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Abstract. This paper deals with two optimization models for image limigeover a spatially continuous image
domain, where the first one favors a linear ordering of thel&ln the computation result and the second does
not favor any particular ordering (Pott's model). We stuaynex reformulations and relaxations of these two
non-convex labeling problems. Inspired by Ishikawa’s iHalfered graph construction [34] for the same labeling
problem over a discrete image domain, we propose novelreaus max-flow models and build up their dualities
to the convex relaxed formulations of image labeling undeea variational perspective. Via such continuous
max-flow formulations, we show that exact and global opterszcan be obtained to the original problem with
linearly ordered labels. We also extend our studies to problwith continuous-valued labels and introduce a
new theory to this problem. Finally, we show the proposedinaous max-flow models directly lead to new fast
flow-maximization algorithmic schemes which significantlytperform previous approaches [53, 52] in terms of
efficiency. Such continuous max-flow based algorithms cawalidated by modern convex optimization theories
and accelerated by modern parallel computational hardware
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1. Introduction. Many applications of image processing and computer visam lwe
mathematically modeled and solved by means of energy nuaitioin. In this paper, we
consider the following important low-level image labelipgpblem: each image pixel is as-
signed by one discrete label subject to a given optimalitgigon. The energy function can
be represented over a sequence of partitions or labelingi€uns, which directly leads to a
non-convex optimization problem. Such image labeling iz potentially models many
applications of image processing (see [49] for a good refegke image denoising [41, 57];
image segmentation [11, 2, 12]; image stereo reconstruftid, 41]; multi-view reconstruc-
tion [45].

The optimization criterion for image labeling can be defiaed formulated over either
a spatially continuous image domain or a discrete imagehgnapich boils down to either
a continuous non-convex optimization problem or a comloinaltoptimization problem. In
the spatially discrete setting, the optimization formialaican be constructed by the principle
of Markov random field (MRF) over the discrete image graphthis regard, many effective
solvers have been proposed, e.g. graph-cuts [31, 9, 34fagepassing [58, 39] and linear
programming [42] etc., where graph-cut is one of the mostiefit ways to exactly tackle
the problem in case of a sub-modular energy function. Intmmcmost labeling problems
involving more than two labels are NP-hard, therefore omlgraximate graph-based algo-
rithms are available, such as [11]. However, for multi-laize problems where the labels
are linearly ordered and interaction penalties are corigbiawa [34] showed that the exact
solution can be obtained by computing the min-cut over aiafigconstructed graph with
multiple layers.
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Despite the efficiency of most graph-based approaches, ¢beiputation results are
biased by the discrete grid, i.e. visible metrication esf@0, 38] are introduced in the results.
Reducing such artifacts requires either considering meigiior nodes [10, 38] or applying
high-order potentials [37, 35]. However, this results inghtmemory load of computation.

In this work, we focus on image labeling over a spatially gmndus image domain and
study the resulting continuous non-convex optimizatioobems. In contrast to the graph-
based approaches, such continuous approaches propeidynastrication errors and allows
for computational result with high sub-grid accuracy. T tend, both the level set method
[48, 16] and phase-field method [36, 6] were proposed. Amdthportant approach is the
piecewise-constant level set method proposed in [46, 4ficlwassigns a discrete label to
each pixel of the image domain by means of forcing some integral equality conditions.
However, all these methods are based on minimizing a nowexanergy functional; there-
fore, only local optimizers can be obtained and the commnaesults highly depend on the
initialization. In this paper, we show that the non-conv@timization problems of image
labeling can be globally and efficiently solved by means ofvex relaxation. In contrast to
previous methods, the convex relaxation approach can glelhlly or nearly globally opti-
mal solutions to the original non-convex optimization gesh. Furthermore, fast algorithms
can be derived through modern convex optimization thearnetheir implementation require
less memory and can be easily accelerated by modern pamaflgiutational hardware.

1.1. A Short Review. By the milestone works of Strang [56] and Chan et al [17], ifwa
realized that typical binary image labeling problems in $ipatially continuous setting, in
case of two labels, can be globally and exactly solved viarae@orelaxation. Particularly,
Chan et al. [17] considered the following optimization desh

u(m)e%}ﬁwefz /Q(l w)p(la, x) dx + /Q up(ly, ) dx + oz/Q |Vu| dx (1.2)
which is clearly non-convex due to its binary constraifit) € {0,1} for all z € Q. Here
p(¢4;, z) is the cost of assigning to region{2,. The authors showed that such a binary con-
straint can be relaxed by(x) € [0, 1], then the computed result of the convex relaxation
could be thresholded at any level (0, 1] to yield a global minimum of the original binary
constrained problem (1.1). Recently, such a convex rdataxatpproach has been further
extended to the multiregion case as the continuous cowartespPott's model [54]. Pott’'s
model describes optimal partition of the image donfainto » disjoint sub-region$Q; }* ,
with minimal total perimeter as the solution of

min li,x)dx + « o0 1.2
min 2_:/ Pt o+ a3 00 L2)
st. UL, =Q, %N =0, Vk#I.

Convex relaxations for (1.2) was proposed and studied in4@150, 13, 5]. Because the

underlying optimization problem (1.2) is NP-hard, the xeldons are not generally exact,

i.e. the reconstructed rounded integer-valued optimumgsarerally only be accepted as

suboptimal. However, experimental results were promigingrms of the total energy and

quality of the computed solutions. The tight relaxationRatts model proposed in [50, 13]

gives the best approximations to global minimums of theinagPotts problem (1.2).
Another important image labeling problem is

min /p(u(x),x)dx—l—/C(x)|Vu(;L')|dx, (1.3)
Q Q

u(z)e{l1...£y}
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where the n label§/; ... ¢,,} are linearly ordered such thét < ... < ¢,, andp(u(x), z)
is some bounded function, not necessarily convex.inThe last term of (1.3) regularizes
the total (weighted) perimeter of the labeled partitionhe problem (1.3) can also express
partitioning problems, by the conventian= ¢; in the regionf2,. The piecewise constant
level set method [47] has exactly the form of (1.3) with= i for i = 1,...n. Note that the
regularization term of (1.3) does not correspond to thetletgrm in the more ideal Pott’s
model (1.2), because of its dependency on the size of thegafip On the other hand, such
a linear relationship on the size of the jumpwiay be an advantage in other applications,
like stereo reconstruction and image denoising where hadleles should potentially favor
such a linear order.

To approach a continuous version of (1.3), where also thel lallues are constrained to
a continuous set, [53, 52] generalized Ishikawa’s work {84he spatially continuous setting,
by representing the optimal labeling function as the disiooiity set of a binary function in a
one-dimensional higher space, i.e. a spatially continmainscut. Such a lifting approach is
related to earlier mathematical theories of calibratiamd eartesian currents [8, 1]. Optimal
labeling functions could be obtained by applying the res@ilChan et al. in the higher
dimensional space, i.e. first solve the relaxed binary gmobdnd then threshold the result.
Recently, the lifting approach was further applied to seeetor-valued problems [29] in the
totally discrete setting.

1.2. Motivations and contributions. For discrete graphs, it is well known that the min-
imum cut problem is dual to the maximum flow problem by thax-flow and min-cut theo-
rem[24]. Actually, the fastest graph cut algorithms are basedaximizing flow instead of
computing the min-cut directly, e.g. the Ford-Fulkersagoaithm [23] and the push-relabel
algorithm [28]. The minimal 'cut’ is finally recovered aloregiges with 'saturated’ flows,
i.e. cuts appear at the flow-bottlenecked edges [18, 41]oirtrast, max-flow models and
algorithms in the spatially continuous setting have beechiess studied. Some work has
appeared that deal with partitioning problems involving twgions: Strang [56] was the first
to formulate max-flow and min-cut problems over a continudoisain; In [3], edge based
max-flow and min-cut was formulated in which certain intemd exterior points must be
specified in advance; Yuan et al [59, 60] proposed a diredimoous analogue of the typical
discrete max-flow and min-cut models that are used for sglinary labeling problems in
image processing and computer vision. In contrast, mosique works on labeling in the
spatially continuous setting, e.g. [61, 29, 53, 12] etedio conduct the energy minimization
over the labeling functions directly.

To our knowledge, this is the first work to address continunag-flow models for par-
titioning problems involving multiple regions. Motivatdy Yuan et al. [59] and Ishikawa
[34], we interpret (1.3) as a continuous min-cut problemravenixed continuous/discrete
domain and build up a novel continuous max-flow model in agaiwith Ishikawa'’s discrete
graph construction. The max-flow model can be used to proglotal solutions of the non-
convex problem (1.3) with discrete label values. In patéigut is shown that the max-flow
model is dual to an exact convex relaxation of (1.3). Stnicldy is also established between
the max-flow model and the original problem, by extendingttttesholding scheme of [17]
from two to multiple regions. With aid of the proposed duafit a new efficient continuous
max-flow based algorithm is also derived.

The theory of the continuous max-flow approach for (1.3) ieeeed to two other prob-
lems of importance: a tight convex relaxation to Pott’'s mpaed labeling with continuous-
valued labels. We show significant advantages of the prapasainuous max-flow approach
over previous work in terms of both theoretical eleganceedficiency in numerics.

Our main contributions can be summarized as follows
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e We study a convex relaxation of the nonconvex labeling moi(1.3), the so-called
continuous min-cut modefro this end, we build up a novel max-flow formulation
overn linearly layered continuous image domains, which is in agglwith the
discrete graph construction of Ishikawa. Duality betwdenroposed continuous
max-flow model and its corresponding continuous min-cut eh@éshown upon a
variational perspective.

e A thresholding scheme is derived for converting solutiohshe convex relaxed
problem into solutions of the non-convex problem (1.3) vdifcrete label values,
extending the scheme proposed in [17] from two to multiptgaes.

e New continuous max-flow based algorithms are proposedr €ffaiency and con-
vergence can be verified by standard convex optimizatioaribe The labeling
function is updated as an unconstrained lagrange multipéieh iteration, and does
not need to be projected back onto any feasible set. Nunhesipariments show a
significantly faster convergence rate than the primal-aigdrithm in Pock et. al.
[52, 53], especially at high precisions.

e A max-flow dual formulation of the convex relaxation of Pstthodel [50] is pro-
posed as a direct extension of the continuous max-flow maui€llf3). An algo-
rithm is proposed which deals with all constraints on thelalg function implicitly
and avoids expensive iterative computations of projestigithout closed form so-
lution.

2. Preliminaries: Ishikawa’s Work. Ishikawa [34] studied image labeling problems
over an image graph which can be generally formulated as:

glellr]l p(uvvv)+a Z g(uv _uw)v (21)
veEP (v,w)eN

whereP denotes a discrete image grid in 2-D or N&;C P x P is a neighborhood system
onP; U = {u: P — L} isthe setof all feasible labeling functions. The potemi@r g(x)
of (2.1) is assumed to be convex amis any bounded function, but not necessarily convex.
It was shown by [34] that the problems of the form (2.1) canxaedy optimized by finding
the min-cut over a specially constructed multi-layerecpgr&@ = (V, £), where each layer
corresponds to one label.

We adopt Ishikawa’s notations [34] in this work and study s¢imaplified graph which
usesn — 1 layers instead of and avoids infinite capacities on the source edges [4] (see Fi
2.1 for a 1-D example). The vertex s¢tand the edge sét are defined as follows:

V=PxLU{st} ={up;|veP;i=1,..,n—1}U{s,t} (2.2a)
E=EpU&EcUEp (2.2b)

where the edge sétis composed of three types of edges

e Dataedgesp = {J,.p €5, Where
ED = (s,up1) U{(Upistpit1)]i=1,...,n =2} U (upn-1,t). (2.3)
e Penalty edge§p = |J,.p £, Where
E& = {(Uv,it1,upi) |t =1,...,n—2}. (2.4)

e Regularization edgeSg:

Er = {(uvi,uw,j) | (v,w) e N, 4,5 =1,...,n}. (2.5)
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FiG. 2.1.1D illustration: (a) Legal cut, (b) lllegal cut. Severed exigare depicted as dotted edges. The gray
curve visualizes the cut. Vertices interior to the curveobgb toVs while vertices exterior to the curve belongs to
V. Severed edges are illustrated as dotted arrows.

2.1. Anisotropic Total-Variation Regularization. When a pairwise priog(u, —u.,) =

C(u,w) |uy, — uy| is given, (2.1) corresponds to an anisotropic total-vemmtegularized
image labeling problem, i.e.

min Py, v) + o Z C(v,w) [ty — Uy (2.6)

vEP (v,w)eN

which is the discrete counterpart of the total-variatioadzhmutli-labeling problem (1.3).

Now we define flow configurations over the graph (2.2a) andb{2sfch that its max-
flow corresponds to the minimizer of (2.6):

e Capacity of source flowghe directed flowp, (v) along each edge from the source
to the nodey, ; of the first layer, i.e. the edg®, u, 1), is constrained by

p1(v) < p(ly,v), YveP; (2.7)
o Capacity of flows between layettste directed flovp; (v) along each edg@, i, ty,i+1)

from the nodeu, ; of thei-th layer to the node,, ;1 of thei + 1-th layer is con-
strained by

pi(v) < plli,v), YveP i=1..,n—2 (2.8)

e Capacity of sink flows:the directed flowp,,(v) along each edge from the node
uy n—1 Of the last layer to the sinkis constrained by

pr(v) < p(ly,v), YveP; (2.9)
e Capacity of spatial flows at each layethe undirected flow; (v, w) of each edge
(v,w) € N atthe layer,i = 1,...,n — 1, is constrained by
|g: (v, w)| < C(v,w); (2.10)

this actually amounts to the well-known anisotropic totatation regularizer;
5



e Conservation of flowsflow conservation means that in-coming flows should be
balanced by out-going flows at any node P of each layei = 1,....n — 1, i.e.

(> aww)— D> aw)—pi@) +piav) =0.  (211)

w:(w,v)EN w:(v,w)EN

Since there is no lower bound on the flows (2.7)-(2.9), the Bapacities on the penalty
edges (2.4) are infinite. This implies that each edge in th&éeavhich links the source and
sink can only be cut once, i.e. illegal cuts as shown in Fi@(l8.have infinite cost and are
not allowed.

Therefore, the max-flow problem over the graph is to find tlgdst amount of flow
allowed to pass from the sourgdo sinkt through then — 1 graph layers, i.e.

max Z p1(v) (2.12)

subject to the flow constraints (2.7), (2.8), (2.9), (2.10) é&2.11).
It was proved that once the maximal flow is computed, a minitoélcan be extracted
which corresponds to a minimizer of the problem (2.6).

3. Convex Relaxation and Continuous Max-Flow Models.In this section, we study
the labeling problem (1.3) which is the continuous courderpf (2.1) specialized to the
classical total-variation regularizer:

min/ plu(z), z) dx —|—/ C(x)|Vu(z)|dz, (3.1)
uel Jq Q

whereU = {u: Q> {{1,....0,}, st [,|Vu|dr < oo} is the set of all feasible func-
tions over the continuous image domain p(u(x), ) is any uniformly bounded function,
not necessarily convex in the elementofThe gradient magnitude is measured with the ro-
tationally invariant 2-normVul, = \/u2, + ... 4+u2 , in contrast to the anisotropic graph
representable 1-norm used in the discrete setting.

Inspired by Ishikawa’s graph-cut work revisited in the lasttion, we propose a sim-
ilar flow-maximization scheme in the spatially continuoetting, and build up the duality
between such continuous ma ax-flow model and a convex r@axat (3.1). Via the new
max-flow model, we show the proposed convex relaxation msdeks (3.1) exactly and
globally.

3.1. Representations by Layer FunctionslLet S;,i = 1,...,n — 1, denote thex — 1
upper level sets of the labeling functiafiz) € U such that

Si={zxeQ: ulx)>4¥}. (3.2)

To ease exposition, we also defifig= Q and.S,, = 0.
The characteristic functions (x) of the upper level setS; i = 1, ...,n — 1, also called
the layer function#n this work, are defined by:

)\i(x):{(l) :;Zggzﬁ Ci=1...n—1. (3.3)

Likewise, we define\o(z) = 1 and\,, (z) = 0, Vz € (2, as the characteristic functions of the
setSy andS,, respectively. We show how (3.1) can be expressed in terms as was done
in the discrete setting in [19, 19, 15, 20].



As/ly <...< {,,we have
0 =S,

N
N

S

N

So = Q (3.4)
and
0=, < ...< A <X =1. (3.5)

With help of the above notations, we can rewrite the optitigreproblem (3.1) in terms
of the layer functions\;(z), ¢ = 1, ...,n — 1, such that

mel?m}z/ o (2)) p(ls, ) dx+Z/C V() dz (3.6)

subject to the monotonically nonincreasing constrairi)3vhereC; (z) = ({;41 — 4;)C(x),
1=1,...,n—1.
To see this, the data term of (3.1) can be directly written as

/Q dx—Z/l s p(4;, x) dx—Z/ i—1( (@) p(ls, x) dx. (3.7)

Moreover, observe that any functieriz) € U can be written in terms ok;(z), i =
0,...,m,as

n

n—1

=1
By the coarea formula [27], the regularization term of (adjounts to

/QC(;U)|VU(:U)|dx = ;/QCi(xﬂV)\i(xﬂdx. (3.9)

Clearly, once the layer functiong (z) are computed, the labeling functiarjz) can be
easily recovered by (3.8).

In this work, we focus on the case whetéz) = « is constant and; ;1 — ¢; = 1,
1 =1,...,n— 1for simplicity. The results can be easily extended to otheregeneral’(z)
and/;, i = 1, ...,n. Using the above results, (3.6) can equivalently be refdaited as

)\(3161?01}2/ i—1( (x)) p(l;, x) dx+o¢Z/|V)\|dx (3.10)

subject to the order constraint (3.5). (3.10) is nonconvextd the binary setting of;(x) €
{0,1},i=1,...,n— 1.

3.2. Convex Relaxation Models.In the following parts, we show that the nonconvex
optimization problem (3.10) can be globally and exactlwedlvia its convex relaxation:

)\i(;r)lier[l(n Z/ i1 ( (x))p(l;, ) dz + aZ/|V)\|dx (3.11)

st 1= X(x) > M(z) > ... > Mi(z) > Ap(z) =0, Vrel
where the binary constraints on the labeling functiop&) € {0,1},¢ = 1,...,n — 1,
are relaxed by the convex onag(z) € [0,1], 4 = 1,...,n — 1. In this work, (3.11) is

also called theprimal modelin comparison to itglual formulation: the continuous max-flow
modelproposed in the following section.
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FiG. 3.1.(a) lllustration of the max-flow problem defined over a mixestiette/continuous domain.

3.2.1. Dual Model: Continuous Max-Flow Formulation. Inspired by Ishikawa’s graph
configuration (2.2a) and (2.2b) reviewed in Sec. 2, we seumgjpatially continuous settings
in the same manner: — 1 copies of the image domain are placed in sequential order be-
tween two terminals: the soure@and the sink (see Fig. 3.1); this mixed continuous/discrete
setting can be defined as

Qx{l,..,n=1}U{s}U{t} ={(z,i) |z €Q,i=1,..,n—1}U{s}U{t}. (3.12)

Likewise, the continuous counterparts of edges, flows apdaities are given as follows
(see Fig. 3.1 for an illustration):

¢ Inview of (2.3), the data edges are defined as follows: foheag (2, the source
is linked to(z, 1) of the first layer by the edge functien(z); the points(z,i — 1)
and(z, ) in two sequential image layers,= 2...n — 1, are linked by the edge
functione;(z); at the last laye(x, n — 1) is linked to the sink by the edge function
en ().

e Ateachedge;(x),i=1...n, aflow functionp;(x) is defined over alt: € Q.
e In analogue with the regularization edges (2.5), withirngarage layei = 1...n—
1, a spatial flow function is given by the vector field € (C5°Q)™, wherem is the

dimension of(2.

As the generalization of the flow constraints (2.7) - (2.1i¢¢g by the graph setting, we
set the capacity and conservation constraints on the floatifumsp, (x) andg; (z):

lgi(x)] < Ci(z) forreQ, i=1,...,n—1 (3.13)
pi(z) < p(l;, x) foreeQ,i=1,...,n (3.14)
(divg —pi + pit1)(z) = 0 foreecQ,i=1,...,n—1 (3.15)
g -n=20 onoQY, i=1,....,n—1. (3.16)

1The notation a.e. stands for “for almost every”, which metaesconstraint (3.15) should hold in the integrable
and weak sense for evesrye €, expect possibly a subset of zero measure.
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Equivalently to Ishikawa’s max-flow formulation (2.12), weopose aontinuous max-
flow modeby maximizing the total amount of source flow

sup EF (p,q) = / p1(x) dx (3.17)
p,q Q

subject to the flow constraints (3.13), (3.14) and (3.15}his work, we call (3.17) theual
model We will prove it is equivalent or dual to thgrimal model(3.11) in the following
sections.

3.2.2. Primal-Dual Model. Now we start from the proposed continuous max-flow model
(3.11) and introduce the multiplier function(x), i = 1...n — 1, to each linear equality
constraint (3.15), i.e. the flow conservation condition., \3nsequently, get the following
primal-dual formulation:

1&1fsup E(p,q; A / {p1 + Z Ai le ¢ — pi +p1+1)} dx (3.18)

subject to (3.13) and (3.14). (3.18) is called grémal-dual model It is equivalent to the
continuous max-flow model (3.17) and can be rearranged amallggepresented by

n—1
1nfsup E(p,q; \) Z/ i—1 — \i)pi dx + Z/ A div ¢; dx (3.19)
P.q =179
st gi(z)| < a,i=1...n—-1; pi(z) < plly,x),i=1...n VreQ.

For theprimal-dual mode(3.18) introduced above, we have
PrRoOPOSITION3.1. There exists at least one saddle-point {8r18) and the min and
max operator of(3.18)are interchangeable, i.e.

sup mf E(p,qg;\) = mf sup E(p,q; A). (3.20)

p,q p,q

To see this, we observe the following facts: for the primadddnodel (3.18), the condi-
tions of the minimax theorem (see e.g., [21] Chapter 6, Fsibipo 2.4) are all satisfied: the
constraints of flows are convex and the energy functionaiéar over both the dual variables
Ai(z),i=1...n—1andthe primal variablgs;(z),i =1...n,¢(x),i=1. — 1. This
also implies the existence of at least one saddle point [21]

Clearly, the optimization of (3.18) over the dual function$z),i = 1...n — 1, leads
back to the primal max-flow model (3.17).

3.2.3. Duality btw. (3.17)and (3.11) In this section, we build up the duality or equiv-
alence between th@imal model(3.11) and the continuous max-flow model (3.17):

PROPOSITION3.2. The continuous max-flow problg®i17)and the continuous min-cut
problem(3.11)are dual to each other.

Proof. We first consider the optimization problem

f(v) = sup v-w, (3.21)
w<C

wherev, w andC are scalars.

Whenv < 0, w can be negative infinity in order to maximize the valuew, i.e. f(v) =
+o00. It can also be easily seen that

if v=0, thenw < Candf(v)=0,
if v >0, thenw=Candf(v)=v-C
9



Therefore, we have

o= {20 41

By the facts (3.21) and (3.22), the functigitv) provides a prototype to maximize the
primal-dual model (3.19) over the flow constraints (3.14),p;(z) < p(¢;,x),i=1...n.
Define

fiz) = swp (oa(@) = N(@)pile), i=1...n.
pi(x)<p(li,x)

In view of of (3.22), we have

filz) = { EQH(“:) M@ pltiz) :I ijgg > ij(x) i=1,..n (3.23)

On the other hand, it is well known that [27]

sup /)\diquw = a/ VA dx . (3.24)
la(z)|<a /@ Q

Given (3.23) and (3.24) for the primal-dual model (3.19),then end up with the primal
model (3.11) along with the constrainks_; (z) > A\;(x), ¢ = 1...n, forallz € Q. If
these constraints on optimalare not met, the primal-dual energy is infinite and the sofuti
doesn't exist. This contradicts the existence of at leastsaldle point, see Prop. 3.1.

In view of the equivalence between the continuous max-flodeh¢8.17) and the primal-
dual model (3.19), Prop. 3.2 is therefore proved.

With the duality between (3.17) and (3.11) proposed by PBp, it is easy to see that
optimal layer functions\;(z), i = 1...n, to the convex relaxation model (3.11) just work as
the optimal multipliers to the flow conservation conditi@1(5) of the continuous max-flow
model (3.17). This is the motivation for the new fast alduritto compute the layer functions,
proposed in Sec. 3.4, through the flow-maximization forrtioke(3.17).

3.3. Exact and Global Optimums. The functions\;, i = 1...n — 1, of the convex
model (3.11) are relaxed to take values in the convex(séi, which is in contrast to the
binary constraints of the original nonconvex formulati@lQ). The following proposition
establishes a strong primal-dual relationship betweemtae-flow problem (3.17) and the
original non-convex problem (3.10). By solving the max-flproblem (3.17) a set of opti-
mizers to the original binary constrained problem (3.1@)lwa obtained by thresholding each
layer function\} (z). When the set of label values are continuous, an analogceshiblding
scheme was shown to hold exactly in [52].

PROPOSITION3.3. Let (p*, ¢*; \*) be any optimal saddle-point ¢B.18) Let {¢;}/'~!
be a sequence suchthak t; =t = ... = t,_1 < 1, define the level sets

Sii={x: N(x)>t;}, i=1...n-1 (3.25)

and let)\}* (x) be the characteristic function &f", i.e.

i) . — L, /\;k(x)ztl
A(x) = { <t



then the set of binary functiomﬁf (x),1=1,...,n—1,is aglobal optimum of the original
nonconvex multi-labeling proble(8.10) Moreover, the cut given byf (x),i=1,...,n—1,
has an energy equal to the max flow energ{3ri7) i.e.

Dty __ *.23 x:P*.
E(A)—/Qpl()d EP (")

Proof. Sincep;,i = 1,...,nandg/, A\, = 1,....,n — 1 is a global optimum of the
primal-dual problem (3.18), thes}, ¢ optimize the dual problem (3.17) and(x) optimizes
(3.11).

For simplification reasons, defig = 0 such thatS® = Q. Sincel; is increasing withi
we must have

Shoshogko . DSy
Since the variables are optimal, the flow conservation d¢ard{3.15) must hold, i.e
divg; (z) — pj(z) +pji(x) =0, aexecQ, i=1,..,n—1

The proof is given by induction. For alye {1, ...,n — 1} define the function

Z/ &,a:)da:—k/e P (T da:—|—o¢ZL
Llll\SL

whereL .., is the length of the perimeter of the s#t. We will prove E¥ = EF (p*) for any
k € {1,...,n—1} and start by considering= 1. By the formula (3.23), it is easy to see that

pi(x) = p(f1,z), forany pointz € Q\S]* = S{P\SI
This, together with the fact that
pi(z) = pi(x) +divei(z), aexec S
implies that the total max-flow energy defined in (3.17) camhiéen

By = [ ptndes [0 + i)

1

[ sttmdes [ p@des [ diveids
Q\sit s si

1 1

:/StO\Stl p(l1, ) d;v"‘/stl p5(x) dx—’_aLsfl _ gt
0 1

1

The last term follows from Prop 4 of [5], or from the fact tifat - n)(z) = a atallz € 955
combined with the Gaussian theorem

divg) (x)de = / qf -nds = a|85z| . (3.26)

sii a8t

Assume now thats* = EF(p*) for somek € {1,...,n — 2}, we will show this implies
Ek+1 EP( )
k—1 k—1

p(t;, x)dr + /Ekil pi(z) do + aZ;LS:,; .

Lim1\ oty
i=1 Si—l \Si Sk—l
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By the definition (3.25) it follows thad,_1(x) — Ax(x) > tx—1 —tx = Oforall z €
Sp"\Six. Therefore, by formula (3.23), for any point € S;*'\S}* we must have

pi(x) = p(Lk, ). Combining this with the fact that
Pr(2) = prya (2) + divgg(z), a.ex € Q
the above expression can be written
k—1
P/ x\ _ pk __
EP(pr)=EF =) /S )
=1

S\

i—

”(“’x)dx’L/g . plly, ) de (3.27)
SETT\SE
k—1
* _ kel
+/Sﬂkpk+1(x)dx+Lszk +Q;L . — gkl

k

Hence, we can conclude that al&'—! = E(p*). By noting from (3.23) that for all
z € S'"7' we must have? (z) = p(¢,,z), the total max flow energy defined in (3.17) can
be written

B e -

n—1
p(l1,x)dx + Z / p(ti, x) dx (3.28)
o\sh —Js!

Ci—1 t;
iil \SL7

n—1

—|—/ p([n,x)dx—i—aZL ¢
S, =1

By writing this expression in terms of the characteristiedtions)\!’ of each regiors}’, we
get

B =3 [ @) = @) ol d + DY [ 1vaar = BP0)

which is exactly the primal model energy (3.11) of the setin&by functionsx?. Therefore,
by duality between the max-flow problem (3.17) and the cometexation problem (3.11),
M must be a global minimum of the min-cut problem (3.11) anddfore also a global
minimum of the original problem (3.100)L

3.4. Multiplier-Based Max-Flow Algorithm. As shown in the previous section, the
primal-dual energy formulation (3.18) is just the lagramgfunctional of (3.17) and the
multiplier functions);(x), i = 1...n — 1, to the linear flow-conservation equalities (3.15)
simply correspond to the layer/labeling functions. We nafirte the respective augmented
lagrangian functional of (3.17) as

n—1 n—1
. c .
Le(p,q,A) = /QpldCC-FZ/Q)\i(leQrFPiH—Pi)d$—§ZHle%-sz‘H—piH?,
i=1

= (3.30)
wherec > 0.

In this section, we assume the functiong, ¢ and operatorg, div, V are discretized,
but stick with the continuous notation for simplicity. Angakithm is constructed based on
the classical augmented Lagrangian method (or alterndinegtions method of multipliers
(ADMM)) [7], which alternatively maximizes the energy witkspect to the flow variables
p(x) andg(x) and finally updates the multiplier functiong(x), i = 1...n—1. Convergence
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Algorithm 1 Multiplier-Based Maximal-Flow Algorithm

Choose some starting values fgr, ¢* and\', let k,i = 1 and startk—th iteration, which
contains the following steps, until convergence:
e Foreachlayei =1...n — 1, each step repeats as follows:
— Optimizep; by fixing other variables

k+1 k+1 k+1 k
b; T argpi(.’rgr%%}({f,;,.’r) L ((pj<z 7p17pj>z) (QJ<Z 7q]>7,) A )

2
= ar max —— + div k+1 kL _ Ak /e
® pi@)enttia) 2 3 I @t P~ e

; Ipi — (phy + divgh) + M /e[’

which can be explicitly computed at each point ;
— Optimizeg;, by introducing the new value @f ™! and fixing other variables

k k k+1 k k
gt = arg max Lo (P i) (@2 i dfsi), AY)
2

= arg max —g ||d1vql—|—pH_1 pf“ )\f/CH , (3.29)

llall oo

which can either be solved iteratively by the projecteddgrat algorithm [14],
or approximately by one linearized step (3.31);
— Optimizep; again, by introducing the new valuesq;ﬁ‘f+1 and fixing others
E+1 k+1 k+1 k
= L 19 1 ) 1 3
j2» arg  max (OVEL i i), (52 d5i), )
which can be explicitly computed at each paint Q;
o At the first and last layer, it is a little different to updatetflow functiong; and
pn Which are given below:
k+1

pl = arg max L(:(pl;pé"?"ﬂpqu

k+1 )\k)
p1(2)<p(l1,2) ’

c 2
= ar max dr — = +divg" T + \F /||,
8 i () Soltr. ) /Q n 3 o = (2 )+ X

and

p];Jrl = arg max L (plf-‘rla apr+117pnvqk+17)\k)

Pn (I)SP(&L va)

= ar ma. —— di k+1 kL _\F e 2
B, s Hpn+ VT — Pt = A /e

Both can be computed explicitly;
e Update multipliers\;,i =1,...,n—1, by

ML= AF —c(divg ™ - pft + pit);

e Repeat the above steps until convergence.

of such an algorithm can be validated by standard convexnigstion theories. For the
two-label case, a similar flow-maximization scheme for thetmuous min-cut problem was
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proposed in [59, 60] and demonstrated a significantly fasiavergence than state of the art
[12].

Instead of solving the sub-problem (3.29) iteratively by finojected-gradient algorithm
[14], an inexact solution can be obtained by the linearirati

¢ =T, (qf + eV (divgl +pfy, —pftt - Ai“/c)-) (3.31)

wherell, is the projection onto the convex s&t, = {q |||l¢]l« < a}. There are extended
convergence results for such a linearization [22, 30] fosely related problems.

Both variants of the algorithm is demonstrated to conveigeificantly faster than the
primal-dual algorithm [52] which will be discussed in Secti5.3.

4. Extension to Continuous Labels.Now we extend the material in Section 3 to the
case where the feasible label values are constrained totd@al[/,,;,, {imax], i-€. the total
number of labels goes to infinity. We address such a contslateling problem by a direct
extension of the continuous max-flow model (3.17). In thidisa, we first propose the novel
max-flow model, then derive its equivalent min-cut formidat Finally, we compare with
the work proposed by Pock et. al. [53].

4.1. Max-Flow Model. As the number of labels goes to the limit of infinity, the max-
flow problem (3.17) with the flow constraints (3.13)-(3.1&)ts into

sup /p(ﬁmin,a:) dx 4.1)

P.q Q

S.t. p(é, .13) < p((, J?), |q(€, I)| < a, Vr € Q7 AS [gmilnémax] (42)
div, q(l,z) + 0 p(l,z) = 0, a.ex €, L€ [lmin,lmax]- (4.3)
q(,) - n=0, VLE [lmin, max) (4.4)

wherel € [lmin, {max] 1S the set of all feasible continuous-valued labels. The fiovetions
p(z) andgq(x) are defined in the one dimensional higher sgége,, {max] % €.

4.2. Min-Cut Model. Let A(¢, ) be the multiplier function to the flow conservation
constraint (5.3). The equivalent primal-dual model to J&dn be written as

fmax
sup inf / P(Urin, ) dx + / / {dive q(t,x) + Oy p(t, )} A(¢,z) dxdl (4.5)
Q Q

p.q

Lmin

subject to (5.2).
Likewise, we can also prove duality through the followingposition
PROPOSITION4.1. The max-flow modgb.1) with continuous label-values is dual /
equivalent to the following min-cut model o€k, fimax] X O

Cmax
A(éfglen[o,l] / /Q{a|VI)\| — p(l,2)0p AL, )} dzdl

Lmin

+ / (1= Allmins 2))p(Bonins ) + Al ) (b, ) (4.6)
Q

subject to

O Al,x) <0, Almin,x) <1, Almax,z) >0, Ve, VL€ [lnin, max-
4.7)
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Proof. By using integration by parts ify the primal-dual formulation (5.5) can be rear-
ranged as

Lmax
sup inf +/ / {N(, z) divy (€, 2) — p(L, )0 A(C, ) } da dl
Q

pqg A Linin

+ / (]- - )\(gmirn x))p(‘gmina LC) + )\(‘gmaxv x)p(‘gmaxv LC) dx. (48)
Q

subject to (5.2). Observe that optimamust satisfyA(¢iin, ) < 1 andA(max, x) > 0 for
all z € Q, otherwise the energy becomes arbitrarily larg@@s,in, =) andp({max, x) are
chosen arbitrarily close te-cc. In the same veid\(¢,z) < 0 for all £ € [€min, fmax] @and
all z € Q, otherwise the energy tends to infinityag, ) — —oo. Hence by maximizing the
primal-dual energy (5.8) w.r.t the flow functiop@ndg, we obtain (5.6) with the constraints
(5.7).

The leftmost constraint in (5.7) forces the functidf?, ) to be monotonically nonin-
creasing irv. It corresponds to the constraint (3.5) for discrete lalagles.
0

In analogue with (3.8), the labeling functiaiiz) can finally be reconstructed from the
binary function\(¢, x) by

‘gmax
u(zx) = Emin—k/ A, ) de.
Zmin
4.3. Comparisons to Pock et al [53].In [53], Pock et al gave a different continuous
formulation of Ishikawa’s construction, as the miniminatiproblem over a binary function
in [émiln émax] x

ZIY\&X
i VA ) [0 \(4, dxdl . 4.9
i [ eIV ptta) 0A0) Y da @.9)

min

subject to
Almin, ) =1, Almax,z) =0. (4.10)

In order to solve this non-convex binary problem, the comedaxation of [17] was adopted
by minimizing over\(z,¢) € [0,1]. By applying the thresholding result of [17], binary
optimums could be obtained by thresholding the computadtres

The main differences between our formulation (5.6), (5r®) Rock et al’'s formulation
(5.9), (5.10) can be summarized as follows:

First, the constrain®, \(¢, z) < 0 is not forced explicitly in [53]. However, it turns out
the presence of the absolute value of the teffx) |0, A (¢, z)| forces this constraint to hold.
Observe that ip(¢, z) < 0 is negative, the formulation of (5.9) becomes non-convemctv
cannot be solved globally. This is in contrast to our formiola(5.6), which is convex also
in this case.

In the more recent work of Pock et. al. [52], a more strict \¢iion resulted in a
little different formulation. In this formulation, the ieggrand of the energy functional is
infinite if 9, A(¢, z) < 0, hence this constraint is forced to hold. Their derivaticig heavily
on results from the theory of calibrations [1] and cartesiarrents [25, 26]. Label values
ranged over the whole real lifle was assumed, which required to impose limits at infinity:
limg 400 A(4,2) = 0 andlimg,_oo A(¢,2) = 1. On the other hand, our studies reveal
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an alternative simple theory to this problem based the twal dptimization problems: the
max-flow problem (5.1) and the min-cut problem (5.6).

We eventually stick to a finite label value set in practiceteAfliscretization, the label
space also becomes discrete in [52]. However, it is has rext peoved that all properties,
such at the thresholding scheme and monotonicity constrald exactly after discretization.
In contrast, these properties were proved to hold exactlpfw model with discrete label
values developed in Section 3.

Last but not the least, a primal-dual algorithm was propasd82], which consists of
taking ascent steps over the dual variahlés) and¢(x) and descent step over the primal
variable)(z), followed by projections of all the variables onto the nsapoints of the fea-
sible sets iteratively until convergence.

The algorithms proposed in this work are instead based omghemax-flow formu-
lations (5.1) which are dual to their respective convexxali@an problems. Experiments
demonstrate a significant faster convergence rate tharrithalpdual algorithm proposed in
[52]. All constraints on the labeling functiok are handled implicitly, and consequenfly
does not need to be projected onto the feasible set eveayidter

5. Tight Continuous Max-Flow Approach to Pott's Model. In this section, we focus
on a tight convex relaxation for Potts model (1.2) as progas¢50, 13].

5.1. Tight Convex Relaxed Pott's Model. Consider the problem (3.10) formulated
with dual variables as follows

n n—1
m)\insup = Z /()\i,l(x) —Ai(x) plli,x) de + « Z / Ai div g; dz (5.1)
q = Ja i=1 78

subject to
Xi(z) €{0,1}, VoeeQ i=1...n—1; (5.2)
0=MX(z) < ... < M) < X(z) =1 Vo el (5.3)
lgi(z)]| <o, Yo e, i=1...n—1. (5.4)

As discussed in the previous sections, (4.1) can be usedtitigpathe image domain
into n sub-regionsb; = {xr € @ s.t.A\_i(x) — X\i(z) =1},i=1...,n— 1. However,
the regularization term in (4.1) does not correspond toghgth term as in the Pott’s model
due to the linear dependence on the size of the jumps.

Recently, a tight convex relaxation for Pott's model wasspraged in [50, 13], by opti-
mizing (4.1) and replacing the constraint (4.4) with thédaing convex constraint set”:

iz
g(x) eCP = {VgeR™™ | |> ql<a; V(ini), 1<ii<iz<n—1},
1=11

(5.5)

Vz € 2 and applying the relaxatiok;(z) € [0,1],¢ = 1...n. It boils down to optimizing

n n—1
mjnsup = Z /()\i_l(a:) = Xi(x) plli,x) de + « Z / i div ¢; dx (5.6)
a i=1 /¢ i=1 VO
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subject to
i €[0,1], t=1..n—1; 0=X,<...< A <)X =1; (5.7)

and (4.5) .

In comparison to other convex relaxations, such a relarasianore 'tight’ due to the
larger constraint sef'” on the dual variableg;(x), i = 1...n — 1. Therefore the problem
(4.6) is called theight convex relaxed Pott's modgal this paper. It was also observed in
[50, 13] that this convex model produces optimal layer fioret{ \; (z) }?_, which are binary
nearly everywhere, therefore very close to the real glopairaum of the Pott's model.

5.2. Tight Continuous Max-Flow Model and Duality. In this section, we investigate
the tight convex relaxed Pott's model (4.6) In contrast t pinevious works [50, 13], we
follow the same continuous flow-maximization idea presgimeSec. 3.2.1 and propose its
new continuous max-flow formulation, so-calliégght continuous max-flow modas follows:

sup / p1(z) dx (5.8)
pa JQ
subject to
q(z) e CF , Vr e (5.9)
pi(x) < p(l;,x), i=1...n, Vre (5.10)
(divgi —pi+pit1)(@) =0, i=1...n—1, aexecQ, (5.11)
¢ -n=0 i=1...n—1, onof. (5.12)

Correspondingly, by the introduction of the multiplier fiions \;(z), ¢ = 1...n —
1, to the flow conservation equalities (4.11), we obtain theiedent primal-dual model
corresponding to théght continuous max-flow modas$ follows:

n—1
ir){f sup / {pl + Z )\i(div q — pi + piﬂ) } dx (5.13)
pa JQ =
subject to
pi(z) < plli,z), i=1...n; q(z)eCt. (5.14)

Following the same steps presented in Sec. 3.2.3, we have

ProrPOSITIONS.1. The tight continuous max-flow problegi#.8) and the tight convex
relaxed Pott’s problenf4.6)are dual to each other.

The proof is identical to the proof of Prop. 3.2 and is omittede.

In view of (4.13), we see that the labeling function$z),i = 1...n — 1, work as mul-
tipliers to the linear equalities of flow conservation in tight continuous max-flow model
(4.8). Likewise, this paves the way to derive a new max-flogelolaalgorithm to Pott’s prob-
lem.

5.3. Tight Continuous Max-Flow Based Algorithm for Pott's Model. Observe that
the two continuous max-flow problems (3.17) and (4.8) arelypélae same except the con-
straints on the flow functiong (z), ¢ = 1...n — 1. Therefore, for the tight convex relaxed
Pott’'s model (4.6), it is natural to consider a similar sckemnumerics as Alg. 3.4 as a
new algorithm for (4.6), which is called thtgght continuous max-flow based algoritim
this work. The only difference is that the constraint §gfz), i = 1...n — 1, at any pixel
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FIG. 6.1. (a) Ground truth, (b) input, (c) Rescaled labeling functioefore threshold, (d) Rescaled labeling
function after thresholding each; at 0.5.

x € Q is no more the simple—ball: |¢;(z)| < «, but the more complicated convex et .
Therefore, for the nevtight continuous max-flow based algorithme take the very same
steps as Alg. 3.4, except the step (3.29) which is replacedd®imizing the same energy
over the different constraint sét” as follows:
e Optimizeg;, i = 1...n — 1, by fixing the other variables
gt = arg max Le((PiE 0 ) (@52, ain dfsi), AF)
o Cas k k+1 k2
= argqnelg)}g —§Hdlqu'+pi+1 —pitt =N/ (5.15)

Clearly, (4.15) can be optimized by the projected-desdept sin this regard, the pro-
jection of a vectoKqy, ..., g,—1) € R™*"~1 to the convex sef’”’ becomes our focus, which
has no closed form solution in general. However, we can shaifor (¢, ..., ¢,—1), when
all components but one are fixed, the projection can be cosdpanalytically. This exactly
solves the projection step of (4.15). We state our resuli@$allowing proposition:

PROPOSITIONS.2. Given the set

CZP(Q) = {q7 cR™ | (ql, ---,@—1&1,@#1, ...,qn_l) c CP}, i=1...n—1. (516)

EachCFP(g),i = 1...n — 1, consist of the intersection of a set of sphere®if with the
same radiusy. Moreover, for any vectog; € R™, its projection to the se€’”’ () can be
computed analytically.

The proof of Prop. 4.2 is omitted here to ease reading, beingiv Appendix A.

A primal-dual algorithm was proposed in [52] for optimizifg.1), which consists of
taking ascent steps over the dual variables and descertvaethe primal variabla(zx), fol-
lowed by projections of all the variables onto the nearesttp®f the feasible sets iteratively
until convergence. Our continuous max-flow algorithm hasftlowing advantages:

e By Prop. 4.2, we can compute the projection onto the conveg Seanalytically.
In contrast, an iterative algorithm (Dyjkstra’s algorithmas proposed for approxi-
mately computing the projection in [13], which slows dowe #igorithm’s conver-
gence.

e It avoids the steps to project the layer functiongz), : = 1...n — 1, onto the
convex set\;(z) € [0, 1] and the linear-order-constraint set (4.3) at every iterati
According to the theory of théght continuous max-flow modete can force such
constraints on the layer functions implicitly by the simpt@nstraints on the flow
functionsp;(z) (4.10).

6. Numerical Experiments. In this work, we focus on applications of the model (1.3)
and (1.2) to image segmentation and stereo reconstrucG@mmparisons are made to the
discrete approach [34] and the approach proposed by Poak §3].
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FIG. 6.2. (a) Input image damaged by impulse noise; (b) reconstrutabdling function with non-convex
data term(6.3) before threshold, (c) labeling function after thresholglisach); at 0.5, (d) reconstructed labeling
function with convex data terf@.1)andg = 1.

FiG. 6.3.(a) Input, (b) Labeling function before threshold (c) Lahglfunction after thresholding eack; at0.5.

6.1. Image Segmentation.The discrete-valued labeling functiarfx) can be used to
partition the image inta regions by the conventiom = i in regioni. Hencep(u(x), z) is
the cost of assigning the pointto regionu. One possibility for such a data term is

wherel is the inputimage andg; is the average intensity value of regioriThey are assumed
to be fixed in this work, although a simple updating schemeatsmbe constructed for finding
a local minimum with respect toas in [4]. Such a data term is convex fér> 1 and non-
convex for3 < 1. The terma [, [Vu|dz is used to regularize. It does not penalize the
jump from each region to the next equally, like the more ideatt's model. However, for
relatively simple images and when the number of regionstisawlarge, it works quite well.
In addition, image segmentation is good for illustrativegmses of the method, since the
results are easily visualized. Figure 6.1, 6.4 and 6.3 sleswlts. For ease of visualization,
we have rescaled the labeling functiesuch that: takes the value; in regioni (instead of
the value)), i.e.

n—1
u=ci+ Y (ciy1— i) (6.2)
=1

Subfigure (b) shows the resultingbefore thresholding eack!(xz). As expected such a
solution may not be binary. Subfigure (c) shows the discraitead solution after thresholding
each\!(z) according to Prop. 3.3. We also demonstrate image segrwntgith a non-
convex data term. The ground truth image from Figure 6.1 4a)deen damaged by impulse
noise in Figure 6.2 (a). More specificallfp% of the pixels have been randomly selected
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FiG. 6.5.(a) Input, (b) segmentation with total variation regulagtzmode(1.3) (after threshold), (c) segmen-
tation with convex relaxed Pott’s model (after thresholthe total variation regularized model results in misclassi
fications along the boundary between region 1 (darkest) agin 3 (brightest) and does not reconstruct the triple
junction properly.

and given a random number betwedeand255 (max gray value). For this type of noise, the
convex data terms does not perform well, as shown in Fig@rédj.where we have selected
(6.1) with 5 = 1. Instead the following non-convex data term can be used

p(i,z) = { (1)7 gée: argmin, |1(z) — cx| ) (6.3)

This non-convex problem can be solved globally by our mettioalresult is shown in Figure
6.2 (b) before threshold and 6.2 (c) after thresholds.

We next apply our algorithm for the convex relaxed Pott's eladf [50] from section
4.3. The image in Figure (6.5) (a) has been segmented witkothkvariation regularized
model in (b) and convex relaxed Pott’'s model in (c). As we g&a] variation results in mis-
classifications along the boundary between region 1 (white)region 3 (dark) and cannot
reconstruct the triple junction properly.

6.2. Stereo reconstruction.We now consider stereo reconstruction with data from the
Tsukuba stereo set [55]. Given two color imadggsnd/ of a scene taken from horizontally
slightly different viewpoints, we would like to reconstitube depth map.. The quality of
the matching betweefy, and/y for a depth value: is measured by using the followingin
the data term of (3.1)

3
plu, ) = Z |17 () = (2 + (u,0)7)]. (6.4)
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(c) 'pro‘bosé'd before thresho (d) A} before thresho

' (e) prélpoé"ed after thresho (f) é}éph éut4n

N
o (h) Pock et al.

e b
(9) graph cutn

FIG. 6.6. (a) Left input image, (b) ground truth, (c) non-integer d@a v = E’P*l A7, (d) A before

=1

threshold, (e) Integer valued solution after thresholji§faph cut 4 neighbors, (g) Graph cut 8 neighbors, (h) Pock

et. al.



Energy precisior < 103 Energy precision < 10~*

Primal-dual [52] | Proposed 1 Proposed 2| Primal-dual [52]| Proposed 1f Proposed 2
Brain 280 50 (x 5) 110 430 65 (x 5) 280
Figure 6.1| 295 35(x 5) 115 640 65 (x 5) 290
Stereo 4055 550 (x 5) | 1070 14305 920 (x 5) | 3905
TABLE 6.1

Iteration counts for each experiment. Number of iteratitmseach an energy precision 80— and10—* are
shown. Proposed 1 stands for algorithm 2 where the subpmolidesolved by 5 iterations of Chambolle’s algorithm
each outer iteration (indicated by the number in the paresty). Proposed 2 stands for Algorithm 2 with the
subproblems solved inexactly in one step through the linaon (3.31)

Energy precisior < 10~ Energy precision < 107> Energy precisiom < 10~°
Primal-dual [52]| Proposed 1| Primal-dual [52]| Proposed 1| Primal-dual [52]| Proposed 1|
Stereo| 14305 920 (x 5) | > 30000 1310 (x 5) | > 30000 1635 (x 5)

TABLE 6.2
Iteration counts for stereo experiment. Number of iterasido reach an energy precision t6—4, 10~° and
10~ are shown.

Herel’ (x) denotes the — th component of the color vectdz). The above data term (6.4)
is obviously highly non-convex. The terme |Vu| dzx is used to regularize. The strength
increases linearly with the size of the jumpwofThis is reasonable in stereo reconstruction,
sinceu describes the "depth”, which is a physical entity arrangreeHrly in a third dimension
perpendicular to the image planes. Figure 6.6 shows results standard example. We
have usedvr = 0.03 and scaled images betweemnd1. As suggested in [55] we have set
n = 17 and used the discrete label 46t ..., 16}. This integer optimization problem over a
continuous domain can be formulated exactly with our apgro&olving (3.18) will result in
optimal functions\} that are not necessarily binary. In fact they are not exgdotbée binary
in case the solution to the original problem is not uniquee Tésult of [52] with threshold
level 0.5 is depicted in Figure 6.6(h).

We also compare with graph cut using a neighborhood systefnaofd 8. Graph cut
produces a single non-unique solution which is shown in Egfand (g) with 4 and 8
neighbors respectively. As we see, such solutions suffen fnetrication artifacts because of
the discrete grid bias.

Primal-dual [52] Proposed 2
iterations| flops pr. iteration| flops iterations| flops pr. iteration| flops
Triple | 280 1.2 % 109 3.4%10% | 130 2.3%10° 3.0 %107
Fig 6.1 | 230 2.6 x 107 6.0 % 10° | 110 3.9 % 106 4.3%108
TABLE 6.3

Number of iterations and flops pr iteration to reach energgqision ofe < 103 for convex relaxed Potts
model on the example in Figure 6.5. The proposed algorithnv@ges in less number of iterations. In addition,
the computational cost each iteration is much lower sin@eekpensive iterative projection algorithm ordt” is
avoided. Overall, the proposed algorithm converges aralémes faster than [52].

6.3. Evaluation of convergencelteration counts for all experiments are presented in
Table 6.1. The two variants of Algorithm 2 are evaluated agjahe primal-dual method of
Pock et. al. [52]. The relative energy precision at iterafies given by

Ei _ E*
= 6.5
€ T (6.5)
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where £’ is the energy at iteratiohand E* is the final energy. A good estimate &f is
obtained by using a huge amount of iterations of each methd@ach experiment. The table
shows how many iterations are required to reach an energispe of 10—2 and10~*. Our
algorithms are implemented with a mimetic finite differespatial discretization [33, 32]. In
order to make the comparison as accurate as possible, thalgfual algorithm [52] is also
implemented with such a mimetic finite difference discratian, although a slightly different
forward scheme for the gradient and backward scheme foritieeggnce was used in [52].

The first variant of Algorithm 2 solves the subproblem (3.2&atively by Chambolle’s
algorithm [14]. Since the previous solution is availableaagood initialization, not many
iterations of this algorithm is required. In our experimgerg inner iterations was used for
each step. Increasing the number of inner iterations beyodill not seem to have any
impact on the convergence rate in our experience.

The primal-dual method of [52] avoids the inner problem, dsitve see requires signif-
icantly more iterations to reach the same energy precisions algorithm also requires less
total number of iterations (inner times outer iteratior®)e difference becomes progressively
clearer with higher energy precision. For the stereo exanvghich is by far most difficult
computationally, our approach reached an energy preaigior: 10~° after1310 iterations,

e < 107% after 1635 iterations and < 10~7 after 2340 iteration. The primal-dual algo-
rithm [52] failed to ever reach an energy precisiorl®f ® or lower within our predetermined
number of maximum iterations (30000). We believe this dédfee is due to the fact that our
approach avoids the iterative projections of the labelimgfion and hence progresses in the
exact steepest descent direction every iteration.

The second variant of the Algorithm 2 instead computes axaictesolution to (3.29)
through the linearization (3.31) and hence avoids the iitaeations. However, the penalty
parameter must be set lower to maintain convergence, hence more datations are re-
quired. Overall it converges a little faster than the firstiasat and outperforms the primal-
dual algorithm [52] for all the experiments.

The new algorithm for Pott’s model also converges in sigaifity less iterations than
[52] as seen in Table 6.2, where the linearization (3.31)deeEn used to solve subproblem
(3.29). The proposed algorithm also avoids the expensivegtion step ont@”. In con-
trast, [52] needs to project the dual variableento C* by Dyjkstra’s iterative algorithm
each iteration, which can only be solved approximately anthé bottleneck of the overall
algorithm. In consequence, our algorithm requires sigaifity less number of floating point
operations pr. iteration.

Compared to the highly optimized c++ implementation of dite max-flow [9], the C
implementation of our algorithm converges around 4 times/st. However, our algorithm
consists mainly of floating point matrix and vector arithimetnd is therefore highly suited
for massive parallel implementation on GPU. Traditionakrfiaw algorithms have a much
more serial nature, which makes them more dependent on areetfserial CPU. A GPU
implementation of the algorithm of Pock et. al. has alreaglgrbcompared to discrete graph
cutin [53], showing a speed up factor of about 30. In the netar&, hardware improvements
are also expected to be largely of the parallel aspect. Heveegee our work as more suited
for the current and future generation of hardware.

7. Conclusions and Future topics.In this paper we proposed and investigated a novel
max-flow formulation of multilabeling problems over a cantous image domain. It is a di-
rect mapping of Ishikawa’s graph-based configuration tspatially continuous setting. The
multilabeling problem was interpreted as a min-cut problfich we proved was dual to the
proposed continuous max-flow model. In addition, we derived and reliable multiplier-
based max-flow algorithms whose convergence could be \eétffestandard optimization
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theories. Experiments showed that the algorithms outpedd earlier approach in terms
of convergence rate. Due to the continuous convex formarathe algorithm can be more
easily speeded up by multi-grid or parallel implementatiean graph-based methods, and its
memory requirement is not so high.

In comparison to [53] and its improvement [52], our continsonax-flow approach pre-
sented a new theoretical framework based on the max-flow fdwalulation of discrete-
valued constrained problems of the form (1.3); a threshgldicheme was derived which
was shown to hold exactly for discrete labels; experimemsved that the max-flow based
algorithms converged significantly faster than the prichaéd method proposed in [52]. The
algorithm could also be extended to the convex relaxatidtotfs model [50], thereby avoid-
ing expensive iterative projections without closed fordugon. In a future work we will also
extend this algorithm to the convex relaxation of the pidsevsmooth Mumford-Shah model
[51], speed up and fine tune the projection algorithm of $ecti. Comparisons with a si-
multaneous work [43] which presented another algorithnmfarimizing the energy in the
convex formulation of [52] will also be subject of future easch.

Appendix A. Projection onto CF(g).

Observe that’? () is an intersection of spheres R™. The centers of the spheres
are denotedjﬁ for (k,5) € I = {(k,j) st.1 <k < i < j < n} and are defined as
q, = Zi:k#i qe- LetS(c, ) denote the sphere of centee R™ and radiusy and define
S}(a) =S(q}, ). ThenCY (q) is

Czp((j) = m;;:ll m?:iJrl Sé (a) (A-l)

To obtain an analytical expression for the projection aiifq(g), observe first that ‘
PROPOSITIONA.1. Letg] = Hsj(a)qi be the projection of; onto the sphere; («).
. . k . .
Assume that for somié, j) € I, g, € CF(q), thenq; = arg m|nq_z-"€cip(q)7(k7j)el|qi —qilis
a projection ofg; ontoC¥ (g). ‘
Proof. Let (K, J) = arg miny, i1 sy o7 cor (gl — 4il- Assume there existsgt with
Vs g i g
¢ € Cf(q) and|g* — ai| < lak — ai|- Theng* € S§(a) and|¢* — ¢;| < Mgy (@i =
g% — qi], a contradictionl]
If ¢, ¢ CF(q) for all (k,j) € I, the projection onta” () must necessarily lie on
the intersection of theoundariesof S («) as the next proposition shows. We focus on two

dimensional images i&? for simplicity, i.e.m = 2. In that case, intersections béundaries
of S/ («) are justisolated points iR?. The boundaries 0§} («) are denotedS; (), i.e.

8Si(a) = {x eR™ s.t.|z — q| = a}. (A.2)

PROPOSITIONA.2. Assumefk' ¢ CF(q) for all (k,j) € I. Denote the set of intersec-
tions

Q={zeR’stz e s (a)Nosi(a), forsome(k’, ;') # (k,j) € I}.  (A3)

ThenHCZp(q)qi S Q
Proof. Letg* = Her (g4 Observe that the projectioyt must lie on the boundary
of the setC/(7), thereforeq* € 95 () for some(k,j) € I, sayq* € 8Si (). Since
q* € Si.(«a) it follows that|q* — ¢;| > |q7 — ai-
Assume that* ¢ Q. Consider the part of the circle C 957 («), which is the open
curve with end points ig* andgy; of minimum length (since there are two possibilities).
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FiG. A.1. (a) Projection ofg; onto C'(g). The projectionss}, ¢? and ¢? onto Sy (e), S2 () and Ss(c)
are not contained> (g), therefore the projection™ onto CF(¢) must lie on the intersection of the boundaries of
S1 (Ot), Sa (a) and Ss (a)

Sinceq* € CF(g) andgj. ¢ CF(q) it follows that there exists a poiigte s such thaj € Q
andg € CF (). Then|g — ¢i| < |¢* — ¢, a contradiction tg* = Il¢r ().
d

Whenm = 3 (3D images), ther®) is itself a set of circles iiR? (and isolated points).
The projection ontd@) can be computed analytically, but we omit the details.

In is not necessary to check the projection onto ev&riyy) for (k, j) € I. As the next
result shows, it suffices to check the sphere with largedicac distance tay;.

PROPOSITIONA.3. Let (K, J) = arg maxy, je/lai — Gil- If e = Mgy ()@ € CF (),
thenql‘]( = HCP((?)q7 If qIJ( ¢ CZP(Q), theanlp@q? S Q

Proof. Observe thalg; — ¢*| = |¢; — Hc/p({i)qﬂ > max jer ¢ — Hsi(a)qﬁ. The
inequality follows sincey* € Sjk'(a) forall (k,j) € I. Let(K,J) = arg maX, ;e ¢ — qjk'.
Then|g; — gy (o) = max( jer |qi—HS£(a)qi|. IfIlgs (a)ai € CF(g), then by the above
inequalityq” = Ilgs (oy¢:- This shows the first part of the propositionIlf .¢; ¢ CcFf(q),
then by the above inequaliﬁsi(a)qi ¢ CF(q)forall (k,j) € I, hence* = Her gyt € Q.
d

Further simplifications can be made. We stick to 2D dimeradipnoblems from now
on, i.e.m = 2. It is not necessary to check every pqintjme Q, to find the one inC¥ (g)
with smallest distance tg;. The centers of the diskS] («) are all assumed to be contained
in CF () by the construction, i.e.

J
Yo @eClh(@, Ykij)el (A4)
0=Fk, 00

which makes the calculation especially simple
PROPOSITIONA.4. Assumey, ¢ CF(g) for all (i,5) € I and assumgA.4) holds.

Let (K, J) = arg may,, ;crlqp — ¢ and(K', J') = arg max,, ;e (k.9 — ¢i| (second
largest). If (K, J) is unique thery* € 953 (o) N 85@ («) for some(k’, j') € (K',J'), if
(K, .J) is not uniquey* € 853 (a) N 8S7, (a) for some(k, j), (', ') € (K, J).

This observation reduces the number intersecting poiatsieds to be checked. If both

the largest and second largest distance is uniqueghenSy () N S, (a) which consists
of two points.
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Algorithm 2 Exact projection algorithm ont6” (7)

o Compute(K, J) = arg maxy ;e;|¢ — Qi|
o if gf, = HS}’((a)qi € CF(g), then
0" =g/ ()

e else
(K,J)= arg ma)fk,j)e[k]i —qi|, (K',J") = arg ma)ﬁk,j)el\(K,Jﬂqi - 4il
q" = arg MiN o607 ()aC7, (a), (k)£ (K, 7)er 14— Gil-

A simple algorithm can then be constructed for computing= Il.»; g, see Alg.

A. There may be several ways to accelerate the algorithm.rdatige, it is expected the
boundary of the sef}’ () is composed of only a few elements@$y,(«), so called active

elements. Furthermore, the set of active elemés{ya) are known when advancing from
one layer to the next, and does not need to be recalculatedlalgbrithm would only need
to work with this set of relevar® («).
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