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1 Introduction

Variational segmentation (or object detection) algorithms in images are usually
framed in the following way: find the function u, within an appropriate function
space, that minimizes an energy functional E(u) of the form

E(u) = J(u) + λF (u).

The energy functional is the weighted sum of a data fidelity term F (u) that pe-
nalizes functions that do not adhere to information from the image sufficiently,
and a term J(u) that ensures that a minimizer satisfies some regularity assump-
tions. Regularity is necessary so that anomalies in the image acquisition and
communication, such as noise, cannot overly influence the segmentation result.
The parameter λ balances the relative importance between data fidelity and
regularity. The precise class of such models that we will consider are reviewed
in section 2.

Most segmentation models propose novel approaches to either the regular-
ization or the fidelity to the image (or to some reformulation if the energy in
(1)), but generally consider the case of a single image. In this paper, we con-
sider the case where vector-valued images of a scene are available. The need
for vector-valued images is widespread in image processing applications, such
as color images (for example, using RGB or luminance color spaces), medi-
cal imagery (separate CT, PET or MRI modalities), satellite imagery (such
as hyper-spectral), video sequences, stereo segmentation and various texture
modalities. A segmentation is thus conducted using the information from all
the components of the vector.

We mention some work that has been done in vector image processing. The
Color Snakes model of Sapiro[15] segments a vector-valued image by using a
model that in essence detects vector-valued edges. Some image restoration mod-
els extend to vector-valued images, such as anisotropic diffusion models[16, 17]
and vector-valued total variation models[1]. Region-based scalar segmentation
models also extend to vector-valued segmentation[3, 21].
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I1 I2 → IF

Figure 1

I1 I2 → IF

Figure 2

I1 I2 → IF

Figure 3

All of the image-based variational models mentioned above offer algorithms
that converge to a single solution (modulo setting parameters and initializa-
tions). This restriction to a single solution does not address the possibility that
information from different sources (such as separate images) can be combined
in multiple ways. For example, consider the two images on the left in Figure
1. If the upper-left circle is the object of interest, most algorithms would be
unable to obtain the entire circle in a single segmentation although it is clear
that every point of the circle is visible in at least one of the available images.
If the goal of our segmentation was to segment the entire circle, the result we
would get would be the image on the right of Figure 1.

To show an example of this consider Figures 4 and 5.
In Figure 4, there are two images each with 3 separate regions seen in dif-

ferent states of occlusion. In Figure 5 six possible ways of combining the region
data from the two channels are shown, any of which may be correct depending
on the application. Most multi-channel methods would fail to differentiate be-
tween these, and in fact may fail to find any of them. For a demonstration of
this, see the example in Figure 7 which we will discuss later.

Any of the images given in Figure 5 can be considered as the correct solution.
This depends on the context of the application or interpretation of the segmen-
tation with or without a priori information. We offer a framework by which
any of the solutions given in Figure 5 can be found, depending on application
needs. These images were computed using our method, which we shall discuss
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Figure 4: Two images each containing three regions in various states of occlu-
sion.

(a) (b) (c)

(d) (e) (f)

Figure 5: The six results obtained from the two images shown in Figure 4 ac-
cording to the six different ways of combining the channels during segmentation.

inlater sections.
This paper has two parts. Firstly, we propose a general framework by which

a segmentation method can be devised. The framework describes how to model
the combination of information from the separate sources using a simple set-
theory based description. Each of the possible solutions given in Figure 5 can
be described by the set operations of union, intersection and compliment on
the separate regions in each channel. An intuitive example of this is shown in
Figure 6 where it is demonstrated how the set operations are used to combine
corresponding regions from separate images to obtained the segmentation in
Figure 5a. Our framework allows the user to choose which of these sets of
logical operations are appropriate for a given application.

Secondly, we offer a specific algorithm that may be used for solving such
a segmentation. The numerical algorithm uses level-set methods to solve the
Active Contours Without Edges (ACWE) variational model, which has been
extensively studied in a group of papers. The original model [4] found a bi-
nary segmentation of an image, and subsequent efforts extended this to multi-
ple region segmentations [3] (multiphase or multi-label) and segmentations of
vector-valued images [19] (multichannel). In particular, we continue the work
introduced by the Logic Framework of [14] in which was introduced the combina-
tion of information from different channels in terms of logic and set theory. The
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(a) Channel Combination of Region 1

(b) Channel Combination of Region 2

(c) Channel Combination of Region 3

Figure 6: The above three images give an intuitive demonstration of how the
corresponding regions in each image of Figure 4 are combined using the language
of set theory to obtain the segmentation shown in Figure 5a

Logic Framework, however, was only defined for binary segmentations. Here we
extend this idea to multiphase problems.

2 Background on a Variational model

Consider the domain Ω ⊂ R2 that is made up of m regions. The goal of multi-
phase segmentation is to make a determination of the exact position of the m
regions. We denote our guesses of the m regions as the disjoint sets R1, ..., Rm,
where ∪mj=1R

j = Ω. In the case where we have only one image, I(x) : Ω→ [0, 1],
we determine the regions by assuming some region classification scheme that we
can match the regions to. The Active Contours Without Edges (ACWE) model
makes the assumption that the image can be approximated by a piecewise con-
stant function. The multiphase version of the method is formulated as: find
the values c1, ..., cm and the curve C = ∪mj=1∂R

j that minimizes the energy
functional

length(C) + λ

m∑
j=1

∫
Rj

(I(x)− cj)2. dx

To extend this to multiple images (the multichannel problem), the segmen-
tation algorithm must combine data from all channels to classify the regions.
There are two approaches to take in this. Firstly, each image can be segmented
separately and then combined to form a unique segmentation. Secondly, you
can incorporate informaton from all images together in a single segmentation
procedure. In [15, 14] it has been argued that the first approach has drawbacks.
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(a) (b)

(c) (d) (e)

Figure 7: A demonstration of different multichannel multiphase segmentation
methods for the images in (a) and (b). In (c) is shown the results from our
method. In (d) is shown the results of minimizing the energy in (2) without
scaling of the data variable (see Section 3.2). This is caused by the fact that
in a multiphase application, a simple summing of the energies does not behave
well in regions of conflict between the channels. In (e) is shown the results of
minimizing the energy in (2) with scaling. Here we see the objective conflict of
the data fidelity terms in the regions of conflict between the channels.

For instance, it is more expensive and results are less robust to noise. Thus we
take the second approach.

The most common way to extend a single channel algorithm to a many
channel algorithm is to sum the contributions from each channel, such as for the
2-phase ACWE model [19]. We can do this for the multiphase case in an identical
manner. If we have n images, denoted Ik(x) : Ω → [0, 1] for k = 1, ..., n, we
can define a multiphase multichannel ACWE model as: determine the constant
values cjk, j = 1, ...,m and k = 1, ..., n of region j in channel k and the curve
C = ∪mj=1∂R

j that minimizes

length(C) + λ

m∑
j=1

∫
Rj

1

n

n∑
k=1

(Ik(x)− cjk)2 dx

This corresponds to simply averaging the contributions from each channel.
Problems occur when channels give conflicting information, since it is unclear
how to settle the conflict. It has been shown in the 2-phase case [14] that
such conflicts can cause local minima in the energy functional and and that the
results of an algorithm can depend heavily on the initial labeling of the regions.
An example of the drawbacks of using the energy in (2) in the multiphase case
are shown in Figure 7.

In the 2-phase case, the Logic Framework [14] was proposed to avoid this
conflict by altering the way in which the data fidelity terms from each channel
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are combined. To simplify and generalize this discussion, we define some further
notation. Let the data variables

zin
k (x) =

(
Ik(x)− cink

)2
zout
k (x) = (Ik(x)− cout

k )
2 (1)

be the data fitting functions for each channel k and the two regions (correspond-
ing to inside and outside the curve C, Rin and Rout). Furthermore we define
the combination operators for each region f in(x) and fout(x), which implicitly
contain the data fidelity from each channel

f j(x) = f j(zj1(x), ..., zjn(x)). (2)

Thus the 2-phase generalized ACWE energy can be written as

length(C) + λ

∫
Rin

f in(x) dx+ λ

∫
Rout

fout(x) dx.

In the simplest case, the combination operators f in(x) and fout(x) are chosen
as some permutation of the operators f∪(x) and f∩(x) where

f∩(x) = 1−
{∏n

k=1

(
1− zjk(x)

)} 1
n

,

f∪(x) =
{∏n

k=1 z
j
k(x)

} 1
n

.
(3)

In more complicated cases, the combination operators can be compositions
of f∪(x) and f∩(x) in lower dimensions and the operator

fc(z
j
k(x)) = 1− zjk(x). (4)

The operators in (3) and (4) correspond to the intersection, union and com-
pliment rules for combining data from each channel, which can be seen in par-
ticular in the case where the data variables are binary. In the simple case, the
choice of the f∪(x) and f∩(x) prevents conflicting objectives between the terms
of each region by strictly defining how such conflicts are resolved. Alternative
combination operators that serve the same purpose as the Logic operators have
since been proposed by Moelich [10] and Israel-Jost et al. [7, 6]. In fact [7]
highlights the fact that there is a great deal of literature dedicated to the study
of such combination operators and their properties. A discussion and references
can be found in the bibliography of that article. Using this information [6, 7]
proposes the minimum and maximum operators, which act more decisively on
conflictive channels than those in (3),

f∩(x) = maxk=1,..,n z
j
k(x)

f∪(x) = mink=1,..,n z
j
k(x)

(5)

In the next section, we extend the Logic Framework to multiphase problems.
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3 The Logic Framework for Multiphase Segmen-
tation

3.1 General Framework

The general form of the multiphase ACWE energy that we propose is written
as

length(C) + λ

m∑
j=1

∫
Rj

f j(x) dx

where f j(x) denotes the combination operator of region j as in (2). To de-
scribe how we choose to define the combination operators, we consider the ideal
case where the logic variables give region information with complete certainty,
namely they are binary functions,

zjk(x) =

{
0 if x ∈ Rjk,
1 otherwise.

(6)

In this case the operators in both (3) and (5) act precisely as the intersection
and union operators. In the multiphase case we again construct our combination
operators out of the set operations, however with more than two regions we
need to combine and compose the operators in more complicated ways. The
constraint we impose on the choice of operators is the following:

If the logic variables are binary i.e. of the form (6), then for each
x ∈ Ω, there is exactly one j = 1, ..., k such that f j(x) = 0 and
f i(x) = 1 for all i 6= j.

This constraint is fairly unrestrictive, but it prevents conflictive objectives
between the region fidelity terms and ensures that all points are labelled to a
region.

We impose this constraint in the following way: we order the regions ac-
cording to some preference. To simplify this exposition, we assume the ordering
corresponds to the numerical ordering of the regions. This preference can be
interpreted as the order of occlusions in the image, so that the algorithm pri-
oritizes the segmentation of each region by their ordering. Thus each point is
labelled to the highest ordered region in which the point can be found in any
single image. In terms of the characteristic functions and set operations, the
combination operators for each region can described as

R1 = ∪nk=1R
1
k

R2 = ∪nk=1R
2
k\ ∪nk=1 R

1
k

R3 = ∪nk=1R
3
k\
(
∪nk=1R

1
k

⋃∪nk=1R
2
k

)
...

Rm = ∩nk=1R
m
k

(7)

In terms of the set-operation operators, the combination operators are writ-
ten as
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(a) (b) (c)

A1

C1

B1

D1

(d)

A2 B2

D2

C2

(e)

D1 ∪D2

(B1 ∪ B2)
∩

(A1 ∪ A2)C

(C1 ∪ C2)
∩

(A1 ∪ A2 ∪ B1 ∪ B2)C

A1 ∪ A2

(f)

Figure 8: Figure (c) shows the result of a segmentation of the images in (a)
and (b). Figure (f) gives a clear demonstration of the set-theory operators used
to model the segmentation using the regions for the images shown in (d) and
(e).

f1(z1
1 , ..., z

1
n) = f∪(z1

1 , ..., z
1
n)

f2(z2
1 , ..., z

2
n) = f∩(f∪(z2

1 , ..., z
2
n), fc(f∪(z1

1 , ..., z
1
n)))

f3(z3
1 , ..., z

3
n) = f∩

[
f∪(z3

1 , ..., z
3
n), fc

(
f∪
(
f∪(z1

1 , ..., z
1
n), f∪(z2

1 , ..., z
2
n)
))]

...
fm(zm1 , ..., z

m
n ) = f∩(zm1 , ..., z

m
n )

(8)
For our own experiments, we adopt the operators of Israel-Jost et al. in (5)

and the compliment operator in (4). Figures 4 and 8 give intuitive demonstra-
tions of this use of the combination operators.

3.2 Variable Scaling

Because the differences between intensity averages of regions in the multiphase
case are a fraction of the intensity range of the images (namely smaller than 1),
the data variables given in equation (1) might not give an accurate measure of
the discrepancy in intensity from the average intensity in a given region. Thus
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we adopt a scaling of the error terms in (1) that can give a better measure of the
discrepancy. We choose an exponential scaling as first proposed in [10], which
the author aptly named the exponential logic model,

zjk(x) = exp{−γ(Ik(x)− cjk)} (9)

The parameter γ is chosen based on the expected differences in mean between
the regions.

4 Level Set Formulation

Level set methods [11, 12, 20] have been widely used in image segmentation
problems including in the original ACWE model, see [9, 2, 4, 18]. For the
level-set based multiphase segmentation methods their have been a number of
approaches proposed to model the regions: N level-set functions for N regions
[13, 20], N level-set functions for 2N regions [19] and a single level-set function
for N regions (a multilayer function)[5, 8].

Recently there have been many algorithms proposed that solve for the multi-
label segmentation problem. In fact many of these have proposed alternative
level set algorithms or level set-like methods. However, for ease of explanation
we will describe a level set based implementation based on the method described
in [19], and leave the implementation using other approaches to future work or
the interested reader.

For simplicity we will describe the 4-phase case, for which two level sets are
required. We denote the two level sets by φ1 and φ2. The curves described
by the sets {φ1 = 0} and {φ2 = 0} indicate boundaries between the regions,
while the regions themselves are identified by some combination of the sets
{φ1 > 0}, {φ1 < 0}, {φ2 > 0} and {φ2 < 0}. The regions are chosen by the
following combinations: region 1 is the intersection of the regions {φ1 > 0} and
{φ2 > 0}, region 2 by the intersection of {φ1 < 0} and {φ2 > 0}, region 3 by
the intersection of {φ1 > 0} and {φ2 < 0}, and region 4 by the intersection of
{φ1 < 0} and {φ2 < 0}. In the general case, n level sets allow you to describe
upto 2n regions.

To describe the regions we use the functions δε and Hε, defined as

δε(φ(x)) =
ε

π(ε2 + φ(x)2)

Hε(φ(x)) =
1

2

(
1 +

2

π
arctan

(
φ(x)

ε

))
,

numerically approximate the delta and Heaviside functions,

δ0(φ(x)) =
d

dφ(x)
H0(φ(x))

H0(φ(x)) =

{
1 for φ(x) ≥ 0,
0 otherwise.
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Using the max/min operators (5) for the channel combination, the combi-
nation operators for the four channels are

f1(x) = min{z1
1(x), ..., z1

n(x)}
f2(x) = max

[
min{z2

1(x), ..., z2
n(x)}, 1−min{z1

1(x), ..., z1
n(x)}

]
f3(x) = max

[
min{z3

1(x), ..., z3
n(x)}, ...

1−min
{

min{z1
1(x), ..., z1

n(x)},min{z2
1(x), ..., z2

n(x)}
}]

f4(x) = max{z4
1(x), ..., z4

n(x)}

where we adopt the data variables zkj (x) are defined as in (9).
Using the level set formulation, the 2-level set ACWE energy can be written

as

E(φ1, φ2) =

(∫
Ω

|∇Hε(φ1(x))| dx+

∫
Ω

|∇Hε(φ2(x))| dx
)

+ λ

(∫
Ω

Hε(φ1(x))Hε(φ2(x))f1(x) dx

+

∫
Ω

(1−Hε(φ1(x)))Hε(φ2(x))f2(x) dx (10)

+

∫
Ω

Hε(φ1(x))(1−Hε(φ2(x)))f3(x) dx

+

∫
Ω

(1−Hε(φ1(x)))(1−Hε(φ2(x)))f4(x) dx

)
The constant parameter λ controls the weighting between the regularizing

term and the data fidelity term. This is minimized by solving for the Euler-
Lagrange equations of the energy using artificial time-stepping, written as

∂φ1(x)

∂t
= −δε(φ1(x))

[
− div

( ∇φ1(x)

|∇φ1(x)|

)
+ λ(f1(x)− f2(x))Hε(φ2(x))

+ λ(f3(x)− f4(x))(1−Hε(φ2(x)))

]
∂φ2(x)

∂t
= −δε(φ2(x))

[
− div

( ∇φ2(x)

|∇φ2(x)|

)
+ λ(f1(x)− f3(x))Hε(φ1(x))

+ λ(f2(x)− f4(x))(1−Hε(φ1(x)))

]
For the details of the numerical approximations needed to implement this

method see [19, 3] and for more on the numerical implementations of level set
methods see [12].

5 Numerical Results

In this section, we show some examples of our method on sets of real world
images.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 9
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In Figure 9, we show an example of segmenting regions of the brain. In
Figures 9a and 9b are shown two brain images with artificial tumors inserted
in disjoint positions. We consider this as a 4-region segmentation with three
regions consisting of regions of the brain - the grey matter, the white matter
and the tumor and bone respectively. The fourth region consists of the black
background. Due to the little importance of the background, we essentially
treat the problem as a 3-phase problem with the background ordered last in
all our results. This gives us six possible solutions that our method computes,
according to the possible orderings of the first three regions. These are shown
in Figures 9c-h.

In the first two solutions, the region of the tumor is ordered first among the
regions. The white matter is ordered second in the (c) and third in (d), and the
grey matter is ordered third in (c) and second in (d). In (g) and (h) the tumor
region is ordered third, while the white matter and grey matter switch ordering
between first and second. Finally, in (e) and (f) the tumor region is ordered
second, while the white matter and grey matter switch ordering between first
and third.

All the images (c)-(h) provide valuable information about the corresponding
regions in each of the two channels. For instance (c) and (d) allow the user
to group the tumor regions together, to see the tumor as a whole and also see
obtain information about the white matter and gray matter regions. In (c) the
white matter is emphasized, and in (d) the grey matter is emphasized. In (g)
and (h) the user can ignore the parts of the tumor region that are not in both
channels, thus reacquiring all lost information of the white and grey matter
regions lost by the presence of the tumor.
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