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Abstract. This paper deals with two optimization models for image labeling over a spatially continuous image
domain, where the first one favors a linear ordering of the labels in the computation result and the second does
not favor any particular ordering (Pott’s model). We study convex reformulations and relaxations of these two
non-convex labeling problems. Inspired by Ishikawa’s multi-layered graph construction [34] for the same labeling
problem over a discrete image domain, we propose novel continuous max-flow models and build up their dualities
to the convex relaxed formulations of image labeling under anew variational perspective. Via such continuous
max-flow formulations, we show that exact and global optimizers can be obtained to the original problem with
linearly ordered labels. We also extend our studies to problems with continuous-valued labels and introduce a
new theory to this problem. Finally, we show the proposed continuous max-flow models directly lead to new fast
flow-maximization algorithmic schemes which significantlyoutperform previous approaches [53, 52] in terms of
efficiency. Such continuous max-flow based algorithms can bevalidated by modern convex optimization theories
and accelerated by modern parallel computational hardware.
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1. Introduction. Many applications of image processing and computer vision can be
mathematically modeled and solved by means of energy minimization. In this paper, we
consider the following important low-level image labelingproblem: each image pixel is as-
signed by one discrete label subject to a given optimality criterion. The energy function can
be represented over a sequence of partitions or labeling functions, which directly leads to a
non-convex optimization problem. Such image labeling problems potentially models many
applications of image processing (see [49] for a good reference): image denoising [41, 57];
image segmentation [11, 2, 12]; image stereo reconstruction [40, 41]; multi-view reconstruc-
tion [45].

The optimization criterion for image labeling can be definedand formulated over either
a spatially continuous image domain or a discrete image graph, which boils down to either
a continuous non-convex optimization problem or a combinatorial optimization problem. In
the spatially discrete setting, the optimization formulation can be constructed by the principle
of Markov random field (MRF) over the discrete image graph. Inthis regard, many effective
solvers have been proposed, e.g. graph-cuts [31, 9, 34], message passing [58, 39] and linear
programming [42] etc., where graph-cut is one of the most efficient ways to exactly tackle
the problem in case of a sub-modular energy function. In practice, most labeling problems
involving more than two labels are NP-hard, therefore only approximate graph-based algo-
rithms are available, such as [11]. However, for multi-labeling problems where the labels
are linearly ordered and interaction penalties are convex,Ishikawa [34] showed that the exact
solution can be obtained by computing the min-cut over a specially constructed graph with
multiple layers.
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Despite the efficiency of most graph-based approaches, their computation results are
biased by the discrete grid, i.e. visible metrication errors [10, 38] are introduced in the results.
Reducing such artifacts requires either considering more neighbor nodes [10, 38] or applying
high-order potentials [37, 35]. However, this results in a high memory load of computation.

In this work, we focus on image labeling over a spatially continuous image domain and
study the resulting continuous non-convex optimization problems. In contrast to the graph-
based approaches, such continuous approaches properly avoid metrication errors and allows
for computational result with high sub-grid accuracy. To this end, both the level set method
[48, 16] and phase-field method [36, 6] were proposed. Another important approach is the
piecewise-constant level set method proposed in [46, 47], which assigns a discrete label to
each pixel of the image domainΩ by means of forcing some integral equality conditions.
However, all these methods are based on minimizing a non-convex energy functional; there-
fore, only local optimizers can be obtained and the computation results highly depend on the
initialization. In this paper, we show that the non-convex optimization problems of image
labeling can be globally and efficiently solved by means of convex relaxation. In contrast to
previous methods, the convex relaxation approach can yieldglobally or nearly globally opti-
mal solutions to the original non-convex optimization problem. Furthermore, fast algorithms
can be derived through modern convex optimization theoriesand their implementation require
less memory and can be easily accelerated by modern parallelcomputational hardware.

1.1. A Short Review. By the milestone works of Strang [56] and Chan et al [17], it was
realized that typical binary image labeling problems in thespatially continuous setting, in
case of two labels, can be globally and exactly solved via a convex relaxation. Particularly,
Chan et al. [17] considered the following optimization problem

min
u(x)∈{0,1}∀x∈Ω

∫

Ω

(1 − u)ρ(`2, x) dx+

∫

Ω

uρ(`1, x) dx + α

∫

Ω

|∇u| dx (1.1)

which is clearly non-convex due to its binary constraintu(x) ∈ {0, 1} for all x ∈ Ω. Here
ρ(`i, x) is the cost of assigningx to regionΩi. The authors showed that such a binary con-
straint can be relaxed byu(x) ∈ [0, 1], then the computed result of the convex relaxation
could be thresholded at any level in(0, 1] to yield a global minimum of the original binary
constrained problem (1.1). Recently, such a convex relaxation approach has been further
extended to the multiregion case as the continuous counterpart of Pott’s model [54]. Pott’s
model describes optimal partition of the image domainΩ inton disjoint sub-regions{Ωi}ni=1

with minimal total perimeter as the solution of

min
{Ωi}n

i=1

n
∑

i=1

∫

Ωi

ρ(`i, x) dx + α

n
∑

i=1

|∂Ωi| (1.2)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 6= l .

Convex relaxations for (1.2) was proposed and studied in [61, 44, 50, 13, 5]. Because the
underlying optimization problem (1.2) is NP-hard, the relaxations are not generally exact,
i.e. the reconstructed rounded integer-valued optimum cangenerally only be accepted as
suboptimal. However, experimental results were promisingin terms of the total energy and
quality of the computed solutions. The tight relaxation forPotts model proposed in [50, 13]
gives the best approximations to global minimums of the original Potts problem (1.2).

Another important image labeling problem is

min
u(x)∈{`1...`n}

∫

Ω

ρ(u(x), x) dx +

∫

Ω

C(x)|∇u(x)| dx , (1.3)
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where the n labels{`1 . . . `n} are linearly ordered such that`1 < . . . < `n andρ(u(x), x)
is some bounded function, not necessarily convex inu. The last term of (1.3) regularizes
the total (weighted) perimeter of the labeled partitions. The problem (1.3) can also express
partitioning problems, by the conventionu = `i in the regionΩi. The piecewise constant
level set method [47] has exactly the form of (1.3) with`i = i for i = 1, ...n. Note that the
regularization term of (1.3) does not correspond to the length term in the more ideal Pott’s
model (1.2), because of its dependency on the size of the jumps ofu. On the other hand, such
a linear relationship on the size of the jump ofu may be an advantage in other applications,
like stereo reconstruction and image denoising where labelvalues should potentially favor
such a linear order.

To approach a continuous version of (1.3), where also the label values are constrained to
a continuous set, [53, 52] generalized Ishikawa’s work [34]to the spatially continuous setting,
by representing the optimal labeling function as the discontinuity set of a binary function in a
one-dimensional higher space, i.e. a spatially continuousmin-cut. Such a lifting approach is
related to earlier mathematical theories of calibrations and cartesian currents [8, 1]. Optimal
labeling functions could be obtained by applying the resultof Chan et al. in the higher
dimensional space, i.e. first solve the relaxed binary problem and then threshold the result.
Recently, the lifting approach was further applied to solvevector-valued problems [29] in the
totally discrete setting.

1.2. Motivations and contributions. For discrete graphs, it is well known that the min-
imum cut problem is dual to the maximum flow problem by themax-flow and min-cut theo-
rem [24]. Actually, the fastest graph cut algorithms are based on maximizing flow instead of
computing the min-cut directly, e.g. the Ford-Fulkerson algorithm [23] and the push-relabel
algorithm [28]. The minimal ’cut’ is finally recovered alongedges with ’saturated’ flows,
i.e. cuts appear at the flow-bottlenecked edges [18, 41]. In contrast, max-flow models and
algorithms in the spatially continuous setting have been much less studied. Some work has
appeared that deal with partitioning problems involving two regions: Strang [56] was the first
to formulate max-flow and min-cut problems over a continuousdomain; In [3], edge based
max-flow and min-cut was formulated in which certain interior and exterior points must be
specified in advance; Yuan et al [59, 60] proposed a direct continuous analogue of the typical
discrete max-flow and min-cut models that are used for solving binary labeling problems in
image processing and computer vision. In contrast, most previous works on labeling in the
spatially continuous setting, e.g. [61, 29, 53, 12] etc, tried to conduct the energy minimization
over the labeling functions directly.

To our knowledge, this is the first work to address continuousmax-flow models for par-
titioning problems involving multiple regions. Motivatedby Yuan et al. [59] and Ishikawa
[34], we interpret (1.3) as a continuous min-cut problem over a mixed continuous/discrete
domain and build up a novel continuous max-flow model in analogy with Ishikawa’s discrete
graph construction. The max-flow model can be used to produceglobal solutions of the non-
convex problem (1.3) with discrete label values. In particular, it is shown that the max-flow
model is dual to an exact convex relaxation of (1.3). Strict duality is also established between
the max-flow model and the original problem, by extending thethresholding scheme of [17]
from two to multiple regions. With aid of the proposed dualities, a new efficient continuous
max-flow based algorithm is also derived.

The theory of the continuous max-flow approach for (1.3) is extended to two other prob-
lems of importance: a tight convex relaxation to Pott’s model, and labeling with continuous-
valued labels. We show significant advantages of the proposed continuous max-flow approach
over previous work in terms of both theoretical elegance andefficiency in numerics.

Our main contributions can be summarized as follows
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• We study a convex relaxation of the nonconvex labeling problem (1.3), the so-called
continuous min-cut model. To this end, we build up a novel max-flow formulation
over n linearly layered continuous image domains, which is in analogy with the
discrete graph construction of Ishikawa. Duality between the proposed continuous
max-flow model and its corresponding continuous min-cut model is shown upon a
variational perspective.

• A thresholding scheme is derived for converting solutions of the convex relaxed
problem into solutions of the non-convex problem (1.3) withdiscrete label values,
extending the scheme proposed in [17] from two to multiple regions.

• New continuous max-flow based algorithms are proposed. Their efficiency and con-
vergence can be verified by standard convex optimization theories. The labeling
function is updated as an unconstrained lagrange multiplier each iteration, and does
not need to be projected back onto any feasible set. Numerical experiments show a
significantly faster convergence rate than the primal-dualalgorithm in Pock et. al.
[52, 53], especially at high precisions.

• A max-flow dual formulation of the convex relaxation of Pott’s model [50] is pro-
posed as a direct extension of the continuous max-flow model for (1.3). An algo-
rithm is proposed which deals with all constraints on the labeling function implicitly
and avoids expensive iterative computations of projections without closed form so-
lution.

2. Preliminaries: Ishikawa’s Work. Ishikawa [34] studied image labeling problems
over an image graph which can be generally formulated as:

min
u∈U

∑

v∈P

ρ(uv, v) + α
∑

(v,w)∈N

g(uv − uw) , (2.1)

whereP denotes a discrete image grid in 2-D or N-D;N ⊂ P ×P is a neighborhood system
onP ; U = {u : P 7→ L} is the set of all feasible labeling functions. The potentialpriorg(x)
of (2.1) is assumed to be convex andρ is any bounded function, but not necessarily convex.
It was shown by [34] that the problems of the form (2.1) can be exactly optimized by finding
the min-cut over a specially constructed multi-layered graphG = (V , E), where each layer
corresponds to one label.

We adopt Ishikawa’s notations [34] in this work and study thesimplified graph which
usesn− 1 layers instead ofn and avoids infinite capacities on the source edges [4] (see Fig.
2.1 for a 1-D example). The vertex setV and the edge setE are defined as follows:

V = P × L ∪ {s, t} = {uv,i | v ∈ P ; i = 1, ..., n− 1} ∪ {s, t} (2.2a)

E = ED ∪ EC ∪ EP (2.2b)

where the edge setE is composed of three types of edges
• Data edgesED =

⋃

v∈P Ev
D, where

Ev
D = (s, uv,1) ∪ {(uv,i, uv,i+1) | i = 1, . . . , n− 2} ∪ (uv,n−1, t) . (2.3)

• Penalty edgesEP =
⋃

v∈P Ev
C , where

Ev
C = {(uv,i+1, uv,i) | i = 1, . . . , n− 2} . (2.4)

• Regularization edgesER:

ER = {(uv,i, uw,j) | (v, w) ∈ N , i, j = 1, ..., n} . (2.5)

4



(a) (b)

FIG. 2.1. 1D illustration: (a) Legal cut, (b) Illegal cut. Severed edges are depicted as dotted edges. The gray
curve visualizes the cut. Vertices interior to the curve belongs toVs while vertices exterior to the curve belongs to
Vt. Severed edges are illustrated as dotted arrows.

2.1. Anisotropic Total-Variation Regularization. When a pairwise priorg(uv−uw) =
C(u,w) |uv − uw| is given, (2.1) corresponds to an anisotropic total-variation regularized
image labeling problem, i.e.

min
u∈U

∑

v∈P

ρ(uv, v) + α
∑

(v,w)∈N

C(v, w) |uv − uw| (2.6)

which is the discrete counterpart of the total-variation based mutli-labeling problem (1.3).
Now we define flow configurations over the graph (2.2a) and (2.2b) such that its max-

flow corresponds to the minimizer of (2.6):

• Capacity of source flows:the directed flowp1(v) along each edge from the sources
to the nodeuv,1 of the first layer, i.e. the edge(s, uv,1), is constrained by

p1(v) ≤ ρ(`1, v) , ∀v ∈ P ; (2.7)

• Capacity of flows between layers:the directed flowpi(v) along each edge(uv,i, uv,i+1)
from the nodeuv,i of the i-th layer to the nodeuv,i+1 of the i + 1-th layer is con-
strained by

pi(v) ≤ ρ(`i, v) , ∀v ∈ P i = 1, ..., n− 2 (2.8)

• Capacity of sink flows:the directed flowpn(v) along each edge from the node
uv,n−1 of the last layer to the sinkt is constrained by

pn(v) ≤ ρ(`n, v) , ∀v ∈ P ; (2.9)

• Capacity of spatial flows at each layer:the undirected flowqi(v, w) of each edge
(v, w) ∈ N at the layeri, i = 1, . . . , n− 1, is constrained by

|qi(v, w)| ≤ C(v, w) ; (2.10)

this actually amounts to the well-known anisotropic total-variation regularizer;
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• Conservation of flows:flow conservation means that in-coming flows should be
balanced by out-going flows at any nodev ∈ P of each layeri = 1, ..., n− 1 , i.e.

(

∑

w:(w,v)∈N

qi(v, w) −
∑

w:(v,w)∈N

qi(v, w)
)

− pi(v) + pi+1(v) = 0 . (2.11)

Since there is no lower bound on the flows (2.7)-(2.9), the flowcapacities on the penalty
edges (2.4) are infinite. This implies that each edge in the set Ev

D which links the source and
sink can only be cut once, i.e. illegal cuts as shown in Fig. 2.1(b) have infinite cost and are
not allowed.

Therefore, the max-flow problem over the graph is to find the largest amount of flow
allowed to pass from the sources to sinkt through then− 1 graph layers, i.e.

max
p,q

∑

v∈P

p1(v) (2.12)

subject to the flow constraints (2.7), (2.8), (2.9), (2.10) and (2.11).
It was proved that once the maximal flow is computed, a minimalcut can be extracted

which corresponds to a minimizer of the problem (2.6).

3. Convex Relaxation and Continuous Max-Flow Models.In this section, we study
the labeling problem (1.3) which is the continuous counterpart of (2.1) specialized to the
classical total-variation regularizer:

min
u∈U

∫

Ω

ρ(u(x), x) dx +

∫

Ω

C(x)|∇u(x)| dx , (3.1)

whereU = {u : Ω 7→ {`1, ..., `n}, s.t.
∫

Ω
|∇u| dx < ∞} is the set of all feasible func-

tions over the continuous image domainΩ; ρ(u(x), x) is any uniformly bounded function,
not necessarily convex in the element ofu. The gradient magnitude is measured with the ro-
tationally invariant 2-norm|∇u|2 =

√

u2
x1

+ ...+ u2
xm

, in contrast to the anisotropic graph
representable 1-norm used in the discrete setting.

Inspired by Ishikawa’s graph-cut work revisited in the lastsection, we propose a sim-
ilar flow-maximization scheme in the spatially continuous setting, and build up the duality
between such continuous ma ax-flow model and a convex relaxation of (3.1). Via the new
max-flow model, we show the proposed convex relaxation modelsolves (3.1) exactly and
globally.

3.1. Representations by Layer Functions.Let Si, i = 1, ..., n − 1, denote then − 1
upper level sets of the labeling functionu(x) ∈ U such that

Si = {x ∈ Ω : u(x) > `i} . (3.2)

To ease exposition, we also defineS0 = Ω andSn = ∅.
The characteristic functionsλi(x) of the upper level setsSi i = 1, ..., n− 1, also called

the layer functionsin this work, are defined by:

λi(x) =

{

1 if u(x) > `i
0 if u(x) ≤ `i

, i = 1, . . . , n− 1 . (3.3)

Likewise, we defineλ0(x) = 1 andλn(x) = 0, ∀x ∈ Ω, as the characteristic functions of the
setS0 andSn respectively. We show how (3.1) can be expressed in terms ofλ, as was done
in the discrete setting in [19, 19, 15, 20].
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As `1 < . . . < `n, we have

∅ = Sn ⊆ . . . ⊆ S1 ⊆ S0 = Ω (3.4)

and

0 = λn ≤ . . . ≤ λ1 ≤ λ0 = 1 . (3.5)

With help of the above notations, we can rewrite the optimization problem (3.1) in terms
of the layer functionsλi(x), i = 1, ..., n− 1, such that

min
λi(x)∈{0,1}

n
∑

i=1

∫

Ω

(λi−1(x) − λi(x)) ρ(`i, x) dx +

n−1
∑

i=1

∫

Ω

Ci(x)|∇λi(x)| dx (3.6)

subject to the monotonically nonincreasing constraint (3.5), whereCi(x) = (`i+1− `i)C(x),
i = 1, . . . , n− 1.

To see this, the data term of (3.1) can be directly written as
∫

Ω

ρ(u(x), x) dx =

n
∑

i=0

∫

Si−1\Si

ρ(`i, x) dx =

n
∑

i=0

∫

Ω

(λi−1(x)−λi(x)) ρ(`i, x) dx . (3.7)

Moreover, observe that any functionu(x) ∈ U can be written in terms ofλi(x), i =
0, ..., n, as

u(x) =
n
∑

i=1

(λi−1(x) − λi(x))`i = `1 +
n−1
∑

i=1

λi(x)(`i+1 − `i) . (3.8)

By the coarea formula [27], the regularization term of (3.1)amounts to
∫

Ω

C(x)|∇u(x)| dx =

n−1
∑

i=1

∫

Ω

Ci(x)|∇λi(x)| dx . (3.9)

Clearly, once the layer functionsλi(x) are computed, the labeling functionu(x) can be
easily recovered by (3.8).

In this work, we focus on the case whereC(x) = α is constant and̀i+1 − `i = 1,
i = 1, ..., n− 1 for simplicity. The results can be easily extended to other more generalC(x)
and`i, i = 1, ..., n. Using the above results, (3.6) can equivalently be reformulated as

min
λi(x)∈{0,1}

n
∑

i=1

∫

Ω

(λi−1(x)− λi(x)) ρ(`i, x) dx + α

n−1
∑

i=1

∫

Ω

|∇λi| dx (3.10)

subject to the order constraint (3.5). (3.10) is nonconvex due to the binary setting ofλi(x) ∈
{0, 1}, i = 1, ..., n− 1.

3.2. Convex Relaxation Models.In the following parts, we show that the nonconvex
optimization problem (3.10) can be globally and exactly solved via its convex relaxation:

min
λi(x)∈[0,1]

ED(λ) =

n
∑

i=1

∫

Ω

(λi−1(x)− λi(x))ρ(`i, x) dx + α

n−1
∑

i=1

∫

Ω

|∇λi| dx (3.11)

s.t. 1 = λ0(x) ≥ λ1(x) ≥ . . . ≥ λn−1(x) ≥ λn(x) = 0 , ∀x ∈ Ω

where the binary constraints on the labeling functionsλi(x) ∈ {0, 1}, i = 1, . . . , n − 1,
are relaxed by the convex onesλi(x) ∈ [0, 1], i = 1, . . . , n − 1. In this work, (3.11) is
also called theprimal modelin comparison to itsdual formulation: the continuous max-flow
modelproposed in the following section.
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FIG. 3.1.(a) Illustration of the max-flow problem defined over a mixed discrete/continuous domain.

3.2.1. Dual Model: Continuous Max-Flow Formulation. Inspired by Ishikawa’s graph
configuration (2.2a) and (2.2b) reviewed in Sec. 2, we set up our spatially continuous settings
in the same manner:n − 1 copies of the image domainΩ are placed in sequential order be-
tween two terminals: the sources and the sinkt (see Fig. 3.1); this mixed continuous/discrete
setting can be defined as

Ω× {1, ..., n− 1} ∪ {s} ∪ {t} = {(x, i) | x ∈ Ω, i = 1, ..., n− 1} ∪ {s} ∪ {t} . (3.12)

Likewise, the continuous counterparts of edges, flows and capacities are given as follows
(see Fig. 3.1 for an illustration):

• In view of (2.3), the data edges are defined as follows: for each x ∈ Ω, the sources
is linked to(x, 1) of the first layer by the edge functione1(x); the points(x, i − 1)
and(x, i) in two sequential image layers,i = 2 . . . n − 1, are linked by the edge
functionei(x); at the last layer(x, n− 1) is linked to the sinkt by the edge function
en(x).

• At each edgeei(x), i = 1 . . . n, a flow functionpi(x) is defined over allx ∈ Ω.

• In analogue with the regularization edges (2.5), within each image layeri = 1 . . . n−
1, a spatial flow function is given by the vector fieldqi ∈ (C∞

0 Ω)m, wherem is the
dimension ofΩ.

As the generalization of the flow constraints (2.7) - (2.11) given by the graph setting, we
set the capacity and conservation constraints on the flow functionspi(x) andqi(x):

|qi(x)| ≤ Ci(x) for x ∈ Ω , i = 1, . . . , n− 1 (3.13)

pi(x) ≤ ρ(`i, x) for x ∈ Ω , i = 1, . . . , n (3.14)
(

div qi − pi + pi+1

)

(x) = 0 for x ∈ Ω , i = 1, . . . , n− 1 (3.15)

qi · n = 0 on∂Ω , i = 1, . . . , n− 1 . (3.16)

1The notation a.e. stands for ”for almost every”, which meansthe constraint (3.15) should hold in the integrable
and weak sense for everyx ∈ Ω, expect possibly a subset of zero measure.
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Equivalently to Ishikawa’s max-flow formulation (2.12), wepropose acontinuous max-
flow modelby maximizing the total amount of source flow

sup
p,q

EP (p, q) =

∫

Ω

p1(x) dx (3.17)

subject to the flow constraints (3.13), (3.14) and (3.15). Inthis work, we call (3.17) thedual
model. We will prove it is equivalent or dual to theprimal model(3.11) in the following
sections.

3.2.2. Primal-Dual Model. Now we start from the proposed continuous max-flow model
(3.11) and introduce the multiplier functionλi(x), i = 1 . . . n − 1, to each linear equality
constraint (3.15), i.e. the flow conservation condition. We, consequently, get the following
primal-dual formulation:

inf
λ

sup
p,q

E(p, q;λ) =

∫

Ω

{

p1 +

n−1
∑

i=1

λi

(

div qi − pi + pi+1

)}

dx (3.18)

subject to (3.13) and (3.14). (3.18) is called theprimal-dual model. It is equivalent to the
continuous max-flow model (3.17) and can be rearranged and equally represented by

inf
λ

sup
p,q

E(p, q;λ) =

n
∑

i=1

∫

Ω

(λi−1 − λi)pi dx +

n−1
∑

i=1

∫

Ω

λi div qi dx (3.19)

s.t. |qi(x)| ≤ α , i = 1 . . . n− 1 ; pi(x) ≤ ρ(`i, x) , i = 1 . . . n ∀x ∈ Ω .

For theprimal-dual model(3.18) introduced above, we have
PROPOSITION 3.1. There exists at least one saddle-point for(3.18), and the min and

max operator of(3.18)are interchangeable, i.e.

sup
p,q

inf
λ

E(p, q;λ) = inf
λ

sup
p,q

E(p, q;λ) . (3.20)

To see this, we observe the following facts: for the primal-dual model (3.18), the condi-
tions of the minimax theorem (see e.g., [21] Chapter 6, Proposition 2.4) are all satisfied: the
constraints of flows are convex and the energy functional is linear over both the dual variables
λi(x), i = 1 . . . n− 1 and the primal variablespi(x), i = 1 . . . n, qi(x), i = 1 . . . n− 1. This
also implies the existence of at least one saddle point [21].

Clearly, the optimization of (3.18) over the dual functionsλi(x), i = 1 . . . n − 1, leads
back to the primal max-flow model (3.17).

3.2.3. Duality btw. (3.17)and (3.11). In this section, we build up the duality or equiv-
alence between theprimal model(3.11) and the continuous max-flow model (3.17):

PROPOSITION3.2. The continuous max-flow problem(3.17)and the continuous min-cut
problem(3.11)are dual to each other.

Proof. We first consider the optimization problem

f(v) = sup
w≤C

v · w , (3.21)

wherev, w andC are scalars.
Whenv < 0, w can be negative infinity in order to maximize the valuev ·w, i.e. f(v) =

+∞. It can also be easily seen that
{

if v = 0 , thenw ≤ C andf(v) = 0,
if v > 0 , thenw = C andf(v) = v · C

.
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Therefore, we have

f(v) =

{

v · C if v ≥ 0
∞ if v < 0

(3.22)

By the facts (3.21) and (3.22), the functionf(v) provides a prototype to maximize the
primal-dual model (3.19) over the flow constraints (3.14), i.e.pi(x) ≤ ρ(`i, x), i = 1 . . . n.

Define

fi(x) = sup
pi(x)≤ρ(`i,x)

(λi−1(x)− λi(x)) pi(x) , i = 1 . . . n .

In view of of (3.22), we have

fi(x) =

{

(λi−1(x)− λi(x)) ρ(`i, x) if λi−1(x) ≥ λi(x)
∞ if λi−1(x) < λi(x)

i = 1, ..., n (3.23)

On the other hand, it is well known that [27]

sup
|q(x)|≤α

∫

Ω

λdiv q dx = α

∫

Ω

|∇λ| dx . (3.24)

Given (3.23) and (3.24) for the primal-dual model (3.19), wethen end up with the primal
model (3.11) along with the constraintsλi−1(x) ≥ λi(x), i = 1 . . . n, for all x ∈ Ω. If
these constraints on optimalλ are not met, the primal-dual energy is infinite and the solution
doesn’t exist. This contradicts the existence of at least one saddle point, see Prop. 3.1.

In view of the equivalence between the continuous max-flow model (3.17) and the primal-
dual model (3.19), Prop. 3.2 is therefore proved.

With the duality between (3.17) and (3.11) proposed by Prop.3.2, it is easy to see that
optimal layer functionsλi(x), i = 1 . . . n, to the convex relaxation model (3.11) just work as
the optimal multipliers to the flow conservation condition (3.15) of the continuous max-flow
model (3.17). This is the motivation for the new fast algorithm to compute the layer functions,
proposed in Sec. 3.4, through the flow-maximization formulation (3.17).

3.3. Exact and Global Optimums. The functionsλi, i = 1 . . . n − 1, of the convex
model (3.11) are relaxed to take values in the convex set[0, 1], which is in contrast to the
binary constraints of the original nonconvex formulation (3.10). The following proposition
establishes a strong primal-dual relationship between themax-flow problem (3.17) and the
original non-convex problem (3.10). By solving the max-flowproblem (3.17) a set of opti-
mizers to the original binary constrained problem (3.10) can be obtained by thresholding each
layer functionλ∗

i (x). When the set of label values are continuous, an analogous thresholding
scheme was shown to hold exactly in [52].

PROPOSITION3.3. Let (p∗, q∗;λ∗) be any optimal saddle-point of(3.18). Let{ti}
n−1
i=1

be a sequence such that0 < t1 = t2 = ... = tn−1 ≤ 1, define the level sets

Sti
i = {x : λ∗

i (x) ≥ ti} , i = 1 . . . n− 1 (3.25)

and letλti
i (x) be the characteristic function ofSti

i , i.e.

λti
i (x) :=

{

1 , λ∗
i (x) ≥ ti

0 , λ∗
i (x) < ti

.
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then the set of binary functionsλti
i (x), i = 1, . . . , n− 1, is a global optimum of the original

nonconvex multi-labeling problem(3.10). Moreover, the cut given byλti
i (x), i = 1, . . . , n−1,

has an energy equal to the max flow energy in(3.17), i.e.

ED(λt) =

∫

Ω

p∗1(x) dx = EP (p∗).

Proof. Sincep∗i , i = 1, ..., n andq∗i , λ
∗
i , i = 1, ..., n − 1 is a global optimum of the

primal-dual problem (3.18), thenp∗i , q∗i optimize the dual problem (3.17) andλ∗
i (x) optimizes

(3.11).
For simplification reasons, definet0 = 0 such thatSt0

0 = Ω. Sinceli is increasing withi
we must have

St0
0 ⊇ St1

1 ⊇ St2
2 ⊇ ... ⊇ S

tn−1

n−1

Since the variables are optimal, the flow conservation condition (3.15) must hold, i.e

div q∗i (x) − p∗i (x) + p∗i+1(x) = 0 , a.e.x ∈ Ω, i = 1, ..., n− 1.

The proof is given by induction. For anyk ∈ {1, ..., n− 1} define the function

Ek =

k
∑

i=1

∫

S
`i−1

i−1
\S

ti
i

ρ(`i, x) dx +

∫

S
`k
k

p∗k+1(x) dx + α

k
∑

i=1

L
S

ti
i

whereL
S

ti
i

is the length of the perimeter of the setSti
i . We will proveEk = EP (p∗) for any

k ∈ {1, ..., n− 1} and start by consideringk = 1. By the formula (3.23), it is easy to see that

p∗1(x) = ρ(`1, x), for any point x ∈ Ω\St1
1 = St0

0 \St1
1

This, together with the fact that

p∗1(x) = p∗2(x) + div q∗1(x), a.e.x ∈ St1
1

implies that the total max-flow energy defined in (3.17) can bewritten

EP (p∗) =

∫

Ω\S
t1
1

ρ(`1, x) dx+

∫

S
t1
1

(

p∗2(x) + div q∗1(x)
)

dx

=

∫

Ω\S
t1
1

ρ(`1, x) dx+

∫

S
t1
1

p∗2(x) dx +

∫

S
t1
1

div q∗1(x) dx

=

∫

S
t0
0

\S
t1
1

ρ(`1, x) dx +

∫

S
t1
1

p∗2(x) dx + αL
S

t1
1

= E1

The last term follows from Prop 4 of [5], or from the fact that(q∗i ·n)(x) = α at allx ∈ ∂S`i
i

combined with the Gaussian theorem
∫

S
`i
i

div q∗i (x) dx =

∫

∂S
`i
i

q∗i · n ds = α
∣

∣∂S`
∣

∣ . (3.26)

Assume now thatEk = EP (p∗) for somek ∈ {1, ..., n − 2}, we will show this implies
Ek+1 = EP (p∗)

EP (p∗) = Ek =

k−1
∑

i=1

∫

S
`i−1

i−1
\S

ti
i

ρ(ti, x) dx +

∫

S
`k−1

k−1

p∗k(x) dx + α

k−1
∑

i=1

L
S

ti
i

.
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By the definition (3.25) it follows thatλk−1(x) − λk(x) > tk−1 − tk = 0 for all x ∈
Stk−1
k−1 \Stk

k . Therefore, by formula (3.23), for any pointx ∈ Stk−1
k−1 \Stk

k we must have
p∗k(x) = ρ(`k, x). Combining this with the fact that

p∗k(x) = p∗k+1(x) + div q∗k(x), a.e.x ∈ Ω

the above expression can be written

EP (p∗) = Ek =
k−1
∑

i=1

∫

S
`i−1

i−1
\S

ti
i

ρ(ti, x) dx+

∫

S
`k−1

k−1
\S

`k
k

ρ(`k, x) dx (3.27)

+

∫

S
`k
k

p∗k+1(x) dx + L
S

tk
k

+ α
k−1
∑

i=1

L
S

ti
i

= Ek+1.

Hence, we can conclude that alsoEn−1 = EP (p∗). By noting from (3.23) that for all
x ∈ S

tn−1

n−1 we must havep∗n(x) = ρ(`n, x), the total max flow energy defined in (3.17) can
be written

EP (p∗) = En−1 =

∫

Ω\S
t1
1

ρ(`1, x) dx +
n−1
∑

i=2

∫

S
`i−1

i−1
\S

ti
i

ρ(ti, x) dx (3.28)

+

∫

S
tn−1

n−1

ρ(`n, x) dx + α
n−1
∑

i=1

L
S

ti
i

By writing this expression in terms of the characteristic functionsλti
i of each regionSti

i , we
get

EP (p∗) =

n
∑

i=1

∫

Ω

(λ
`i−1

i−1 (x) − λti
i (x)) ρ(ti, x) dx + α

n−1
∑

i=1

∫

Ω

|∇λti
i | dx = ED(λ`)

which is exactly the primal model energy (3.11) of the set of binary functionsλti
i . Therefore,

by duality between the max-flow problem (3.17) and the convexrelaxation problem (3.11),
λti
i must be a global minimum of the min-cut problem (3.11) and therefore also a global

minimum of the original problem (3.10).

3.4. Multiplier-Based Max-Flow Algorithm. As shown in the previous section, the
primal-dual energy formulation (3.18) is just the lagrangian functional of (3.17) and the
multiplier functionsλi(x), i = 1 . . . n − 1, to the linear flow-conservation equalities (3.15)
simply correspond to the layer/labeling functions. We now define the respective augmented
lagrangian functional of (3.17) as

Lc(p, q, λ) :=

∫

Ω

p1 dx+

n−1
∑

i=1

∫

Ω

λi(div qi+ pi+1− pi) dx−
c

2

n−1
∑

i=1

‖ div qi+ pi+1− pi‖
2 ,

(3.30)
wherec > 0.

In this section, we assume the functionsλ, p, q and operators
∫

, div,∇ are discretized,
but stick with the continuous notation for simplicity. An algorithm is constructed based on
the classical augmented Lagrangian method (or alternatingdirections method of multipliers
(ADMM)) [7], which alternatively maximizes the energy withrespect to the flow variables
p(x) andq(x) and finally updates the multiplier functionsλi(x), i = 1 . . . n−1. Convergence
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Algorithm 1 Multiplier-Based Maximal-Flow Algorithm

Choose some starting values forp1, q1 andλ1, let k, i = 1 and startk−th iteration, which
contains the following steps, until convergence:

• For each layeri = 1 . . . n− 1, each step repeats as follows:
– Optimizepi by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(`i,x)
Lc((p

k+1
j<i , pi, p

k
j>i), (q

k+1
j<i , q

k
j≥i), λ

k)

:= arg max
pi(x)≤ρ(`i,x)

−
c

2

∥

∥pi + div qk+1
i−1 − pk+1

i−1 − λk
i−1/c

∥

∥

2

−
c

2

∥

∥pi − (pki+1 + div qki ) + λk
i /c

∥

∥

2

which can be explicitly computed at each pointx ∈ Ω;
– Optimizeqi, by introducing the new value ofpk+1

i and fixing other variables

qk+1
i := arg max

‖q‖
∞

≤α
Lc((p

k+1
i≤j , p

k
i>j), (q

k+1
j<i , qi, q

k
j>i), λ

k)

:= arg max
‖q‖

∞
≤α

−
c

2

∥

∥div qi + pki+1 − pk+1
i − λk

i /c
∥

∥

2
, (3.29)

which can either be solved iteratively by the projected-gradient algorithm [14],
or approximately by one linearized step (3.31);

– Optimizepi again, by introducing the new values ofqk+1
i and fixing others

pk+1
i := arg max

pi(x)≤ρ(`i,x)
Lc((p

k+1
j<i , pi, p

k
j>i), (q

k+1
j≤i , q

k
j>i), λ

k) ,

which can be explicitly computed at each pointx ∈ Ω;
• At the first and last layer, it is a little different to update the flow functionsp1 and
pn which are given below:

pk+1
1 := arg max

p1(x)≤ρ(`1,x)
Lc(p1, p

k
2 , ..., p

k
n, q

k+1, λk)

:= arg max
p1(x)≤ρ(`1,x)

∫

Ω

p1 dx−
c

2

∥

∥p1 − (pk2 + div qk+1
1 ) + λk

1/c
∥

∥

2
,

and

pk+1
n := arg max

pn(x)≤ρ(`n,x)
Lc(p

k+1
1 , ..., pk+1

n−1, pn, q
k+1, λk)

:= arg max
pn(x)≤ρ(`n,x)

−
c

2

∥

∥pn + div qk+1
n−1 − pk+1

n−1 − λk
n−1/c

∥

∥

2
.

Both can be computed explicitly;
• Update multipliersλi, i = 1, . . . , n− 1, by

λk+1
i = λk

i − c (div qk+1
i − pk+1

i + pk+1
i+1 ) ;

• Repeat the above steps until convergence.

of such an algorithm can be validated by standard convex optimization theories. For the
two-label case, a similar flow-maximization scheme for the continuous min-cut problem was
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proposed in [59, 60] and demonstrated a significantly fasterconvergence than state of the art
[12].

Instead of solving the sub-problem (3.29) iteratively by the projected-gradient algorithm
[14], an inexact solution can be obtained by the linearization:

qk+1
i = Πα

(

qki + c∇(div qki + pki+1 − pk+1
i − λk

i /c).

)

(3.31)

whereΠα is the projection onto the convex setCα = {q |‖q‖∞ ≤ α}. There are extended
convergence results for such a linearization [22, 30] for closely related problems.

Both variants of the algorithm is demonstrated to converge significantly faster than the
primal-dual algorithm [52] which will be discussed in Section 5.3.

4. Extension to Continuous Labels.Now we extend the material in Section 3 to the
case where the feasible label values are constrained to the interval[`min, `max], i.e. the total
number of labels goes to infinity. We address such a continuous labeling problem by a direct
extension of the continuous max-flow model (3.17). In this section, we first propose the novel
max-flow model, then derive its equivalent min-cut formulation. Finally, we compare with
the work proposed by Pock et. al. [53].

4.1. Max-Flow Model. As the number of labels goes to the limit of infinity, the max-
flow problem (3.17) with the flow constraints (3.13)-(3.15) turns into

sup
p,q

∫

Ω

p(`min, x) dx (4.1)

s.t. p(`, x) ≤ ρ(`, x) , |q(`, x)| ≤ α, ∀x ∈ Ω, ∀` ∈ [`min, `max] (4.2)

divx q(`, x) + ∂` p(`, x) = 0 , a.e.x ∈ Ω, ` ∈ [`min, `max]. (4.3)

q(., `) · n = 0, ∀` ∈ [`min, `max] (4.4)

where` ∈ [`min, `max] is the set of all feasible continuous-valued labels. The flowfunctions
p(x) andq(x) are defined in the one dimensional higher space[`min, `max]× Ω.

4.2. Min-Cut Model. Let λ(`, x) be the multiplier function to the flow conservation
constraint (5.3). The equivalent primal-dual model to (5.1) can be written as

sup
p,q

inf
λ

∫

Ω

p(`min, x) dx+

∫ `max

`min

∫

Ω

{

divx q(`, x) + ∂` p(`, x)
}

λ(`, x) dx d` (4.5)

subject to (5.2).
Likewise, we can also prove duality through the following proposition
PROPOSITION 4.1. The max-flow model(5.1) with continuous label-values is dual /

equivalent to the following min-cut model over[`min, `max]× Ω:

min
λ(`,x)∈[0,1]

∫ `max

`min

∫

Ω

{

α |∇xλ| − ρ(`, x)∂` λ(`, x)
}

dxd`

+

∫

Ω

(1− λ(`min, x))ρ(`min, x) + λ(`max, x)ρ(`max, x) dx (4.6)

subject to

∂` λ(`, x) ≤ 0 , λ(`min, x) ≤ 1 , λ(`max, x) ≥ 0 , ∀x ∈ Ω, ∀` ∈ [`min, `max] .
(4.7)
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Proof. By using integration by parts iǹ, the primal-dual formulation (5.5) can be rear-
ranged as

sup
p,q

inf
λ

+

∫ `max

`min

∫

Ω

{

λ(`, x) divx q(`, x)− p(`, x)∂`λ(`, x)
}

dx d`

+

∫

Ω

(1 − λ(`min, x))p(`min, x) + λ(`max, x)p(`max, x) dx. (4.8)

subject to (5.2). Observe that optimalλ must satisfyλ(`min, x) ≤ 1 andλ(`max, x) ≥ 0 for
all x ∈ Ω, otherwise the energy becomes arbitrarily large asp(`min, x) andp(`max, x) are
chosen arbitrarily close to−∞. In the same vein∂`λ(`, x) ≤ 0 for all ` ∈ [`min, `max] and
all x ∈ Ω, otherwise the energy tends to infinity asp(`, x) → −∞. Hence by maximizing the
primal-dual energy (5.8) w.r.t the flow functionsp andq, we obtain (5.6) with the constraints
(5.7).

The leftmost constraint in (5.7) forces the functionλ(`, x) to be monotonically nonin-
creasing iǹ . It corresponds to the constraint (3.5) for discrete label values.

In analogue with (3.8), the labeling functionu(x) can finally be reconstructed from the
binary functionλ(`, x) by

u(x) = `min +

∫ `max

`min

λ(`, x) d` .

4.3. Comparisons to Pock et al [53].In [53], Pock et al gave a different continuous
formulation of Ishikawa’s construction, as the minimization problem over a binary function
in [`min, `max]× Ω

min
λ(`,x)∈{0,1}

∫ `max

`min

∫

Ω

{

α |∇xλ|+ ρ(`, x) |∂`λ(`, x)|
}

dxd` . (4.9)

subject to

λ(`min, x) = 1 , λ(`max, x) = 0 . (4.10)

In order to solve this non-convex binary problem, the convexrelaxation of [17] was adopted
by minimizing overλ(x, `) ∈ [0, 1]. By applying the thresholding result of [17], binary
optimums could be obtained by thresholding the computed result.

The main differences between our formulation (5.6), (5.7) and Pock et al’s formulation
(5.9), (5.10) can be summarized as follows:

First, the constraint∂`λ(`, x) ≤ 0 is not forced explicitly in [53]. However, it turns out
the presence of the absolute value of the termρ(`, x) |∂`λ(`, x)| forces this constraint to hold.
Observe that ifρ(`, x) < 0 is negative, the formulation of (5.9) becomes non-convex, which
cannot be solved globally. This is in contrast to our formulation (5.6), which is convex also
in this case.

In the more recent work of Pock et. al. [52], a more strict derivation resulted in a
little different formulation. In this formulation, the integrand of the energy functional is
infinite if ∂`λ(`, x) ≤ 0, hence this constraint is forced to hold. Their derivationsrely heavily
on results from the theory of calibrations [1] and cartesiancurrents [25, 26]. Label values
ranged over the whole real lineR was assumed, which required to impose limits at infinity:
lim` 7→+∞ λ(`, x) = 0 and lim` 7→−∞ λ(`, x) = 1. On the other hand, our studies reveal
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an alternative simple theory to this problem based the two dual optimization problems: the
max-flow problem (5.1) and the min-cut problem (5.6).

We eventually stick to a finite label value set in practice. After discretization, the label
space also becomes discrete in [52]. However, it is has not been proved that all properties,
such at the thresholding scheme and monotonicity constraint hold exactly after discretization.
In contrast, these properties were proved to hold exactly for our model with discrete label
values developed in Section 3.

Last but not the least, a primal-dual algorithm was proposedin [52], which consists of
taking ascent steps over the dual variablesp(x) andq(x) and descent step over the primal
variableλ(x), followed by projections of all the variables onto the nearest points of the fea-
sible sets iteratively until convergence.

The algorithms proposed in this work are instead based on thenew max-flow formu-
lations (5.1) which are dual to their respective convex relaxation problems. Experiments
demonstrate a significant faster convergence rate than the primal-dual algorithm proposed in
[52]. All constraints on the labeling functionλ are handled implicitly, and consequentlyλ
does not need to be projected onto the feasible set every iteration.

5. Tight Continuous Max-Flow Approach to Pott’s Model. In this section, we focus
on a tight convex relaxation for Potts model (1.2) as proposed in [50, 13].

5.1. Tight Convex Relaxed Pott’s Model.Consider the problem (3.10) formulated
with dual variables as follows

min
λ

sup
q

=

n
∑

i=1

∫

Ω

(λi−1(x) − λi(x)) ρ(`i, x) dx + α

n−1
∑

i=1

∫

Ω

λi div qi dx (5.1)

subject to

λi(x) ∈ {0, 1}, ∀x ∈ Ω i = 1 . . . n− 1 ; (5.2)

0 = λn(x) ≤ . . . ≤ λ1(x) ≤ λ0(x) = 1 ∀x ∈ Ω; (5.3)

|qi(x)| ≤ α, ∀x ∈ Ω, i = 1 . . . n− 1 . (5.4)

As discussed in the previous sections, (4.1) can be used to partition the image domain
into n sub-regions byΩi = {x ∈ Ω s.t.λi−1(x)− λi(x) = 1}, i = 1 . . . , n− 1. However,
the regularization term in (4.1) does not correspond to the length term as in the Pott’s model
due to the linear dependence on the size of the jumps.

Recently, a tight convex relaxation for Pott’s model was presented in [50, 13], by opti-
mizing (4.1) and replacing the constraint (4.4) with the following convex constraint setCP :

q(x) ∈ CP =
{

∀q ∈ R
n×m | |

i2
∑

i=i1

qi| ≤ α ; ∀ (i1, i2) , 1 ≤ i1 ≤ i2 ≤ n− 1
}

,

(5.5)

∀x ∈ Ω and applying the relaxationλi(x) ∈ [0, 1], i = 1 . . . n. It boils down to optimizing

min
λ

sup
q

=

n
∑

i=1

∫

Ω

(λi−1(x) − λi(x)) ρ(`i, x) dx + α

n−1
∑

i=1

∫

Ω

λi div qi dx (5.6)
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subject to

λi ∈ [0, 1] , i = 1 . . . n− 1 ; 0 = λn ≤ . . . ≤ λ1 ≤ λ0 = 1 ; (5.7)

and (4.5) .
In comparison to other convex relaxations, such a relaxation is more ’tight’ due to the

larger constraint setCP on the dual variablesqi(x), i = 1 . . . n − 1. Therefore the problem
(4.6) is called thetight convex relaxed Pott’s modelin this paper. It was also observed in
[50, 13] that this convex model produces optimal layer functions{λi(x)}

n
i=1 which are binary

nearly everywhere, therefore very close to the real global optimum of the Pott’s model.

5.2. Tight Continuous Max-Flow Model and Duality. In this section, we investigate
the tight convex relaxed Pott’s model (4.6) In contrast to the previous works [50, 13], we
follow the same continuous flow-maximization idea presented in Sec. 3.2.1 and propose its
new continuous max-flow formulation, so-calledtight continuous max-flow modelas follows:

sup
p,q

∫

Ω

p1(x) dx (5.8)

subject to

q(x) ∈ CP , ∀x ∈ Ω; (5.9)

pi(x) ≤ ρ(`i, x) , i = 1 . . . n , ∀x ∈ Ω; (5.10)
(

div qi − pi + pi+1

)

(x) = 0 , i = 1 . . . n− 1, a.e.x ∈ Ω , (5.11)

qi · n = 0 i = 1 . . . n− 1, on∂Ω . (5.12)

Correspondingly, by the introduction of the multiplier functionsλi(x), i = 1 . . . n −
1, to the flow conservation equalities (4.11), we obtain the equivalentprimal-dual model
corresponding to thetight continuous max-flow modelas follows:

inf
λ

sup
p,q

∫

Ω

{

p1 +

n−1
∑

i=1

λi

(

div qi − pi + pi+1

)}

dx (5.13)

subject to

pi(x) ≤ ρ(`i, x) , i = 1 . . . n ; q(x) ∈ CP . (5.14)

Following the same steps presented in Sec. 3.2.3, we have
PROPOSITION 5.1. The tight continuous max-flow problem(4.8) and the tight convex

relaxed Pott’s problem(4.6)are dual to each other.
The proof is identical to the proof of Prop. 3.2 and is omittedhere.
In view of (4.13), we see that the labeling functionsλi(x), i = 1 . . . n− 1, work as mul-

tipliers to the linear equalities of flow conservation in thetight continuous max-flow model
(4.8). Likewise, this paves the way to derive a new max-flow based algorithm to Pott’s prob-
lem.

5.3. Tight Continuous Max-Flow Based Algorithm for Pott’s Model. Observe that
the two continuous max-flow problems (3.17) and (4.8) are nearly the same except the con-
straints on the flow functionsqi(x), i = 1 . . . n − 1. Therefore, for the tight convex relaxed
Pott’s model (4.6), it is natural to consider a similar scheme in numerics as Alg. 3.4 as a
new algorithm for (4.6), which is called thetight continuous max-flow based algorithmin
this work. The only difference is that the constraint forqi(x), i = 1 . . . n − 1, at any pixel
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(a) (b) (c) (d)

FIG. 6.1. (a) Ground truth, (b) input, (c) Rescaled labeling functionbefore threshold, (d) Rescaled labeling
function after thresholding eachλi at 0.5.

x ∈ Ω is no more the simpleα−ball: |qi(x)| ≤ α, but the more complicated convex setCP .
Therefore, for the newtight continuous max-flow based algorithm, we take the very same
steps as Alg. 3.4, except the step (3.29) which is replaced bymaximizing the same energy
over the different constraint setCP as follows:

• Optimizeqi, i = 1 . . . n− 1, by fixing the other variables

qk+1
i := arg max

q∈CP
Lc((p

k+1
i≤j , p

k
i>j), (q

k+1
j<i , qi, q

k
j>i), λ

k)

:= arg max
q∈CP

−
c

2

∥

∥div qi + pki+1 − pk+1
i − λk

i /c
∥

∥

2
. (5.15)

Clearly, (4.15) can be optimized by the projected-descent step. In this regard, the pro-
jection of a vector(q1, ..., qn−1) ∈ R

m×n−1 to the convex setCP becomes our focus, which
has no closed form solution in general. However, we can show that for(q1, ..., qn−1), when
all components but one are fixed, the projection can be computed analytically. This exactly
solves the projection step of (4.15). We state our result as the following proposition:

PROPOSITION5.2. Given the set

CP
i (q̄) := {qi ∈ R

m | (q̄1, ..., q̄i−1, qi, q̄i+1, ..., q̄n−1) ∈ CP }, i = 1 . . . n− 1 . (5.16)

EachCP
i (q̄), i = 1 . . . n − 1, consist of the intersection of a set of spheres inR

m with the
same radiusα. Moreover, for any vectorqi ∈ R

m, its projection to the setCP
i (q̄) can be

computed analytically.
The proof of Prop. 4.2 is omitted here to ease reading, but given in Appendix A.
A primal-dual algorithm was proposed in [52] for optimizing(4.1), which consists of

taking ascent steps over the dual variables and descent stepover the primal variableλ(x), fol-
lowed by projections of all the variables onto the nearest points of the feasible sets iteratively
until convergence. Our continuous max-flow algorithm has the following advantages:

• By Prop. 4.2, we can compute the projection onto the convex set CP analytically.
In contrast, an iterative algorithm (Dyjkstra’s algorithm) was proposed for approxi-
mately computing the projection in [13], which slows down the algorithm’s conver-
gence.

• It avoids the steps to project the layer functionsλi(x), i = 1 . . . n − 1, onto the
convex setλi(x) ∈ [0, 1] and the linear-order-constraint set (4.3) at every iteration.
According to the theory of thetight continuous max-flow model, we can force such
constraints on the layer functions implicitly by the simpler constraints on the flow
functionspi(x) (4.10).

6. Numerical Experiments. In this work, we focus on applications of the model (1.3)
and (1.2) to image segmentation and stereo reconstruction.Comparisons are made to the
discrete approach [34] and the approach proposed by Pock et.al. [53].
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(a) (b) (c) (d)

FIG. 6.2. (a) Input image damaged by impulse noise; (b) reconstructedlabeling function with non-convex
data term(6.3) before threshold, (c) labeling function after thresholding eachλi at 0.5, (d) reconstructed labeling
function with convex data term(6.1)andβ = 1.

(a) (b) (c)

FIG. 6.3.(a) Input, (b) Labeling function before threshold (c) Labeling function after thresholding eachλi at 0.5.

6.1. Image Segmentation.The discrete-valued labeling functionu(x) can be used to
partition the image inton regions by the conventionu = i in regioni. Henceρ(u(x), x) is
the cost of assigning the pointx to regionu. One possibility for such a data term is

ρ(i, x) = |I(x)− ci|
β , i = 1, ..., n (6.1)

whereI is the input image andci is the average intensity value of regioni. They are assumed
to be fixed in this work, although a simple updating scheme canalso be constructed for finding
a local minimum with respect toc as in [4]. Such a data term is convex forβ ≥ 1 and non-
convex forβ < 1. The termα

∫

Ω
|∇u| dx is used to regularizeu. It does not penalize the

jump from each region to the next equally, like the more idealPott’s model. However, for
relatively simple images and when the number of regions is not too large, it works quite well.
In addition, image segmentation is good for illustrative purposes of the method, since the
results are easily visualized. Figure 6.1, 6.4 and 6.3 show results. For ease of visualization,
we have rescaled the labeling functionu such thatu takes the valueci in regioni (instead of
the valuei), i.e.

u = c1 +

n−1
∑

i=1

(ci+1 − ci)λ
∗
i . (6.2)

Subfigure (b) shows the resultingu before thresholding eachλ∗
i (x). As expected such a

solution may not be binary. Subfigure (c) shows the discrete valued solution after thresholding
eachλ∗

i (x) according to Prop. 3.3. We also demonstrate image segmentation with a non-
convex data term. The ground truth image from Figure 6.1 (a) has been damaged by impulse
noise in Figure 6.2 (a). More specifically,70% of the pixels have been randomly selected
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(a) (b) (c)

FIG. 6.4.(a) Input, (b) Labeling function before threshold (c) Labeling function after thresholding eachλi at 0.5.

(a) (b) (c)

FIG. 6.5.(a) Input, (b) segmentation with total variation regularized model(1.3)(after threshold), (c) segmen-
tation with convex relaxed Pott’s model (after threshold).The total variation regularized model results in misclassi-
fications along the boundary between region 1 (darkest) and region 3 (brightest) and does not reconstruct the triple
junction properly.

and given a random number between0 and255 (max gray value). For this type of noise, the
convex data terms does not perform well, as shown in Figure 6.2 (d) where we have selected
(6.1) withβ = 1. Instead the following non-convex data term can be used

ρ(i, x) :=

{

0 , if i = argmink |I(x)− ck|
1 , else

. (6.3)

This non-convex problem can be solved globally by our method, the result is shown in Figure
6.2 (b) before threshold and 6.2 (c) after thresholds.

We next apply our algorithm for the convex relaxed Pott’s model of [50] from section
4.3. The image in Figure (6.5) (a) has been segmented with thetotal variation regularized
model in (b) and convex relaxed Pott’s model in (c). As we see,total variation results in mis-
classifications along the boundary between region 1 (white)and region 3 (dark) and cannot
reconstruct the triple junction properly.

6.2. Stereo reconstruction.We now consider stereo reconstruction with data from the
Tsukuba stereo set [55]. Given two color imagesIL andIR of a scene taken from horizontally
slightly different viewpoints, we would like to reconstruct the depth mapu. The quality of
the matching betweenIL andIR for a depth valueu is measured by using the followingρ in
the data term of (3.1)

ρ(u, x) =

3
∑

j=1

|IjL(x)− IjR(x+ (u, 0)T )|. (6.4)
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(a) Input left (b) ground truth

(c) proposed before threshold (d) λ∗
8

before threshold

(e) proposed after threshold (f) graph cut4n

(g) graph cut8n (h) Pock et al.

FIG. 6.6. (a) Left input image, (b) ground truth, (c) non-integer solution u =
∑

n−1

i=1
λ∗
i

, (d) λ∗
8

before
threshold, (e) Integer valued solution after threshold, (f) Graph cut 4 neighbors, (g) Graph cut 8 neighbors, (h) Pock
et. al.
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Energy precisionε < 10−3 Energy precisionε < 10−4

Primal-dual [52] Proposed 1 Proposed 2 Primal-dual [52] Proposed 1 Proposed 2
Brain 280 50 (× 5) 110 430 65 (× 5) 280
Figure 6.1 295 35 (× 5) 115 640 65 (× 5) 290
Stereo 4055 550 (× 5) 1070 14305 920 (× 5) 3905

TABLE 6.1
Iteration counts for each experiment. Number of iterationsto reach an energy precision of10−3 and10−4 are

shown. Proposed 1 stands for algorithm 2 where the subproblem is solved by 5 iterations of Chambolle’s algorithm
each outer iteration (indicated by the number in the parenthesis). Proposed 2 stands for Algorithm 2 with the
subproblems solved inexactly in one step through the linearization (3.31).

Energy precisionε < 10−4 Energy precisionε < 10−5 Energy precisionε < 10−6

Primal-dual [52] Proposed 1 Primal-dual [52] Proposed 1 Primal-dual [52] Proposed 1
Stereo 14305 920 (× 5) > 30000 1310 (× 5) > 30000 1635 (× 5)

TABLE 6.2
Iteration counts for stereo experiment. Number of iterations to reach an energy precision of10−4, 10−5 and

10−6 are shown.

HereIj(x) denotes thej− th component of the color vectorI(x). The above data term (6.4)
is obviously highly non-convex. The termα

∫

Ω
|∇u| dx is used to regularizeu. The strength

increases linearly with the size of the jump ofu. This is reasonable in stereo reconstruction,
sinceu describes the ”depth”, which is a physical entity arranged linearly in a third dimension
perpendicular to the image planes. Figure 6.6 shows resultson a standard example. We
have usedα = 0.03 and scaled images between0 and1. As suggested in [55] we have set
n = 17 and used the discrete label set{0, ..., 16}. This integer optimization problem over a
continuous domain can be formulated exactly with our approach. Solving (3.18) will result in
optimal functionsλ∗

i that are not necessarily binary. In fact they are not expected to be binary
in case the solution to the original problem is not unique. The result of [52] with threshold
level 0.5 is depicted in Figure 6.6(h).

We also compare with graph cut using a neighborhood system of4 and 8. Graph cut
produces a single non-unique solution which is shown in Fig 6.6(f) and (g) with 4 and 8
neighbors respectively. As we see, such solutions suffer from metrication artifacts because of
the discrete grid bias.

Primal-dual [52] Proposed 2
iterations flops pr. iteration flops iterations flops pr. iteration flops

Triple 280 1.2 ∗ 106 3.4 ∗ 108 130 2.3 ∗ 105 3.0 ∗ 107

Fig 6.1 230 2.6 ∗ 107 6.0 ∗ 109 110 3.9 ∗ 106 4.3 ∗ 108

TABLE 6.3
Number of iterations and flops pr iteration to reach energy precision ofε < 10−3 for convex relaxed Potts

model on the example in Figure 6.5. The proposed algorithm converges in less number of iterations. In addition,
the computational cost each iteration is much lower since the expensive iterative projection algorithm ontoCP is
avoided. Overall, the proposed algorithm converges around10 times faster than [52].

6.3. Evaluation of convergence.Iteration counts for all experiments are presented in
Table 6.1. The two variants of Algorithm 2 are evaluated against the primal-dual method of
Pock et. al. [52]. The relative energy precision at iteration i is given by

ε =
Ei − E∗

E∗
, (6.5)
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whereEi is the energy at iterationi andE∗ is the final energy. A good estimate ofE∗ is
obtained by using a huge amount of iterations of each method and each experiment. The table
shows how many iterations are required to reach an energy precision of10−3 and10−4. Our
algorithms are implemented with a mimetic finite differencespatial discretization [33, 32]. In
order to make the comparison as accurate as possible, the primal-dual algorithm [52] is also
implemented with such a mimetic finite difference discretization, although a slightly different
forward scheme for the gradient and backward scheme for the divergence was used in [52].

The first variant of Algorithm 2 solves the subproblem (3.29)iteratively by Chambolle’s
algorithm [14]. Since the previous solution is available asa good initialization, not many
iterations of this algorithm is required. In our experiments, 5 inner iterations was used for
each step. Increasing the number of inner iterations beyond5 did not seem to have any
impact on the convergence rate in our experience.

The primal-dual method of [52] avoids the inner problem, butas we see requires signif-
icantly more iterations to reach the same energy precisions. Our algorithm also requires less
total number of iterations (inner times outer iterations).The difference becomes progressively
clearer with higher energy precision. For the stereo example, which is by far most difficult
computationally, our approach reached an energy precisionof ε < 10−5 after1310 iterations,
ε < 10−6 after 1635 iterations andε < 10−7 after 2340 iteration. The primal-dual algo-
rithm [52] failed to ever reach an energy precision of10−5 or lower within our predetermined
number of maximum iterations (30000). We believe this difference is due to the fact that our
approach avoids the iterative projections of the labeling function and hence progresses in the
exact steepest descent direction every iteration.

The second variant of the Algorithm 2 instead computes an inexact solution to (3.29)
through the linearization (3.31) and hence avoids the inneriterations. However, the penalty
parameterc must be set lower to maintain convergence, hence more outer iterations are re-
quired. Overall it converges a little faster than the first variant and outperforms the primal-
dual algorithm [52] for all the experiments.

The new algorithm for Pott’s model also converges in significantly less iterations than
[52] as seen in Table 6.2, where the linearization (3.31) hasbeen used to solve subproblem
(3.29). The proposed algorithm also avoids the expensive projection step ontoCP . In con-
trast, [52] needs to project the dual variablesq ontoCP by Dyjkstra’s iterative algorithm
each iteration, which can only be solved approximately and is the bottleneck of the overall
algorithm. In consequence, our algorithm requires significantly less number of floating point
operations pr. iteration.

Compared to the highly optimized c++ implementation of discrete max-flow [9], the C
implementation of our algorithm converges around 4 times slower. However, our algorithm
consists mainly of floating point matrix and vector arithmetic and is therefore highly suited
for massive parallel implementation on GPU. Traditional max-flow algorithms have a much
more serial nature, which makes them more dependent on an efficient serial CPU. A GPU
implementation of the algorithm of Pock et. al. has already been compared to discrete graph
cut in [53], showing a speed up factor of about 30. In the near future, hardware improvements
are also expected to be largely of the parallel aspect. Hence, we see our work as more suited
for the current and future generation of hardware.

7. Conclusions and Future topics.In this paper we proposed and investigated a novel
max-flow formulation of multilabeling problems over a continuous image domain. It is a di-
rect mapping of Ishikawa’s graph-based configuration to thespatially continuous setting. The
multilabeling problem was interpreted as a min-cut problem, which we proved was dual to the
proposed continuous max-flow model. In addition, we derivednew and reliable multiplier-
based max-flow algorithms whose convergence could be verified by standard optimization
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theories. Experiments showed that the algorithms outperformed earlier approach in terms
of convergence rate. Due to the continuous convex formulation, the algorithm can be more
easily speeded up by multi-grid or parallel implementationthan graph-based methods, and its
memory requirement is not so high.

In comparison to [53] and its improvement [52], our continuous max-flow approach pre-
sented a new theoretical framework based on the max-flow dualformulation of discrete-
valued constrained problems of the form (1.3); a thresholding scheme was derived which
was shown to hold exactly for discrete labels; experiments showed that the max-flow based
algorithms converged significantly faster than the primal-dual method proposed in [52]. The
algorithm could also be extended to the convex relaxation ofPott’s model [50], thereby avoid-
ing expensive iterative projections without closed form solution. In a future work we will also
extend this algorithm to the convex relaxation of the piecewise smooth Mumford-Shah model
[51], speed up and fine tune the projection algorithm of Section A. Comparisons with a si-
multaneous work [43] which presented another algorithm forminimizing the energy in the
convex formulation of [52] will also be subject of future research.

Appendix A. Projection onto CP
i (q̄).

Observe thatCP
i (q̄) is an intersection of spheres inRm. The centers of the spheres

are denoted̄qjk for (k, j) ∈ I = {(k, j) s.t. 1 ≤ k < i < j ≤ n} and are defined as
q̄jk =

∑j
`=k,` 6=i q̄`. Let S(c, α) denote the sphere of centerc ∈ R

m and radiusα and define

Sj
k(α) = S(q̄jk, α). ThenCP

i (q̄) is

CP
i (q̄) = ∩i−1

k=1 ∩
n
j=i+1 S

j
k(α) (A.1)

To obtain an analytical expression for the projection ontoCP
i (q̄), observe first that

PROPOSITIONA.1. Let qjk = Π
S

j

k
(α)qi be the projection ofqi onto the sphereSj

k(α).

Assume that for some(k, j) ∈ I, qjk ∈ CP
i (q̄), thenq∗i = arg min

q
j

k
∈CP

i
(q̄),(k,j)∈I

|qi − qjk| is

a projection ofqi ontoCP
i (q̄).

Proof. Let (K, J) = arg min(k,j)∈I s.t.qj
k
∈CP

i
(q̄)|q

j
k − qi|. Assume there exists aq∗ with

q∗ ∈ CP
i (q̄) and|q∗ − qi| < |qJK − qi|. Thenq∗ ∈ SJ

K(α) and|q∗ − qi| < ΠSJ
K
(α)qi =

|qJK − qi|, a contradiction.
If qjk /∈ CP

i (q̄) for all (k, j) ∈ I, the projection ontoCP
i (q̄) must necessarily lie on

the intersection of theboundariesof Sj
k(α) as the next proposition shows. We focus on two

dimensional images inR2 for simplicity, i.e.m = 2. In that case, intersections ofboundaries
of Sj

k(α) are just isolated points inR2. The boundaries ofSj
k(α) are denoted∂Sj

k(α), i.e.

∂Sj
k(α) = {x ∈ R

m s.t. |x− q̄jk| = α}. (A.2)

PROPOSITIONA.2. Assumeqjk /∈ CP
i (q̄) for all (k, j) ∈ I. Denote the set of intersec-

tions

Q =
{

x ∈ R
2 s.t.x ∈ ∂Sj′

k′(α) ∩ ∂Sj
k(α), for some(k′, j′) 6= (k, j) ∈ I

}

. (A.3)

ThenΠCP
i
(q̄)qi ∈ Q.

Proof. Let q∗ = ΠCP
i (q̄)qi. Observe that the projectionq∗ must lie on the boundary

of the setCP
i (q̄), thereforeq∗ ∈ ∂Sj

k(α) for some(k, j) ∈ I, sayq∗ ∈ ∂SJ
K(α). Since

q∗ ∈ SJ
K(α) it follows that|q∗ − qi| > |qJK − qi|.

Assume thatq∗ /∈ Q. Consider the part of the circles ⊂ ∂SJ
K(α), which is the open

curve with end points inq∗ andqJK of minimum length (since there are two possibilities).
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(a)

FIG. A.1. (a) Projection ofqi ontoCP

i
(q). The projectionsq1

i
, q2

i
and q3

i
ontoS1(α), S2(α) andS3(α)

are not containedCP

i
(q), therefore the projectionq∗ ontoCP

i
(q) must lie on the intersection of the boundaries of

S1(α), S2(α) andS3(α).

Sinceq∗ ∈ CP
i (q̄) andqJK /∈ CP

i (q̄) it follows that there exists a point̃q ∈ s such that̃q ∈ Q
andq̃ ∈ CP

i (q̄). Then|q̃ − qi| < |q∗ − qi|, a contradiction toq∗ = ΠCP
i
(q̄)qi.

Whenm = 3 (3D images), thenQ is itself a set of circles inR3 (and isolated points).
The projection ontoQ can be computed analytically, but we omit the details.

In is not necessary to check the projection onto everySj
k(α) for (k, j) ∈ I. As the next

result shows, it suffices to check the sphere with largest euclidian distance toqi.
PROPOSITIONA.3. Let (K, J) = arg max(k,j)∈I |qi − q̄jk|. If qJK = ΠSJ

K
(α)qi ∈ CP

i (q̄),

thenqJK = ΠCP
i
(q̄)qi. If qJK /∈ CP

i (q̄), thenΠCP
i
(q̄)qi ∈ Q

Proof. Observe that|qi − q∗| = |qi − ΠCP
i
(q̄)qi| ≥ max(k,j)∈I |qi − Π

S
j

k
(α)qi|. The

inequality follows sinceq∗ ∈ Sj
k(α) for all (k, j) ∈ I. Let (K, J) = arg max(k,j)∈Iqi − q̄jk.

Then|qi−ΠSJ
K
(α)qi| = max(k,j)∈I |qi−Π

S
j

k
(α)qi|. If ΠSJ

K
(α)qi ∈ CP

i (q̄), then by the above

inequalityq∗ = ΠSJ
K
(α)qi. This shows the first part of the proposition. IfΠSJ

K
(α)qi /∈ CP

i (q̄),

then by the above inequalityΠ
S

j

k
(α)qi /∈ CP

i (q̄) for all (k, j) ∈ I, henceq∗ = ΠCP
i
(q̄)qi ∈ Q.

Further simplifications can be made. We stick to 2D dimensional problems from now
on, i.e.m = 2. It is not necessary to check every point inq∗ ∈ Q, to find the one inCP

i (q̄)

with smallest distance toqi. The centers of the disksSj
k(α) are all assumed to be contained

in CP
i (q̄) by the construction, i.e.

j
∑

`=k,` 6=i

q̄` ∈ CP
i (q̄), ∀(k, j) ∈ I, (A.4)

which makes the calculation especially simple
PROPOSITION A.4. Assumeqjk /∈ CP

i (q̄) for all (i, j) ∈ I and assume(A.4) holds.
Let (K, J) = arg max(k,j)∈I |q

j
k − qi| and(K ′, J ′) = arg max(k,j)∈I\(K,J)|q

j
k − qi| (second

largest). If(K, J) is unique thenq∗ ∈ ∂SJ
K(α) ∩ ∂Sj′

k′(α) for some(k′, j′) ∈ (K ′, J ′), if

(K, J) is not uniqueq∗ ∈ ∂Sj
k(α) ∩ ∂Sj′

k′(α) for some(k, j), (k′, j′) ∈ (K, J).
This observation reduces the number intersecting points that needs to be checked. If both

the largest and second largest distance is unique thenq∗ ∈ SJ
K(α)∩ ∂SJ′

K′(α) which consists
of two points.
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Algorithm 2 Exact projection algorithm ontoCP
i (q̄)

• Compute(K, J) = arg max(k,j)∈I |qi − qjk|

• if qJK = ΠSJ
K
(α)qi ∈ CP

i (q̄), then
q∗ = ΠSJ

K
(α)qi

• else
(K, J) = arg max(k,j)∈I |q

j
k − qi|, (K ′, J ′) = arg max(k,j)∈I\(K,J)|q

j
k − qi|

q∗ = arg min
q∈∂CJ

K
(α)∩∂CJ′

K′
(α), (k,j) 6=(K,J)∈I

|q − qi|.

A simple algorithm can then be constructed for computingq∗ = ΠCP
i
(q̄)qi, see Alg.

A. There may be several ways to accelerate the algorithm. In practice, it is expected the
boundary of the setCP

i (q̄) is composed of only a few elements of∂Sj
k(α), so called active

elements. Furthermore, the set of active elements∂Sj
k(α) are known when advancing from

one layer to the next, and does not need to be recalculated. The algorithm would only need
to work with this set of relevantCj

k(α).
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[1] G. Alberti, G. Bouchitté, and G. Dal Maso. The calibration method for the mumford-shah functional and
free-discontinuity problems.Calc. Var. Partial Differential Equations, 16(3):299–333, 2003.

[2] Ben Appleton and Hugues Talbot. Globally optimal surfaces by continuous maximal flows. InDICTA, pages
987–996, 2003.

[3] Ben Appleton and Hugues Talbot. Globally minimal surfaces by continuous maximal flows.IEEE Trans.
Pattern Anal. Mach. Intell., 28(1):106–118, 2006.

[4] E. Bae and X.C. Tai. Graph cut optimization for the piecewise constant level set method applied to multiphase
image segmentation. InScale Space and Variational Methods in Computer Vision, pages 1–13. Springer,
2009.

[5] E. Bae, J. Yuan, and X.C. Tai. Global minimization for continuous multiphase partitioning problems using a
dual approach.International Journal of Computer Vision, 92(1), 2011.

[6] Andrea L Bertozzi, Selim Esedoglu, and Alan Gillette. Inpainting of binary images using the cahn-hilliard
equation.IEEE Trans Image Process, 16(1):285–91, 2007.

[7] Dimitri P. Bertsekas.Nonlinear Programming. Athena Scientific, September 1999.

[8] G. Bouchitt’e. Recent convexity arguments in the calculus of variations. InLecture notes from the 3rd Int.
Summer School on the Calculus of Variations. Pisa, 1998.

[9] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for
energy minimization in vision.IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:359–
374, 2001.

[10] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and minimal surfaces via graph cuts. InICCV,
pages 26–33, 2003.

[11] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23:1222 – 1239, 2001.

[12] X. Bresson, S. Esedoglu, P. Vandergheynst, J.P. Thiran, and S. Osher. Fast global minimization of the active
contour/snake model.Journal of Mathematical Imaging and Vision, 28(2):151–167, 2007.

[13] A. Chambolle, D. Cremers, and T. Pock. A convex approachfor computing minimal partitions. Technical
report TR-2008-05, Dept. of Computer Science, University of Bonn, Bonn, Germany, November 2008.

[14] Antonin Chambolle. An algorithm for total variation minimization and applications.Journal of Mathematical
Imaging and Vision, 20(1):89–97, 2004.

[15] Antonin Chambolle. Total variation minimization and aclass of binary mrf models. InEMMCVPR, pages
136–152, 2005.

[16] T. Chan and L.A. Vese.Active contours without edges. IEEE Image Proc., 10, pp. 266-277, 2001.

26
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