 − 2I + S+

2

)
n2(i, j)

)
+ r4n

q
2(i, j) = f2(i, j),

(3.18)

where

f2(i, j) = r4m2(i, j)− λ42(i, j)− (c− 2b|A|•i,j+1(p))div•i,j+1(n) + (c− 2b|A|•i,j(p))div•i,j(n).

We apply the discrete Fourier transform to solve (3.17) and (3.18). Using the
notations of discrete frequencies in (3.8), we have a system of linear equations:(

a11 a12

a21 a22

)(
Fnq1(yi, yj)
Fnq2(yi, yj)

)
=
(
Ff1(yi, yj)
Ff2(yi, yj)

)
,

where the coefficients are

a11 = r4 − 2c (cos zi − 1) ,

a12 = −c
(
1− cos zj +

√
−1 sin zj

) (
−1 + cos zi +

√
−1 sin zi

)
,

a21 = −c
(
1− cos zi +

√
−1 sin zi

) (
−1 + cos zj +

√
−1 sin zj

)
,

a22 = r4 − 2c (cos zj − 1) .

We have N1N2 numbers of 2× 2 systems. The determinant of the coefficient matrix

D = r2
4 − 4r4c(cos zi + cos zj − 2)

is always positive for all discrete frequencies if r4 > 0. After the systems of linear
equations are solved for each frequency, we use the discrete inverse Fourier transform
to obtain nq = (nq1, n

q
2):

nq1 = <
(
F−1

(
a22Ff1 − a12Ff2

D

))
and nq2 = <

(
F−1

(
−a21Ff1 + a11Ff2

D

))
,

where <(·) is the real part of a complex number.
For clarity, we summarize the methods for the sub-minimization problems in Ta-

ble 3.1. We can see that all the subproblems can be numerically solved very efficiently
with low computational costs.

3.3. Update Lagrange multipliers. After the variables vk, uk, mk, pk, and
nk in (2.9) are updated by the algorithm in Table 2.2, we update Lagrange multipliers
λk1 , λk2 , λk3 , and λk4 according the the algorithm given in Table 2.1. Using the staggered
grid as shown in Figure 3.1, the discretized form for the equations from (2.10) to (2.13)
is written as:

λk1 = λk−1
1 + r1(|A|•i,j(pk)−mk · pk) at • -node,

λk21 = λk−1
21 + r2(pk1 − ∂+

1 u
k) at ◦ -node,

λk22 = λk−1
22 + r2(pk2 − ∂+

2 u
k) at �-node,

λk3 = λk−1
3 + r3(vk − uk) at • -node,

λk41 = λk−1
41 + r4(nk1 −mk

1) at ◦ -node,

λk42 = λk−1
42 + r4(nk2 −mk

2) at �-node.
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Table 3.1: Methods of solving subproblems in Table 2.2.

subproblems related energy methods or solutionsin Table 2.2 functional

(2.14) E1(v) (3.4): closed-form solution
(2.15) E2(u) (3.5): FFT of linear PDE
(2.16) E3(m) (3.10): closed-form solution
(2.17) E4(p) (3.12): closed-form solution
(2.18) E5(n) (3.14): FFT of coupled linear PDEs

We use average of vectors to approximate mk · pk at •-node:

pk(i, j) =
(
pk1(i, j) + pk1(i− 1, j)

2
,
pk2(i, j) + pk2(i, j − 1)

2

)
,

mk(i, j) =
(
nk1(i, j) + nk1(i− 1, j)

2
,
nk2(i, j) + nk2(i, j − 1)

2

)
.

When the residual Rk1 = |pk|−mk ·pk is close to machine precision, it may cause
numerical instabilities because we do not use L2 penalization for the term multiplied
by r1 in the proposed augmented Lagrangian method (2.8). In order to reduce such
instabilities, we update λk1(i, j) = λk−1

1 (i, j) if Rk1(i, j) < 10−12

4. Numerical examples. In this section, we present numerical examples using
the proposed algorithm in image inpainting, image denoising, and image zooming.
The test system is a Intel(R) Core(TM)2 Duo CPU P8600 2.4GHz 32-bit processor
with 3GB RAM.

During the iterations, we always monitor the residuals defined by:(
R̃k1 , R̃

k
2 , R̃

k
3 , R̃

k
4

)
=
(
|pk| −mk · pk,pk −∇uk, vk − uk,nk −mk

)
.

Since the residuals do not depend on the choice of penalty parameters r1, r2, r3, and
r4, it is reasonable to stop the iteration if the relative residuals are smaller than εr,
that is,

Rki ≡
1
|Ω|
||R̃ki ||L1 < εr, ∀i ∈ {1, 2, 3, 4}, (4.1)

where || · ||L1 is the L1 norm on Ω and |Ω| is the area of domain. In all our numeri-
cal experiments except the computational time comparison test, we use (4.1) as our
stopping criterion. We also monitor the relative errors of Lagrange multipliers:

(
Lk1 , L

k
2 , L

k
3 , L

k
4

)
=

(
||λk1 − λk−1

1 ||L1

||λk−1
1 ||L1

,
||λk2 − λk−1

2 ||L1

||λk−1
2 ||L1

,
||λk3 − λk−1

3 ||L1

||λk−1
3 ||L1

,
||λk4 − λk−1

4 ||L1

||λk−1
4 ||L1

)
,

(4.2)

the relative error of the solution {uk | k = 1, 2, ...}

||uk − uk−1||L1

||uk−1||L1
, (4.3)
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and the numerical energy

Ek =
∫

Ω

(
a+ b(∇ · nk)2

) ∣∣pk∣∣+
η

s

∫
Γ

∣∣vk − u0

∣∣s . (4.4)

All quantities are plotted in log scale.
The variation of the residuals as well as the relative errors and energy will give

us important information about the convergence of the iterations. While we show
numerical results obtained at the iteration when the stopping criterion is met, all
graphs related to the proposed algorithm are drawn up to 500 iterations. Before we
show our numerical results, we give some remarks on choosing tuning parameters.
There are three parameters coming from the elastica energy and data fitting term: a,
b, and η. The ratio between a and b has to do with the connectivity and smoothness
of the level lines: larger b encourages the connection of disconnected level lines and
smoother level lines; see also [17]. The parameter η depends on how close we want u
to be u0. In image inpainting, we need u to be as close to u0 on Ω \Γ as possible. So
we choose large value for η. In image denoising, we tune η according to the amount
of noise found in image: the noisier u0 is, the smaller value we choose for η. We
also have the parameters associated with lagrange multipliers: r1, r2, r3, and r4. In
order to reduce the number of parameters to tune, we set r1 = 1 in most of our
numerical experiments. To understand the role of the parameters r2 and r3, we go
to the equation (3.5). The parameter r2 controls the amount of diffusion of u: the
larger r2 is, the more diffusion u has. The parameters r3 and r4 control the closeness
between v and u and n and m, respectively. While using these as a guideline, we
tried to keep the same parameters whenever possible. In particular, our results for
the images corrupted by gaussian noise were obtained using the same parameters.
Therefore, we can say that the number of parameters associated with our algorithm
is not too much of concern.

4.1. Image inpainting. In this subsection, we illustrate the efficiency of pro-
posed algorithm via many examples in image inpainting. The process of restoring
missing or damaged areas in digital images is known as image inpainting or im-
age interpolation. Interesting applications of digital inpainting are explored in [7],
where the term image inpainting was introduced. Numerous approaches to image
inpainting have been proposed in literature: an axiomatic approach to image interpo-
lation [13], variational geometric approach [1,2,17–20,24,37–39], inpainting by vector
fields and gray levels [5, 6], simultaneous structure and texture image inpainting [8],
wavelet and framelet based image inpainting [11,16], examplar-based inpainting meth-
ods [21, 22, 27, 47], exemplar-based inpainting method with a geometric guide [12],
analytical modeling of exemplar-based inpainting method [3], reformulation of the
problem of region-segmentation with curvature regularity as an integer linear pro-
gram (ILP) [43], and graph cut formulation of the elastica model [4, 23].

The inpainting domain D is always shown in red color. The integration domain Γ
in the energy functional (2.1) is Ω\D. The proposed (ALM) algorithm in Table 2.1 can
be applied for s = 1 or 2 in (2.1). We use s = 1 for all examples in image inpainting.
Note that the main idea of proposed algorithm can be used to solve image inpainting
model (2.2). Recently, some fast algorithms to minimize curvature are proposed in
image segmentation [23] and image inpainting [4, 43].

First of all, the computational time (sec) of the proposed algorithm (ALM) is
compared with the numerical algorithm (CKS) in [17] for image inpainting. Whereas
the algorithm (CKS) involves time step, our algorithm is free of time step. For a fair
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Table 4.1: The computational time (sec) of our proposed (ALM) algorithm in Table 2.1
is compared with the method (CKS) in [17]. The red regions on the left images in (a)
and (b) are inpainting domains. The right images in (a) and (b) are the results from
the proposed algorithm.

size unknowns ALM CKS
# of time # of time

iteration (sec) iteration (sec)
(a) 28× 28 50 53 0.156 427000 517.343
(b) 28× 28 256 370 0.811 1301000 1668.760

(a) (b)

Example in Table 4.1-(a) Example in Table 4.1-(b)

ALM: Rel. diff. (4.5) ALM: Energy (4.4) ALM: Rel. diff. (4.5) ALM: Energy (4.4)

CKS: Rel. diff. (4.5) CKS: Energy (2.1) CKS: Rel. diff. (4.5) CKS: Energy (2.1)

Fig. 4.1: Plots of energy and relative errors of uk for examples (a) and (b) shown
in Table 4.1. ALM is our proposed algorithm in Table 2.1 and CKS is the method
in [17]. Since the relative difference in Table 4.1-(a) is zero after 52 iterations, we do
not plot the relative difference afterwards.

comparison, we stop the iteration if the relative error of the solution {uk |k = 1, 2, ...}
satisfies

1
|Ω|
||uk − uk−1||L1 < εd. (4.5)

In Table 4.1, the red regions on the left images in (a) and (b) are inpainting domains
and the right images in (a) and (b) are the results of our proposed algorithm in
Table 2.1. We use εd = 10−5 for the example (a) and εd = 2 · 10−6 for the example
(b). Since we have two projection steps and two linear PDEs in subproblems, the
proposed algorithm takes very low computational cost. Comparing with CKS, the
proposed algorithm is approximately thousands times faster in computational time.
The constants a = 1, b = 20, and η = 5·102 are used for (a) and (b) in ALM and CKS.
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In (a), the penalty parameters in our algorithm are r1 = 1, r2 = r3 = 10, and r4 = 50.
For the algorithm in CKS, the time step 10−5 is used. In (b), the penalty parameters
in our algorithm are r1 = 1, r2 = 2·102, and r3 = r4 = 102. For the algorithm in CKS,
the time step 10−4 is used. In Figure 4.1, plots of energy and relative errors versus
iteration numbers are shown for examples (a) and (b) in Table 4.1. As we mentioned
at the beginning of Section 4, all graphs related to our algorithm are drawn up to 500
iterations. By doing so, we can easily observe the convergence of our algorithm. In
the case of the algorithm in CKS, it involves time step. So it needs more iteration
numbers to see its convergence. From this test, we can see that our algorithm takes
very few iterations to converge compared with the CKS method. The two algorithms
produce similar inpainting results.

In Figure 4.2, we show the inpainting results for some synthetic images. The
red regions in the first and third rows are the inpainting domains. The second and
fourth rows are inpainting results. As we expect, the Euler’s elastica energy shows
a property of long connectivity in (a2). If the total variation is used, that is, b = 0
in (2.1), the inpainting region in (a2) will be filled as black color because the width
of red region is thicker than the height of horizontal white bar. From other synthetic
examples, we observe that the curvature term makes smooth connection along the
level curves of images on inpainting domains. In (e1) and (f1), we intentionally use
complicated shapes for the inpainting domains. Even though the portion of unknown
pixels are 69.96% in (e1) and 84.96% in (f1), the Euler’s elastica energy recovers the
main shapes in (e2) and (f2) very well. We use r1 = 1 and η = 103 for (a2)-(f2). The
rest of the tuning parameters are shown in Figure 4.2.

In Figure 4.3, we show the results of real image inpainting. (a2) is a restoration
of degraded image and (b2) is a recovery of corrupted data. For (a2) and (b2),
we use the same tuning parameters except the error bound εr. They are shown
in Figure 4.3. In Figure 4.4, we illustrate relative residuals (4.1), relative errors of
Lagrange multipliers (4.2), relative error of uk (4.3), and numerical energy (4.4) along
the outer iteration k. The graphs on the left and right columns are from Figures 4.2-
(c2) and 4.3-(a2), respectively. The graphs of the other examples in Figures 4.2
and 4.3 also have a similar profiles in Figure 4.4. Even though values of graphs are
not monotonically decreasing, the values are stable and steady after a few iterations.
In early stages of the outer iteration, the increasing profile in the numerical energy is
reasonable because all variables vk, uk, mk, pk, and nk are initially zero. Since η is
large in image inpainting, the fidelity term in Ek (4.4) dramatically tends to be zero
in a few iterations. Starting with zero values of variables, the regularity term in Ek

is increasing and then it is eventually steady after some iterations.

In Table 4.2, we show the number of unknown pixels in inpainting domains,
the total number of outer iteration, and computational time (sec) for the results
in Figures 4.2 and 4.3. If the size of inpainting domain is relatively smaller than
the size of image, one may obtain better computational efficiency using the energy
functional (2.2). However, there are some advantages to use the functional (2.1) in
image inpainting. It is very flexible to choose inpainting domains. Since we have to
use the boundary conditions for the image gradient in the model (2.2), it cannot be
applied to the inpainting domain whose boundary encloses two or three isolated pixels
such as red regions in Figures 4.2-(f1) and 4.3-(b1). Comparing the computational
time in Figures 4.2-(e2) and 4.2-(f2), we have a better performance in Figure 4.2-(f1)
even though the missing parts in Figure 4.2-(e1) is much smaller. It usually takes
more time to obtain an inpainted result from the model (2.2) if the inpainting domain
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(a1) (b1) (c1)

(a2) (b2) (c2)

(d1) (e1) (f1)

(d2) (e2) (f2)

Fig. 4.2: The red regions in the first and third rows are inpainting domains. The
second and fourth rows are inpainting results based on Euler’s elastica functional
minimization. Parameters: (a2): a = 0.1, b = 1, r2 = 1, r3 = 1, r4 = 5 · 102,
εr = 10−2, (b2): a = 1, b = 20, r2 = 2 · 102, r3 = 102, r4 = 3 · 102, εr = 2 · 10−3,
(c2): a = 0.1, b = 10, r2 = 2 · 102, r3 = 2 · 102, r4 = 3 · 102, εr = 1.9 · 10−3, (d2):
a = 0.1, b = 10, r2 = 2 · 102, r3 = 10, r4 = 102, εr = 1.2 · 10−3, (e2): a = 1, b = 10,
r2 = 10, r3 = 102, r4 = 102, εr = 3.6 · 10−3, (f2): a = 1, b = 20, r2 = 2 · 102, r3 = 102,
r4 = 102, εr = 5 · 10−3.
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(a1) (a2)

(b1) (b2)

Fig. 4.3: The red regions in the left column are inpainting domains. The right column
is the corresponding inpainting result based on Euler’s elastica functional minimiza-
tion. Parameters: (a2) and (b2): a = 1, b = 10, η = 102, r1 = 1, r2 = 2 ·102, r3 = 102,
and r4 = 102. εr = 2.5 · 10−2 for (a2) and 8.5 · 10−3 for (b2).

is larger and larger.

4.2. Image denoising. We illustrate the results of image denoising with Euler’s
elastica energy functional. We want to mention that graph cuts algorithm to minimize
Euler’s elastica energy has recently been proposed for image denoising in [4]. In this
subsection, we use s = 1 and 2 in (2.1) for Gaussian white noise and salt-and-pepper
noise, respectively. In image denoising, Γ in (2.1) is the same as the domain of image
Ω. The proposed algorithm can be also extended to Poisson type noise following [51].

In Figure 4.5, we show some results for some synthetic images based on our
proposed algorithm in Table 2.1. The noisy images are shown in the left column and
the restored images are shown in the right column. Gaussian white noise with zero
mean and the standard deviation 10 are used for all test images. We acknowledge
that the image Figure 4.5-(d1) is taken from [41]. The test image in Figure 4.5-(c1)
seems to be first used in [34]. According to the Euler’s elastica energy, denoised
images have smooth connections in the level curves of images. Moreover, the total
variation preserves jump discontinuities in images. Some very nice analysis for these
properties are given in [56]. Figure 4.6 shows the results of some real images. Note
that we do not need to use the extra variable v and the Lagrange multiplier λ3 in the
functional (2.8) for this case where s = 2.

In Table 4.3, we show the size of images, SNR, number of outer iteration k, and
computational time for the test images in Figures 4.5 and 4.6. The signal-to-noise
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Figure 4.2-(c2) Figure 4.3-(a2)

Relative residuals (4.1)

Relative errors in Lagrange multipliers (4.2)

Relative errors in uk (4.3)

Numerical energy (4.4)

Fig. 4.4: Plots of (4.1), (4.2), (4.3), and (4.4) values versus iteration numbers for
examples shown in Figures 4.2-(c2) (left) and Figure 4.3-(a2) (right). From these
plots, it is easy to see that the algorithm has converged long before 500 iterations.
The plots of the residuals Rki also gives important information about the choosing and
tuning of the parameters ri. With a bigger ri, the residual Rki will converge to zero
faster. It is better to choose the parameters ri to make the residuals Rki converging
to zero in a similar rate.

ratio (SNR) is defined as

10 log10

( ∑
i,j(u

k(i, j)− a1)2∑
i,j(|uk(i, j)− uc(i, j)| − a2)2

)
, (4.6)

where uc is an original image and a1 and a2 are average of uk and uk − uc, respec-
tively. The number of iteration is the total number of outer iteration in Table 2.1.
The computational time is measured in seconds. Since the proposed algorithm con-
sists of simple loops and discrete Fourier transforms, the speed of computation can be
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Fig. 4.5: Euler’s elastica based image denoising: Left column: noisy images. Right
column: denoised images. Gaussian white noise with zero mean and the standard
deviation 10 is used for all images. For all examples, we use a = 1, b = 10, η = 50,
r1 = 1, r2 = 20, and r4 = 50. The remaining parameter εr is 8.5 ·10−3 in (a2), 5 ·10−3

in (b2), and 6.2 · 10−3 in (c2) and (d2).
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Table 4.2: The number of unknowns in the inpainting domains in Figures 4.2 and 4.3
are shown. The computational time is measured in seconds. The number of iteration
is the number of total outer iteration in Table 2.1.

images size unknowns # of time percentage of
iteration (sec) unknown pixels

Fig. 4.2-(a2) 52× 52 936 294 2.138 34.62%
Fig. 4.2-(b2) 52× 52 1088 318 2.273 40.24%
Fig. 4.2-(c2) 80× 80 2500 339 6.053 39.06%
Fig. 4.2-(d2) 80× 80 2024 291 5.195 31.63%
Fig. 4.2-(e2) 100× 100 6996 448 12.382 69.96%
Fig. 4.2-(f2) 100× 100 8496 319 9.191 84.96%
Fig. 4.3-(a2) 484× 404 14258 218 245.020 7.29%
Fig. 4.3-(b2) 300× 235 42114 307 78.466 59.74%

(a1) (a2)

(b1) (b2)

Fig. 4.6: Euler’s elastica based image denoising: Left column: noisy images. Right
column: denoised images. Gaussian white noise with zero mean and the standard
deviation 10 is used for all images. For all examples, we use a = 1, b = 2, η = 2 · 102,
r1 = 1, r2 = 50, and r4 = 50. The remaining parameter εr is 1.2 · 10−2 in (a2) and
1.36 · 10−2 in (b2).
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Table 4.3: The size of images and the SNR for images in Figures 4.5 and 4.6 are
shown. The computational time is measured in seconds. The number of iteration is
the number of total outer iteration in Table 2.1.

images size SNR # of time
iteration (sec)

Fig. 4.5-(a2) 60× 60 17.50 361 3.339
Fig. 4.5-(b2) 100× 100 24.18 253 6.926
Fig. 4.5-(c2) 100× 100 23.77 312 8.440
Fig. 4.5-(d2) 128× 128 15.45 307 13.213
Fig. 4.6-(a2) 256× 256 17.15 207 41.059
Fig. 4.6-(b2) 332× 216 18.32 305 87.142

Table 4.4: The size of images and the SNR for the images in Figures 4.8 are shown.
The computational time is measured in seconds. The number of iteration is the
number of total outer iteration in Table 2.1.

images size SNR # of time
iteration (sec)

Fig. 4.8-(a2) 400× 420 20.84 209 161.928
Fig. 4.8-(b2) 512× 700 21.76 186 308.412

accelerated by parallel programming. Specially, we address that the computational
time is easily reduced several times via CUDA based programming. In our numeri-
cal experiment with GeForce 9600M GT, we approximately obtain four times faster
computation.

In Figure 4.7, we show the relative residuals (4.1), relative errors of Lagrange
multipliers (4.2), relative error in uk (4.3), numerical energy (4.4), and SNR (4.6)
versus the outer iteration k. The plots on the left and right columns are from the
examples in Figures 4.5-(b2) and 4.6-(a2), respectively. The plots of the other exam-
ples in Figures 4.5 and 4.6 also have a similar profiles in Figure 4.7. Since the Euler’s
elastica energy functional is not convex, we cannot expect monotonic decreasing in
the values of the energy, relative residuals, and relative errors of Lagrange multipliers.
From these plots, we can see that the algorithm is stable and has converged. It is
important that the residuals Rki converge to zero with similar rate for different i. It
is also clear that the energy and SNR have converged to a steady state.

In Figures 4.8, we show image denoising results and tuning parameters for some
real images with salt-and-pepper noise. The noisy images are shown in the left column
and the restored images are shown in the right column. Salt-and-pepper noise with a
noise density 0.4 are used for all test images in Figures 4.8. As we can observe from the
results in Figures 4.8, our algorithm for the model (2.1) recovers jump discontinuities
and smooth regions better compared to total variation based image restoration which
may have suffered from stair-case effect.

In Table 4.4, we show the size of images, SNR, number of iterations and com-
putational time for the test images in Figures 4.8. The number of iterations is the
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total number of outer iteration in Table 2.1. The computational time is measured
in seconds. From Tables 4.3 and 4.4, we can observe that the computational cost
depends on the size of image and the number of outer iteration. In our numerical
experiments, the condition (3.15) with εn = 10−3 is satisfied mostly less than 5 iter-
ations in an early stage of outer iteration k. As long as the outer iteration increases,
one or two iterations are enough to solve the equation (3.14). It explains that total
computational cost depends on how many outer iterations are needed.

In Figure 4.10, we show the evolution of variables nk, pk, and vk in order to have
a better understanding the change of the numerical energy (4.4) for the example in
Figure 4.9. We use the standard hue-saturation-value (HSV) color map to represent a
vector field. Since every vector field in this paper is defined on two dimensional space,
the value in the HSV color map is fixed to 1. For example, the white color in the HSV
color map presents the zero vector. The first row in Figure 4.10 is the plot of the values
for the fidelity and regularity terms, see (4.4). We also show the computed nk, pk,
and vk at k = 10, 20, 50, and 200. From the plots, we see that v first goes to a noisy
image from v0 = 0 and then become smoother as the iteration number increases. This
explains why the blue curve in Figure 4.10 first goes down and then goes up again to
a steady state. Since all variables are initialized to zero, the algorithm is “wondering”
in the beginning and then stabilized after 50 iterations. Along the outer iterations, we
observe that the variable pk recovers image gradient very well. These plots show the
quick convergence and the cost efficiency of our algorithm. It is amazing to see that
such a complicated energy can be minimized by such a simple iterative procedure.
Note that p takes (nearly) zero values on homogeneous regions and this may cause
problems for some other approaches. However, it is of no problem for the iterative
scheme given here.

4.3. Image zooming. Image zooming is one of basic operations in image pro-
cessing, which changes a given image into a higher or lower resolution image. In this
subsection, we only deal with image resolution enhancement by the factor r ∈ N.
More precisely, a given image ū0 whose size is [1,M1] × [1,M2] is interpolated onto
the domain Ω = [1, r(M1 − 1) + 1] × [1, r(M2 − 1) + 1]. For this purpose, we define
the set of points Γ = {(i, j) ∈ Ω | i ≡ 1 mod r, j ≡ 1 mod r} and use the image u0,
whose value is same as ū0 on Γ, for the energy functional given in (2.1):

u0(i, j) =

ū0

(
i− 1
r

+ 1,
j − 1
r

+ 1
)

if (i, j) ∈ Γ,

0 if (i, j) ∈ Ω \ Γ.

The image values on Ω \ Γ are interpolated via Euler’s elastica energy. More suitable
fidelity based on a down-sampling operator in [36] may give better quality. In the
energy functional (2.1), s = 1 is used for image zooming.

In Figure 4.11, we show the results by magnifying a synthetic image by a factor 8.
The size of input image in (a) is 64×64 and the enlarged image is 505×505. In (b) and
(c), box and bicubic filters are used respectively. (d) shows the result by minimizing
the Euler’s elastica energy using our proposed algorithm. The computational time is
272.672 seconds and the total number of outer iteration is 222.

From this test, the advantage of the proposed algorithm is clear. It is very fast.
The discontinuity in the recovered image by Euler’s elastica energy is very sharp.
Corners and shapes are preserved. There is no blurring. The zig-zag boundary from
the box filter and the blurring from the cubic filter are avoided. More tests of the
proposed method for image zooming will be reported elsewhere.
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5. Conclusion. We presented a fast and efficient method for the minimization
of energy functional related to Euler’s elastica. It is well-known that it is difficulty
to minimize the energy due to its non-convexity, nonlinearity (highly nonlinear) and
higher order with derivatives. It is based on augmented Lagrangian method with
some specially designed constraints and penalization techniques. Due to these special
feature, the computational cost is very low per iteration. The method is fast to
converge and simple to implement. As our numerical results indicate, our method
yields good results in terms of computational time. It is believable that this kind of
algorithm will have good application in a number of real industrial problem related
to image processing and computer vision.
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[12] F. Cao, Y. Gousseau, S. Masnou, and P. Pérez, Geometrically guided exemplar-based in-
painting, Submitted.

[13] V. Caselles, J.M. Morel, and S. Catalina, Axiomatic approach to image interpolation,
IEEE Trans. Image Process., 7 (1998), pp. 376–386.

[14] A. Chambolle, An algorithm for total variational minimization and applications, J. Math.
Imaging Vis., 20 (2004), pp. 89–97.

[15] T.F. Chan, G.H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-
based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977.

[16] T. Chan, J. Shen, and H. M. Zhou, Total variation wavelet inpainting, J. Math. Imaging
Vision, 25 (2006), pp. 107–125.

[17] T. F. Chan, S.-H. Kang, and J. Shen, Euler’s elastica and curvature based inpaintings, SIAM
J. Appl. Math., 63 (2002), pp. 564–594.

[18] T. F. Chan and J. Shen, Nontexture inpainting by curvature driven diffusion (CDD), J. Visul
Comm. Image Rep., 12 (2001), pp. 436–449.



26 X.-C. TAI AND J. HAHN AND J. CHUNG

[19] , Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math, 62 (2002),
pp. 1019–1043.

[20] T. F. Chan and J. Shen, Variational image inpainting, Comm. Pure Applied Math., 58 (2005),
pp. 579–619.
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Figure 4.5-(c2) Figure 4.6-(a2)

Relative residuals (4.1)

Relative errors in Lagrange multipliers (4.2)

Relative errors in uk (4.3)

Numerical energy (4.4)

Signal-to-noise ratio (4.6)

Fig. 4.7: The plots of (4.1), (4.2), (4.3), (4.4), and (4.6) for examples shown in Fig-
ures 4.5-(c2) (left) and Figure 4.6-(a2) (right). From these plots, we can see that the
algorithm is stable and has converged. It is important that the residuals Rki converge
to zero with similar rate for different i. It is also clear that the energy and SNR have
converged to a steady state.
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(a1) (a2)

(b1) (b2)

Fig. 4.8: Euler’s elastica based image denoising: Left column: noisy images. Right
column: denoised images. Salt-and-pepper noise with a noise density 0.4 is used for
all images. Parameters: (a2): a = 1, b = 20, η = 15, r2 = 2 · 102, r3 = 102, r4 = 102,
and εr = 9 · 10−3. (b2): a = 1, b = 20, η = 15, r2 = 50, r3 = 102, r4 = 102, and
εr = 8.4 · 10−3.
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(a1) (a2)

Fig. 4.9: Euler’s elastica based image denoising: Left column: noisy images. Right
column: denoised images. Salt-and-pepper noise with a noise density 0.4 is used.
Parameters: a = 1, b = 20, η = 15, r2 = 50, r3 = 102, r4 = 102, and εr = 4.7 · 10−3.
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(a) (b) (c) (d)

The variable n

The variable p

The variable v

Fig. 4.10: Evolution of the energy value and the computed n,p, v versus the iteration
number for Figure 4.9-(a2). The first row is the plot of the numerical energy value
in decimal scale. From (a) to (d), the number iterations are 10, 20, 50, and 200,
respectively. The vector field n and p are rendered by the standard HSV color map
with the unit value. These plots show the quick convergence and the cost efficiency
of our algorithm.
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(a) (b) (c) (d)

Fig. 4.11: (b), (c), and (d) are resized by the factor 8 from (a). The size of image (a)
is 64× 64 and the others are 505× 505. (b) and (c) are obtained by box and bicubic
filters, respectively. (d) is the result of Euler’s elastica energy. Parameters: a = 1,
b = 10, η = 102, r1 = 1, r2 = 10, r3 = 10, r4 = 50, and εr = 3 · 10−4.


