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Abstract. In this paper, we extend the Chan-Vese model for image
segmentation in [1] to hyperspectral image segmentation with shape and
signal priors. The use of the Split Bregman algorithm makes our method
very efficient compared to other existing segmentation methods incorpo-
rating priors. We demonstrate our results on aerial hyperspectral images.

1 Introduction

A hyperspectral image is a high-dimensional image set that typically consists of
100-200 image channels. Each channel is a grayscale image that indicates the
spectral response to a particular frequency in the electromagnetic spectrum.
These frequencies usually include the visible spectrum of light, but most of the
channels are focused in the infrared range. This allows a hyperspectral image
to reveal features that are not visible in a standard color image. Each pixel
in the image will have a spectral response vector that is the high-dimensional
equivalent of the pixel’s “color”. Certain materials have a characteristic spectral
signature that can be used to identify pixels containing that material. In an aerial
hyperspectral scene an analyst could, for example, locate manmade materials or
distinguish healthy vs. dead vegetation. For this reason, there is great interest
in developing fast detection methods in hyperspectral imaging for applications
such as aerial surveillance, mineral and agricultural surveys, chemical analysis,
and medical imaging.

Unfortunately, due to the high dimensional complexity of the data, it is diffi-
cult to create accurate image segmentation algorithms for hyperspectral imagery.
To improve the segmentation results, prior knowledge about the target objects
can be incorporated into the segmentation model. In the spectral domain, a
spectral prior is a vector specifying a target spectral signature that the pixels in
the segmented object should contain. For example, one could specify the spectral
signature of a particular mineral or type of biological tissue. This signature could
be obtained from a spectral library or selecting a pixel from the image that is
known to contain the desired material. In the spatial domain, a shape prior is a
template binary image describing the outline of the desired targets. For exam-
ple, in an aerial image one might use an airplane silhouette for automatically
locating airplanes or in medical imaging one might enforce circular shapes to
locate blood cells. An illustration of these two types of priors is shown in Fig. 1.
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Fig. 1. Example priors. Left: Shape prior for outline of an airplane. Right: Signal prior
for the hyperspectral signature of metal found in used in aircraft.

Image segmentation using shape priors has had great developments in recent
years. Cremers, Osher and Soatto[2] incorporated statistical shape priors into
image segmentation with the help of the level set representation. Their prior
is based on an extension of classical kernel density estimators to the level set
domain. They also propose an intrinsic registration of the evolving level set
function which induces an invariance of the proposed shape energy with respect
to translation. Using the level set representation, several other methods[3–5]
have also been developed in recent years.

Bresson et.al.[4] extended the work of Chen et. al.[6] by integrating the sta-
tistical shape model of Leventon et. al.[7]. They propose the following energy
functional for a level set function φ and grayscale image I:

F (φ,xT ,xpca) =

∫

Ω

{gǫ(|∇I(x)|) + βφ̂2(gxT
(x),xpca)}δ(φ)|∇φ|dΩ (1)

where gǫ is a decreasing function vanishing at infinity. The first term is the
geodesic active contours classical functional which detects boundaries with the
edge detector gǫ. The second term measures the similarity of the shape to the
zero level set of φ̂(xT ,xpca).

Later on, Bresson et. al.[5] used the boundary information and shape prior
driven by the Mumford-Shah functional to perform the segmentation. They pro-
pose the following functional:

F = βsFshape(C,xpca,xT )+βbFboundary(C)+βrFregion(xpca,xT , uin, uout). (2)
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with

Fshape =

∮ 1

0

φ̂2(xpca, hxT
(C(q)))|C′(q)|dq, (3)

Fboundary =

∮ 1

0

g(|∇I(C(q))|)|C′(q)|dq, (4)

Fregion =

∫

Ωin(xpca,xT )

(|I − µin|
2 + µ|∇uin|

2)dΩ

+

∫

Ωout(xpca,xT )

(|I − µout|
2 + µ|∇uout|

2)dΩ (5)

In the above functional, the first term is based on a shape model which
constrains the active contour to retain a shape of interest. The second term
detects object boundaries from image gradients. The third term globally drives
the shape prior and the active contour towards a homogeneous intensity region.

Recently, Cremers et.al.[8] used a binary representation of the shapes and for-
mulated the problem as a convex functional with respect to deformations, under
mild regularity assumptions. They proposed the following energy functional

Ei(q) =

∫

f(x)q(x)dx +

∫

g(x)(1 − q(x))dx +

∫

h(x)|∇q(x)|dx (6)

The above first two terms are the integrals of f and g over the inside and
outside of the shape, while the last term is the weighted Total Variation norm[9].
Ketut et.al.[10] applied the technique of graph cuts to improve the algorithm
runtime.

In this paper, we further improve the speed of the segmentation model with
shape priors by using the Split Bregman method[10–13], a recent optimization
technique which has its roots in works such as [14–16]. Also, we adapt the model
to the hyperspectral images by the use of spectral angle distance and a signal
prior.

2 Image Segmentation with Shape Priors

Variational methods have been widely used for the image segmentation problem.
One of the most successful segmentation models is the Active Contour Without
Edge(ACWE) model proposed by Chan and Vese[1]. To segment a grayscale
image u0 with a curve C, the authors proposed the following energy functional:

F (c+, c−, C) = µ · Length(C) + λ+

∫

inside(C)

|u0(x, y)− c+|2dxdy (7)

+ λ−

∫

outside(C)

|u0(x, y)− c−|2dxdy
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where Length(C) is the length of the curve C and c+ and c− denote the average
intensity value inside and outside the curve, respectively. This is a two-phase
version of the Mumford-Shah model. The idea is that C will be a smooth minimal
length curve that divides the image into two regions that are as close as possible
to being homogeneous. Later on, Chan and Vese extended the model to vector
valued images[17] as

F (c+, c−, C) = µ · Length(C) +
1

N

N
∑

i=1

λ+
i

∫

inside(C)

|u0(x, y)− c+|2dxdy (8)

+
1

N

N
∑

i=1

λ−
i

∫

outside(C)

|u0(x, y)− c−|2dxdy

where λ+
i and λ−

i are parameters for each channel, c+ = (c+1 , ..., c
+
N) and c− =

(c−1 , ..., c
−
N ) are two unknown constant vectors.

Chan et.al. proposed a convexification of Chan-Vese model in[18]. Analo-
gously, we can convexify the vectorial version of Chan-Vese model in this way:

E(u) = min
0≤u≤1

∫

g|∇u|+ µ < u, r > (9)

where r = 1
N

∑N

i=1[(c1−fi)
2−(c2−fi)

2] and fi is i-th band of the hyperspectral
image with a total of N bands.

In order to constrain the geometry shape of the resulting object, we want to
minimize the area difference of shape prior and resulting object up to an affine
transformation. The proposed energy functional is as follows:

E(u) = min
0≤u≤1,xT

∫

g|∇u|+ µ < u, r > +α|u− w| (10)

where w = hxT
(w0), w0 is the shape prior, and hxT

is a geometric transformation
parameterized by xT .

The above equation can be solved in an iterative way. It consists of following
two steps.

Step 1: Update u.
Fix the prior w and its associated pose parameters xT and update u by using

the fast Split Bregman algorithm.
To apply the Split Bregman algorithm, we make the substitutions d1 = ∇u =

(ux, uy)
τ , d2 = u− w,d = (dτ1 , d2)

τ , F (u) = (ux, uy, u − w)τ . To approximately
enforce these equality constraints, we add two quadratic penalty functions. This
gives rise to the unconstrained problem

(u∗,d∗) = arg min
0≤u≤1,d

|d1|g + α|d2|+ µ < u, r > +
λ1

2
||d1 −∇u||22

+
λ2

2
||d2 − (u− w)||22 (11)
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Then we apply Bregman iteration to the unconstrained problem(11). This
results in the following sequence of optimization problems:

(uk+1, dk+1) = arg min
0≤u≤1,d

|d1|g + α|d2|+ µ < u, r > (12)

+
λ1

2
||d1 −∇u− bk1 ||

2
2 +

λ2

2
||d2 − (u− w) − bk2 ||

2
2

bk+1
1 = bk1 + (∇uk − dk1)

bk+1
2 = bk2 + (uk − w − dk2) (13)

where u can be solved by Gauss-Seidel iteration and d can be solved by
shrinkage.

The whole algorithm for solving for u is as follows:

1: while ‖uk+1 − uk‖ > ǫ do
2: Define rk = (ck1 − f)2 − (ck2 − f)2

3: uk+1 = GSGCS(r
k,dk, bk)

4: dk+1 = shrinkg(∇uk+1 + bk, λ)
5: bk+1 = bk +∇uk+1 − dk+1

6: Find Ωk = {x : uk(x) > µ}

7: Update ck+1
1 =

∫

Ωk

fdx
∫

Ωk

dx
, and ck+1

2 =

∫

Ωc
k

fdx

∫

Ωc
k

dx

8: end while

Step 2: , fix u and update xT .
The parameters we consider for affine transformations are rotation θ, trans-

lation T and scaling s. For affine transformations, we can express xold = x−D =
sA(x − c) + T . Here D is the displacement vector, A is a rotation matrix, T is
the translation vector and s is the scaling factor. A is a function of the rotation
angle θ.

A(θ) =
[ cos θ − sin θ
sin θ cos θ

]

(14)

The derivative of the matrix A is

Aθ(θ) =
[− sin θ − cos θ

cos θ − sin θ

]

(15)

If we fix u, then the original optimization problem(10) becomes

E(xT ) = α|u− w|

= α|u− w0(sA(x − c) + T )| (16)
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By the calculus of variations, we have

Tt = −δE/δT

= −2α · sign(w0(A(x − c) + T )− u(x))(∇w0(A(x − c) + T )

(17)

ct = −δE/δc

= 2α · sign(w0(A(x − c) + T )− u(x))A(θ)τ ∗ (∇w0(A(x − c) + T )

(18)

θt = −δE/δθ

= −2α · sign(w0(A(x − c) + T )− u(x))∇w0(A(x − c) + T ) · (Aθ(θ)(x − c))

(19)

st = −δE/δs

= −2α · sign(w0(A(x − c) + T )− u(x))∇w0(A(x − c) + T ) · (A(θ)(x − c))

(20)

The initialization of the above affine transformation parameters are: c =
center(u), T = center(w), s = 1, where center(u) denotes the center of the mass
of u. The above procedure is repeated until convergence. For the pose parameter
θ, since the energy functional is not convex in this parameter, in order to avoid
the local minimum we usually try four different initial values and choose the one
which leads to smallest minimum energy.

The alignment of shape prior and segmentation result u can be accelerated
by adding an additional attraction term:

min
0≤u≤1,xT

∫

g|∇u|+ µ < u, r > +α|u− w|+ β|w − f |2 (21)

The optimization is the same for finding u and the optimization for the affine
transformation parameters will be similar to model (10).

3 Image Segmentation with Spectral Priors

One of the interesting properties of hyperspectral images is that for different
materials, we have different spectral signatures. By combining both the spectral
information and shape prior, we can segment some very challenging hyperspec-
tral images.
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The natural measure for distinguishing two different hyperspectral signatures
v1 and v2 is the spectral angle:

θ = arccos(
‖v1 · v2‖2
‖v1‖2‖v2‖2

). (22)

By using the spectral angle, the original optimization problem (10) can be
rewritten as

E(u) = min
0≤u≤1,xT

∫

g|∇u|+ µ < u, r > (23)

where r(i, j) = θ(c1(i, j),f(i, j))− θ(c1(i, j),f(i, j)) for i = 1 : Nx, j = 1 : Ny.
A signal prior is a hyperspectral signature that we want our segmented object

to contain. If we want to use the signal prior cp, then we will have r(i, j) =
θ(cp(i, j),f (i, j)) − θ(cp(i, j),f(i, j)) for i = 1 : Nx, j = 1 : Ny. The signal
prior can be obtained from a known spectral library or by selecting a pixel from
the image with the desired signature.

If both a signal and a shape prior are used, we can use the segmentation from
spectral prior as an initialization for u, and apply the shape prior model (21) to
do the final segmentation.

4 Results

Fig. 2 shows a synthetic 100-band hyperspectral image of two overlapping el-
lipses with different spectral signatures. Without using any priors, the multi-
dimensional Chan-Vese model will segment the entire shape from the back-
ground. Incorporating priors, we can force the segmentation of a specified mate-
rial or a given template shape. Note that when we use both a signal and shape
prior, the segmentation finds the shape in the image that contains the maximum
amount of the specified material signature.

Fig. 2. Segmentation of a synthetic hyperspectral image. Left: Segmentation without
priors. Center: Segmentation using signal prior of gray material. Right: Segmentation
incorporating signal prior and an ellipse shape prior.

Fig.(3) demonstrates more clearly the advantage of using priors. While al-
gorithms using only spectral information can pick up most of the airplane, it
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separates the segmentation into two pieces. Thus, an algorithm can be reason-
ably certain to pick up the material of an airplane, it can not make the conclusion
that an actual airplane has been detected. Using shape priors, however, will ac-
tually make the judgement that an airplane has been found. Fig.(3) shows that
the algorithm can still operate with some mismatches in the shape of the air-
plane. However, because the shape prior is a different type of airplane than the
one under consideration, the segmentation contour does not match the airplane
outline as well as the segmentation using only the signal prior. This is meant to
illustrate that shape priors need to be used carefully, as the resulting contour
may fit the prior well but not the data.

Fig. 3. Segmentation of a single object. Top left: Segmentation without priors. Top
right: Segmentation using a metal signal prior. Bottom left: Airplane shape prior.
Bottom right: Segmentation using both signal and shape priors.

Fig.(4) shows the segmentation result for detecting multiple airplanes in a
224-band hyperspectral image of Santa Monica Airport. From the initial Chan-
Vese segmentation result, we take out the planes that we are interested in one
by one. For each plane, we choose a rectangular box to enclose the plane. And
then we do the segmentation with the shape prior for each plane. At the end,
we combine all the segmentation results together to get the final result for the
whole image.
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Fig. 4. Segmentation of multiple objects in hyperspectral image of Santa Monica Air-
port. Left: Segmentation without priors. Right: Segmentation using a metal signal prior
and the airplane shape prior.

5 Conclusion

We have demonstrated the segmentation results for both shape and signal pri-
ors for synthetic images and hyperspectral images. With the introduction of the
Split Bregman method, we can solve the optimization problem more quickly
than other segmentation methods incorporating priors. Our algorithm is effi-
cient and also robust to different kinds of images. Further research could involve
applications to mapping and remote sensing, learning the priors from the data,
and extending the results to handle multiple priors such as shape or spectral
libraries.
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