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We consider a kinematic particle interaction model with broad applications ranging from insect
swarms to self-assembly of nanoparticles. With very simple pairwise interaction models possessing
both attraction and repulsion, we show a suite of complex 2D ring-like patterns, many of which
have not been documented in the literature. Emergence of these patterns is explained by a stability
analysis of the ring, involving a reformulation of the problem through a continuum limit in which
the particles are concentrated along a curve. Stability of ring states is understood by a linear
well-posedness theory for the continuum ring solutions.

PACS numbers: 87.18.Ed, 87.10.Ed, 05.45.-a

In this letter we consider a two-dimensional kinematic
model of pairwise particle interaction of the form

dxj

dt
=

1

N

∑

k=1...N
k 6=j

F (|xk − xj |)
xk − xj

|xk − xj |
, j = 1 . . .N.

(1)
This basic model appears in many contexts such as in-
sect aggregation [3], locust swarms [4], and self-assembly
of nanoparticles [5]. In one dimension, it includes the
Kuramoto model with zero natural frequency [7], as a
special case. In the context of locust swarms, the basic
principle that keeps the swarm shape is the attractive-
repulsive nature of the interaction force F (r): the insects
repel each other if they are too close, but attract each-
other at a distance. Mathematically, this corresponds to
F (r) being positive for small r, but negative for large r.
Commonly, a Morse interaction force of the form

F (r) = exp(−r) −G exp(−r/L); G < 1, L > 1 (2)

has been used [4]; the conditions G < 1 and L > 1 guar-
antee the attractive-repulsive nature of F (r). In the limit
N → ∞, two types of behaviour are possible: either a
swarm cloud spreads until its area is proportional to N ,
or else the swarm radius is bounded independent of N
and forms a well-defined bounded steady state in the
continuous limit N → ∞ [4]. The latter corresponds
to the catastrophic regime of the H-stability diagram [4],
[8], [6]. In one dimension, the catastrophic regime occurs
when GL2 > 1 [4], while in two dimensions, the critical
threshold is GL3 > 1 [8].
In this letter we consider what happens for interaction

forces where the attraction is much stronger than that
of the Morse force. For concreteness, we consider two
different families of interaction forces: the simple power
force

F (r) = rp − rq ; 0 ≤ p < q (3)

and an interaction force which consists of a tanh connec-
tion of the states b± 1 :

F (r) = tanh ((1− r)a) + b; 0 < a; −1 < b < 1. (4)

FIG. 1: Top: Long-time behavior of the particle system (1)
with F (r) = tanh((1−r)a)+b with values of a, b as indicated.
Bottom: time evolution of (1) with a = 8, b = 0.67.

Unlike the Morse force (2), both (3) and (4) have very
strong attraction for large r; as a result one can show that
the system is in the catastrophic regime and the solution
is bounded as N → ∞. On the other hand, steady states
can exhibit a very intricate structure as illustrated in Fig-
ure 1, for the case F (r) = tanh((1 − r)a) + b. Starting
with random initial conditions, a simple forward Euler
time method was used to simulate (1) with N = 5000.
The output is shown at time t = 1000 after 2000 steps.
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The long time stable pattern does not appear to be sen-
sitive to initial conditions (up to rotation/translation).
Also as expected in the catastrophic regime, doubling
the N does not change the structure or the spatial extend
of the steady state. Note the complex patterns ranging
from rings and annuli to more complex structures ex-
hibiting period two and three symmetry breaking to very
complex ‘soccer ball’ like shapes. We note that related
complex patterns (in particular the annuli and spotted
patterns) been observed in experiments of stressed bac-
terial colonies [9] which have associated related nonlocal
models [10].
Unlike the Morse interaction force, the force (3) may

lead to a steady state which concentrates on a curve.
Such a curve often evolves into a circle steady-state,
which corresponds to particles aligned uniformly along
a ring. Even for more complicated steady states, a ring
structure is often seen in the intermediate dynamics, as
shown in Figure 2. The existence as well as stability of
such a ring solution is therefore important in understand-
ing swarm formation for general interaction forces.
For solutions concentrating on curves and in the limit

N → ∞, it is shown in [1] that such curve obeys an
evolution law

ρt = −ρ
< zα, zαt >

|zα|
2 ; zt = K ∗ ρ (5)

where z (α; t) is a parametrization of the solution curve;
ρ (α; t) is its density and

K∗ρ =

∫

F (|z(α′)− z(α)|)
z(α′)− z(α)

|z(α′)− z(α)|
ρ(α′, t)dS(α′).

(6)
Note that (5) is a generalization of the classical Birkhoff-
Rott equation for gradient vector fields rather than in-
compressible flow [1, 11].
The ring steady state has the form z(α; t) = z(α) =

r0 exp (iα) , α ∈ [0, 2π] ; where r0 is the radius of the ring
and must be the root of

I(r0) :=

∫ π

2

0

F (2r0 sin θ) sin θdθ = 0. (7)

For the Morse force (2), note that I(0) > 0 and
I(r) ∼ 1

4r

(

1−GL2
)

as r → ∞. It follows that a ring
steady state exists provided GL2 > 1, which corresponds
to the catastrophic regime of the one-dimensional model.
For forces (3) and (4), the ring solution exists for all pa-
rameter values within the indicated range.
To study the local stability of a ring solution, we con-

sider the perturbations of the ring of N particles of
the form xk = r0 exp (2πik/N) (1 + exp(tλ)φk) where
φk � 1. After some algebra we obtain

λφj =
1

N

∑

k=1..N
k 6=j

G1

(

π(k−j)
N

)(

φj − φk exp
(

2πi(k−j)
N

))

+G2

(

π(k−j)
N

)(

φ̄k − φ̄j exp
(

2πi(k−j)
N

))

,

FIG. 2: Dynamics of (1). First column: F (r) = r − r2,
N = 80. The equilibrium solution is a stable ring. Second
column: F (r) = r0.5−r6, N = 300. Third column: Simluation
of the continuum limit (5) with F as in the second column.
Fourth column: F (r) = r − r3.2, N = 100. Fifth column:
F (r) = r0.5 − r1.5, N = 300.

where j = 1 . . .N and

G1(θ) =
1
2

(

F ′(2r0 |sin θ|) +
F (2r0|sin θ|)
2r0|sin θ|

)

G2(θ) =
1
2

(

F ′(2r0 |sin θ|)−
F (2r0|sin θ|)
2r0|sin θ|

) .

Next we substitute φj = b+e
2mπij/N + b−e

−2mπij/N

where we assume that b± are real, and m is a strictly
positive integer. This leads to a 2x2 eigenvalue problem

λ

(

b+
b−

)

= M(m)

(

b+
b−

)

where

M(m) :=

[

I1(m) I2(m)
I2(m) I1(−m)

]

; m = 1, 2, . . . ; (8)

I1(m) =
2

N

N/2
∑

l=1

[

F (2r0 sin
πl
N )

2r0 sin
πl
N

+ F ′

(

2r0 sin
πl

N

)

]

×

× sin2
(

(m+ 1)
πl

N

)

; (9a)

I2(m) =
2

N

N/2
∑

l=1

[

F (2r0 sin
πl
N )

2r0 sin
πl
N

− F ′

(

2r0 sin
πl

N

)

]

×

×

[

sin2
(

m
πl

N

)

− sin2(
πl

N
)

]

. (9b)
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Taking the continuous limit N → ∞, we obtain

I1(m) =
2

π

∫ π

2

0

[

F (2r0 sin θ)

2r0 sin θ
+ F ′(2r0 sin θ)

]

× (10a)

× sin2 ((m+ 1)θ) dθ;

I2(m) =
2

π

∫ π

2

0

[

F (2r0 sin θ)

2r0 sin θ
− F ′(2r0 sin θ)

]

× (10b)

×
[

sin2 (mθ)− sin2(θ)
]

dθ.

The ring is linearly stable if the eigenvalues λ of (8) are
non-positive for all integers m ≥ 1; otherwise it is unsta-
ble. There are two possible types of instabilities - ones
in which the ring is simply long-wave unstable, corre-
sponding to an instability of a low order mode (small
m) but stability of higher order modes. The second
type corresponds to ill-posedness of the ring in which
the eigenvalues are positive in the m → ∞ limit and
grow as m increases. In the latter case the ring com-
pletely breaks up and often forms a fully two-dimensional
pattern. Such stability analysis is well-known for other
types of curve evolutions involving active scalar problems
– most notably the classical Kelvin-Helmholtz instability
(ill-posedness) of the vortex sheet for the 2D Euler equa-
tions [11].
Figure 2 shows some typical evolutionary behaviour of

our model. In the first column, the equilibrium solution is
a stable ring. Random initial conditions quickly converge
to a ring shape (t = 20); this is followed by slow dynamics
along the ring until equilibrium is achieved by t = 10000.
In column 2 a mode m = 3 instability is triggered on a
slower timescale than the initial collapse to a ring shape.
The final steady-state is a triangular shape, which retains
some of the features of the initial instability. Column
3 is the direct numerical simulation of the continuum
equations (5) using the Lagrangian method [1], and using
the same parameter values as Column 2. The thickness
represents the variable density ρ. In the fourth column,
the ring appears as a transient state, but final equilibrium
consists of just three points. Column 5 shows another
type of instability, which corresponds to very high modes
m; the ring solution is not only linearly unstable but
also linearly ill-posed; the resulting swarm has a two-
dimensional shape.
For interaction force (3), and with p = 1, q = 2 we have

tr M (m) = −

(

4m4 −m2 − 9
)

(4m2 − 1)(4m2 − 9)
< 0, m = 2, 3, . . .

detM(m) =
3m2(2m2 + 1)

(4m2 − 9)(4m2 − 1)2
> 0, m = 2, 3, . . .

This proves that the ring pattern corresponding to
F (r) = r − r2 is locally stable. Moreover, for large
m, the two eigenvalues are λ ∼ − 1

4 and λ ∼ − 3
8m2 → 0

as m → ∞. The presence of small eigenvalues implies
the existence of slow dynamics near the ring equilibrium.

FIG. 3: Stability diagram for (3). The curves shown cor-
respond to the boundaries of the stability det(M(m)) = 0,
with m = 3, 4, 5 and m = ∞, as indicated. The line p = q

is also drawn. Crossing any of the curves destabilizes the
ring. The intersection of m = ∞ and m = 3 boundaries is at
p = 0.10779, q = 9.277102.

Further analysis shows that the eigenvector correspond-
ing to the small eigenvalue and large m is nearly tangen-
tial to the circle; the other eigenvector is nearly perpen-
dicular. The corresponding two-time dynamics are also
clearly visible in simulations (Figure 2, column 1).
In general, if F (0) > 0 and F is C2, the asymptotics

for large m yield

I1 (m) ∼ I1(−m) ∼
F (0)

2πr0
lnm+O(1) as m → ∞.

This shows that trace M(m) > 0 for sufficiently large m.
It follows that the necessary condition for well-posedness
of a ring is that F (0) = 0. If in addition, F is C4, then
using integration by parts we obtain

tr M(m) ∼
2

π

∫ π/2

0

(

F (2r0 sin θ)
2r0 sin θ − F ′(2r0 sin θ)

)

dθ +O
(

1
m2

)

;

det(M(m)) ∼ tr M(m)
F ′′(0)r0

m2
+O

(

1

m4

)

.

In summary, if F (r) is C4 on [0, 2r0], then the neces-
sary and sufficient conditions for well-posedness
of a ring are:

F (0) = 0, F ′′(0) < 0 and (11)
∫ π/2

0

(

F (2r0 sin θ)

2r0 sin θ
− F ′(2r0 sin θ)

)

dθ < 0. (12)

In particular, the ring solution for Morse force (2)
as well as for forces (4) is always ill-posed, since
F (0) > 0. Another general result is if F is odd and C∞ on
[0, 2r0]. In that case, one can show that det(M(m)) = 0
for all m; the ring then has infinitely many zero eigenval-
ues. This observation may be relevant for the Kuramoto
model F (r) = sin(r) [7].
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FIG. 4: Stability of discrete vs. continuous system for
F (r) = tanh(4(1−r))−0.5. Top: det(M(m)).Dashed line cor-
responds to continuum eq. (10) and crosses to discrete eq. (9)
with N = 120, 160. Instability occurs iff det(M(m)) < 0. Bot-
tom: steady states of discrete dynamics with N as indicated;
inserts show the blowup of the ring structure.

For the force of type (3) with 0 < p < q, the asymp-
totics of the mode m = ∞ can be computed in terms
of Gamma functions. In [2], it is shown that the mode
m = ∞ is stable if and only if pq > 1 and p < 1. In
addition, the low modes m = 2, 3, 4, . . . may also become
unstable, see Figure 3. The dominant unstable mode
corresponds to m = 3, which bounds the stability region
from above. This boundary is given implicitly by

0 = 723− 594(p+ q)− 27(p2 + q2)− 431pq

+ 106
(

pq2 + p2q
)

+ 19
(

p3q + pq3
)

+ 10
(

p3q2 + p2q3
)

+ 6
(

p3 + q3
)

+ p3q3

and is shown in Figure 3. Similarly, the stability bound-
ary for m = 2 mode is given by 0 = 7 + 38(p + q) +
12pq + 3(p2 + q2) + 2

(

pq2 + p2q
)

− p2q2; this boundary
happens to lie well outside the area shown in Figure 3.
The stability boundaries for modes m = 4, 5, . . . are also
expressed in terms of higher order polynomials in p, q.
Even if (1) is ill-posed in the continuous limit N → ∞,

the ring of discrete particles (1) may be stable with a rel-
atively large N . An example of this is shown in Figure 4.
Note the slight instability for N = 160 but stability when
N = 120. The continuous limit is well approximated with
N = 5000; the resulting steady state appears to be a thin
annulus, whose inner and outer radius are approximately
r0 given by (7).
Many open questions remain. In a recent work [12],

the authors studied the collapse of N particles into K

points in one dimension, each point having roughly N/K
particles. When F (r) = r − rs, they showed that N
particles collapse to two points when s ≥ 2; no collapse
occurs when 1 < s < 2. This is very different then the
behaviour in two dimensions: such case corresponds to
the edge of the stable region for a ring (p = 1 in Figure
3). A more refined analysis shows that the ring is stable
for all 1 < s < 3. Numerics show that the ring collapses
into three points when s > 3.

Another open question is to study the annulus and
spot-type solutions, such as shown in Figure 1. These
tend to arise in the limit where F (r) has a sharp transi-
tion from repulsive to attractive regime. Unlike the ring
solutions discussed above or point solutions of [12], the
requirement F (0) = 0 is not necessary.

Numerics suggest that random initial conditions tend
to converge to ring solutions, whenever the ring is stable.
Global stability of the ring remains an open question.
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