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Abstract. We study the TV-L1 image approximation model under the primal and dual per-
spective, based on the proposed equivalent convex formulations. More specifically, we apply a convex
TV-L1 based approach to globally solve the discrete constrained optimization problem of image ap-
proximation, where the unknown image function u(x) ∈ {f1, . . . , fn}, ∀x ∈ Ω. We show that the
TV-L1 formulation does provide an exact convex relaxation model to the considered nonconvex opti-
mization problem. This result greatly extends the recent results for the CEN model for TV-L1 image
processing [10]. It extends the simplest binary constrained case to a general gray-value constrained
case, through some rounding off scheme. It also applies to discrete constrained image inpainting. In
addition, we construct a fast multiplier-based algorithm based on the proposed primal-dual model,
which properly avoids nonsmoothness of the TV-L1 energy functional. Numerical experiments vali-
date the theoretical results and show that the proposed algorithm is both reliable and efficient.
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1. Introduction. Many tasks of image processing can be formulated and solved
successfully by convex optimization models, e.g. image denoising [27, 24], image
segmentation [6], image labeling [25, 3] etc. The reduced convex formulations can be
studied in a mathematically sound way and usually tackled by a tractable scheme in
numerics. Minimizing the total-variation function for such convex image processing
formulations is of great importance [27, 30, 22, 6, 23, 7, 20, 19], which preserves edges
and sharp features.

In the pioneer work [10], the CEN (Chan-Esedoglu-Nikolova) TV-L1 regularized
image approximation model was proposed and it takes the form:

min
u

{
P (u) := α

∫
Ω

|f − u| dx +
∫

Ω

|∇u(x)| dx
}

, (1.1)

This model was first introduced and studied by Alliney [2, 1] for discrete one-dimensional
signals’ denoising. Chan et al. showed an interesting property of the TV-L1 model
(1.1): for the input binary image f(x) ∈ {0, 1}, there exists at least one global op-
timum u(x) ∈ {0, 1}. It follows that the convex TV-L1 formulation (1.1) actually
solves the nonconvex optimization problem:

min
u(x)∈{0,1}

α

∫
Ω

|f − u| dx +
∫

Ω

|∇u(x)| dx , (1.2)

globally and exactly! Hence (1.1) provides an exact convex relaxation of the binary
constrained optimization problem (1.2). The authors further proved that rounding the
computed result of (1.1) by any value γ ∈ [0, 1] may give a series of global optimums
of the binary constrained optimization model (1.2).
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Previous Works and Motivations. With the help of coarea formula, Chan
et al. [9, 10] proved that the energy functional P (u) of (1.1) can be equivalently
represented in terms of the upper level-set sequence of the image functions u(x) and
f(x), i.e.

P (u) =
∫ +∞

−∞

{
|∂Uγ | + α |Uγ4F γ |

}
dγ , (1.3)

where for each γ, Uγ and F γ give the γ−upper level set of the unknown u(x) and the
input f(x) respectively, such that

Uγ(x) =
{

1 , when u(x) > γ
0 , when u(x) ≤ γ

, x ∈ Ω , i = 1, . . . , n ; (1.4)

|∂Uγ | gives the perimeter of Uγ and |Uγ4F γ | denotes the area of the symmetric
difference of the two level sets.

Yin et al. [34] pointed out that minimizing such a layer-wise energy function
(1.3) actually amounts to properly stacking the optimal Uγs, which corresponds to
solving (1.2) for each given binary indicator function of F γ . In other words, solving
(1.1) can be reduced to optimizing a sequence of binary constrained problems as (1.2).
Since Uγ1 ⊂ Uγ2 when γ1 ≥ γ2 , the process recovers the optimum u∗(x) of (1.1) by
properly arranging all the associated level sets Uγ , γ ∈ (−∞,+∞). The same result
was also discovered by Darbon et al. [11, 12] in an image graph setting where the
anisotropic total-variation term is considered and a fast graph-cut based algorithm
was introduced.

However, as stated in [34], such approach means both bad and good news for
processing the gray-scale image in practice: on the one hand, the total number of gray
values is finite, i.e. u(x) ∈ {0, . . . , 255}, hence only a finite number of optimization
problems (1.2) should be considered; on the other hand, solving (1.2) for each layer
F γ is not trivial; and in order to globally tackle (1.1), one has to examine a large
number of obtained level-sets to restrict its search legally. This makes Yin’s results
[34] impratical to a real image processing task.

In addition, the PDE-descent method is often used to numerically approximate
the global optimum of (1.1) [10, 9, 34, 13], which smoothes the total-variation term
by

√
∂xu2 + ∂yu2 + ε2. Actually, even if ε takes a small enough value, the coarea

formula is no longer satisfied. As a matter of fact, new gray levels appear and the
indicator functions are blurred.

Motivated by the above observations, we introduce the primal and dual perspec-
tive of the TV-L1 model (1.1) and study the exactness of (1.1) as the convex relaxation
of the discrete constrained optimization problem:

min
u(x)∈{f1,...,fn}

α

∫
Ω

|f − u| dx +
∫

Ω

|∇u(x)| dx , (1.5)

given f(x) ∈ {f1, . . . , fn}. In this paper, we assume the gray-scale values fi, i =
1, . . . , n, are ascent ordered by f1 < . . . < fn. Clearly, integers 0, . . . , 255 for 8-bits
images is one of the common options in most cases. Compared with the original CEN
model [10], which can only handle binary images, this extension will greatly increase
the application scope of proposed model.

Contributions. Our main contributions can be generalized as follows:
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1. We propose equivalent formulations in terms of primal and dual, and build
up a new analytical framework which results in a new variational perspective
of (1.1).

2. By the proposed equivalent formulations, we show that the TV-L1 formula-
tion (1.1) can be used as the convex relaxed model for its discrete constrained
non-convex image processing model. This extends the CEN model [10] to
more general cases. To the best of the authors’ knowledge, this is new. The
same theoretical results can be naturally extended to image inpainting.

3. In term of numerical computation, we show that the discrete constrained
optimization problem (1.5) can be exactly optimized by the convex program-
ming problem (1.1) and a proposed rounding scheme. Besides its simplicity,
it largely reduces the computational and memory cost. For graph-cut based
approaches e.g. [11, 21, 5, 4, 31], the reduction is especially remarkable when
the total number of gray-scales is large.

4. We introduce an elegant multiplier-based algorithm which explores the equiv-
alent primal-dual formualtion through two simple projection substeps, instead
of tackling the highly nonsmooth TV-L1 energy functional directly. Its relia-
bility and efficience are verified by standard optimization theories and differ-
ent experiments.

In parallel to our multiplier-based method, several other dual formulations and
algorithmic schemes were proposed recently in the literature, see [16, 33, 32, 35, 28, 29,
13]. In contrast to [16, 33, 32, 35], we apply the proposed equivalent primal-dual and
dual formulations as a complete approach, including both variational analyses and
algorithms to study topics concerning (1.1), not just derive the algorithmic scheme.
In addition, the primal-dual algorithm we have proposed here is different from [16,
33, 32, 35]. In our algorithm, the solution u is treated as the multiplier. This seems
to be a new idea.

2. Equivalent Models. We call the TV-L1 image approximation (1.1) primal
model in this paper, as comparison to the equivalent models introduced in this section.

2.1. Equivalent Primal-Dual Model. With the help of conjugates [26], the
data term of (1.1) can be equally expressed by

α

∫
Ω

|f − u| = max
q∈Sα

〈q, f − u〉 , Sα := {q | |q(x)| ≤ α , ∀x ∈ Ω } . (2.1)

Moreover, it is well known that the total-variation term of (1.1) can also be formulated
[18] as follows∫

Ω

|∇u| dx = max
p∈C1

〈div p, u〉 , C1 := {p | p ∈ C1
c (Ω, R2) , |p(x)| ≤ 1 , ∀x ∈ Ω } .

(2.2)
In view of (2.1) and (2.2), after some rearrangements, the TV-L1 approximation

formulation (1.1) can be rewritten as

max
q∈Sα

max
p∈C1

min
u

{
E(u; q, p) := 〈q, f〉+ 〈div p− q, u〉

}
, (2.3)

which is called the equivalent primal-dual model to the primal model (1.1).

2.2. Equivalent Dual Model. Observe that u is unconstrained, minimizing
(2.3) over u, therefore, leads to the linear equality

div p = q ,
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and the constrained maximization problem

max
q∈Sα

max
p∈C1

{
D(q, p) := 〈q, f〉

}
, s.t. div p = q . (2.4)

Likewise, we call (2.4) the equivalent dual model to (1.1).

2.3. Optimization Facts. For the primal-dual formulation (2.3), the conditions
of the minimax theorem (see e.g., [15, 17]) are all satisfied. That is: the constraints
of dual variables p and q are convex and the energy function is linear to both u and
(p, q), hence convex l.s.c. for fixed u and concave u.s.c. for fixed p and q. This follows
that there exists at least one saddle point, see [15, 17]. As a consequence, the min
and max operators of the primal-dual model (2.3) can be interchanged, i.e.

max
q∈Sα

max
p∈C1

{
min

u
E(u; q, p)

}
= min

u

{
max
q∈Sα

max
p∈C1

E(u; q, p)
}

. (2.5)

It is easy to see that the optimization of the primal-dual model (2.3) over the dual
variables q and p react on the primal formulation (1.1) of TV-L1 image approximation,
i.e. the right hand side of (2.5):

P (u) = E(u; q∗, p∗) = max
q∈Sα

max
p∈C1

E(u; q, p) .

Likewise, the dual model (2.4) can be achieved by optimizing the image function
u(x) in (2.3), i.e. the left hand side of (2.5):

D(q, p) = E(u∗, q, p) = min
u

E(u; q, p) . (2.6)

2.4. Image Inpainting. In this paper, we consider image inpainting in a similar
manner. We formulate its convex primal model as

min
u

{
P (u) := α

∫
Π

|f − u| dx +
∫

Ω

|∇u(x)| dx
}

, (2.7)

where Π ⊂ Ω denotes the unmasked area.
The concerned equivalent primal-dual and dual models to (2.7) can be developed

in a similar way as (2.3) and (2.4). Here we only list its equivalent primal-dual model:

max
q∈Sα

max
p∈C1

min
u

{
E(u; q, p) := 〈q, f〉Π + 〈div p− qσΠ, u〉Ω

}
, (2.8)

where σΠ is the indicator function of the unmasked domain Π.

3. Global and Exact Optimums. In this section, we study the nonconvex
optimization problem (1.5) and show that the TV-L1 formulation (1.1), which is a
convex relaxed model of (1.5), solves the nonconvex minimization problems (1.5)
globally and exactly through a rounding scheme. We state our results and proof in
several propositions.

Proposition 3.1 (Extremum Principle). Given the image function f(x) ∈
{f1, . . . , fn}, ∀x ∈ Ω, along with ordering f1 < . . . < fn, each optimum u∗(x) of
(1.1) suffices f1 ≤ u∗(x) ≤ fn almost everywhere.

The same results which state any optimum u∗(x) should suffice u∗(x) ∈ [fmin, fmax],
i.e. u∗(x) ∈ [f1, fn] considering the ascent ordering f1 < . . . < fn in this work, can also
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be found in other works, e.g. [9] where f(x) ∈ {0, 1} or [14] where f(x) ∈ [fmin, fmax].
We also provide the proof as follows to ease readability.

Proof. Let u∗ be the minimum of (1.1). Due to the convexity of (1.1), u∗ is
simply accepted as the global minimum. We first prove that u∗(x) ≤ fn for ∀x ∈ Ω.

If u∗(x) > fn at some area Ω̃ ⊂ Ω, then we define the function u′ which just
threshholds the value u∗(x) to be not larger than fn, i.e.

u′(x) =
{

fn at x ∈ Ω̃
u∗(x) at x ∈ Ω\Ω̃ .

Obviously, in view of f(x) ≤ fn and u∗(x) > fn for ∀x ∈ Ω̃, we have∫
Ω

|u∗ − f | dx =
∫

Ω\Ω̃
|u∗ − f | dx +

{ ∫
Ω̃

|fn − f | dx +
∫

Ω̃

|u∗ − fn| dx
}

=
∫

Ω

|u′ − f | dx +
∫

Ω̃

|fn − f | dx .

It follows that ∫
Ω

|f − u′| dx <

∫
Ω

|f − u∗| dx . (3.1)

By the coarea formula of the total variation term:

TV(u) =
∫ +∞

−∞
Lγ(u) dγ ,

where Lγ(u) is the length of the γ−upper level set of u, it follows that

TV(u′) < TV(u∗) , (3.2)

because the fn−upper level set of u′ is threshholded to vanish.
Observe (3.1) and (3.2), we must have∫

Ω

|f − u′| dx + αTV(u′) <

∫
Ω

|f − u∗| dx + αTV(u∗) .

This is in contradiction to the fact that u∗ is the global minimum of (1.1).
Likewise, we can also prove u∗(x) ≥ f1 x ∈ Ω in the same way. In consequence,

we prove that each minimum u∗(x) of (1.1) suffices u∗(x) ∈ [f1, fn].

Proposition 3.2. Given a bounded scalar function f1 ≤ u(x) ≤ fn ∀x ∈ Ω, if
an optimal vector field p∗ maximizes the integral

∫
Ω

u div p dx over the convex set C1,
i.e. ∫

Ω

|∇u| dx =
∫

Ω

u div p∗ dx ,

then in view of (1.4), for every γ−upper level set Uγ(x) of u(x) with γ ∈ [f1, fm), p∗

also maximizes the integral
∫
Ω

Uγ div p dx over the convex set C1 and∫
Ω

Uγ div p∗ dx = |∂Uγ | ,
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which is the perimeter of the level set Uγ(x).
Proof. Denote the interval Γ = [f1, fn]. The coarea formula gives∫

Ω

|∇u| dx =
∫

Γ

∫
Ω

|∇Uγ | dx dγ. (3.3)

By applying this formula we can deduce∫
Ω

u div p∗ dx =
∫

Ω

|∇u| dx =
∫

Γ

∫
Ω

|∇Uγ | dx dγ =
∫

Γ

(
max
p∈C1

∫
Ω

Uγ div p dx

)
dγ.

(3.4)
By the fact that u(x) =

∫ u(x)

f1
dγ =

∫
Γ

Uγ(x)dγ for any x ∈ Ω, we have∫
Ω

u div p∗ dx =
∫

Ω

(∫
Γ

Uγ(x)dγ

)
div p∗(x) dx =

∫
Γ

∫
Ω

Uγ div p∗ dx dγ. (3.5)

Therefore, combining (3.4) and (3.5):∫
Γ

∫
Ω

Uγ div p∗ dxdγ =
∫

Γ

(
max
p∈C1

∫
Ω

Uγ div p dx

)
dγ. (3.6)

This equality (3.6) together with the fact that for any γ ∈ [f1, fn)∫
Ω

Uγ div p∗ dx ≤ max
p∈C1

∫
Ω

Uγ div p dx . (3.7)

Then it follows that ∫
Ω

Uγ div p∗ dx = max
p∈C1

∫
Ω

Uγ div p dx

for almost every γ ∈ [f1, fn). Clearly, the perimeter of the level set Uγ is given by

|∂Uγ | =
∫

Ω

|∇Uγ | dx = max
p∈C1

∫
Ω

Uγ div p dx .

Corollary 3.3. Given a bounded scalar function f1 ≤ u(x) ≤ fn ∀x ∈ Ω and
n − 1 different values γi, i = 1, . . . , n − 1, such that f1 ≤ γ1 < . . . < γn−1 ≤ fn, if
an optimal vector field p∗ maximizes the integral

∫
Ω

u div p dx over the convex set C1,
then for the image function

uγ(x) =
n−1∑
i=1

(fi+1 − fi) Uγi(x) ,

p∗ also maximizes the integral
∫
Ω

uγ div p dx over the convex set C1, i.e. we have∫
Ω

|∇uγ | dx =
∫

Ω

uγ div p∗ dx .

Proof. By virtue of Prop. 3.2, p∗ also maximize the integral∫
Ω

Uγi div p dx,
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over the convex set C1 for each γi, i = 1, . . . , n− 1.
Then it follows that for the piecewise constant image function

uγ(x) =
n−1∑
i=1

(fi+1 − fi)Uγi(x) ,

p∗ also maximizes the integral∫
Ω

uγ div p dx =
n−1∑
i=1

{
(fi+1 − fi)

∫
Ω

Uγi div p dx
}
,

over the convex set p ∈ C1, because f1 < . . . < fn is ordered such that

fi+1 − fi > 0 , i = 1, . . . , n− 1 .

Therefore, we have ∫
Ω

|∇uγ | dx =
∫

Ω

uγ div p∗ dx .

With helps of the above facts, we can prove the following proposition:
Proposition 3.4. Given the image function f(x) ∈ {f1, . . . , fn}, where f1 <

. . . < fn and the boundary of each concerning upper level set F fi(x), i = 1, . . . , n, is
regular, then for any given n− 1 values γi, i = 1, . . . , n− 1 such that

f1 < γ1 < f2 < . . . < γn−1 < fn , (3.8)

we define the image function uγ(x) by the n− 1 upper level sets (1.4) of the computed
optimum u∗(x) of (1.1):

uγ(x) = f1 +
n−1∑
i=1

(fi+1 − fi) Uγi(x) . (3.9)

Then uγ(x) ∈ {f1, . . . , fn} and uγ(x) gives an exact global optimum of (1.5).
Proof. Let (u∗, q∗, p∗) be the optimal primal-dual pair of (2.3). Hence the optimal

dual variables q∗ and p∗ suffice that q∗ maximizes the integral
∫
Ω

q(f − u) dx over
the convex set Sα and p∗ maximizes the integral

∫
Ω

u div p dx over the convex set C1.
uγ(x) ∈ {f1, . . . , fn} as (3.9) can be rearranged as

uγ(x) = f1 (1− Uγ1(x)) +
n−1∑
i=2

fi (Uγi−1(x)− Uγi(x)) + fn Uγn−1(x) .

uγ is also a global optimum of (1.1), which can be obtained by considering the
following facts: By Coro. 3.3, p∗ also maximizes the integral

∫
Ω

uγ div p dx over the
convex set C1 and ∫

Ω

|∇uγ | dx = 〈uγ ,div p∗〉 . (3.10)

At the next step, we can prove

α

∫
Ω

|f − uγ | dx = 〈q∗, f − uγ〉 . (3.11)
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The optimal dual variable q∗(x) actually gives the sign of f(x) − u∗(x) at each
x ∈ Ω, when f(x) 6= u∗(x); when f(x) = u∗(x), q∗(x) can take any value in [−α, α].
Now we assume u∗(x) ∈ [fk, fk+1] for the position x ∈ Ω, then in view of (1.4) and
(3.9), we have

u∗(x) ∈ [fk, γk] =⇒ uγ(x) = fk ,

and

u∗(x) ∈ (γk, fk+1] =⇒ uγ(x) = fk+1 .

Since f(x) ∈ {f1, . . . , fn}, we can analyze q∗(x) in two cases: f(x) ≤ fk and
f(x) ≥ fk+1.

• When f(x) ≤ fk, in view of u∗(x) ≥ fk, we have q∗(x) = −α for u∗(x) > fk

or q∗(x) ≥ −α for u∗(x) = f(x) in order to maximize q(x) · (f(x) − u∗(x))
over q(x) ∈ [−α, α]. Then in both cases, q∗(x) also maximizes the product
q(x) · (f(x)− fk) , or q(x) · (f(x)− fk+1) , over q(x) ∈ [−α, α]. Hence q∗(x)
maximizes q(x) · (f(x)− uγ(x)) over q(x) ∈ [−α, α].

• When f(x) ≥ fk+1, in view of u∗(x) ≤ fk+1, we have q∗(x) = α for u∗(x) <
fk+1 or q∗(x) ≤ α for u∗(x) = f(x) in order to maximize q(x) · (f(x)−u∗(x))
q(x) ∈ [−α, α]. In both cases, q∗(x) also maximizes the product q(x) · (f(x)−
fk) or q(x) · (f(x) − fk+1) , over q(x) ∈ [−α, α]. Hence q∗(x) maximizes
q(x) · (f(x)− uγ(x)) over q(x) ∈ [−α, α].

Therefore, we have q∗ maximizes the integral 〈q, f − uγ〉 over the convex set Sα. Then
the fact (3.11) is proved.

By virtue of (3.10), (3.11) and the dual model (2.4), we have

P (uγ) = E(uγ , p∗, q∗) = 〈q∗, f〉+ 〈uγ ,div p∗ − q∗〉 = 〈q∗, f〉 = P (u∗) .

Then it follows that uγ is also a global minimum of (1.1) as u∗ is global minimum of
(1.1). Since (1.1) is just the relaxed version of (1.5), uγ(x) ∈ {f1, . . . , fn} solves (1.5)
exactly and globally.

The proposed rounding scheme (3.9) actually gives

uγ(x) =

 f1 , when u∗(x) < γ1

fi , when γi−1 ≤ u∗(x) < γi, i = 2, . . . , n− 1
fn , when u∗(x) ≥ γn−1

.

In the experiments of this paper, we adopt the above scheme to obtain rounding
results.

3.1. Global and Exact Optimums of Image Inpainting. For the problem
of image inpainting, we can prove the same result as Prop. 3.4, such that the image
function uγ(x) given by the n−1 upper level sets of the optimum u∗(x) of the convex
image inpainting model (2.7), i.e.

uγ(x) = f1 +
n−1∑
i=1

(fi+1 − fi) Uγi(x) , (3.12)

solves the discrete constrained image inpainting problem

min
u(x)∈{f1,...,fn}

α

∫
Π

|f − u| dx +
∫

Ω

|∇u(x)| dx , (3.13)
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globally and exactly.
Proposition 3.5. Given the image function f(x) ∈ {f1, . . . , fn} at the unmasked

area Π, where f1 < . . . < fn and the boundary of each concerning upper level set
F fi(x), i = 1, . . . , n, is regular, then for any given n − 1 values γi, i = 1, . . . , n − 1
such that

f1 < γ1 < f2 < . . . < γn−1 < fn , (3.14)

we define the image function uγ(x), as follows, by the n− 1 upper level sets (1.4) of
the computed optimum u∗(x) of (2.7):

uγ(x) = f1 +
n−1∑
i=1

(fi+1 − fi) Uγi(x) . (3.15)

We have uγ(x) ∈ {f1, . . . , fn} and uγ(x) gives an exact global optimum of (1.5). The
proof just repeats Prop. 3.1, Prop. 3.2, Coro. 3.3 and Prop. 3.4 and is omitted here.

4. Multiplier-Based Algorithm. In this paper, we build up the algorithm
upon the equivalent primal-dual model (2.3). Clearly, the primal variable u works as
the multiplier in (2.3) for the linear equality div p − q = 0. The energy function of
(2.3) just gives the corresponding Lagrangian function to the dual formulation (2.4).
By these observations, we define its augmented Lagrangian function as

Lc(q, p, u) = 〈q, f〉+ 〈div p− q, u〉 − c

2
‖div p− q‖2

where c > 0.
Thereafter, the classical augmented Lagrangian algorithm can be applied, which

gives a splitting optimization framework over each dual variables q and p respectively,
by exploring projections to corresponding convex sets. To this end, we call Alg. 1
the multiplier-based algorithm. It explores two simple projection sub-steps: (4.1) and
(4.2) at each iteration, which properly avoids tackling the nonsmooth terms in (1.1)
in a direct way. The projection in (4.1) is easy and cheap to compute. For projection
(4.2), we can use one or a few steps of the iterative algorithm in [8]. We can also use
one or a few steps of the following projected gradient decent to approximately solve
(4.2) with the time step τ properly chosen:

pk+1 = Proj‖p‖∞≤λ(pk + τgrad(div pk − (qk+1 + uk/c)).

For image inpainting, its concerned augmented lagrangian function can be formu-
lated upon (2.8). A similar algorithm as Alg. 1 can be constructed.

5. Experiments. The experiments in this work are designed in two parts: we
evaluate both the theoretical results and efficiency of the proposed algorithm in terms
of iterations in the first part; experiments of practical impulsive denoising and image
inpainting are performed in the second part. For the implementation of algorithms,
All the codes are developed on Matlab.

In the experiments, convergence is evaluated by the primal-dual gap:

err = c ‖div p− q‖ / ‖u‖ ,

which gives the ratio of the primal-dual gap to the norm of image approximation u(x),
see (4.3).
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Algorithm 1 Multiplier-Based Algorithm
• Set the starting values: q0, p0 and u0, and let k = 1;
• Start the k−th iteration which includes two successive sub-steps:

1. Optimize qk+1 by fixing pk and uk:

qk+1 := arg max
‖q‖∞≤1

Lc(q, pk, uk)

= arg max
‖q‖∞≤1

〈q, f〉 − c

2

∥∥q − (div pk − uk/c)
∥∥2

,

which is approximated by the projection

qk+1 = Proj‖q‖∞≤1(f/c + (div pk − uk/c)) ; (4.1)

2. Optimize pk+1 by fixing qk+1 and uk:

pk+1 := arg min
p∈Cλ

1
2

∥∥div p− (qk+1 + uk/c)
∥∥2

, (4.2)

which is the projection of (qk+1 + uk/c) to the convex set div Cλ.
• Update uk+1 by

uk+1 = uk + c (qk+1 − div pk+1) ; (4.3)

and let k = k + 1, repeat untill convergence.

To evaluate the performance of rounded results in the following experiments, we
take the energy difference associated to the computated optimum u∗ and the rounded
result uγ which is measured by the ratio:

ratio = |P (u∗)− P (uγ)| /P (u∗) .

For the comparisons to other state of art methods, the Peak Signal to Noise Ratio
(PSNR) between the ground truth and the outputs, i.e.

PSNR(u, v) = 10log10

2552

1
MN

∑
i,j (ui,j − vi,j)2

is measured, where ui,j and vi,j denote the pixel values of initial ground truth images
and denoised images respectively.

5.1. Validation and Convergence.

5.1.1. Synthetic Image. A synthetic image f(x) ∈ {0, 0.5, 1} (see figure (c) of
Fig. 5.1), which is colorized by red: 0, green: 0.5, blue: 1, is taken for the validation
of Prop. 3.4. We set the penalty parameter α = 1 and the augmented parameter
c = 6. In fact, the Chambolle-projection step (4.2) is only explored by 3 − 5 times
at each iteration. The experiment still shows a fast convergence rate (see figure (a)):
the algorithm runs for 1000 iterations and converges at err ≤ 3× 10−7.

In this experiment, two rounding schemes are taken: {γ1 = 0.25, γ2 = 0.75};
{γ1 = 0.35, γ2 = 0.65}. For the computed result u∗, it gives the energy P (u∗) =
2938.7. The two corresponding rounded results produce the energy P (uγ) = 2937.7,



11

2937.7, i.e. both rounding schemes give the same energy as the convex relaxed energy
P (u∗)! Both energy ratios are zero!

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5.1. (a) convergence rate (600 iterations); (b) the ground truth image colorized by red: 0,
green: 0.5, blue: 1; figure (c) the input image f(x); (d) the computed image u∗(x) where α = 1; (e)
the image uγ rounded by {γ1 = 0.25, γ2 = 0.75}; (f) the image uγ rounded by {γ1 = 0.35, γ2 = 0.65};
(g) the difference between two rounded results.

5.1.2. Gray Value Images. For the given gray-value images f(x) of the exper-
iments, 256 gray-scale levels are naturally encoded, i.e. f(x) ∈ {0, . . . , 255}.

The experiment results given in Fig. 5.2 show the denoising of the penguin image
(see figure (a) of Fig. 5.2), which is downloaded from the middleburry data set:
http://vision.middlebury.edu/MRF. The rounding scheme is simply taken by γ =
{0.5, 1.5, . . . , 255}, i.e. it just gives the nearest integer. For the following experiments
where α = 1.3, 1, 0.5, the Chambolle-projection step (4.2) is explored by 3 times at
each iteration. Within 1000 iterations, the Algorithm 1 converges to an error below
(see figure (e) of Fig. 5.2): 4× 10−11 (red line, for α = 1.3), 5× 10−9 (blue line, for
α = 1), 7× 10−8 (green line, for α = 0.5).

The energy differences associated to the computated optimum u∗ and the rounded
result uγ for the three experiments are nearly zero in numerics.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.2. (a) the input image f(x); figure (b) - (d) show the computation results when α =
1.3, 1, 0.5 respectively; (b) plot of convergences (1000 iterations): red line: α = 1.3, blue line: α = 1
and green line: α = 0.5; figure (f) - (h) show the rounding results when α = 1.3, 1, 0.5 respectively.

The images processed in the experiments, shown in Fig. 5.3, are downloaded from
the Berkeley segmentation dataset and benchmark. For all the experiments, we set
α = 0.5 and the experiment results show the ratios of energy differences are nearly
zero!

5.2. Applications and Comparisons. In this section, we apply the propsoed
algorithm to some real applications: impulsive image denoising and image inpainting.
In addition, we will also show comparisons to the method proposed recently by [33].

5.2.1. Impulsive Denoising. For restoration of real images corrupted by im-
pulsive (Salt and Pepper) noises, we first make the experiment shown by Fig. 5.4,
where a Dragonfly image (which has thin and elongated details) is taken for image
denoising: see the image without noise (figure (b)) and the noisy image (figure (a))
where the Salt and Pepper noise with level 5% has been added. For different choice
of α which trades off the balance of keeping image details and extracting small-scale
structures, e.g. noises. We achieve restoration images with slight differences as shown
in figure (c)-(e) of Fig. 5.4. Visually, the best result is computed by setting α = 2.
The difference between the input image f(x) and the restored image, given by figure
(f) of Fig. 5.4, also demostrates that detail losts of the image is very small.

In addition, we verify the performance of our method by several experiments with
comparisons to the scheme proposed in [33]. Both schemes involve a substep where
Chambolle-projections need to be performed iteratively. We compare our restoration
results with [33], with impulsive noise levels ranging from 10% to 50%. As the com-
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Fig. 5.3. Four input images are shown in the first row; the computed images u∗(x) are given
in the 2nd row respectively; the rounded images u∗(x) are shown in the 3rd row respectively. In
all experiments, we set α = 0.5.

parison results given by Tab. 5.1, the restored images computed by our proposed
algorithm are better than [33] for experiments with low noise level; for the cases of
high noise level, our method still keeps higher PSNR values, i.e. more image details.

Noise Level Our Approach ALM of [33]
10% 39.61dB 35.04dB
20% 37.56dB 34.71dB
30% 35.65dB 33.90dB
40% 34.26dB 33.35dB
50% 33.58dB 32.83dB

Table 5.1
Comparison results by PSNR for the experiment (Fig. 5.5)

For the experiment of Fig. 5.6, we try high noise levels ranging from 50% to 80%.
Results show that our approach still get reasonable resutls, as shown in Fig. 5.6.

5.2.2. Image Inpainting. For the experiments of image inpainting, the masked
areas of the input image are marked by red (see images in the first row of Fig. 5.7). To-
tally discrete optimums with 256 gray-scales can be found by the proposed approach,
i.e. masked areas are properly recovered such that u∗(x) ∈ {0, 1, ..., 255}.

6. Conclusions. This work studies the discrete constrained TV-L1 based image
approximation, with applications to image denoising and inpainting. We prove that
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.4. (a)noisy image noise level 5%,(b)ground truth,(c)restorated image with α =
2,(d)restored image with α = 1.0,(e)restored image with α = 0.5, (f)image difference between (a)
and (c)

the convex TV-L1 approximation model (1.1) can be applied to solve such nonconvex
optimization problem (1.5) exactly and globally, in the spatially continuous context.
This greatly extends recent studies of Chan et al. [9, 10], from the simplest binary
case to the general gray-scale case. In numerics, we propose a fast multiplier-based
algorithm upon the constructed equivalent convex formulations, which properly avoids
nonsmoothness of the considered TV-L1 energy function. Its numerical reliability
and efficiency have been verified by experiments and comparisons to the state of art
method, e.g. [33]. In contrast to the graph-cut based approach [11], the proposed
approach also avoids heavy memory and computation load especially when the total
number of discrete values is large.

Acknowledgement. The research has been supported by MOE (Ministry of
Education) Tier II project T207N2202 and IDM project NRF2007IDM-IDM002-010.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5.5. Boat denoising result with noise level from 10% to 50%, (256 × 256). (a)-(e)noisy
image with noise level from 10% to 50% respectively,(f)-(j)denoising results by our algorithm with
λ = 0.7, (k)-(o)denoising results by [33].
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