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Abstract

We consider an inverse source problem for the Helmholtz equation in domains with possibly
unknown obstacles, which are much larger than the wavelength. The inverse problem is to
determine the number and locations of point sources in the domain based on sparse measure-
ments of the wave field. Our proposed strategy relies on solving a local inverse scattering
problem to obtain the incoming directions of waves passing through an observation location.
We formulate the problem as an L1 constrained minimization problem and solve it using
the Bregman iterative procedure. The wave direction rays are then traced back and sources
are uniquely determined at the intersection of the rays from several observing locations. We
present examples in 2D, however all of the formulas and methods used have direct analogues
in 3D.

1 Introduction

We consider an application in which an autonomous observer, sent into an unknown en-
vironment, must discover the locations of signal sources in an efficient manner. The un-
known environment contains non-penetrable solid obstacles, Ω, that should be avoided
along the observer’s path. We assume that Ω is bounded and has piecewise smooth
boundaries and that the signal strength, u, satisfies the Helmholtz equation

∆u(x) + k2η(x)2u(x) =
N∑
n=1

δ(x− xn) for x ∈ R2 \ Ω, (1)

with suitable reflection boundary conditions on ∂Ω and radiation boundary conditions
as |x| → ∞. The coefficient η = η(x) is the index of refraction and λ and k = 2π/λ
are the wavelength and wavenumber respectively. The signal sources are modeled by
Dirac-δ distributions on the right hand side of (1). The observer must determine the
number, N , of sources and their locations, xn, based on sparse measurements of the
signal in the environment.

The task of source discovery is an inverse problem that uses the given wave field
values on some subset of the domain to recover the source locations. In order to

1



1 Introduction 2

determine the locations of the sources, some mathematical models about the source-
sensor relationship is presumed. A set of parameters that characterize the sources is
inferred from the models and these parameters need to be determined from the data
that is typically collected from dense arrays of sensors at fixed locations in a simple
domain. The data is usually given in the form of measurements of the wave field on
some subset of the domain. A standard way of solving this inverse problem for finding
the source function is to minimize the L2 norm of the difference between the collected
data and simulated data computed with a candidate source function. This minimization
is typically achieved through an iterative procedure that optimizes the parameters of
the candidate source function. To make the inversion more stable, this least square
approach may be regularized with additional terms. Thus, a numerical solution of the
forward problem, in our case equation (1), is a necessary step for solution methods
based on such an approach. When the wavelength λ is small compared to overall size
of the computational domain, the oscillatory behavior of the solution makes direct
numerical simulation of (1) computationally expensive: a substantial number of grid
points per wavelength is required to maintain constant accuracy. For sufficiently high
frequencies, it is unrealistic to compute the wave field directly. For example, visible
light has wavelengths of the order of nanometers. Thus, direct numerical simulations
over dimensions on the order of meters is nearly impossible. Audible sound frequencies
are in the 20Hz to 20kHz range, which corresponds to wavelengths of approximately
15m to 15mm. For problems such as underwater acoustics, even when high frequency
techniques become applicable at large distances, simulations of the wave field in a step
of an iterative method is unfeasible.

Inverse problems for wave phenomena typically involve some form of back-propagation
of the waves, or time reversal, from the sensors back into the domain which is called
imaging or migration in geophysics [31]. Different approximations of the waves have
been explored for the back-propagation, see e.g. the MUSIC algorithm [44] and Kir-
choff migration [31]. The goal of the time reversal problem [4, 20, 3, 19] is similar to
the source discovery problem considered in this paper, however, the underlying phys-
ical and mathematical structure is very different. In time reversal, one tries to locate
the source by reversing the wave field while estimating the effective Green’s function
without knowing details of the random fluctuation present in the medium. Common
assumptions are that the wavelength of the signal is much larger than the scale of the
random fluctuations, that there is scale separation of the medium and that statistical
properties of the fluctuations are known. Our approach assumes signals with wavelength
smaller than the scatterers and a smoothly varying medium.

A rigorous study of inverse scattering for the high frequency Helmholtz equation in
the framework of compressive sensing is performed by Fannjiang in [25, 26]. In this
setting, inhomogeneities of the medium are represented by a finite number of point
scatterers on a square lattice. The reconstruction of the scatterers from the scattering
amplitude succeeds only probabilistically due to intrinsic limitations of the problem
formulation in the framework of compressive sensing. The number of measurements is
proportional to the sparsity of the scatterers and a factor of log(m), where m is the
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size of the square lattice. In our proposed algorithm, the upper bound on the number
of measurements required to detect the sources in a planar environment with unknown
convex scatterers is 3N + 3O, where N and O are the number of scatterers and sources
respectively.

When the obstacles are unknown, the environment needs to be mapped out as the
observer moves. The previous work of [36, 34, 37] on reconstructing the obstacles in
unknown domains is convenient in this regard. A piecewise high-order approximation
of the scattering surfaces can be obtained on-the-fly by processing the visibility point
cloud data collected along the observer’s path. Additionally, the visibility information
is necessary to avoid collisions with the obstacles. In [6] and [35], the authors extend
the domain mapping algorithms of [36] and [34] for point source discovery in compli-
cated environments with obstacles using an approach based on reciprocity of the linear
partial differential operators as well as the maximum principle for the associated elliptic
problems. This approach fails in the case of the Helmholtz equation which does not
satisfy a maximum principle due to the oscillatory structure of the solution.

Source identification problems have been considered in many other settings as well.
In [38, 33], the authors propose to recover the exact locations of multiple sources in
a Poisson equation, given the initial guess for the locations and Dirichlet data on the
boundary of the domain. To accomplish this, they use the special form of the free
space Green’s function for Poisson’s equation. Other related topics can be found in
[30, 22, 23, 15, 39]. Convex optimization techniques are employed in [14] to identify
multiple sources in Poisson equation in simple domains without obstacles. In contrast
to the typical inverse problem settings, we consider complicated domains, the possibility
of placing the sensors freely in the domain, and the necessary coupling with visibility
information in the case of unknown environments.

In this paper, we consider the high frequency regime in which the wavelength λ is
much smaller than the size of the scatterers in the domain. In this regime, the signal
travels along straight lines in free space and reflects from scattering surfaces following
the Snell’s law (angle of incidence equals angle of reflection). We reduce the complex-
ity and cost of the numerical computations by representing the solution with a fixed
number of unknowns which are independent of the frequency locally near measurement
locations. The quantities that describe the wave field can be obtained via a geomet-
ric optics (GO) interpretation of the solution, which relies on asymptotic expansions
[32, 24, 5, 2]. One natural idea from these methods is to represent the solution of
(1) in terms of an explicit dependence on frequency and functions independent of fre-
quency. In contrast to direct methods, the accuracy of asymptotic methods improves
as frequency increases.

In this high frequency setting, we propose a source discovery algorithm for a domain
in which the scatterers are not known a priori but can be mapped via the visibility at the
locations where wave data is gathered. Furthermore, we do not assume the knowledge of
the total number of sources present in the domain. There are two key components in our
algorithm. The first is to identify all significant local wave directions passing through
the observation point and the second is to trace these rays back to the sources and form
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an image of the possible source locations using the fact that the sources must lie at
the intersection of rays from multiple observation points. The problem of identifying
the significant local wave directions was formulated by Benamou et al. in [2]. We use
their framework with one key difference. Since we are looking for a small number of
directions in a possibly noisy signal, we use an L1 constrained minimization instead
of the Tikhonov regularized L2 minimization proposed in [2] to solve the frequency-
independent sparse linear system. We employ a fast Bregman iterative solver [18,
46, 7] to yield an accurate solution, which is robust against the noise in the initially
sampled signal. This solution contains information about the number of waves crossing
at the observer’s location as well as their directions. It is worth pointing out that
the minimization problem is solved in a lower dimensional domain with a cost that is
independent of the wave number. The second key component involves a source imaging
procedure which is based on back-propagation of the detected incoming wave. The
visibility algorithm that we employ for unknown environments [36, 34] provides the
necessary information for determining the validity of the back-propagated rays and for
computing the ray reflections. One can also use these secondary rays to locate the
sources, however, our proposed algorithm does not use these reflected rays, as tracing
reflections off convex surface is inherently sensitive to errors in the ray directions and
surface geometry. Nonetheless, we point out to the reader that these rays can be used
to guide the selection of new measurement locations and this is in accordance with our
formulation of the source location problem.

Our strategy for source discovery has a natural limit due to the nature of the scat-
tering problem. When the number of connected scatterers between the measurement
locations and the sources is too big, the wave field at the measurement location may
be highly attenuated and may contain rays coming from every direction. Additionally,
when the size and the number of scattering solids in the domains scales in certain spe-
cial way with the wavelength, the Helmholtz formulation will no longer be adequate.
In these cases, one has to resort to a different formulation using effective equations
[29]. This is one of our current research directions. However, we shall demonstrate
that our high frequency wave based algorithm does provide good solutions for source
identification in a domain containing many convex scatters whose size is only at the
order of 10 wavelengths.

The rest of the paper is outlined as follows. In section 2, we describe how to
estimate wave directions at an observation location. In subsection 2.1, we present
the mathematical formulation of the inverse problem defined in [2]. We detail the
numerical solution of the inverse problem and introduce the results based on constrained
L1 minimization problem in subsection 2.2. Our proposed strategy has two major
components: imaging the sources based on observations from a set of fixed locations
and adaptively choosing the observation locations, so that the sources can be identified
in finitely many observations. Section 3 contains the description of the functional used
to image the sources in the domain. The adaptive algorithm for choosing the observing
locations along with examples is described in section 4.
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2 Determining Wave Directions at an Observation Location

As mentioned in the introduction, a major component of our algorithm is estimating
the wave directions at an observation location. To accomplish this, we use a modified
version of the algorithm presented in [2]. We begin by describing in detail the formula-
tion of [2] and our L1 modification of the minimization. We also present comparisons
between our numerical solution method and the Tikhonov regularized L2 formulation
presented in [2].

2.1 Mathematical Formulation

The theory of geometric optics allows for the approximation of a high frequency wave
field by a phase and amplitude computed on a special set of curves through space. The
curves, phase and amplitudes are independent of the frequency and hence provide a
frequency independent method for numerical simulations. In a medium with constant
wave speed, the curves (or rays) are straight lines and the amplitudes can be determined
by the geometric spreading of the rays.

The asymptotic representation of the solution of (1) is usually based upon superpo-
sitions of the geometric optics ansatz [1, 24]

u(x) '
M∑
n=1

An(x)eikφn(x) . (2)

Each phase φn(x) and amplitude An(x) are independent of frequency (away from caus-
tics) and they are real valued solutions of the Eikonal and transport equations:

|∇φn| = η(x) (3)

2∇φn · ∇An(x) + An4φn = 0 . (4)

The rays are the projection of the bicharacteristics of the Eikonal equation onto x space.
If the amplitudes An and phases φn are smooth in a neighborhood of an observation

point y, a first order linear approximation around y along with (2) gives a local plane
wave decomposition

u(x) '
M∑
n=1

Bn(y)eik(x−y)·∇φn(y), (5)

where Bn(y) := An(y)eikφn(y) is the “complex amplitude”.
In [2], the authors pose the following inverse problem:

Given an analytical or numerical solution u(x) in a neighborhood of a fixed
observation point y, determine the number M of waves crossing at y and
compute the GO quantities (Bn,∇φn) for n = 1, . . .M .
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By solving this problem, we are able to approximate the solution by smooth functions
An(x) and φn(x), which can be represented by a fixed number of unknowns, independent
of the frequency. Note that for large k, the function Bn(y) is highly oscillatory, and it
may be difficult to recover φn(y) from a numerical approximation. Its modulus, on the
other hand, is smooth and equal to |An(y)|.

The numerical algorithm proposed in [2] samples the wave field locally along the
circumference of a small circle centered at the observation point y. By analyzing this
data, information about the number of waves crossing at y and their corresponding com-
plex amplitudes can be extracted. Below we describe the numerical formulation of the
problem as well the filtering procedure based on the Jacobi-Anger formula, introduced
in [2].

We assume the solution, u, of the Helmholtz equation (1) can be sampled on a circle
Cr(y) of radius r := α/kη(y) around the observation point y:

Uα(s) := u(Cr(y)). (6)

Here, α is a given positive number and s parameterizes the circle

Cr(y) = y + r(cos θ(s), sin θ(s)) (7)

Let dn(y) = (cos θn, sin θn) denote the direction of propagation of the nth wave,

∇φn(y) = η(y)dn(y) . (8)

Along the circle Cr(y), the restriction of the plane wave superposition (5) has the form

Uα(s) '
M∑
n=1

Bn(y)eiα(cos θ(s),sin θ(s))·dn(y). (9)

The goal to recover the ray directions from the knowledge of Uα(s). The idea of [2] is
to remove the effect of the exponential factor by filtering and to calculate a function
βα(s) that has distinct peaks along the wave vectors and approaches Bn in the limit as
α approaches infinity. To accomplish this, we use the 2D Jacobi-Anger expansion [17]:

eiα(cos θ(s),sin θ(s))·dn(y) = eiα cos(θn−θ(s)) =
∞∑

l=−∞

ilJl(α)e−il(θn−θ(s)) , (10)

where Jl(α) is the Bessel function of order l. Inserting (10) into (9), we get the expan-
sion:

Uα '
∞∑

l=−∞

ilJl(α)

(
M∑
n=1

Bne
il(θ(s)−θn)

)
. (11)
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Note that when α is held fixed, Jl(α) goes to zero more that exponentially fast as
|l| → ∞ [17]. Therefore, the series can be truncated at some threshold |l| ≤ L(α) [16].
A suitable choice of L(α) in our computations is provided in [2, 16]:

L(α) = α + 8 log(α) (12)

We now introduce the space of square summable sequences:

l2 =

{
γl =

1

2π

∫
S1

α(s)e−ilθ(s)ds,−∞ < l <∞,
∞∑

l=−∞

|γl|2 <∞

}
, (13)

and let the Fourier transform on the unit circle F : L2(S1) 7→ l2 be given by(
FA(s)

)
l
:=

1

2π

∫
S1

A(s)e−ilθ(s)dσ(s) (14)

with inverse (
F−1γ

)
(s) =

1

2π

∑
l

γle
ilθ(s) . (15)

Let Dα : l2 7→ l2 be the division and restriction operator(
Dαγ

)
l
:=

{ 2π
2L(α)+1

1
ilJl(α)

γl , |l| ≤ L(α) ,

0 , otherwise ,
(16)

assuming Jl(α) 6= 0 for |l| ≤ L(α). We now define the function

βα := F−1DαFUα . (17)

As a result of the above spectral inversion procedure, the function βα, computed from
the local values around the observation point, will have sharp peaks in the directions of
propagation of the waves passing through y when α is large enough [2]. In other words,
for a fixed s we have

lim
α→∞

βα(s) =

{
Bn, s = dn,
0, otherwise.

(18)

Thus, the larger the parameter α, and therefore the size of the observation circle,
the better the accuracy of the result. On the other hand, the size of the neighborhood
must not exceed the domain of validity of the local plane wave approximation (5). In
the following section we will discuss the numerical approximation of βα.
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2.2 Numerical Solution

The key to finding the unknown number of rays, their complex amplitudes and di-
rections is the function βα defined in (17). Therefore, we first compute a numerical
approximation of βα on a uniform discretization of the unit circle.

We begin by introducing a uniform grid {θ̃m} with M ≥ 2L(α) + 1 points on the
unit circle,

θ̃m = m∆θ , ∆θ =
2π

M
, m = 0 , . . . ,M − 1 .

Let
{
Ũm

}
be the grid function that samples the given function Uα(s) on the grid along

the observation circle,{
Ũm

}
= Uα

(
d̃m

)
, d̃m =

(
cos θ̃m, sin θ̃m

)
.

Then, the discretized version of (17), βα

(
θ̃m

)
' bm, is given by

{bm} = 2π FFT−1


(

FFT
{
Ũm

})
l

MilJl(α)

 , (19)

where we have taken precisely
M = 2L(α) + 1 , (20)

since FFT maps N dimensional vectors to N dimensional vectors.
We remark that the same discretization can applied to the original plane wave

representation (9) to obtain the linear system

Ũn =
M∑
m=1

b̃me
iαd̃n·d̃m , n = 0, . . . ,M − 1 . (21)

The resulting circulant matrix could be solved for {b̃m} directly at a cost comparable
to solving (19), O(M logM) [28]. However, as M grows, the condition number of
the matrix deteriorates rapidly and the problem becomes very ill-conditioned when
M ≥ L(α) [2]. The FFT-based Jacobi-Anger inversion proposed in [2] is, in fact, a
stabilized approximation (b̃m ∼ bm) of the standard fast way to solve this circulant
matrix problem.

Let us rewrite (19) as a linear system with b = {bm} as the unknown, without using
the FFT:

Gb = Û , G = {gl,m} , gl,m = MilJl(α)e−ilθ̃m , Û =
{
Ûl

}
, (22)

l = −L(α), . . . , L(α), m = 0, . . . ,M − 1 .



2 Determining Wave Directions at an Observation Location 9

The matrix G is (2L(α) + 1) ×M and, since in this formulation we are not using the
FFT, the number of samples along the unit circle is not restricted by the constraint
(20) on M . Thus, in general, the system (22) may be overdetermined. However, in our
computations, we avoid the extra parameters by considering the square version of (22)
under the constraint (20). It is clear that zeros of the Bessel function Jl(α) may be a
problem in the numerical solution of this system. Even though some of the small values
of the Bessel function are eliminated by truncating the series when |l| → ∞, the Bessel
function as a function of α may have zeros, and there is no guarantee that α is not close
to one of them. The rows at which Jl(α) = 0 make the effective row space smaller. This
can be resolved by introducing suitable regularization. The numerical algorithm pro-
posed in [2] consists of two steps involving Tikhonov regularization procedure followed
by simple filtering and a non-linear optimization procedure. The Tikhonov regularized
L2 system is

(G∗G+ εI) bε = G∗Û , (23)

where I is the identity matrix and ε is the regularizaiton parameter. The exact Tikhonov
regularization would consist of choosing ε so that the relative error between the actual
and regularized problem is smaller than a prescribed precision. The inversion formula
(19) becomes

{bεm} = 2πFFT−1

{
ÛlMJl(α)

il[M2Jl(α)2 + 4επ2]

}
(24)

and remains bounded even when Jl(α) is zero or close to zero. In the post-processing
step, the data obtained from the above spectral inversion is used as initial data in
the fitting of the plane wave expansion (5) to the values sampled along the observation
circle. This is done by non-linear minimization of the residual. As a result, the accuracy
of the rays’ complex amplitudes and directions can be significantly improved.

The above approach of [2] does not take into account the sparsity of the solution
nor does is seem to be robust to noise in the signal. Thus, we propose to modify this
approach using a convex optimization technique, namely, constrained L1 minimization.
Our modified approach exploits the sparse nature of the solution, is computationally
efficient, and is robust to signal noise.

2.2.1 Fast L1 Solution Methods

The Tikhonov regularization of the system described in [2] typically returns solutions
with all non-zero entries. Instead, we are interested in a solution with the least number
of non-zeros which would correspond to the directions of the rays. Based on the linear
system (22) we formulate an L1 constrained minimization problem, which resembles
the formulation of compressive sensing (CS) [21, 9, 10]. The theory of compressive
sensing determines how well can a sparse signal be reconstructed from measurements in
a different basis. The key results reduce sparsity to an equivalent convex minimization,
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specifically, L1 minimization, which is known to be of great importance in problems of
this type.

A CS problem may be described as follows. Suppose we observe f = Au, where u ∈
Rn is the sparse function we wish to reconstruct, f ∈ Rm are available measurements,
and A is a knownm×nmatrix. In typical compressive sensing settings, we are interested
in the underdetermined case with fewer equations than unknowns, i.e. m < n, and wish
to reconstruct u with good accuracy.

The most straightforward way to solve the CS problem is to consider the following
minimization problem

min
u∈Rn
{|u|0 : Au = f} (25)

which can be solved approximately by matching pursuit [40, 43, 13]. However, the
matching pursuit method is not computationally efficient for typical applications and
it does not guarantee the finding of a global minimizer of (25) in general.

It has been shown in [9, 10, 21] that the solution to an equivalent convex optimization
problem, specifically L1 constrained minimization

min
u∈Rn
{|u|1 : Au = f} (26)

recovers u exactly, provided the linear measurements satisfy the Restricted Isometry
Property (RIP) hypotheses of [12, 11, 8].

There has been a recent burst of research in compressive sensing, which involves
solving (26). This was led by Candès et al. [11, 12, 9], Donoho [21], and others [46].
Conventional linear programming techniques are not tailored for the large scale dense
matrices and sparse solutions that arise in (26). A robust and efficient way to solving
L1 related regularized problems was developed by Osher et al. [18, 27, 46, 7, 42]. These
kinds of algorithms are generally referred to as Bregman iterative methods. Bregman
iterative techniques consider minimizing a problem of the form

min
u∈H

J(u) +H(u, f), (27)

where J and H are two convex functions defined on a Hilbert space H. The Bregman
iteration algorithm proposed in [46] is written in two lines:

uk+1 = arg min
u∈Rn

{
J(u)− J(uk)−

〈
u− uk, fk

〉
+H(u, f)

}
(28)

fk+1 = fk −∇uH(uk+1, f),

with u0 = 0 and f 0 = 0. This algorithm generates a sequence, {uk}, such that H(uk, f)
decreases monotonically. Furthermore, it has been proven in [46] that if J(u) ∈ C2(Ω)
and is strictly convex in Ω, then H(uk, f) decays exponentially whenever uk ∈ Ω for
all k.

The compressive sensing type of problems, such as (26) corresponds to the special
case, where J(u) = |u|1 and H(u, f) = 1

2
||Au − f ||22. The minimizer of J(u) is sought
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under the constraint H(u, f) = 0. In this case, the sequence uk, obtained through
Bregman iterations (28), converges in finitely many steps to the solution of (26). Fur-
thermore, for such quadratic fitting term type problems, the Bregman iteration (28),
after some manipulation, can be written as:

uk+1 = arg min
u∈Rn

{
J(u) +

1

2
||Auk − fk||2

}
(29)

fk+1 = fk + f − Auk+1 ,

with f 0 = 0 and u0 = 0, [46, 41]. Thus, the Bregman iteration scheme solves the con-
strained minimization problem via solutions of a sequence of unconstrained problems.

To further improve on the computational simplicity, the linearized Bregman algo-
rithm was devised in [18]. By linearizing the quadratic fitting term around the previous
iterate uk and seeking the minimizer near it, the two-line linearized Bregman algorithm
can be written component-wise as

uk = shrink(vk−1, µ) := signum(vk−1) max
{
|vk−1| − µ, 0

}
, (30)

vk = vk−1 = δA>(Auk − f),

for µ, δ > 0. This algorithm takes advantage of the simple exact solution formula for
the scalar problem:

arg min

(
µ|u|+ 1

2
|f − u|2

)
= shrink(f, µ) . (31)

The linearized Bregman algorithm is proven to solve the original L1 constrained mini-
mization problem for sufficiently large µ [45].

Since Bregman iterative algorithms demonstrate great speed, accuracy, and po-
tential for extensions [42], we use a Bregman iterative method for detecting the ray
directions. We begin by transforming the complex-valued matrix G ∈ CM×M and the
measurements vector Û ∈ CM from (22) to real-valued matrix A and vector f by
separating real and imaginary parts:

A ∈ R2M×2M , f ∈ R2M : A =

(
<G =G
−=G <G

)
, f =

(
<Û
=Û

)
. (32)

However, the solution to our problem can be either non-unique with only few measure-
ments or non-existent when the measurements are not consistent due to noise or other
uncertainties. Thus, we replace the exact equality in (26) by an inequality with an L2

norm:

min
u∈Rn
{|u|1 : ||Au− f || < ε} , (33)

where ε > 0 is a small number. We now apply the linearized Bregman iterations (30)
to solve the L1 constrained minimization problem (33) to obtain the solution u ∈ R2M ,
which can then be easily transformed back into complex form bm ∈ CM . The absolute
value of bm has peaks in the directions of the rays and corresponds to the complex
amplitude Bn in (5).
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2.3 Summary of Algorithm for Determining Wave Directions

The steps necessary to determine the wave directions at each observation location can
be summarized as follows:

Algorithm 1 Determining wave directions at an observation point.

1: Discretize the circle Cr(y) (7) centered at the observation location y. Use a uniform
grid {θ̃m} with the number of points defined by (20) and (12).

2: Sample the solution
{
Ũm

}
on the grid.

3: Define
{
Ûl

}
= FFT

{
Ũm

}
.

4: Setup the matrix G (22).

5: Solve the L1 constrained optimization problem (33) using linearized Bregman (30).
Here, the matrix A and the measurement vector f are defined in (32).

6: Convert the real-valued solution u to complex-valued approximation bm of βα de-
fined in (17). The absolute value of bm is zero (or nearly zero in the presence of
noise) everywhere except along the directions of incoming rays.

2.4 Results

The following simple model problem in free space is used in the experiments described
in this section:

∆uk + k2uk =
N∑
n=1

4i
√
kδxn ,

where N = 5. The Dirac-δ masses are centered at the source locations {xn}Nn=1 =
{(±0.8,−0.6), (±0.4,−0.6), (0,−0.6)} and normalized so that the exact solution can be
written as the sum of Hankel functions with decaying amplitudes centered at xn:

uk(x) =
N∑
n=1

√
kH1

0 (k|x− xn|) .

We would like to recover the ray directions with nonzero amplitudes in the local ap-
proximation of the wave field at the observation point y = (0, 0.2). The exact solution,
observation point along with the observation circle, and the point sources are shown in
Fig. 1 (a). The performance in the presence of noise of the constrained L1 minimization
is compared to the Tikhonov regularized L2 minimization in Figs. 1 (b-c). In this ex-
periment, the wave number is k = 103. The radius of the observation circle is r = α/k,
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where α is a variable parameter set to 3π. The number of measurements along the
observation circle is M = 55.

Figure 1 (b) depicts the solution of the Tikhonov regularized L2 system (23) using
the inversion formula (24). Note, however, that we do not apply the post-processing
step discussed in [2]. The vertical dashed lines indicate the exact angular positions of
the point sources with respect to the observer. The exact solution would thus have
peaks along the dashed lines and be zero everywhere else. The L2 solution is almost
never zero and has many oscillations away from source locations. As the Signal-to-Noise
Ratio (SNR) decreases, the solution becomes more oscillatory, so that the true peaks
are lost in the spurious oscillations.

In contrast, the solution of the L1 constrained minimization problem (33), shown in
Fig. 1 (c), is zero almost everywhere and does not deteriorate much in the presence of
noise. The spurious oscillations that appear as SNR decreases have small amplitudes
and can be easily filtered out by simple thresholding.

In Fig. 2, the maximum error in the ray directions θn is plotted as a function of
α (proportional to the radius of the observation circle). The number of measurements
along the circle is calculated using (20) and (12). The error in the ray directions
is bounded below by the grid resolution. When α is very small, the radius of the
observation circle is small, and the mesh is rather coarse, consisting of just a few
points. The error decreases as α becomes larger. However, when α is too big, the error
increases again possibly due to the violation of the local plane wave approximation (5).

In the absence of noise, the accuracy of the solution of the L1 problem is compa-
rable to the accuracy of the results obtained solving Tikhonov regularization problem.
Further convergence analysis is provided in [2].

3 Source Discovery via Back-propagating Rays

In this section, we describe how to determine the source locations from a fixed set of
observation points without complete knowledge of the scattering objects in the domain.
At each observation location O, we assume that a set of incoming wave directions are
detected by the algorithm described in the previous section. Associated with each of
these directions is a ray coming either directly from a source or indirectly via reflections.
Thus, all the sources must lay at intersections of these rays, when no error is present
in the detection of the incoming wave directions or in the reflection angles. A natural
idea is to propagate rays back into the part of the domain that has been explored by
the navigation algorithm and look for the sources among the intersections of these rays.
Instead of looking for these intersections one by one, which has many drawbacks such
as instability, we propose to image the sources by forming a density that reflects the
estimated positions of the sources. After a renormalization, the image produced by our
algorithm can be thought of as a probability density.

At each observation location O, we propagate rays back towards the detected wave
directions, which we will refer to as the primary rays. The visibility function at O
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(c) Solution of the L1 constrained minimization problem
(33) using linearized Bregman iterations.

Fig. 1: Solution of the Helmholtz equation with five sources at different noise levels.
Vertical dashed lines in subfigures (b) and (c) indicate the exact angular posi-
tions of the sources with respect to the observer’s location.
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Fig. 2: The error in the ray directions θn as a function of α. Fixed wave number k = 103.
The radius of the observation circle is r = α/k and the number of measurements
along the circle is given by (20).

provides all of the necessary information to find the reflections of any primary rays that
reach an obstacle, since the obstacle geometry is resolved by the visibility function and
we can find the normal to the obstacle boundary locally, which determines the angle of
reflection through Snell’s law. However, after a ray reflects, its secondary part can enter
regions of the domain which have not been explored yet, thus, there may not be the
necessary information to find how they reflect from obstacles. Furthermore, the errors
in ray direction and in the normal vector to the obstacle boundaries tend to significantly
degrade the information contained in the secondary rays. Thus, we have found that
using only the primary rays is more efficient and provides a better image compared
to using also the secondary reflected parts of the rays. In addition, the solution for
the Helmholtz equation decays rapidly away from the source supporting the idea that
most of the wave direction information at each observation location is contained in the
primary rays. For the remainder of this section, we will refer to the primary rays as
simply the rays.

We remark that given a fixed set of observation locations and the wave directions
at each of them, there are many different ways of forming an imagining functional.
In designing such a functional, we have found that certain properties are necessary to
produce a good image. We will present our arguments about why these properties are
important and then summarize them in a list.

3.1 Imaging Functional

First, we begin by looking at the simple case of only one observation location. At such a
location O, we back-propagate each detected incoming wave direction. Each ray begins
at O and terminates by either reaching an obstacle or by exiting the domain which
can be determined by the visibility information at O. Thus at the observation location
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O, we obtain a set of back-propagated line segments {Rm(O) : m = 1, 2, · · · ,MO}. A
source may reside anywhere along these line segments. Of course, due to reflections and
other errors, this is not the case necessarily. However, given no other information, our
best analysis of the situation is that a source is most likely to be somewhere on a ray.
Thus, we form a distribution that decays exponentially away from each line segment.
Furthermore, due to the angular discretization of the directions, we decrease the decay
rate based on the distance away from the observation location:

IS(x;O) = max
m∈[1,M ]

[
exp

(
− ν1

|x− x∗m|2
d(x,Rm(O))2

)]
,

where O is the observation location, ν1 is a positive constant, Rm is the line segment
associated with the m-th detected direction, d(x,Rm) is the distance from x to Rm, and
x∗m is the closest point to x on Rm. Note that I(x;O) is independent of the ordering of
the detected wave directions.

To combine information from several sources, there are two immediate ways of
incorporating the additional information by either adding or multiplying the functional
IS evaluated at different observation locations:

IΣ(x;O1, . . . , ON) =
∑N

n=1 I
S(x;On) , (34)

IΠ(x;O1, . . . , ON) =
∏N

n=1 I
S(x;On) . (35)

Note again that these two imaging functionals are invariant with respect to the ordering
of the observations and detected directions. Such invariance is obviously desirable since
the observation and wave direction carry qualitatively similar information. Further-
more, each of these imaging functionals correlates information from different observa-
tions, either additively or multiplicative, which is also desirable. However, they both
have shortcomings which we will highlight with an example. Suppose that there are two
sources and five observation locations as shown in figure 3. In the case of IΣ, there are
many places where at least two rays cross. It is difficult to discern the true sources from
artifacts in the image produced by the IΣ functional. Additionally, as more observation
locations are added, the image does not become sharper. On the other hand, IΠ pro-
duces a sharp image and adding observation locations further sharpens the image. Now,
consider the case where one of the observation locations misses a direction, perhaps due
to noise or wave cancellation. The IΣ image function is robust in such cases, since there
will still be many other rays that pass through each source location. Unfortunately, the
image produced by IΠ will not illuminate the location of the missed source, even if new
observation locations are added. This example is illustrated in figure 3.

To improve the shortcomings of these two approaches, we consider an imaging func-
tional which includes components from both IΣ and IΠ:

IΣΠ
(3) (x;O1, . . . , ON) =

∑
1≤i<j<k≤N

∏
q={i,j,k}

IS(x;Oq) . (36)
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Fig. 3: Comparisons of three different imaging functionals. The black lines are back-
propagated rays, the observer locations are shown as white dots with a black
center and the source locations are indicated by a white cross. The top row
of figures shows the ability of IΠ and JΣΠ

(3) to localize a source when all wave
directions are identified at each observation location. The second row of figures
shows the effect of missing a direction in the detection step on each of the
imaging functionals and the robustness of JΣΠ

(3) in such cases.

That is, we take all combinations of the information from sets of three observation
locations, correlate them using IΠ, and sum over all combinations to form the image
IΣΠ

(3) . Similarly, we could also form image functionals IΣΠ
(n) , taking all combinations of

the information from sets of n observation locations, correlating them with IΠ and
summing. We specifically use IΣΠ

(3) for 2D, since almost all lines in the plane intersect

and this creates many artifacts in the image. For 3D, we expect that IΣΠ
(2) will provide

a good image functional.
Finally, we remark that since the solution for the Helmholtz equation decays away

from the source and waves travel in straight lines when the index of refraction is con-
stant, we expect the signal from sources behind obstacles or from sources that are far
from the observation locations to have very small contribution to the measured data.
Thus, in correlating the rays from different observation locations, we will only consider
the regions of the domain that are in the intersection of the visibility regions of the
considered observation location. Furthermore, we expect that if a source is closer to
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the observer the likelihood of missing the direction to the source is smaller than the
likelihood of missing the direction to a more distant source. In accordance with this,
when forming the image at a point x, we weight the closer observation locations more
heavily. Observation locations immediately next to an image points are also wighted
less heavily since the plane wave approximation breaks down for sources too close to the
observation. We also note that since the imaging functionals above use a sum, we have
to carefully rescale the results so that if there are many observations in a particular
area of the domain it does not get overly emphasized.

As noted earlier there are many image functionals that satisfy these heuristic rules.
In particular, we use the following image functional:

JΣΠ
(3) (x;O1, . . . , ON) =

∑
1≤i<j<k≤N

∏
q={i,j,k}

H(φ(x;Oq))ρ(|x−Oq|)
1
3 IS(x;Oq)

Z0

1 +
∑

1≤i<j<k≤N

∏
q={i,j,k}

H(φ(x;Oq))ρ(|x−Oq|)
1
3

 , (37)

where H is the Heaviside function, φ is the visibility function (positive in the visible
regions, negative in the invisible regions, and zero along the shadow boundary), Z0 is a
normalization constant so that JΣΠ

(3) ∈ [0, 1] and ρ(s) = se−ν2s
2

with ν2 the localization
parameter. In all of the examples, we take ν2 = 1. The only other parameter is ν1,
which appears in the definition of IS(x;O). We take ν1 = 2M , so that is it propor-
tional to the angular discretization which has M points. Again, we design this imaging
functional specifically for 2D, by correlating rays from three observation points at a
time. However, this imaging functional can be easily modified to correlate the rays
form n observation locations at a time by simply taking the sum to be over all possible
groups of n observation locations indices, changing the product to include all indices
and replacing the 1/3 exponent to be 1/n. For example, in 3D, as we expect that
correlations of rays from two observation locations will provide good results, we would
use the version with n = 2.

3.2 Summary of Properties of the Imaging Functional

We summarize the important properties of the imaging functional:

1. Scaling:

• The imaging functional takes on values in [0, 1].

• The imaging functional is scaled to account for density of observation loca-
tions.

2. Invariance:

• The image is invariant under a reordering of detected directions.
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• The image is invariant under reordering of observation locations.

3. Correlation: Rays are correlated as sources are likely to be located at intersections
of rays.

4. Fault tolerance: The image is not be qualitatively changed if a wave direction is
missed at an observation location.

5. Localization:

• Rays are only correlated in the intersection of the visibility regions of their
associated observation locations.

• Information from closer observation locations is weighted more heavily.

4 Adaptive Algorithm

In the above section, we have described how to image the sources detected from several
observation locations. Below we are going to present an algorithm for choosing the
observing locations so that all the sources are detected with a finite number of obser-
vations. The algorithm proposed here is derived from the visibility-based environment
exploration algorithm introduced in [36, 34]. The algorithm was originally proposed to
explore bounded planar environments with unknown obstacles using the range data to
the occluding surfaces. Subsequently, it has been applied to discovering point sources
(modeled by elliptic PDEs) in unknown environments [6] and navigation on uneven
terrains. Here is the summary of the basic algorithm:
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Algorithm 2 Environment exploration from [36].

1: At a current observing location, make a 360◦ sweep to collect the range data from
the surrounding surfaces in a plane fixed at the range sensor’s height.

2: From the range data, reconstruct a piecewise smooth representation of the visible
surfaces of occluding objects and the visibility function. The visibility is represented
by a piecewise-smooth distance function to occluding surfaces/domain boundary in
any direction from the observer, see [36] or [34] for more details.

3: Determine the location of horizons, or edges, on the visibility map.

4: Choose the nearest horizon to the observer. Store the rest in a list. Approach the
horizon and overshoot by the amount depending on the curvature of the obstacle’s
surface near the horizon. Note, the curvature of the occluding surfaces can be
extracted from the piecewise-high-order visibility function. Mark all the visible
horizons cleared.

5: If all the currently visible horizons have already been seen, revisit the unexplored
horizons from the list. Repeat from step 1.

6: The algorithm terminates once there are no more unexplored horizons left.

It was shown in [36] that the above algorithm always terminates in a finite number
of observations and that the entire bounded domain is explored, i.e. all the obstacles
are mapped, at the termination. As a result, a complete map of the environment is
reconstructed. In the case where all the obstacles are convex, the maximum number of
steps required to explore the entire domain is three times the number of obstacles. This
is easy to see if we bound each convex obstacle by a circle. Then, the three vertices
of the equilateral triangle surrounding the circle (which are naturally chosen by the
above algorithm as observation points) are sufficient to “see” the entire boundary of
the obstacle. In practice, however, the number of observations is much smaller than
this upper bound [36].

4.1 Discovery of All Sources in the Domain

We adapt Algorithm 2 for a simultaneous mapping of the environment and discovery
of the sources. Based on the imaging functional JΣΠ

(3) (37), once a source is detected by

at least three local observers (that is, at least three rays intersect at a source point),
it appears in the resulting image. Therefore, if every point in the domain outside the
obstacles is observed from at least three locations within a certain predefined range, we
are guaranteed to detect all the sources in the domain. The proximity of the observers
to the source is prescribed by the localization parameter in the imaging functional.
This restriction can be easily embedded into the exploration Algorithm 2 by specifying
a finite range for the sensor.
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Our proposed algorithm simultaneously explores the unknown environment and con-
firms the candidate sources, which are detected along the way. The observer proceeds
as in the exploration Algorithm 2, while a small neighborhood around each candidate
source is treated as an obstacle, which we will call the possible source regions. As a
result, some of the candidate sources regions may shift their locations or disappear.
Our proposed strategy is described in Algorithm 3 below.

Algorithm 3 Discovery of all sources in the domain.

1: For the first three observations proceed as in the basic exploration Algorithm 2.

2: Repeat
3: After the third observation, compute the imaging functional JΣΠ

(3) (37) and find

its local extrema (maxima), which correspond to the candidate sources.

4: Represent each candidate source by a circular region centered at the local maxi-
mum. The radius of the circle is r = R/2, where R = arg max ρ(s), ρ(s) is defined
below the imaging functional JΣΠ

(3) (37).

5: Continue exploring source regions as if they were obstacles according to Algo-
rithm 2. As a result, each candidate source will be surrounded by at least three
observations at the vertices of an equilateral triangle surrounding the source.

6: If all the currently visible horizons have already been seen, then
7: Revisit the unexplored horizons on the obstacles from the list defined in Algo-

rithm 2.
8: End if

9: Until no more unexplored horizons left.

10: Optional: Filter out those candidate sources, where the number of intersecting rays
is less than three.

Let us clarify some of the steps of the proposed algorithm. Since the imaging
functional JΣΠ

(3) (37) is defined for three or more observations, the source detection begins
only after the initial three steps of the environment exploration. Once the imaging
functional is computed, we smooth it by convolving with a Gaussian kernel, then the
local maxima can be easily identified by thresholding and looking for the points in the
image whose values are greater than those of nearest and next-to-nearest neighbors in
the image grid. Local extrema which are too close to the obstacles’ boundaries are
excluded.

In step 4, we construct a circular artificial obstacle around each detected maximum.
To explore the resulting source region, the algorithm leads us to place the observer at
the vertices of an equilateral triangle surrounding the circle. If the candidate source is
the true source, there will be three rays, each coming from a vertex, intersecting at the
source location in the center of the circle. As we remarked in the previous section, the
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likelihood of detecting a source is greater if the source is closer to the observer. The
localization function, ρ, in the imaging functional JΣΠ

(3) (37) is introduced to emphasize
the nearby regions. The radius of the artificial circular obstacle surrounding a candidate
source is chosen so that the resulting observing locations are the optimal distance away
from the source with respect to the peak of the imaging functional. Note that during
the exploration some of the candidate sources may shift their positions or disappear.

Unlike the original exploration algorithm, where the next position is chosen by ap-
proaching the nearest horizon, our modified algorithm prioritizes exploration of the can-
didate sources, before continuing with the rest of the environment. Of course, visibility
information is accumulated with each step and is used both for obstacle avoidance and
the imaging functional updates. Once there are no more unexplored candidate sources,
the observer continues mapping the environment and may encounter new sources along
the way, for example, if the sources were previously shielded by the obstacles.

The resulting image is used to identify the sources at its local maxima. As a final
optional step, we check the number of rays intersecting at each identified source and
filter out those sources, where the number of rays is less than three. We further note
that our proposed strategy does not miss any of the sources in the domain. However,
in cluttered environments a few false sources may be identified.

In an environment with convex disjoint obstacles, the upper bound on the number
of observations required to detect all the sources is three times the sum of the number
of the obstacles and the number of sources. Experimentally, the number of required
observations is much smaller. Note, the complexity of the proposed algorithm, unlike
most of the methods in the literature, is independent of the domain discretization
and neither the sources nor the observation locations need to be bound to any grid.
The algorithm adaptively chooses the next observation location, based on previous
observations, and terminates once all the sources have been identified.

4.2 Results

The numerical simulations below are performed at a frequency corresponding to 440 Hz,
a reference pitch to which a group of musical instruments are typically tuned for a per-
formance. The sample domain has physical dimensions of 130× 130 m2. A few circular
scatterers are added to the domain. We assume that every obstacle is at least ten wave-
lengths in diameter. Even though the piecewise-smooth visibility representation allows
for accurate reconstruction of surface geometry and reflecting directions, the reflected
secondary and higher order rays are excluded from our source reconstruction procedure
due to additional errors introduced during the reconstruction. Sources can be placed
anywhere in the environment outside the obstacles.

Figure 4 illustrates the setup for our first example. There are seven obstacles (blue
circles) and five sources (back crosses). The goal is to detect all the sources while
avoiding collisions with the obstacles. The exploration begins at the left bottom corner
of the domain. From Fig. 4(a), one can see a single ray from the initial observer’s
position passing between the two sources, instead of two rays going through each source.
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This is the result of wave cancellations due to proximity of the sources, which is inherent
in the solution of the Helmholtz equation. Another problem arises in Fig. 4(b), where
the sources appear to be collinear with respect to the second observation location. As
a result, a single ray is cast in the direction of both sources. Also note that both
rays terminate on the scatterers, from which we can only conclude that the sources are
either somewhere along the depicted primary rays or along the secondary reflections,
which we are not considering. Furthermore, one of the sources on the left should be
detectable from this location, however, its ray direction is not detected. During the
third observation, depicted in Fig. 4(c), five rays are detected. While two of the rays
seem to pass near or through the sources, the rest are the refections from the numerous
surrounding scatterers.

The examples in Fig. 4 illustrate some of the challenges present in detecting the
incoming wave directions in cluttered domains. Our proposed method addresses these
challenges by using the imaging functional JΣΠ

(3) (37). While the first three steps of the
exploration are chosen by the environment mapping algorithm, the imaging functional
is computed after the third step, and the observer begins to explore candidate sources.
For clarity, we do not show the visibility changes after each step, as it was the subject
of previous publications [36, 34]. Instead, we show the accumulated visible surfaces at
each corresponding step of the navigation.

Figure 5 contains some key steps of the exploration: the observing locations, the
imaging functional, and the estimated sources. The image reconstructed after the first
three steps is depicted in Fig. 5(a). A local maximum is detected and surrounded by
a small circular source region (green). Now the observer must surround the region
with at least three observation points. During this process a new maximum is detected
(Fig. 5(b)) and the first candidate source shifts its position toward the true source
location, as shown in Fig. 5(c). After the first seven steps, there are no more candidate
source regions left to explore and, therefore, the observer continues by exploring the
boundary of the nearby obstacle, Fig. 5(d). New candidate sources appear in Figs. 5(d)
and 5(e). In step 11, Fig. 5(f), one of the candidate sources shifts toward the correct
location of the nearby source. Once all the candidate sources on the middle right hand
side of the domain have been explored, the observer moves on to explore the rest of the
environment in the top left corner, where it encounters a few more sources shown in
Fig. 5(g). At step 20 (Fig. 5(h)), after one of the candidate source regions is surrounded
with three observers, it disappears along with another candidate source region. At this
step, exploration of the candidate sources is finished and the remaining three steps
complete the environment exploration. The last step of the algorithm is depicted in
Fig. 5(i).

After the exploration is completed, the image of the sums of the rays IΣ (34) pre-
sented in Fig. 6(a) is analyzed to filter out sources in the regions where the number
of passing rays is less than three. As a result, one source (marked by magenta circle),
detected during the exploration, is excluded from the detected sources. The final image
is depicted on Fig. 6(b). Note that unlike the image of the sums IΣ (34), the proposed
image functional JΣΠ

(3) (37) has very few extrema, which are concentrated around the



4 Adaptive Algorithm 24

x, m

y
, 

m

0 26 52 78 104 130
0

26

52

78

104

130

(a) Step 1.

x, m

y
, 

m

0 26 52 78 104 130
0

26

52

78

104

130

(b) Step 2.

x, m

y
, 

m

0 26 52 78 104 130
0

26

52

78

104

130

(c) Step 3.

Fig. 4: Example 1: 7 obstacles and 5 sources. The first three steps of the algorithm.
Primary rays from each observer’s position.
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sources.
The algorithm terminates in 23 steps, while the upper bound for this example is

36 steps (7 obstacles plus 5 sources times 3). The observation locations are automat-
ically chosen in the vicinity of obstacles and sources, while the empty regions are not
unnecessarily observed. Despite the errors and ambiguities associated with detection
of incoming rays, illustrated in Fig. 4, our adaptive sampling algorithm combined with
a suitable imaging functional resulted in a reconstruction of the sources and the scat-
terers.

Our next example is a bit more complicated: there are ten obstacles and seven
sources (black +). The experiment setup is shown in Fig. 7. We omit the details
of the exploration as they are similar to the previous example: candidate sources are
detected, then verified. During the exploration, some source regions shift or disappear.
Once there are no more new possible sources detected, the observer continues to explore
the domain. The exploration terminates in 28 steps, detecting nine sources (marked
by magenta × in Fig. 7(a)). The two extra sources are artifacts caused by the clutter
from scattering objects and nearby sources. Filtering based on the number of rays
intersecting at the source does not eliminate the spurious sources since there are many
rays passing through their neighborhood. In fact, Fig. 7(b) displays all the primary
rays detected from the observation locations. One can see that it is difficult to extract
any information about the source locations from just the primary rays. On the other
hand, the imaging functional provides concise information about the locations of the
sources. Note that the algorithm terminates in 28 steps while the upper bound for this
example is 51 steps. The true sources are a subset of the detected sources and one
could use an alternative technique to further validate the true sources and exclude the
spurious ones.

5 Conclusion

In this paper, we studied the inverse problem for the Helmholtz equation in complicated
domains with possibly unknown obstacles, which are much larger than the wavelength.
We proposed an algorithm which determines the number and the locations of point
sources in the domain based on sparse measurements of the wave field. At each ob-
servation location the directions of incoming rays are determined from solving a local
inverse scattering problem, initially stated in [2]. We formulated the problem as an L1

constrained minimization problem and solved it using the Bregman iterative procedure
[46, 18]. The resulting solution is sparse and robust against the noise in the signal
measurements. The wave directions can then be traced back to determine the locations
of sources at the intersection of rays from several observing positions. The process of
detecting ray intersections is prone to instabilities. Instead, we imaged the sources by
forming a density functional, which can be thought of as probability density after a
renormalization. The resulting image has a few sparse peaks concentrated around the
candidate sources.
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Fig. 5: Example 1: 7 obstacles and 5 sources. Some of the steps of the domain explo-
ration and source detection.
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Fig. 5: Example 1: 7 obstacles and 5 sources. Some of the steps of the domain explo-
ration and source detection. (cont.)
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(a) Sums IΣ(O1, . . . , ON ) (34). Color bar indicates the number of
rays passing through every point of the domain outside the obstacles.
The source that has been filtered out is marked by a magenta circle.
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(b) Final image IΣΠ
(3) (O1, . . . , ON ) (37).

Fig. 6: Example 1: 7 obstacles and 5 sources. Sums IΣ (34) and the final image JΣΠ
(3)

(37). Exact source locations: black +, estimated source locations: magenta ×.
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(a) Final image JΣΠ
(3) (O1, . . . , ON ) (37), true (black +) and estimated

(magenta ×) source locations, 28 observing positions (�).
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(b) Primary rays at each observing location.

Fig. 7: Example 2: 10 obstacles and 7 sources. The final imaging functional JΣΠ
(3) (37)

with detected sources and the primary rays.
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The observation locations are chosen adaptively based on the imaging functional for
the previous locations and the visibility information for the domain. The navigation
algorithm [36, 34] was adapted to this problem , where it has been used to explore un-
known environments with obstacles. The algorithm terminates once all the candidate
sources and the environment have been explored. To explore a candidate source, the
observer must measure the wave field at three locations surrounding the corresponding
peak in the imaging functional. As a result, a candidate source may shift its position,
disappear, or remain at its current location. In the case when the obstacles are convex,
the upper bound on the number of observations need is three times the sum of the
number of obstacles and the number of sources in the domain. However, our numerical
simulations indicate that the actual number of steps required to complete the explo-
ration is much smaller than this upper bound. Unlike most methods described in recent
literature, the complexity of our proposed strategy is independent of the discretization
of the domain for the imaging functional and it depends only on the number of sources
and obstacles in the domain.

As a result of the exploration, all the sources in the domain are detected and the
map of the environment is reconstructed. However, some spurious sources may have
also been detected. This happens due to the complex nature of the scattering problem.
For example, in a very cluttered environment with many obstacles, the wave field at
the measurement location may be complicated by constructive and destructive interfer-
ence leading to detected rays from many directions. Also, if the size of the scattering
obstacles may scales in a special way with the wavelength, the resulting in wave field
may no longer be adequately represented by the local geometric optics approximation.
In such cases, alternative formulations e.g. [29] must be used.

We finally remark that even though we have presented and validated our algorithm
in 2D, the extension to 3D is not complicated. All of the necessary ingredients, visibility
algorithm, incoming ray direction detection and imagining functional can be extended
to 3D. For the visibility algorithm the obstacles will be surrounded by a sphere and
thus instead of 3 observation locations, one would need 4, all laying on the vertices of
a tetrahedron [34]. Once again, the observer will calculate the local curvature and pro-
ceed by over shooting the boundary. The incoming ray direction algorithm is already
formulated in [2] based on Legendre polynomials and spherical harmonics. The appli-
cation of the Bregman iterative methods is direct even in this case. Finally, the imaging
function JΣΠ

(3) is dimension independent. As we have remarked earlier, we expect that in

3D one should be able to successfully use the imaging functional JΣΠ
(2) , which correlates

pair of rays (rather than triples of rays as JΣΠ
(3) ), since 3D does not suffer from the fact

that in 2D almost all pairs of lines intersect in at least one point.
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