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Abstract

This article introduces a novel framework for the study of the total variation model for
image denoising. In this model, the denoised image is the proximity operator of the total
variation evaluated at the given noisy image. Moreover, the total variation can be viewed as the
composition of a convex function (the `1 norm for the anisotropic total variation or the `2 norm
for the isotropic total variation) with a linear transformation (the first order difference operator).
These two facts lead us to investigate the proximity operator of the composition of a convex
function with a linear transformation. Under the assumption that the proximity operator of a
given convex function (e.g., the `1 norm or the `2 norm) can be readily obtained, we propose
a fixed point algorithm for computing the proximity operator of the composition of this convex
function with a linear transformation. We then specialize this fixed point methodology to the
total variation denoising models. The resulting algorithms are compared with the Goldstein-
Osher split Bregman denoising algorithm. An important advantage of the fixed point framework
leads to a convenient analysis for convergence of the proposed algorithms as well as a platform
for us to develop efficient numerical algorithms via various fixed point iterations. Our numerical
experience indicates that the method proposed here performs favorably.

1 Introduction

Noise reduction is a long standing problem in image processing. Many applications such as image
segmentation, surveillance, or medical image analysis require effective noise suppression to produce
reliable results. To suppress noise in noisy images, many efficient mathematical methods such as
variational PDE methods and multiscale methods have been successfully developed and made a
significant impact on image denoising and other fields of imaging science. The strength of multiscale
analysis in image denoising is that it can provide a sparse representation of the underlying image.
This key strength is fully exploited in developing wavelet-based image denoising algorithms [5, 12,
20, 26]. The strength of variational PDE methods is that visually important geometric features of
images, such as gradients, curvatures, and level sets, can be directly integrated into a functional to
be minimized [7, 27, 28]. Among these image denoising models, the well-known Rudin-Osher-Fatemi
(ROF) total variation model is one of the most popular models.
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The ROF model produces the denoised image given by

argmin
{

1
2
‖u− x‖2

2 + µ‖u‖TV : u ∈ Rd

}
, (1)

where x ∈ Rd denotes the noisy image to be denoised and ‖u‖TV is the total variation of u. The
distinctive feature of the total variation regularization and its various variants is that edges of images
are preserved in the denoised image (1). Difficulty in minimizing the functional appearing in (1)
lies in the nondifferentiability of the total variation norm and the large dimension of the underlying
images. A number of ideas have been proposed to address these issues. For instance, PDE based
models with explicit, semi-implicit, and fixed point schemes were proposed in [1, 27, 28, 29, 30] for
a modified total variation model. Based on the discretized cost functional appearing in (1), various
methods which include subgradient descents, subgradient projections, the Newton-like method,
second-order cone programming, interior point methods, graph-based approaches, Nesterov’s first-
order explicit schemes were proposed, see [8, 10, 14, 19, 23, 31, 34] and the references cited therein.
Dual and primal-dual approaches were also studied in [4, 6, 16]. Recently, the Bregman iteration
was successfully used in image denoising due to its speed, simplicity, efficiency and stability, see for
example, [15, 25, 32, 33].

The ROF model can be viewed as the proximity operator of µ‖ · ‖TV evaluated at the noisy
image x. Although this is a convenient interpretation of the method it is not immediately useful
since the proximity operator of µ‖ · ‖TV cannot be easily computed. To tackle this problem, we
treat ‖ · ‖TV as the composition of a convex function (the norm ‖ · ‖1 for the anisotropic total
variation or a certain combination of the norm ‖ · ‖2 for the isotropic total variation) with a linear
transformation (the first order difference operator). The motivation of viewing the TV-norm as a
composition map is that the norm appearing in this composition has an explicit proximity map.
This triggers us to develop new algorithms for the ROF model by fully exploiting the explicit form
of the proximity map of the norm ‖ · ‖1 or the norm ‖ · ‖2.

Our discussion is conducted in a general setting having the ROF model as its special case. We
shall describe how to compute the proximity operator of a composition of a convex function with
a linear transformation under an assumption that the proximity operator of this convex function
can be computed efficiently. With the additional observation that the subdifferential of this convex
function can be completely characterized by its proximity operator, we are able to formulate the
problem of computing the proximity operator of the composition function as a fixed point problem.
The fixed point problem is analyzed and numerical algorithms for solving it are developed.

This paper is organized in the following manner. In Section 2 we review the concepts of prox-
imity operator and subdifferential and provide a characterization of the proximity operator and the
subdifferential of a convex function. This characterization plays a central role in this paper. In
Section 3 we represent the proximity operator of the composition of a convex function and a linear
transformation as a fixed point problem. We conduct a theoretical study of the fixed point problem
and provide a numerical treatment for its solution. In Section 4 we specify the ROF total variation
denoising problem as a special case of our general setting on proximity operators of composition
functions. We develop new algorithms for the ROF model and compare them with several existing
algorithms including the Chambolle algorithm [4], the Goldstein-Osher split Bregman method [15],
and the Jai-Zhao denoising algorithm [17]. In Section 5 we give a Gauss-Seidel variation of our
proposed algorithms to speed up convergence. In Section 6 we focus on the implementation of
the proposed algorithms in the context of image denoising. Moreover, we compare the numerical
performance of our proposed algorithms and the split Bregman algorithms. Our conclusions about
the algorithms proposed here are summarized in Section 7.
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2 Proximity Operator and Subdifferential

The proximity operator and subdifferential of a convex function are two important concepts in
convex analysis. In this section, we review some aspects of these concepts needed in this paper. In
addition, we provide a characterization of the subdifferential of a convex function in terms of its
associated proximity operator. This characterization will play a crucial role in the development of
fixed point algorithms based upon the proximity operator which will be described in the subsequent
sections.

We begin by introducing our notation. We denote by Rd the usual d-dimensional Euclidean
space. For x, y ∈ Rd, we define 〈x, y〉 :=

∑d
i=1 xiyi, the standard inner product of Rd. We denote

by ‖ · ‖ a norm of Rd. In particular, for p ≥ 1, we define the p-norm of a vector x ∈ Rd as
‖x‖p := (

∑d
i=1 |xi|p)

1
p . For a norm ‖ · ‖ on Rd, its dual norm ‖ · ‖∗ is defined by

‖y‖∗ := max{|〈x, y〉| : ‖x‖ = 1}.

The proximity operator was introduced by Moreau in [21, 22]. We recall its definition as follows:

Definition 2.1 Let ψ be a real-valued convex function on Rd. The proximity operator of ψ is
defined for x ∈ Rd by

proxψx := argmin
{

1
2
‖u− x‖2

2 + ψ(u) : u ∈ Rd

}
. (2)

Definition 2.2 Let ψ be a real-valued convex function on Rd. The subdifferential of ψ at x ∈ Rd

is defined by

∂ψ(x) := {y : y ∈ Rd and ψ(z) ≥ ψ(x) + 〈y, z − x〉 for all z ∈ Rd}. (3)

Elements in ∂ψ(x) are called subgradients.

Definition 2.2 says that the subdifferential of ψ is a set-valued mapping from Rd into a nonempty
convex compact set in Rd (see, e.g., [2, Page 732]).

We now present three exmaples for which we can explictly calculate their subdifferentials and
proximity operators. These examples are also useful for developing algorithms for total variation
denoising models.

The first example concerns the subdifferential and the proximity operator of the absolute value
function ψ = 1

λ | · |, where λ > 0.

Example 2.3 If λ > 0 and x ∈ R then

∂

(
1
λ
| · |

)
(x) =





1
λ{sign(x)}, if x 6= 0;

[− 1
λ , 1

λ

]
, otherwise

and

prox 1
λ
|·|x = max

(
|x| − 1

λ
, 0

)
sign(x).

Clearly, prox 1
λ
|·| is the well-known soft thresholding operator with 1

λ as the threshold, [13].

The second example is a direct extension of the first example to Rm.
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Example 2.4 If λ > 0 and x ∈ Rm then

∂

(
1
λ
‖ · ‖1

)
(x) =

{
y : y ∈ Rm, yk ∈ ∂

(
1
λ
| · |

)
(xk), k = 1, . . . , m

}
, (4)

and
prox 1

λ
‖·‖1x =

[
prox 1

λ
|·|x1,prox 1

λ
|·|x2, . . . ,prox 1

λ
|·|xm

]t
. (5)

The third example is about the subdifferential and the proximity operator of the `2-norm on
Rm, that is ψ = 1

λ‖ · ‖2, where λ > 0.

Example 2.5 If λ > 0 and x ∈ Rm, then

∂

(
1
λ
‖ · ‖2

)
(x) =





1
λ{ x

‖x‖2 }, if x 6= 0;

{y : y ∈ Rm : ‖y‖2 ≤ 1
λ}, otherwise.

and

prox 1
λ
‖·‖2x = max

(
‖x‖2 − 1

λ
, 0

)
x

‖x‖2
= prox 1

λ
|·|(‖x‖2)

x

‖x‖2
. (6)

The following result characterizes the relationship between the proximity operator and the
subdifferential of a convex function. This proposition serves as a basic tool for the algorithmic
development of many tasks in image analysis. We shall explain this in detail in the following
sections.

Proposition 2.6 If ψ is a convex function on Rd and x ∈ Rd, then

y ∈ ∂ψ(x) if and only if x = proxψ(x + y). (7)

Proof: From Definition 2.2 of subdifferential, the inclusion y ∈ ∂ψ(x) is equivalent to the require-
ment that

ψ(z)− ψ(x)− 〈y, z − x〉 ≥ 0, for all z ∈ Rd. (8)

By Definition 2.1 of the proximity operator, the equality x = proxψ(x + y) is equivalent to the
inequality

1
2
‖x− (x + y)‖2

2 + ψ(x) ≤ 1
2
‖z − (x + y)‖2

2 + ψ(z), for all z ∈ Rd. (9)

Simplifying the above inequality (9) yields the equivalent inequality

−1
2
‖z − x‖2

2 ≤ ψ(z)− ψ(x)− 〈y, z − x〉, for all z ∈ Rd. (10)

Now, if the inequality (8) holds, so does (10). In other words, we clearly have that the inclusion
y ∈ ∂ψ(x) implies x = proxψ(x + y).

We next prove that (10) implies (8). If (10) is true, choosing v ∈ Rd, ρ > 0 and setting
z = x + ρv in (10), we obtain that

−1
2
ρ‖v‖2

2 ≤
ψ(x + ρv)− ψ(x)

ρ
− 〈y, v〉.

Note that (ψ(x + ρv)− ψ(x))/ρ is an increasing function of the variable ρ. Consequently, from the
above inequality it follows, for 0 < ρ ≤ 1, that

−1
2
ρ‖v‖2

2 ≤
ψ(x + ρv)− ψ(x)

ρ
− 〈y, v〉 ≤ ψ(x + v)− ψ(x)− 〈y, v〉.
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Letting ρ → 0+, we get that 0 ≤ ψ(x + v)− ψ(x)− 〈y, v〉 which implies equation (8). 2

As a result of Proposition 2.6, we have for x ∈ Rd that

∂ψ(x) = {y : y ∈ Rd, x = proxψ(x + y)}.

3 Fixed Point Algorithms Based on Proximity Operator

In this section, we develop fixed point algorithms based on the proximity operator for the compo-
sition of a convex function and a linear transformation. To this end, for a convex function ϕ on
Rm and an m× d matrix B, we define a function ψ for every x ∈ Rd by

ψ(x) := (ϕ ◦B)(x).

We remark that ψ is also convex. Under the assumption that we can explicitly compute the
proximity operator proxϕ, our aim is to develop an algorithm for evaluating proxϕ◦B. That is, we
consider the following minimization problem

min
{

1
2
‖u− x‖2

2 + (ϕ ◦B)(u) : u ∈ Rd

}
, (11)

where x is a given vector in Rd. The reason for considering the minimization problem (11) is that
in special cases it corresponds to the ROF total variation denoising model (1). For example, for
the ROF model with the anisotropic total variation, one can write ‖ · ‖TV = ‖ · ‖1 ◦B, where B is a
first order difference operator and the proximity operator of ‖ · ‖1 as shown in Example 2.4 has an
explicit expression. More details on the anisotropic and isotropic total variation will be presented
later in Section 4.

3.1 Formulation of Fixed Point Problems

The vector which achieves the minimum in (11), denoted by proxϕ◦Bx, exists and is unique. Our
aim is to provide a constructive method to find it. Clearly, proxϕ◦Bx can be characterized by the
inclusion

proxϕ◦Bx ∈ x− ∂(ϕ ◦B)(proxϕ◦Bx). (12)

To identify the subdifferential ∂(ϕ ◦B) appearing in this inclusion, we recall the chain rule (see,
e.g., [35, Theorem 2.8.3]) which gives us the formula

∂(ϕ ◦B) = Bt ◦ (∂ϕ) ◦B. (13)

Combining equations (12) and (13) yields the fact that

proxϕ◦Bx ∈ x−Bt∂ϕ
(
Bproxϕ◦Bx

)
. (14)

Equation (14) indicates that proxϕ◦B is related to the subdifferential of ϕ. Furthermore, the
relationship between the subdifferential of ϕ and the proximity operator of ϕ has been established
in Proposition 2.6. These facts enable us to establish a relationship between the proximity operator
of ϕ ◦ B and the proximity operator of ϕ. To formulate our observation we introduce the affine
transformation A : Rm → Rm defined, for a fixed x ∈ Rd, at y ∈ Rm by

Ay := Bx + (I − λBBt)y, for all (15)

and the operator H : Rm → Rm

H := (I − prox 1
λ

ϕ) ◦A. (16)

5



Theorem 3.1 If ϕ is a convex function on Rm, B is an m× d matrix, x ∈ Rd and λ is a positive
number then

proxϕ◦Bx = x− λBtv (17)

if and only if v ∈ Rm is a fixed point of H.

Proof: From (14), we conclude that proxϕ◦B is characterized by the fact that

proxϕ◦Bx = x− λBtv (18)

where v is a vector in the set ∂
(

1
λϕ

)
(Bproxϕ◦Bx). Thus, it follows that v ∈ ∂

(
1
λϕ

)
(B(x−λBtv)).

Using Proposition 2.6 we conclude that

Bx− λBBtv = prox 1
λ

ϕ(Bx + (I − λBBt)v), (19)

that is, v is a fixed point of H.
Conversely, if v is a fixed point of H then equation (19) holds. Using again Proposition 2.6 and

the chain rule (13), we conclude that

λBtv ∈ ∂(ϕ ◦B)(x− λBtv).

Since ϕ ◦B is convex, Proposition 2.6 together with the above inclusion implies (18). 2

Theorem 3.1 demonstrates the solution of the minimization problem (11) corresponds to a fixed
point of the operator H. We summarize this observation for finding the minimum of problem (11)
as follows:

Fixed Point Problem Based on Proximity Operator (FP2O)
v = Hv
proxϕ◦Bx = x− λBtv.

Based on the above observation, we will focus our attention on finding the fixed points of the
operator H by exploiting existing results from fixed point theory.

3.2 Fixed Points of the Operator H

In this subsection, we will present conditions concerning the existence of fixed points for the operator
H defined by (16) which are a direct consequence of Theorem 3.1.

Proposition 3.2 If ϕ is a convex function on Rm, B is an m × d matrix, x ∈ Rd and λ is a
positive number, then H has a fixed point.

Proof: Since the vector proxϕ◦Bx which achieves the minimum in (11) exists and is unique, the
first part of the proof for Theorem 3.1 tells us that H has a fixed point. 2

The next result is needed in order to develop a convergent algorithm for finding the fixed point of
H. To this end, we begin with the definition of nonexpansivity. A nonlinear operator T : Rd → Rd

is nonexpansive if for x, y ∈ Rd,

‖T (x)− T (y)‖2 ≤ ‖x− y‖2.

It was proved in [9] that proxψ satisfies for all x, y ∈ Rd the inequality

‖proxψx− proxψy‖2
2 ≤ 〈x− y, proxψx− proxψy〉, (20)
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as a result of (3.3) and the Cauchy-Schwarz inequality we conclude that proxψ is nonexpansive.
Likewise, from a direct computation using (3.3) we conclude for all x, y ∈ Rd that

‖(I − proxψ)(x)− (I − proxψ)(y)‖2
2 ≤ 〈x− y, (I − proxψ)x− (I − proxψ)y〉. (21)

Therefore, another application of the Cauchy-Schwarz inequality applied to the inequality (21)
proves that I − proxψ is also nonexpansive.

Lemma 3.3 If ϕ is a convex function on Rm, B is an m × d matrix and λ is a positive number
such that ‖I − λBBt‖2 ≤ 1 then H is nonexpansive.

Proof: We need to show that H satisfies the condition ‖Hv − Hw‖2 ≤ ‖v − w‖2 for all vectors
v, w ∈ Rm. Since the operator I − prox 1

λ
ϕ is nonexpansive (see (21)), we have that

‖Hv −Hw‖2 = ‖(I − prox 1
λ

ϕ)(Av)− (I − prox 1
λ

ϕ)(Aw)‖2 ≤ ‖Av −Aw‖2

The definition of A in (15) and the choice of λ yield that

‖Av −Aw‖2 = ‖(I − λBBt)(v − w)‖2 ≤ ‖I − λBBt‖2‖v − w‖2 ≤ ‖v − w‖2.

This together with the previous estimate completes the proof. 2

In the following series of lemmas, we obtain a preliminary observation on the location of the
fixed points of H. To this end, we recall that a real-valued function ϕ is Lipschitz continuous with
Lipschitz constant K provided that |ϕ(u) − ϕ(v)| ≤ K‖u − v‖, for all u, v ∈ Rm. The smallest
constant K in this inequality is denoted by Lipϕ

Lemma 3.4 If ϕ is a Lipschitz continuous convex function and y ∈ ∂ϕ(x) for some x ∈ Rm then

‖y‖∗ ≤ Lipϕ. (22)

Proof: Since y ∈ ∂ϕ(x) for some x ∈ Rm, we have from the definition of subdifferentail of ϕ that

ϕ(z) ≥ ϕ(proxϕx) + 〈y, z − proxϕx〉, for all z ∈ Rm.

We let z := proxϕx + ρv, for ρ > 0 and v ∈ Rm, and substitute it into the above inequality to
conclude that

〈y, v〉 ≤ |(ϕ(proxϕx + ρv)− ϕ(proxϕx))|/ρ ≤ Lipϕ‖v‖
for arbitrary v. Hence, by the definition of the dual norm, we conclude the validity of the inequality
(22). 2

As a consequence of this lemma and the triangle inequality, we have for any norm ‖ · ‖ on Rm

and x ∈ Rm that
∂‖ · ‖(x) ⊆ {y : ‖y‖∗ ≤ 1}.

For the next lemma, we introduce the set Cϕ := {z : z ∈ Rm, ‖z‖∗ ≤ Lipϕ/λ}.

Lemma 3.5 If ϕ is a Lipschitz continuous convex function and B is an m×d matrix then H maps
Rm into Cϕ.
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Proof: Since the operator H defined by (16) is the composition of the operator I − prox 1
λ

ϕ with
the affine transformation A, it suffices to show that for any v ∈ Rm, v − prox 1

λ
ϕv ∈ Cϕ. However,

by (14), we have v − prox 1
λ

ϕv ∈ ∂
(

1
λϕ

)
(prox 1

λ
ϕv) and so, by Lemma 3.4, the result follows. 2

From Lemma 3.5, we have the result on the location of the fixed points of H.

Proposition 3.6 If ϕ is a Lipschitz continuous convex function and B is an m × d matrix such
that ‖I − λBBt‖2 ≤ 1 then all the fixed points of H are in Cϕ and Cϕ is nonempty.

Proof: By Proposition 3.6, the hypotheses of this proposition ensure that H has a fixed point. By
Lemma 3.5, the fixed points of H are in Cϕ, and thus, Cϕ is nonempty. 2

3.3 Iterative Algorithms for Fixed Points

The main focus of this subsection is to give methods which permit the computation of the fixed
points of H defined by (16). Since the operator H is nonexpansive under certain conditions on ϕ
and B (see Lemma 3.3), some methods in the existing literature can be used to find the fixed points
of H. For example, it was pointed out in [11] that a sequence defined by using the iterations of
scaled H converges to a fixed point of H. Here, we are concern with the convergence of the Picard
iterates of H, to be defined below. We recall some basic definitions used for finding fixed points by
Picard iterates.

For a given v0 ∈ Rm and an operator P : Rm → Rm we define vn+1 := P(vn) for n ∈ N. The
sequence {vn : n ∈ N}, is called the Picard sequence of the operator P. For any κ ∈ (0, 1), the
κ-averaged operator Pκ of P is defined by

Pκ := κI + (1− κ)P. (23)

The following lemma considers the convergence of the Picard sequence associated to the κ-
averaged operator of P.

Lemma 3.7 (Opial κ-averaged Theorem [24]) If C is a closed and convex set in Rm and
P : C → C is a nonexpansive mapping with at least one fixed point then for κ ∈ (0, 1) Pκ is
nonexpansive, maps C to itself, and has the same set of the fixed points as P. Furthermore, for
any u ∈ C and any κ ∈ (0, 1), the Picard sequence of Pκ converges to a fixed point of P.

Basically, the Opial κ-averaged Theorem says that a fixed point problem of a nonexpansive
mapping can be studied through the corresponding κ-averaged operator. As a direct consequence
of the Opial κ-averaged Theorem to the operator H, we have the following result.

Corollary 3.8 Under the conditions given in Proposition 3.6, for any u ∈ Cϕ and any κ ∈ (0, 1),
the Picard sequence Hκ converges to a fixed point of H.

Proof: From Lemmas 3.3, 3.5, and 3.6, we know that the operator H is nonexpansive, maps the
set Cϕ to itself, and has a fixed point. By the Opial κ-averaged Theorem, we conclude that for any
u ∈ Cϕ and any κ ∈ (0, 1), the Picard sequence of Hκ converges to a fixed point of H. 2

Note that the parameter κ is required to be strictly between 0 and 1 in Corollary 3.8. We are
unable to extend it to the case of κ = 0. The next corollary gives some information about this
issue. To this end, we recall that a mapping P : Rm → Rm is called firmly nonexpansive provided
for any x, y ∈ Rm,

‖Px− Py‖2
2 ≤ 〈x− y,Px− Py〉.
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Observe that the form of the mapping H given by (16) suggests that we consider it for arbitrary
affine map A from Rm to Rm. Clearly, as in the proof of Lemma 3.3 we conclude that in this
generality H still remains nonexpansive provided that A is nonexpansive. The simplest choice of
nonexpansive affine map corresponds to a shift operator. That is, there exists a a ∈ Rm such that
for any x ∈ Rm, Ax = a + x. This choice also has the crucial property that the corresponding
H is firmly nonexpansive. Therefore, the next corollary establishes that the Picard iterates of H
corresponding to a shift operator always converges.

Proposition 3.9 If P : Rm → Rm is firmly nonexpansive and has at least one fixed point then its
Picard sequence converges.

Proof: We show that 2P − I is nonexpansive on Rm. To this end, for any vectors u, v ∈ Rm, we
have that

‖(2P − I)(u)− (2P − I)(v)‖2
2 = 4‖Pu− Pv‖2

2 − 4〈Pu− Pv, u− v〉+ ‖u− v‖2
2.

Since the operator P is firmly nonexpansive, we conclude that

‖(2P − I)(u)− (2P − I)(v)‖2
2 ≤ ‖u− v‖2

2.

That is, 2P − I is nonexpansive. It is clear that the set of fixed points of 2P − I is identical to that
of P. We further note that

P =
1
2
(2P − I) +

1
2
I.

By Lemma 3.7 with κ = 1
2 , we know that for any given initial vector the Picard sequence of the

operator P converges to a fixed point of P. 2

We elaborate on two special cases of this proposition. The first concerns the `1 norm and the
other treats the case of the `2 norm. In the first case, we provide the additional information that
the Picard iterates converge in a finite number of steps.

Proposition 3.10 If λ > 0 and a, x0 ∈ Rm then the iterative scheme

xk+1 = (I − prox 1
λ
‖·‖1)(x

k + a), k = 0, 1, . . . , (24)

converges to its limit in a finite number of steps and for i = 1, 2, . . . ,m,

lim
k→∞

(xk)i =





sign(ai)
λ , ai 6= 0,

(I − prox 1
λ
|·|)(x

0)i, ai = 0.

Proof: It suffices to prove this result in the case of m = 1 since all mappings act coordinate-wise.
We divide the proof into the three cases a > 0, a < 0, and a = 0. We start with the case that
a > 0. In this case, by Example 2.3, we have that 1

λ = (I − prox 1
λ
|·|)(

1
λ + a). That is, the number

1
λ is a fixed point of the iterative scheme. If x0 + a > 1

λ , then x1 = 1
λ . Hence, xk = 1

λ for all k ≥ 1.
In other words, one iteration is enough to reach the limit of the iterative scheme. If |x0 + a| ≤ 1

λ ,
we have xk = x0 + ka if 0 ≤ k < d 1

λa − x0

a e and xk = 1
λ if k ≥ d 1

λa − x0

a e. Here, dce represents
the smallest integer which exceeds c. The iterative scheme reaches its limit in d 1

λa − x0

a e steps. If
x0 + a < − 1

λ , then x1 = − 1
λ . Using the preceding result, the scheme reaches its limit in d 2

λae + 1
steps.
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The proof for the case a < 0 is similar to that for the case a > 0. Specifically, the iterative
scheme converges to limit − 1

λ in a finite number of steps.
Finally, we consider the case a = 0. In this case, the iterative scheme becomes xk+1 = (I −

prox 1
λ
|·|)x

k. It is easy to see that for all k ≥ 1, xk = 1
λ if x0 > 1

λ ; xk = − 1
λ if x0 < − 1

λ ; xk = x0 if

|x0| ≤ 1
λ . Consequently, the iteration reaches its limit in just one step. 2

We remark that the limit of the Picard iterates in Proposition 3.10 can also be expressed for
any 1 ≤ p < ∞ in the form

lim
k→∞

xk = arg min
{
‖x− x0‖p : x ∈ 1

λ
∂‖ · ‖1(a)

}
.

Proposition 3.11 If λ > 0 and a, x0 ∈ Rm then the iterative scheme

xk+1 = (I − prox 1
λ
‖·‖2)(x

k + a), k = 0, 1, . . . , (25)

converges to its limits in a finite number of steps and

lim
k→∞

xk =





x0 −max(‖x0‖2 − 1
λ , 0) x0

‖x0‖2 , a = 0,

a
λ‖a‖2 , a 6= 0.

Moreover, for any 1 ≤ p < ∞,

lim
k→∞

xk = arg min
{
‖x− x0‖p : x ∈ 1

λ
∂‖ · ‖2(a)

}
.

Proof: First, we consider the case when a = 0. In this case, equation (25) reduces to xk+1 =
(I −prox 1

λ
‖·‖2)(x

k). If ‖x0‖2 ≥ 1
λ , we have that xk = x0

λ‖x0‖2 for all k ≥ 1 and if ‖x0‖2 < 1
λ , we have

that xk = x0 for all k ≥ 0. Hence, limk→∞ xk = x0 −max(‖x0‖2 − 1
λ , 0) x0

‖x0‖2 .
For the case a 6= 0, Proposition 3.9 yields that x∞ = (I − prox 1

λ
‖·‖2)(x

∞ + a), i.e, a =
prox 1

λ
‖·‖2(x

∞ + a), where x∞ is the limit of the Picard iterates. Clearly, by Example 2.5 and
equation (7), we have that x∞ = a

λ‖a‖2 . 2

4 Fixed Point Algorithms Based on the Proximity Operator for
TV Denoising

Recall that in the previous section we presented a fixed point algorithm based on the proximity
operator for the model (11). In this section, we will identify the well-known ROF total variation
image denoising model (1) as a special case of (11). To this end, we recall two definitions of total
variation which appeared in the literature. Let D denote the N×N matrix defined by the equation

D :=




0
−1 1

. . . . . .
−1 1


 ,
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and choose B to be an 2N2 ×N2 matrix given by

B :=
[
IN ⊗D
D ⊗ IN

]
(26)

where IN is the N ×N identity matrix and the notation P ⊗Q denotes the Kronecker product of
matrices P and Q.

Let u be an image in RN2
. There are two possible definitions of the total variation ‖u‖TV in

the literature. The first one is called the anisotropic total variation defined by the formula

‖u‖TV := ‖Bu‖1 (27)

while the second definition of total variation is called the isotropic total variation and is defined by
the equation

‖u‖TV :=
N2∑

i=1

∥∥∥∥
[

(Bu)i

(Bu)N2+i

]∥∥∥∥
2

. (28)

To identify the ROF (1) as a special case of model (11) for the anisotropic total variation (27),
we choose ϕ : R2N2 → R as

ϕ(z) := µ‖z‖1, z ∈ R2N2
(29)

while for the isotropic total variation (28), we choose ϕ : R2N2 → R as

ϕ(z) := µ
N2∑

i=1

∥∥∥∥
[

zi

zN2+i

]∥∥∥∥
2

, z ∈ R2N2
. (30)

It is clear that in either of the above cases the function ϕ is convex, and for these choices, equa-
tion (11) reduces to the ROF model (1). We shall develop algorithms for both choices of total
variations described above.

4.1 Anisotropic Total Variation Denoising

In this subsection, we consider the anisotropic total variation (27).

Lemma 4.1 For the anisotropic total variation (27), the corresponding operator H maps R2N2

into
[−µ

λ , µ
λ

]2N2

.

Proof: The proof follows by specializing Lemma 3.5 to the current situation. 2

Lemma 4.2 The eigenvalues, λij, 0 ≤ i, j < N , of the N2 × N2 matrix BtB are given by the
formula

λij = 2− cos 3iπ
2N

cos iπ
2N

− cos 3jπ
2N

cos jπ
2N

(31)

and all lie in the interval [0, 8).

Proof: A direct computation shows that

DtD =




1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1




11



and the eigenvalues of DtD are

1− cos 3iπ
2N

cos iπ
2N

, for i = 0, 1, . . . , N − 1.

For 0 ≤ z < π/2, the equalities
(

1− cos 3z

cos z

)′
=

2(sin z + sin 3z)
cos z

≥ 0 and lim
z→π

2
−

(
1− cos 3z

cos z

)
= 4,

yield that all eigenvalues of DtD are in the interval [0, 4). We remark that this result can be
alternatively obtained by the Gershgorin disc theorem. Here, exact values of the eigenvalues are
provided.

Next, we study the eigenvalues of the matrix BtB. Note that

BtB = (IN ⊗D)t(IN ⊗D) + (D ⊗ IN )t(D ⊗ IN ) = IN ⊗ (DtD) + (DtD)⊗ IN .

Hence, the eigenvalues of BtB are given as

2− cos 3iπ
2N

cos iπ
2N

− cos 3jπ
2N

cos jπ
2N

,

for 0 ≤ i, j ≤ N − 1. These eigenvalues are clearly in the interval [0, 8). 2

Lemma 4.3 For the anisotropic total variation (27), the corresponding operator H is nonexpansive
whenever

λ ≤ 1

4 sin2 (N−1)π
2N

. (32)

Proof: By Lemma 4.2, the largest eigenvalue of BtB is 4− 4 cos (N−1)π
N = 8 sin2 (N−1)π

2N . It follows
that ‖I − λBtB‖2 ≤ 1, if λ satisfies (32). Therefore, H is nonexpansive by Lemma 3.3. 2

The next proposition provides a sufficient condition for the convergence of the Picard iterations
for the anisotropic total variation model.

Proposition 4.4 If ϕ and B are defined by (29) and (26), respectively, H defined by (16), µ, λ > 0
where λ satisfies (32), and κ ∈ (0, 1) then the Picard iteration of Hκ converges to a fixed point of
H.

Proof: The proof follows from Lemma 4.3 and Corollary 3.8. 2

With Proposition 4.4, we have the following fixed point algorithm based on proximity operator
with anisotropic TV (FP2O-ATV) for the ROF denoising model (1).

Fixed Point Algorithm Based on the Proximity Operator with ATV (FP2O-ATV)

Given: noisy image x; λ = 1
4 sin−2 (N−1)π

2N , µ > 0, κ ∈ (0, 1)
Initialization: v0 = 0
For n = 0, 1, 2, . . .

vn+1 ← κvn + (1− κ)(I − proxµ
λ
‖·‖1)(Bx + (I − λBBt)vn)

End
Write the output of vn from the above loop as v∞ and compute
proxϕ◦Bx = x− λBtv∞

12



As given in Example 2.4, the operator proxµ
λ
‖·‖1 acting on a vector can be easily computed in

a coordinate-wise fashion. Therefore, the algorithm FP2O-ATV can be efficiently implemented.
Next, we compare the algorithm FP2O-ATV with the Goldstein-Osher split Bregman anisotropic

TV denoising algorithm [15] which is considered to be one of the best algorithms for solving the
ROF model. To this end, we recall that the Goldstein-Osher split Bregman denoising algorithm
has the following form:

Split Bregman Anisotropic TV Denoising (see [15])

Given: noisy image x; λ > 0, µ > 0
Initialization: b0 = 0, d0 = 0, and x0 = x
For n = 0, 1, 2, . . .

(I + λBtB)xn+1 = x− λBt(bn − dn)
dn+1 ← proxµ

λ
‖·‖1(Bxn+1 + bn)

bn+1 ← Bxn+1 + bn − dn+1

End

The convergence of the above split Bregman denoising algorithm was proved in [3]. It can be
seen that in each iteration one needs to solve a linear system (I + λBtB)xn+1 = x− λBt(bn − dn).
It was suggested in [15] that a one step Gauss-Seidel iteration yields a satisfactory approximation
to xn+1.

From the relation bn+1 = Bxn+1 + bn − dn+1 in the Goldstein-Osher split Bregman denoising
algorithm, we know that Bxn+1 ≈ dn+1, therefore BtBxn+1 ≈ Btdn+1 ≈ Btdn, when n is large
enough. With this in mind, if we simply drop the term λBtBxn+1 and the term λBtdn from the
left and right hand sides of the linear system (I + λBtB)xn+1 = x − λBt(bn − dn), this system
becomes xn+1 = x−λBtbn. With this modification, the split Bregman denoising algorithm reduces
to the Jia-Zhao denoising algorithm [17] which can be considered as Algorithm FP2O-ATV for the
case κ = 0. Moreover, we would like to point out that the formulation and convergence proofs
of both the Goldstein-Osher split Bregman algorithm and the Jia-Zhao denoising algorithm use
extensively properties of the Bregman distance. In particular, the parameter λ which guarantees
convergence of the Jia-Zhao denoising algorithm is required to be less than 1

8 while this parameter
for Algorithm FP2O-ATV to converge is relaxed to a number less than 1

4 sin−2 (N−1)π
2N which is

slightly bigger than 1
4 . Furthermore, as shown in Sections 2 and 3, our motivation for developing

Algorithm FP2O-ATV and its convergence proof are totally different from those of the above two
algorithms. Our method follows from general considerations.

4.2 Isotropic Total Variation Denoising

In this subsection, we consider the isotropic total variation (28). The corresponding function ϕ and
the operator B are defined in (30) and (26), respectively. We will study the nonexpansivity of the
resulting operator H defined by (16).

Lemma 4.5 For the isotropic total variation (28), the corresponding operator H maps R2N2
into

the set {
z : z ∈ R2N2

,

∥∥∥∥
[

zi

zi+N2

]∥∥∥∥
2

≤ µ

λ
, i = 1, 2, . . . , N2

}
.
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Proof: The proof follows by specializing Lemma 3.5 to the current situation. 2

Following the same arguments used in Lemma 4.3, we have the following result on the nonex-
pansivity of operator H for the isotropic total variation model.

Lemma 4.6 For the isotropic total variation (28), the corresponding operator H is nonexpansive
whenever λ satisfies (32).

Again, following the similar arguments used in Proposition 4.4, we have the following result on
the convergence of the Picard iterations of Hκ for the isotropic total variation model.

Proposition 4.7 If ϕ and B are defined by (30), H defined by (16), µ, λ > 0 where λ satisfies
(32), and κ ∈ (0, 1) then the Picard iterations of Hκ converges to a fixed point of H.

Proof: The proof follows from Lemma 4.6 and Corollary 3.8. 2

As a result of Proposition 4.7, we propose the following fixed point algorithm based on the
proximity operator with isotropic TV (FP2O-ITV) for the ROF model.

Fixed Point Algorithm Based on the Proximity Operator with ITV (FP2O-ITV)

Given: noisy image x; λ = 1
4 sin−2 (N−1)π

2N , µ > 0, κ ∈ (0, 1)
Initialization: v0 = 0
For n = 0, 1, . . .

vn+1 ← κvn + (1− κ)(I − prox 1
λ

ϕ)(Bx + (I − λBBt)vn)
End
Write the output of vn from the above loop as v∞ and compute
proxϕ◦Bx = x− λBtv∞

As given in Example 2.5, the output of the operator prox 1
λ

ϕ acting on a vector is computable
explicitly. Accordingly, FP2O-ITV can be implemented easily.

Next, we will comment on the relationship among Algorithm FP2O-ITV, the Chambolle algo-
rithm [4], and the Goldstein-Osher split Bregman denoising algorithm [15] for the ROF model with
isotropic total variation. To this end, we first recall the Chambolle algorithm.

Chambolle’s Denoising Algorithm (see [4])

Given: noisy image x; µ > 0
Define: Γ is a diagonal matrix whose (i, i)-th entry is the absolute value

of the i-th entry of the vector µBBtp−Bx
Solve: µBBtp−Bx + Γp = 0
Compute: proxϕ◦Bx = x− µBtp

It is evident that λBtv∞ in Algorithm FP2O-ITV is equal to µBtp in the Chambolle algorithm.
Therefore, the difference λv∞ − µp lies in the null space of Bt. It was proved in [4] that the vector
µBtp in the Chambolle algorithm is the projection of x into the set

C = µ

{
Btz : z ∈ R2N2

,

∥∥∥∥
[

zi

zi+N2

]∥∥∥∥
2

≤ 1, i = 1, 2, . . . , N2

}
,
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and therefore, so is λBtv∞. Hence, both Algorithm FP2O-ITV and the Chambolle algorithm
provide possible ways for computing the projection of x onto the set C, but they act differently.
We further remark that Chambolle proposed a semi-implicit gradient descent algorithm for solving
the nonlinear system µBBtp − Bx + Γp = 0. Specifically, he chooses a τ > 0 (a time step), let
p0 = 0 and for any n ≥ 0,

pn+1
ij =

pn
ij − τµ−1(µBBtpn −Bx)ij

1 + τµ−1|(µBBtpn −Bx)ij | .

We next recall the Goldstein-Osher split Bregman denoising algorithm for the isotropic total
variation model.

Split Bregman Isotropic TV Denoising (see [15])

Initialization: λ > 0, µ > 0, b0 = 0, d0 = 0, and x0 = x
For n = 0, 1, . . .

(I + λBtB)xn+1 = x− λBt(bn − dn)
dn+1 ← prox 1

λ
ϕ(Bxn+1 + bn)

bn+1 ← Bxn+1 + bn − dn+1

End

The convergence of the above split Bregman isotropic TV denoising algorithm was proved in
[3, 18]. As in the split Bregman anisotropic TV denoising algorithm, in each iteration of the split
Bregman isotropic TV denoising algorithm one needs to solve the linear system (I + λBtB)xn+1 =
x − λBt(bn − dn). Again, one step of the Gauss-Seidel iteration was used to obtain a satisfactory
approximation to xn+1, [15]. If the linear system is solved by using one step of the Gauss-Seidel
iteration, the analysis of the convergence of the resulting iterative scheme seems not to be available
in the literature.

Based on Proposition 2.6, we can give an alternative derivation of the fact that the sequence
xn generated by the Goldstein-Osher split Bregman denoising algorithm converges to the solution
of the ROF with isotropic total variation model. This fact is stated as follows:

Proposition 4.8 If the sequences xn, bn, and dn in the Goldstein-Osher split Bregman isotropic
total variation denoising algorithm are convergent to x∞, b∞, and d∞, respectively, then the vector
x∞ is the solution of the ROF model with isotropic total variation model, i.e., x∞ = proxϕ◦Bx.

Proof: If the sequences xn, bn, and dn converge to x∞, b∞, and d∞, respectively, then it follows
that d∞ = Bx∞, x∞ = x − λBtb∞, and Bx∞ = prox 1

λ
ϕ(Bx∞ + b∞). Hence, by Proposition 2.6,

we obtain that b∞ ∈ 1
λ∂ϕ(Bx∞) which together with equation x∞ = x−λBtb∞ and the chain rule

(13) implies
x∞ ∈ x− ∂(ϕ ◦B)(x∞).

Thus, x∞ must be the solution of the ROF isotropic total variation model. The uniqueness solution
of the ROF model leads to x∞ = proxϕ◦Bx. 2

Summarizing the results we obtained in this subsection, we know that the vectors λBtb∞ from
the split Bregman iteration, µBtp from the Chambolle algorithm, and λBtv∞ from FP2O-ITV are
the same and are the projection of x on the set C, but they are computed in the different ways.

Adopting arguments similar to those used for the split Bregman anisotropic TV algorithm,
we simply discard the terms λBtBxn+1 and λBtdn from the left and right hand sides of the linear
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system (I+λBtB)xn+1 = x−λBt(bn−dn), thereby obtaining this system becomes xn+1 = x−λBtbn.
In this fashion, the split Bregman isotropic TV denoising algorithm becomes Algorithm FP2O-ITV
in the case of κ = 0.

5 A Gauss-Seidel Variation of the Proposed Algorithms

In this section, we present a Gauss-Seidel variation of Algorithms FP2O-ATV and FP2O-ITV,
which were developed in the previous section. Recall that in an iteration of Algorithm FP2O-ATV or
FP2O-ITV we do not make use of an updated vector until its all components are updated. To speed
up convergence of the iteration, we propose to make use of an updated component immediately
once it becomes available, not to wait until the updating of the entire vector is complete.

To present a Gauss-Seidel variation of Algorithms FP2O-ATV and FP2O-ITV, we specialize
the linear transformation A in (15) to our current setting. That is, A : R2N2 → R2N2

for a given
x ∈ RN2

is defined by

Av = Bx + (I − λBBt)v, for all v ∈ R2N2
.

By (26), we can rewrite the above equation as

Av =
[
(I ⊗D)x + vU − λ((I ⊗DDt)vU + (Dt ⊗D)vL)
(D ⊗ I)x + vL − λ((D ⊗Dt)vU + (DDt ⊗ I)vL)

]
. (33)

Due to the fact that images are usual represented as matrices, it will be useful to rewrite vectors
in Algorithms FP2O-ATV and FP2O-ITV in matrix forms. To this end, any N2-dimensional
vector y appeared in Algorithms FP2O-ATV and FP2O-ITV will be viewed as a N ×N matrix Y .
Specifically, the elements of Y are generated by the formula Yij = yi+(j−1)N , i, j = 1, 2, . . . , N . For
any 2N2-dimensional vector z, the vector zU formed from the first N2 elements of z will be viewed
as a N × N matrix ZU and the vector zL formed from the rest N2 elements of z will be viewed
as another N ×N matrix ZL in the above way. With this connection, the N2-dimensional vectors
(I⊗D)x, (D⊗ I)x, vU , vL, (I⊗DDt)vU , (D⊗Dt)vU , (Dt⊗D)vL, and (DDt⊗ I)vL in (33) can be
viewed as the N ×N matrices DX, XDt, VU , VL, DDtVU , DtVUDt, DVLD, VLDDt, respectively.
Therefore, the N ×N matrix corresponding to the upper half of the vector Av in (33) is

DX + VU − λ(DDtVU + DVLD) (34)

and the N ×N matrix corresponding to the lower half of the vector Av in (33) is

XDt + VL − λ(DtVUDt + VLDDt). (35)

With these preparation, we are ready to present the Gauss-Seidel variation of Algorithms FP2O-
ATV and FP2O-ITV. We first present the Gauss-Seidel variation of Algorithm FP2O-ATV. Taking
the block structure of Av as demonstrated in (33), (34), (35) and the idea of Gauss-Seidel explained
earlier into consideration in Algorithm FP2O-ATV, we have the following Gauss-Seidel variation
(FP2O-ATV-GS).

FP2O-ATV −GS

Given: noisy image x; λ = 1
4 sin−2 (N−1)π

2N , µ > 0, κ ∈ (0, 1)
Initialization: V 0

U = V 0
L = 0
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Auxiliary Parameters: p and q
For n = 0, 1, 2, . . .

For j = 1 to N
For i = 1 to N

p = (V n
U )ij − λ(DDtV n

U )ij − λ(DV n
L D)ij + (DX)ij

q = (V n
L )ij − λ(DtV n

U Dt)ij − λ(V n
L DDt)ij + (XDt)ij

(V n
U )ij := κ(V n

U )ij + (1− κ)(I − proxµ
λ
|·|)(p)

(V n
L )ij := κ(V n

L )ij + (1− κ)(I − proxµ
λ
|·|)(q)

End
End
V n+1

U := V n
U

V n+1
L := V n

L

End
Write the outputs of V n

U and V n
L from the most outer loop as V ∞

U

and V ∞
L , respectively, compute proxϕ◦AX = X − λ(DtV ∞

U + V ∞
L D)

Likewise, we present the Gauss-Seidel variation of FP2O-ITV.

FP2O-ITV −GS

Given: noisy image x; λ = 1
4 sin−2 (N−1)π

2N , µ > 0, κ ∈ (0, 1)
Initialization: V 0

U = V 0
L = 0

Auxiliary Parameters: p and q
For n = 0, 1, 2, . . .

For j = 1 to N
For i = 1 to N

p = (V n
U )ij − λ(DDtV n

U )ij − λ(DV n
L D)ij + (DX)ij

q = (V n
L )ij − λ(DtV n

U Dt)ij − λ(V n
L DDt)ij + (XDt)ij[

(V n
U )ij

(V n
L )ij

]
= κ

[
(V n

U )ij

(V n
L )ij

]
+ (1− κ)(I − proxµ

λ
‖·‖2)

([
p
q

])

End
End
V n+1

U := V n
U

V n+1
L := V n

L

End
Write the outputs of V n

U and V n
L from the most outer loop as V ∞

U

and V ∞
L , respectively, compute proxϕ◦AX = X − λ(DtV ∞

U + V ∞
L D)

6 Numerical Experiments

In this section, we present numerical results for our proposed algorithms. Specifically, we compare
the computational performance of Algorithms FP2O-ATV-GS and FP2O-ITV-GS with that of the
split Bregman algorithm. For simplicity of presentation, we will simply drop the letters “GS” from
Algorithms FP2O-ATV-GS and FP2O-ITV-GS.

In our experiments, we choose images of “Cameraman” and “Lena” with sizes 256 × 256 and
512× 512, respectively, as two original images f . These images are shown in Figure 1. The noisy
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images are modeled as
x = f + η, and η ∼ N(0, σ2)

with N(0, σ2) being Gaussian noise. The quality of denoised images x̃ obtained from various
denoising algorithms is evaluated by the peak-signal-to-noise ratio

PSNR := 20 log10

(
255

‖f − x̃‖2

)
.

(a) (b)

(c) (d)

Figure 1: (a) The original image of “Cameraman”; (b) The original image of “Lena”; (c) The
noisy image of “Cameraman” with Gaussian noise at level σ = 20; and (d) The noisy image of
“Lena” with Gaussian noise at level σ = 20.

For parameters in the proposed algorithms FP2O-ATV and FP2O-ITV, we choose κ = 0.0001
and λ = 1

4 sin−2 (N−1)π
2N for an N × N test image. In the split Bregman anisotropic and isotropic

TV denoising algorithms, we choose λ = 2 as suggested in [15]. Iterations in these algorithms are
terminated when the following condition is satisfied

‖xn − xn+1‖2

‖xn+1‖2
≤ TOL,

where TOL denotes a prescribed tolerance value. In our experiments, we set TOL = 0.9× 10−3.
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In our first experiment, we apply Algorithm FP2O-ITV to noisy image of “Cameraman” with
noise level σ = 20. The PSNR values for the denoised images and the number of iterations used for
various values of µ for Algorithm FP2O-ITV are listed in Table 1. The resulting denoised images
obtained from Algorithm FP2O-ITV are shown in Figure 2. From Figure 2(a)-(b), we observe
that the denoised images with µ−1 = .02, .04 are too smooth, which are cartoon-like images whose
different objects are separated by sharp boundaries. The denoised image with µ−1 = .06 shown in
Figure 2(c) has good visual quality. The denoised image with µ−1 = .08 shown in Figure 2(d) is a
bit noisy, not as good as that with µ−1 = .06. We obtain similar numerical and visual results for
Algorithm FP2O-ATV.

Table 1: Numerical results for Algorithm FP2O-ITV.

µ−1 .02 .04 .06 .08
PSNR (dB) 24.73 27.42 28.67 28.82

Number of Iterations (Ite) 23 16 13 11

In our second experiment, we compare performance of the proposed algorithms with that of the
split Bregman anisotropic TV algorithm (SB-ATV) and the split Bregman isotropic TV algorithm
(SB-ITV). In this experiment, we choose the noisy images of “Cameraman” and “Lena” with noise
levels σ = 15 and σ = 25. Numerical results of the four algorithms for the images of “Cameraman”
with σ = 15 and σ = 25 are reported in Table 2. In Table 2, the pair (·, ·) is used to report
both the PSNR value (the first number) and the number of iterations (the second number). From
Table 2, we observe that under the same stopping criterion, for various values of µ, FP2O-ATV
(resp. FP2O-ITV) always uses less number of iterations than SB-ATV (resp. SB-ITV) does. At
noise level σ = 15, the performance of FP2O-ATV and FP2O-ITV is superior to that of SB-ATV
and SB-ITV, respectively, in terms of PSNR values and number of iterations for each fixed values
of µ. At noise level σ = 25, we observe a similar scenario for small values of µ−1. The resulting
denoised images obtained from these four algorithms are shown in Figure 3.

Numerical results of the four algorithms for the images of “Lena” with σ = 15 and σ = 25
are reported in Table 3, from which we have derived similar observations. We show the denoised
images in Figure 4.

Finally, we report in Tables 4 and 5 for the images of “Cameraman” and “Lena”, respectively,
the numbers of iterations used in the four algorithms. These numbers are obtained with the same
stopping criterion applied to the four algorithms. The numerical results indicate that the number
of iterations used in Algorithms FP2O-ATV and FP2O-ITV reduces as the value of µ decreases.
However, the number of iterations used in Algorithms SB-ATV and SB-ITV does not seem to have
the pattern.

7 Concluding Remarks

This paper studies the proximity operator of the total variation for the ROF denoising model. By
making use of the fact that the total variation is the composition of an `1 or `2 norm (depending on
ATV or ITV) with the first order difference operator, we express the proximity operator of the total
variation in terms of the proximity operator of the norm via a fixed point equation. This naturally
leads to fixed point algorithms for finding an approximate solution of the ROF denoising model. We
identify connections of the proposed proximity operator based fixed point algorithms with several
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Figure 2: Denoising the noisy image of “Cameraman” with Gaussian noise at level σ = 20 by
FP2O-ITV. (a) µ−1 = .02, PSNR = 24.73dB, Ite = 23; (b) µ−1 = .04, PSNR = 27.42dB, Ite = 16;
(c) µ−1 = .06, PSNR = 28.67dB, Ite = 13; and (d) µ−1 = .08, PSNR = 28.82dB, Ite = 11;

recently developed algorithms known in the literature, including the split Bregman algorithm. This
fixed point framework for the ROF denoising model has advantages in both theoretical analysis
and algorithmic development. On one hand, it provides a platform to make use of rich ideas in
the well-established fixed point theory for algorithmic development and on the other hand it offers
convenient convergence analysis tools. Numerical experiments presented in this paper confirm that
the proposed algorithms perform favorably and are promising.
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