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Abstract of the Dissertation

Self-Similar Blowup Solutions of the

Aggregation Equation

by

Yanghong Huang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2010

Professor Andrea L. Bertozzi, Chair

In this work, we consider various self-similar solutions of the aggregation equation

ut = ∇· (u∇K ∗u) with the special homogeneous kernel K(x) = |x|γ. Depending

on the power γ, different self-similar solutions are investigated.

When γ = 2, there is an explicit formula for the solution, which is an simple

rescaled function of the initial solution.

When γ ∈ (0, 2), any smooth solution blows up in finite time. Motivated

by some previous work on the non-existence of self-similar solutions of the first

kind, we show that the self-similar solutions are of the second kind, using high

resolution numerics and different ways to reduce the computational effort as small

as possible. The blowup profiles and their anomalous exponents are calculated

by post-processing of the numerical data of the blowup dynamics. Even though

there is no explicit formula for it, the anomalous exponent can be retrieved in

odd dimensions for the special kernel K(x) = |x|. In this case, the original PDE

is transformed into a system of ODEs, and a shooting method is used to find

the optimal parameters to match the desired far field condition. In addition, the

limiting behavior when the power γ goes to zero is studied, giving more insights

xiv



of these self-similar solutions for the general cases.

When γ ∈ (2,∞), any smoothing solution remains smooth and only blows up

at infinite time. The main technique used is a similarity transform originating

from dimensional analysis, resulting in another equation with better properties.

This transformed equation is studied in detail, from the qualitative characteriza-

tion of the limits for general solutions to quantitative asymptotics of the conver-

gence to the singular limits for radially symmetric solutions. For smooth, radially

symmetric initial data, the solution of the transformed equation converges to a

Dirac δ-ring, whose radius is determined by the total initial mass, the power γ and

the dimension of the space. The predicted asymptotic behavior of convergence is

in excellent agreement with the numerical simulation of the PDEs.
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CHAPTER 1

Introduction and Background

1.1 Physical Background of the Aggregation-Type Equa-

tions

The aggregation equation

ut = ∇ · (u∇K ∗ u) (1.1)

arises in a number of context in biological models and physical applications. Here

u is usually the mass density of the species or material andK∗u is the convolution

of u with some kernel K. In biology, the swarming mechanism can be described

by this equation in which individuals sense the presence of others. A related

equation with the kernel K(x) = e−|x| is used to simulate the aggregation of

nano-particles by Holm and Putkaradze [HP05, HP06]. At the individual level,

this aggregation mechanism can be described by a system of ODEs [BCM00,

CHD07, MCO05, OL01] and only the simplest case relevant to the continuum

models is reviewed here. Let {x1, x2, · · · , xL} be the position of the L particles

representing the individuals with mass {m1, m2, · · · , mL}. Assuming that the

pairwise interaction between two particles xi and xj , or more precisely the relative

velocity between them, is proportional to

−∇K(xi − xj), (1.2)
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then the velocity of a specific particle is simply

d

dt
xi = −

∑

j 6=i

mj∇K(xj − xi). (1.3)

In general the only assumption on the kernel K is the symmetry K(−x) =

K(x) under reflection. Very often the underlying environment or medium is

assumed to be homogeneous and rotationally invariant, reflected in the symmetry

of the kernel K(x) = k(|x|) for for some function k. Therefore above equation

can be rewritten as

d

dt
xi = −

∑

j 6=i

mj
xj − xi

|xj − xi|
k′(|xj − xi|). (1.4)

When the number of particles L becomes large, the particles can be modeled as

a continuum, with a mass density u, giving the continuous equation (1.1) above.

The properties of both of the discrete and continuum equation are reviewed in

the next chapter.

Related equation also used to model over-damped gravitational interaction of

a cloud of particles and chemotaxis in bacteria is the Keller-Segel equation [KS70]

∂tρ = ∆ρ−∇ · (ρ∇c), (1.5a)

−∆c = ρ, (1.5b)

where ρ is the density of the cloud or the bacteria and c represents the gravi-

tational potential or the density of the chemo-attractant. In spatial dimension

greater than two, there are at least two types of blowup solutions (see [BCK99]).

One is exactly self-similar, concentrating zero mass in the core of the blowup pro-

file, and the other is like a Burgers shock, with finite mass in a ring converging

to the origin.

Another closely related equations appear in the modeling of the self-aggregation

of finite-size particles [HP05, HP06], different from the standard Debye-Hückle [DH]
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or Keller-Segel [KS70] model. Let the local density of the particles be ρ, then the

evolution equation can be written as

∂ρ

∂t
= −∇ · J, with J = −D∇ρ̄− µ(ρ̄)ρ∇Φ, (1.6)

where D is the diffusion coefficient, ρ̄ is the averaged density of ρ, µ is the

density-dependent mobility and Φ is the potential. The non-local interaction

between these particles are characterized by Φ by

Φ(r) = −
∫

ρ(r′)G(|r− r′|)dr (1.7)

for some kernel G. Numerical simulations of (1.6) shows the coexistence of the

steady state solutions as well as the collapse of solutions from smooth initial data

in two and three dimensions.

In the absence of diffusion, all the equations considered above fall into the

much more general active scalar problem [Con94] for the transport of a scalar

quantity. The corresponding equation can be written as

∂ρ

∂t
−∇ · (ρ~v) = 0, ~v = ~K1 ∗ ρ+ ∇K2 ∗ ρ, (1.8)

where ρ is the scalar to be convected and ~K1 is a divergence-free (or incom-

pressible) vector kernel. This type of problem roots in classical theory of fluid

dynamics, including two dimensional vortex dynamics [MB02, Yud63] and quasi-

geostrophic equation [CMT94], in which the transport velocity is divergence free.

In the vorticity-stream formulation of the Euler equation in two dimension, ρ

is the vorticity and the kernel ~K1(x) is
(x2,−x1)

2π|x|2 while in the quasi-geostrophic

model, the kernel ~K1 is the fractional Laplacian ∇⊥(−∆)−α. On the other hand,

most models for the aggregation of a swarm have a velocity that is a gradient.

The model with both divergence-free part and gradient part is studied in two
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dimensional vortex motion in superconductors [DZ03], and in a two-dimensional

kinematic model for swarming pattern [TB04]. The latter is inspired by a one-

dimensional model with both odd and even nonlocal interactive kernels [ME99].

1.2 General Theory for Self-similar Solutions

The main contributions of this thesis are the understanding of self-similar dy-

namics of blowup in multi-dimensional aggregation equations. These self-similar

solutions, if they exist, are intimately related to the invariance of equations under

scaling transformation. Therefore in the following we review some fundamental

ideas for self-similarity in PDEs.

1.2.1 Dimensional Analysis, Scaling and Similarity Transform

The fundamental idea of dimensional analysis is that physical laws do not depend

on any chosen basic units of measurements. More specific, let a1 be any physical

quantity that depends on the basic quantities L1, M1 and T1 in one basic units

of measurements, i.e.

a1 = φ(L1,M1, T1). (1.9a)

Similarly, the corresponding quantity in another basic units of measurements is

a2 = φ(L2,M2, T2). (1.9b)

The principle of dimension analysis means that

a1

a2
=
φ(L1,M1, T1)

φ(L2,M2, T2)
= φ

(

L1

L2
,
M1

M2
,
T1

T2

)

. (1.10)

As a result, the function φ must be a power-law monomial, i.e.

φ(L,M, T ) = CLαMβT γ, (1.11)
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for some constants C, α, β and γ. One example is the Newton’s second law in

either the MKS or CGS system.

The principle of dimensional analysis has been used for a long time, starting

from Newton and Fourier to Maxwell, Rayleigh, Reynolds and Kolmorogov. Any

derived equation for physical phenomena should have consistent dimensions for all

individual terms. More importantly, dimensional analysis can greatly simplify the

presentation of solutions to equation, summarized by the celebrated Buckingham
∏

theorem [Bar96]:

Theorem 1.2.1. Let a be a function of n+m variables, a1, · · · ,an, b1, · · · , bm,

i.e.

a = f(a1, a2, · · · , bm). (1.12)

If a1, a2, · · · , an have independent dimensions and a, b1, b2, · · · , bm are express-

ible in terms of the dimensions of a1, a2, · · · , an as

[a] = [a1]
p · · · [an]r,

[b1] = [a1]
p1 · · · [an]r1 ,

...

[bm] = [a1]
pm · · · [an]rm . (1.13)

Define the dimensionless numbers

∏

=
a

ap
1 · · ·ar

n

, (1.14a)

∏

1 =
b1

ap1

1 · · ·ar1
n
, (1.14b)

...

∏

m =
bm

apm

1 · · ·arm
n

. (1.14c)
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Then there exists an function Φ of only m variables, such that

∏

= Φ(
∏

1, · · · ,
∏

m). (1.15)

In other words, f can be written as the following simplified form

f(a1, a2, · · · , bm) = ap
1 · · ·ar

nΦ

(

b1
ap1

1 · · ·ar1
n
, · · · , bm

apm

1 · · ·arm
n

)

. (1.16)

The transformation (1.14) from the original variables to the dimensionless

variables is call a similarity transform. In many situations, we are more interested

in the singular behavior of the solution Φ when some of the dimensionless variables

go to zero or infinity, corresponding to the large time behavior or finite time

blowup limit. Depending on the nature of this limit, we have self-similar solutions

of the different kinds, as discussed in the following subsection.

1.2.2 Self-similar Solutions: the First Kind and the Second Kind

Without loss of generality, we consider the limit of the function Φ when
∏

m goes

to zero. To illustrate this limiting process, we use the example of measuring the

length of a curve in a two-dimensional plane. Depending on the curve, there are

three possibilities

• The limit

lim
Q

m→0
Φ (
∏

1, · · · ,
∏

m) = Φ1

(
∏

1, · · · ,
∏

m−1

)

(1.17)

exists for some function Φ1. In this case the solution possesses complete

similarity and we call the resulting self-similar solution is of the first kind.

When we approximate the perimeter of the circle of radius R by a regular

N -gon with side length η = R sin
2π

N
, the perimeter of the polygon is given

by

Lη = Nη =
2πη

arcsin(η/R)
= RΦ(

∏

1), (1.18)
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where
∏

1 = η/R and Φ(
∏

1) = 2π
∏

1 / arcsin(
∏

1). The limit of Lη when
∏

1 = η/R goes to zero exists and is

lim
η→0

Lη = R lim
Q

1
→0

Φ(
∏

1) = 2πR, (1.19)

exactly the perimeter of the circle with Φ1 ≡ 2π.

R

η

Figure 1.1: The perimeter of a circle approximated by a polygon. The limit when

η goes zero exists, which is exactly the perimeter of the circle.

• The above limit does not exist, but instead the limit

lim
Q

m→0

1
∏α

m

Φ
(

Q

1
Qα1

m
, · · · ,

Q

m
Qαm

m

)

= Φ1

(
∏

1, · · · ,
∏

m−1

)

(1.20)

exists. In this case the solution possesses incomplete similarity and we call

the resulting self-similar solution is of the second kind. When we approxi-

mate the perimeter of the fractal—Koch snowflake shown below, using the

basic length scale η = R/3K for any integer K, the resulting length is

Lη = 3R

(

R

η

)α

= RΦ(
∏

1), (1.21)
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where
∏

1 = η/R, Φ(
∏

1) =
∏−α

1 and α = (ln 4 − ln 3)/ ln 3 ≈ 0.26 is the

fractal dimension. Obvious the limit of Φ when
∏

1 goes to zero does not

exits; the actual limit that does exist is

lim
Q

1
→0

∏α
1Φ(
∏

1) = Φ1 ≡ 3R. (1.22)

Figure 1.2: Kock snowflake. The perimeter depends on the scale we measure it,

but the dependence has a simple power law scaling on η.

• No finite limit of the previous two forms exists. In this case the solution

does not possess any similarity. One example is the non-rectifiable curve

which is the graph of the function f defined by

f(x) =











x sin 1
x
, if x ∈ (0, 1],

0, if x = 0.

(1.23)

The length Lη of the curve measured at a scale η goes to infinity when η

goes to zero. However, the increase of Lη to infinity does not have any

power-law scaling on η.

Self similar solutions of the first kind are everywhere in applied mathematics

due to their relative simplicity to construct. These solutions not only are spe-

cial exact solutions, but also can capture enormous important properties of the

underlying equations. For the same equation, multiple self-similar solutions can

8
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−0.4

−0.2

0.2 
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0.6 

0.8 

1   

Figure 1.3: The non-rectifiable curve. The length increases as the length scale η

decrease, but the increase does not any power law scaling on η.

exist, corresponding to different initial and boundary conditions. A few examples

are listed below:

1. The fundamental solution to the Heat equation [Eva10]

ut = ∆u, x ∈ R
n (1.24)

is

u(x, t) = (4πt)−n/2 exp

(

−|x|2
4t

)

. (1.25)

When t goes to zero, it is the Green’s function for the initial value problem,

and when t goes to infinity, it captures the asymptotic behavior, in the

sense that the solution to heat equation (1.24) with general initial condition

converges to M0u(x, t), where M0 is the total(nonzero) mass of the initial

9



data

M0 =

∫

Rn

u0(x)dx =

∫

Rn

u(x, t)dx.

When M0 = 0, other self-similar solutions arise to characterize the long

time asymptotic behavior. In one dimension, if the second moment (which

is conserved)

M2 =

∫

R

x2u(x, t)

is nonzero, then the leading order behavior is governed by

t−3/2H1(xt
−1/2) (1.26)

where H1 is the Hermite function.

2. The Barenblatt solution with total mass M to the Porous Medium equa-

tion [Vaz07]

ut = ∆um, x ∈ R
n (1.27)

is

u(x, t) = t−α
(

C − κx2t−2α/n
)

1

m−1

+
, (1.28)

where

α =
n

(m− 1)n+ 2
, κ =

(m− 1)α

2mn
, (1.29a)

and

M = a(m,n)Cγ , γ =
n

2(m− 1)α
(1.29b)

with some function a. It characterizes the long time behavior of solutions

to initial data with compact support or decaying fast enough. It also char-

acterizes the optimal regularity and other estimates to the solutions.

3. Traveling wave solution to the viscous Burgers equation [Bur74]

ut + uux = νuxx (1.30)
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is

u(x, t) = U− + U+ tanh c(x− ct)/ν, (1.31)

where U− = u(−∞, t), U+ = u(∞, t) and the traveling speed c = (U− +

U+)/2. Even though traveling wave solutions are not in the power-law

scaling form as we have seen, they can be transformed into the desired

form by introducing another set of variables x = ln y, t = ln τ .

Self-similar solutions of the second kind, though even more ubiquitous in

applied mathematics, are less known because of their analytical difficulties. In

the following a few examples of self-similar solutions of the second kind and their

anomalous exponents are listed.

1. The long time behavior of the filtration equation [BS69, KPV91, CW96]

ut =







uxx, if uxx > 0,

(1 + ǫ)uxx, if uxx < 0.
(1.32)

When ǫ = 0 it is the heat equation and the long time asymptotics is exactly

(1.25). When ǫ 6= 0, the introduction of this dimensionless number ǫ changes

the rate of decay and results in the solution of the form [BS69, CW96,

KPV91]

u(x, t) =
C

tα
e−x2/4t, (1.33)

where α is a function of ǫ with α(0) = 1/2.

2. The focusing problem for the Porous Medium equation [AG93, AA95]

ut = ∆um (1.34)

has a self-similar profile of the second kind. The numerical computation by

Betelú, Aronson and Angenent [BAA00] in dimension two suggests a very

rich dynamics of this problem under angular perturbation for different m.
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3. Self-similar solution for the fast diffusion equation

ut = ∇ · (u−n∇u), 0 < n < 1, (1.35)

with finite (but not conserved) mass is studied by Peletier and Zhang [PZ95].

4. Traveling wave solution to the Kolmogorov-Petrovskii-Piskunov [KPP37]

(or Fisher [Fis37]) equation

ut = uxx + f(u) (1.36)

of the form u(x, t) = θ(x − ct). In general, the traveling wave speed c can

not be obtained explicitly, as in that for the Burgers equation, and phase

plane analysis is used to find the qualitative and quantitative information.

1.2.3 Self-similarity in Finite Time Blowup Solutions of PDEs

Finite time blowup phenomena appear in many equations for physical models, in-

cluding semilinear heat equations [GK85, FK92], nonlinear Schrödinger equations

[Gla77, MPS86, FGW05], gravitational collapse [BW98] and pinch-off in surface

diffusion [BBW98]. For a general review article, see [EF09]. Near the blowup

time, it often happens that, because of the absence of any external scales, the

solution collapses to the singularity in a self-similar way. Probably the most

extensively studied one is the semilinear heat equation

ut = ∆u+ f(u), f(u) = up or f(u) = eu (1.37)

starting from 1960s in a seminar paper by Fujita [Fuj66]. However, it has been

well-known since the 1970s that there is no exact self-similar solution of the form

(for f(u) = up)

u(x, t) = (T − t)−1/(p−1)U(x/(T − t)1/2). (1.38)
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A refined analysis or center manifold theory close to the blowup time gives the fol-

lowing asymptotic form with a logarithm correction [Dol85, FK92, GK85, MZ97]

u(x, t) ∼
(

β

T − t

)β (

1 +
p− 1

4p
η2

)

, (1.39)

where

η =
x

√

[(T − t)| ln(T − t)|
, β =

1

p− 1
. (1.40)

In contrast, quasilinear problems [SGK95, BG98]

ut = (|ux|σux)x + eu or ut = (uσux)x + up, σ > 0 (1.41)

or higher order parabolic equations [BGW04]

ut = (−1)m+1D2m
x u+ |u|p−1u, or ut = (−1)m+1D2m

x u+ eu (1.42)

do possess exact self-similar blowup solutions, where D2m
x is the 2m-th derivative

with respect to x.

The nonlinear parabolic equation with a source

ut = ∇ · (uσ∇u) + up, t > 0, x ∈ R
n, (1.43a)

u(x, 0) = u0(x) ≥ 0, uσ+1
0 ∈ C1(Rn), (1.43b)

contains many types of self-similar solutions, depending on the parameters σ and

p. It is easy to see that the critical case is p = σ+1. The behavior of the blowup

solutions is substantially different in three cases in terms of the size of the blowup

set [SGK95]:

1. When p = σ+1, the solution goes to infinity on a set with nonzero measure.

2. When 1 < p < σ + 1, the solution goes to infinity on the whole space.
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3. When p > σ + 1, the solution goes to infinity only at discrete points.

Exact self-similar solutions of the first kind exist for any p > 1 and σ > 0 with

above described behaviors. Even though these self-similar solutions arise only for

special choices of initial data u0, they characterize the behaviors of solutions,

with general initial data, near the blowup time.

For those solutions with nontrivial blowup profiles, it is possible that the

profiles match the exact analytical ones only near the core of the blowup point

(or set), with deviation (though very small in magnitude) away from the core,

sometimes called quasi-self-similar solutions. This is observed in the collapse of

the cubic Nonlinear Schrodinger Equation, either for the Townes profile [CGT64,

MPS86, MGF03] or for the ring profile [FGW05].

As we have seen, self-similar solutions possess a special position in the theory

of partial differential equations. They can be the Green’s function of the equation;

they can capture the long time behavior of the solution; they can indicate the

optimal regularity result since one can not expect to prove regularity more than

that for the self-similar solution; they can used to classify the solutions in different

parameter regime.

1.3 Outline of the Rest of the Thesis

After this brief introduction to the modeling of aggregation equation and back-

ground knowledge about self-similar solution in this chapter, the mathematical

theory of the aggregation equation as well as the related blowup results are re-

viewed in Chapter Two. The blowup dynamics, in the context of self-similar

solutions is studied in detail in the next two chapters, depending on the power γ

in the homogeneous kernel K(x) = |x|γ . When γ ∈ (0, 2), the second-kind self-
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similar solutions are investigated both numerically and analytically in Chapter

Three. When γ ∈ (2,∞), the solutions under the conventional similarity trans-

form are studies in Chapter Four. This thesis is ended with a conclusion and

possible extensions to many related future works.
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CHAPTER 2

The Multidimensional Aggregation Equation

In this chapter, we review the basic mathematical theory for the aggregation

equation

ut = ∇ · (u∇K ∗ u), (2.1)

starting from the elementary properties of the solutions to more advanced exis-

tence, uniqueness and regularity theory for both discrete and continuum prob-

lem. We pay special attention to the role of the kernels for different blowup

behaviors. These qualitative blowup results are relevant to the special ker-

nel K(x) = |x|γ in the following chapters, in which the detailed quantitative

blowup behaviors are explored. Most of the results in this chapter are developed

in [BB10, BCL09, Lau07] and also found in the review article [BL09].

2.1 Review of the Mathematical Theory of Aggregation

Equation

2.1.1 Basic Properties of the Aggregation Equation

The aggregation equation (2.1) and its discrete analogue

d

dt
xi = −

∑

j 6=i

mj∇K(xj − xi) (2.2)
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have a lot of nice properties. These properties can be proved easily for smooth

solutions but hold true for much more general solutions [Lau07].

• Conservation of the mass:

∫

Rn

u(x, t)dx =

∫

Rn

u0(x)dx. (2.3)

This is a direct consequence of the divergence structure of the equation.

• Conservation of the center of mass:
∫

Rn

xu(x, t)dx =

∫

Rn

xu0(x)dx. (2.4)

Taking the time derivative of the left hand side, we have

d

dt

∫

Rn

xu(x, t)dx =

∫

Rn

x∇ · (u∇K ∗ u)dx

= −
∫

Rn

u(x, t)∇K ∗ u(x, t)dx

= −
∫

Rn

∫

Rn

u(x, t)u(y, t)∇K(x− y)dxdy

= −
∫

Rn

∫

Rn

u(x, t)u(y, t)∇K(y − x)dxdy (switch x and y)

=

∫

Rn

∫

Rn

u(x, t)u(y, t)∇K(x− y)dxdy.

In the last step the symmetry condition K(x) = K(−x) is used. Therefore

d

dt

∫

Rn

xu(x, t)dx = −
∫

Rn

∫

Rn

u(x, t)u(y, t)∇K(x− y)dxdy

= − d

dt

∫

Rn

xu(x, t)dx, (2.5)

which proves the conservation of the center of mass. If the initially the

center of mass is not at the origin, we can always translate the coordinate

system to make it at the origin. For this reason, in the rest of the thesis,

we always assume the center of mass is at the origin, for both the discrete

and continuum problem.
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• Positivity preserving: If u(x, 0) = u0(x) ≥ 0 then

u(x, t) ≥ 0, for all t > 0. (2.6)

This is proved by using the transport structure of the equation [Lau07].

• Non-increasing of the energy

E(u) =
1

2

∫

Rn

∫

Rn

K(x− y)u(x)u(y)dxdy. (2.7)

Taking the time derivative of the energy, we have

d

dt
E(u) =

∫

Rn

∫

Rn

K(x− y)ut(x)u(y)dxdy

= −
∫

Rn

u(x)|∇K ∗ u(x)|2dx

≤ 0. (2.8)

Remark 1. It is obvious that for the discrete particle system (2.2), the mass and

center of mass is conserved and the discrete energy

E =
1

2

L
∑

i=1

∑

j 6=i

mimjK(xi − xj) (2.9)

is non-increasing.

2.1.2 Existence and Uniqueness for the Discrete Problem

For the discrete particle system (2.2) with symmetric kernel K(x) = k(|x|) for

some function k, the total mass M =
∑

j mj and the center of mass cM =

(
∑

j xjmj)/M are conserved. Additional properties can be obtained with mild

assumptions on the kernel K. One of the assumptions is the so called Osgood

condition:
∫ 1

0

dr

k′(r)
= ∞, (2.10)
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which guarantees global existence of bounded solutions. On the other hand, when

the Osgood condition is violated, i.e.

∫ 1

0

dr

k′(r)
<∞, (2.11)

then solutions blow up in finite time. In fact, the upper bound of this blowup

time can be estimated with a monotonicity condition on k′(r)/r shown below.

Denote by R(t) the distance between the center of mass and the particle

situated the furthest apart from the center of mass, i.e., R(t) = |xi(t) − cM | =

|xi(t)| with i being its label. Thus, due to (2.2), we have

d

dt
R(t)2 =

d

dt
|xi|2 = −2

∑

j 6=i

mj
(xi − xj) · xi

|xi − xj |
k′(|xi − xj |) .

Since the ith particle is the one furthest away from the center of mass, we have

that (xi − xj) · xi ≥ 0 and that |xi − xj | ≤ 2R(t) for j 6= i. Assume that

k′(r)

r
is non-increasing for r > 0 . (2.12)

Putting together the previous information, we deduce

d

dt
R(t)2 ≤ −k

′(2R(t))

R(t)

∑

j 6=i

mj(xi − xj) · xi .

Due to conservation of mass and center of mass, we get

∑

j 6=i

(xi − xj) · ximj =
∑

(xi − xj) · ximj = M |xi|2 = MR(t)2,

and thus,
d

dt
R(t) ≤ −M

2
k′(2R(t)) . (2.13)

If the potential K(x) = k(|x|) satisfies the non-Osgood condition (2.11), then

the ODE dR/dt = −M k′(2R)/2 with initial data R = R0 touches down to zero

in finite time, and therefore the particles aggregate in a single particle with the
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total mass M located at the center of mass before the touch-down time of the

ODE (2.13), given by

TB =
2

M

∫ R0

0

dR

k′(2R)
=

1

M

∫ 2R0

0

dR

k′(R)
. (2.14)

This bound is uniform for particles inside a fixed ball of radius R0 initially

with total mass M . This argument is inspired by and extends previous work in

the control theory literature on cooperative motion with first order control laws

involving pairwise interaction potentials (see [CHD07] for the case of attractive-

repulsive potentials and [GP02] for quadratic potentials). The argument is proved

rigorously in the following theorem:

Theorem 2.1.1 (Collapse of the ODEs [BCL09]). Consider the ODE system

(1.3) satisfying k′(r)/r monotone decreasing, with k′′(r) defined and non-negative

on (0,∞). If K satisfies the Osgood condition (2.10) then there exists a unique

global-in-time forward solution with no collisions, in which the particles converge

to their center of mass in infinite time. If K satisfies the non-Osgood condition

(2.11) then there exists a unique global-in-time forward solution with collisions, in

which the particles eventually all merge at their center of mass after finite time.

In the latter case, for a given potential, an upper bound on the merger time is a

function of the radius of support of the initial data and the total mass only.

Remark 2. The particles can merge at different times and then into one at the

final time.

Remark 3. If K satisfies the Osgood condition (2.10), the solution has backward

uniqueness. Otherwise ifK satisfies the non-Osgood condition (2.11), the solution

does not have backward uniqueness.

In the next subsection we show how this collapsing support argument can be

used to prove finite time blowup of the continuum problem in the case of non-
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Osgood potentials. We consider bounded initial data, therefore the characteristic

paths are smoother than the point particle case considered in this subsection.

However we can still implement the estimate on the size of the support of the

solution, proving finite time blowup of the continuum problem.

2.1.3 Local Existence Theory for the Continuum Problem

Let us first review the well-posedness of the continuum problem with bounded

data. We build primarily on the work of [BB10, BCL09, Lau07]. These papers

establish the existence and uniqueness theory for (1.1) in dimensions two and

higher, in the case of an acceptable potential satisfying the following criteria:

Definition 2.1.1 ([Lau07]). The potential K on R
n, n ≥ 2 is acceptable if

∇K ∈ L2(Rn) and ∆K ∈ Lp(Rn) for some p ∈ [p∗, 2], where 1
p∗

= 1
2

+ 1
N

. In

the case of compactly supported initial data, we can take ∇K ∈ L2
loc(R

n) and

∆K ∈ Lp
loc(R

n).

Remark 4. The properties of the acceptable kernels are needed in the proof of the

local existence theory, using either successive approximations [Lau07] or molli-

fiers [BL07].

We note that the typical kernels considered satisfy the acceptability condition.

In particular, the kernel K(x) = 1 − e−|x| is Lipschitz, satisfies ∇K bounded

a.e. and thus is in L2
loc(R

N). Moreover, the most singular case at the origin is

∆K ∼ 1
|x|

which satisfies the Lp condition above in dimensions two and higher.

The case of one space dimension has special issues and we discuss that at the end

of this section.

The continuum model assumes a non-negative density u(x, t) at position x ∈
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R
n and time t > 0 satisfying






























∂u

∂t
(x, t) + div [u(x, t)~v(x, t)] = 0 t > 0 , x ∈ R

n ,

with velocity field ~v(x, t) := −∇K ∗ u(x, t) t > 0 , x ∈ R
N ,

u(x, 0) = u0(x) ≥ 0 x ∈ R
n ,

(2.15)

where ~v is the velocity field under which individuals in the swarm are moving

obtained through the “averaging” of the pairwise potential by the distribution of

mass.

We now review the well-posedness theory for Hs-solutions.

Theorem 2.1.2 (Existence theory for Hs data [BCL09, Lau07]). Given initial

data u0 ∈ Hs(Rn), n ≥ 2, for positive integer s ≥ 2, there exists a unique weak

solution u(x, t) of (2.15) and a maximal interval of existence [0, T ∗) such that

either T ∗ = ∞ or limt→T ∗ sup0≤τ≤t ‖u(·, τ)‖Lq = ∞. The result holds for all

q ≥ 2 for n > 2 and q > 2 for n = 2.

It is shown in [BCL09] that as long as the Lq-norm of the solution is bounded,

then the Hs-norm of the solution must also remain bounded [BCL09, Proposition

2]. In other words, the Lq-norm controls the Hs-norm. This is why in the above

theorem the eventual blow-up first occurs in Lq and it is in the same spirit of

the Beale-Kato-Majda criteria [BKM84] for the breakdown of smooth solutions

for 3-D Euler equations. The 3-D Euler equation can be written in the vorticity

form

ωt + u · ∇ω = ω · ∇u, (2.16)

where ω is the vector vorticity and the velocity u is determined from ω by the

relation

u = −∇× ∆−1
ω. (2.17)
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The corresponding existence (or continuation) theory is that the L∞(0, T ;L2)

norm of the vorticity ω is governed by the L1(0, T ;L∞) norm of the vorticity. In

other word, if the solution to (2.16) cannot be continued up to time T , then

∫ T

0

‖ω(·, t)‖L∞dt = ∞. (2.18)

When the kernel K is C2, one can derive an a priori bound for u in L∞

(see [TB04, Lau07]) thereby guaranteeing global existence of an Hs solution.

Moreover, when the kernel has a Lipschitz point at the origin, for example the

Morse potential K(x) = 1− e−|x|, one can have finite time blowup. The proof in

[BCL09] uses the energy (2.8) and provides an apriori lower bound for E while

simultaneously proving an apriori upper bound for the rate of decrease for the

energy E when the data is radially symmetric and smooth. More recently these

results have been extended in [BB10] to the case of solutions with (weaker) initial

data in L1 ∩L∞. With mild decay conditions at infinity and the same conditions

on the kernel K as above, we have local in time well-posedness of the problem

and continuation of solutions. For simplicity we state the result for data with

compact support.

Theorem 2.1.3 (Existence theory for L1 ∩ L∞ data [BB10]). Given compactly

supported initial data u0 ∈ L1(Rn) ∩ L∞(Rn), n ≥ 2, there exists a unique weak

solution u(x, t) of (2.15) and a maximal interval of existence [0, T ∗) such that

either T ∗ = ∞ or limt→T ∗ sup0≤τ≤t ‖u(·, τ)‖Lq = ∞. The result holds for all

q ≥ 2 for n > 2 and q > 2 for n = 2.

Existence of solutions for L1 ∩ L∞ data is proved by constructing first the

characteristics for the weak problem. This approach requires unique solutions to

the characteristic equation, which requires a certain degree of regularity of the

velocity field ~v. Provided u is bounded, it is shown in [BB10] that ~v is Lipschitz
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continuous and moreover div~v is log-Lipschitz continuous (Lipschitz continuous)

in dimension two (three and higher).

Since the mass of the solution is conserved on its interval of existence, another

way to prove finite time blowup is to derive an estimate for the size of the support

of the solution. If an upper bound for the size of the support shrinks to zero in

finite time, this also guarantees that the time interval of existence of the L1∩L∞

solution is less than infinity. The analysis for the ODE case is extended to the

continuum problem in the following theorem.

Proposition 2.1.4 (Frozen-in-time velocity estimate [BCL09]). Assume k′(r)/r

is a monotone decreasing function of r. Consider a non-negative function u :

R
n → R with total mass M , first moment zero and compact support. Consider

any BR(0) containing the support of u. Then, for any x ∈ ∂BR(0) we have

~v(x) · x ≤ −k
′(2R)R

2
M ≤ 0,

where ~v = −∇K ∗ u.

The above proposition is now used to prove the following theorem. This

is a generalization of [BL07, Theorem 6] and [BB10, Theorem 6.2] to the the

case of less singular kernels satisfying (2.10) and the monotonicity conditions in

Proposition 2.1.4. Also, significantly, the radial symmetry of the initial data,

required in the proofs from [BL07, BB10] is no longer necessary.

Theorem 2.1.5 (Finite time blowup for compactly supported solution in L∞

[BB10]). Let u be a weak solution of (2.15) with non-negative compactly supported

initial data in L∞(Rn). Let K satisfy the conditions (2.11) and k′(r)/r monotone

decreasing, k′(r) > 0. Then there exists a maximal time T ∗ < ∞ and a unique

weak solution u to the problem (2.15) on the interval [0, T ∗). Moreover

lim
t→T ∗

sup
0≤τ≤t

‖u(·, τ)‖Lq = ∞ for q ∈ [2,∞] if n > 2 and q ∈ (2,∞] if n = 2.
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Proof. Given the existing continuation theorem, it suffices to prove that the so-

lution ceases to exist in finite time. To do that, we prove a comparison principle

for the support of the solution:

Proposition 2.1.6 (Comparison principle [BCL09]). Let ρ(x, t) be the weak so-

lution in Theorem 2.1.5. Let BR0
(cM) contain the support of the solution at

time zero. Let R̃(t) be the unique solution of the ordinary differential equation

dR/dt = −Mk′(2R)/2. On any time interval of existence of the L1 ∩ L∞(RN)

solution ρ(x, t), the support of ρ must lie inside BR̃(t)(cM).

2.1.4 Global Existence Theory for the Continuum Problem with Os-

good Potential

In this section we review recent results for global existence of solutions in the case

of Osgood potentials satisfying monotonicity conditions. To do this, we obtain

refined estimates on the L∞-norm of div · ~v. We begin by reviewing the C2 case,

which has already been studied in the literature. Along characteristics, we have

∂tρ+ v · ∇ρ = −ρ div(v), and this holds in the integral form [BB10], for the case

of L∞-weak solutions. Thus, by taking the L∞-norm along all characteristics, we

have a bound on the time evolution of ‖ρ‖L∞

d

dt
‖ρ‖L∞ ≤ ‖∆K ∗ ρ‖L∞‖ρ‖L∞. (2.19)

In the case where K is C2, we immediately get that

‖∆K ∗ ρ‖L∞ ≤ ‖∆K‖L∞‖ρ‖L1 ,

which is a priori bounded and thus by Grönwall’s lemma, gives a global bound for

‖ρ‖L∞. Combining this with the existence Theorem 2.1.7 provides the following

result (the a priori bound has been proved in [BL07]):

25



Theorem 2.1.7 (Global-in-time solutions for C2 potentials). Let K be an ad-

missible C2 kernel. Then the time and we have a global in time bound

‖u(·, t)‖L∞ ≤ eCt‖u(·, 0)‖L∞,

where C depends on ‖∆K‖L∞ and the mass of u.

We also obtain the following corollary of the previous section:

Corollary 2.1.8 (Infinite time blow-up for C2 potentials). Let K be an admis-

sible C2 kernel satisfying the the global-in-time weak solution of Theorem 2.1.7

has compact support, then it converges to a Dirac mass at the center of mass cM

as t→ ∞.

We now show that the same result holds for potentials satisfying the weaker

Osgood condition
∫ 1

0

1

k′(r)
dr = ∞.

Theorem 2.1.9 (Global-in time L∞ and infinite time blow-up for Osgood po-

tentials [BCL09]). Assume k′′(r) > 0 and that k′(r)/r monotone decreasing in r.

Then on the interval of existence (0, T ∗)

d

dt
‖ρ‖−1/N

L∞ ≥ −C(N,M) k′
(

M1/N‖ρ‖−1/N
L∞

)

(2.20)

holds. As a consequence, if K satisfies the Osgood condition (2.10) then for any

compactly supported non-negative L∞ solution of the aggregation equation stays

bounded for all time and converges as t → ∞ to a Dirac mass of size M located

at its center of mass cM .

2.1.5 Well-posedness for Other Generalizations

In the previous subsections, only theory with the simplest form of the aggregation

(1.1) is considered. This equation is extended to many situations, notably the
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inclusion of various diffusion effects, either degenerate or fractional. The existence

and uniqueness of the aggregation with degenerate diffusion is considered by

Bertozzi and Slepcev [BS10]; the local and global well-posedness is studied further

by Bedrossian, Rodriguez and Bertozzi [BRB10].

On the other had, the aggregation equation with diffusion

ut = ∆u−∇ · (u∇K ∗ u), x ∈ R
n, t > 0, (2.21a)

u(x, 0) = u0(x), (2.21b)

is considered by Karch and Suzuki [KS10]. This variation of the aggregation

equation includes the parabolic-elliptic Keller-Segel system

ut = ∇ · (∇u− u∇v), x ∈ R
n, t > 0, (2.22a)

0 = ∆v − αv + u, (2.22b)

as a special case in which the kernel K is given by a Bessel potential. Because

of the strong smoothing effect of the diffusion, the regularity theory and the

corresponding blowup/non-blowup results are obtained for much more general

kernels K.

The same equation with fractional diffusion −(−∆)α/2 is considered by Li and

Rodrigo [LR09]; depending on exponent α, the solution can blow in finite time

for α ∈ (0, 1) or exists globally in time for α(1, 2).

2.2 Blowup Results for the Aggregation Equation

In the study of the regularity theory of the aggregation equation, the blowup

phenomena attracted a lot of attentions. It is well-known that smooth solutions

to nonlinear equations can develop singularity in finite time. This singularity can

be the loss of smoothness or the blowup of the magnitude of the solution, as called
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the geometric mechanism or ODE mechanism in [Ali95]. The loss of regularity

or geometric mechanism includes examples from system of conservation laws; the

blowup of the magnitude of the solution or ODE mechanism includes nonlinear

heat equations [QS07], nonlinear Schrödinger equation [SS99].

For the aggregation equation we consider here, the kernel is said to be at-

tractive if k′(r) ≥ 0. Any solutions corresponding to this kind of attractive

kernel collapses, either finite time or infinite time, even though the initial data

is smooth. When the solution is concentrated on a small spatial scale, only the

leading non-constant order of the kernel K is relevant. For this reason, in the

rest of the thesis, only the homogeneous kernel K(x) = |x|γ is considered. This

special kernel is attractive and leads to aggregation only for γ > 0.

For the special case when γ = 2, thanks to the conservation of mass and

center of mass, the original equation becomes linear and the solution is given by

u(x, t) = e2nMtu0(Xe
2Mt). (2.23)

where M is the total mass and the center of mass cM is assumed to be at the

origin. Otherwise, according to the existence results reviewed above, the solutions

blow up in finite time for γ ∈ (0, 2) and at infinite time for γ ∈ (2,∞), . Both

situations are studied in details in the next two chapters. The special caseK(x) =

|x| is studied in details by many authors, both analytically [BB10, Don10] and

numerically [HB10].

2.2.1 Self-similar Solutions for K(x) = |x|

Examples of self-similar solutions for K(x) = |x| are investigated [BB10]. In one

dimension, there exist exact self-similar solutions of the form

u(x, t) =
1

T − t
U

(

x

T − t

)

, (2.24)
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where U is supported on an interval. In higher dimensions, there exist Delta ring

solutions of the form

u(x, t) =

L
∑

i=0

mjδ(r − Ri(t)), (2.25)

in which {Ri(t)} is governed by the system of ODEs

Ṙi(t) = −
L
∑

j=0,j 6=i

mjψ(Ri(t), Rj(t)). (2.26)

Here the function ψ is defined by

ψ(r, ρ) =
1

ωNρN−1

∫

∂B(0,ρ)

∇K(re1 − y) · e1dσ(y)

=
1

ωNρN−1

∫

∂B(0,ρ)

k′(|re1 − y|) re1 − y

|re1 − y|dσ(y). (2.27)

These singular solutions, though exact, are unlikely evolved from smooth initial

data. In fact, it is proved that

Theorem 2.2.1 (Non-existence of similarity solutions [BCL09]). Let n be an odd

space dimension larger than one and K(x) = |x|. Then there does not exist a

non-negative similarity solution in Lp(Rn) for p > 1 whose support contains an

open set.

These self-similarity solutions of the first kind are further classified by Dong [Don10]:

Theorem 2.2.2. Let n ≥ 3 and K(x) = |x|. Then any radially symmetric

first-kind similarity measure-valued solution is of the form

µt(x) =
1

R(t)
µ̂0

(

x

R(t)

)

, (2.28)

where

µ̂0 = m0δ0 +m1δρ1
(2.29)

for some constants m0, m1 ≥ 0 and ρ1.
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Note that the singular measure-valued solutions described in Theorem 2.2.2

are not obtained in dynamic simulation of blowup for smooth initial data. How-

ever, there are related collapsing δ-ring solutions describing infinite time blowup

for γ > 2. We show in Chapter 4 that after appropriate transformation, these

solutions are attractors for smooth initial data.
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CHAPTER 3

Finite-time Blowup: Self-similar Solution of the

Second Kind

When γ ∈ (0, 2), smooth solutions to the aggregation equation

ut = ∇ · (u∇K ∗ u), K(x) = |x|γ (3.1)

blows up in finite time according to the Osgood condition in [BCL09]. In this

chapter, we discuss the details of the structure of the blowup using high resolution

numerical simulations. We show that smooth radially symmetric solutions exhibit

self-similar blowup solutions of the second kind. The nonexistence of smooth self-

similar blowup solutions of the first kind is proved in some special cases, following

by numerical schemes based on the method of characteristics. These anomalous

exponents and their associated profiles in the special case of odd dimensions with

the kernel K(x) = |x| are calculated from an equivalent system of ODEs using

shooting method. The asymptotic behavior when γ close to zero is also studied

in the last section.
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3.1 Self-similar Solutions of the Aggregation Equation

3.1.1 Similarity Analysis

First we introduce the following similarity variables y and τ

y = x(T − t)−β , τ = − ln(T − t), (3.2)

and define a new function U(y, τ) such that

u(x, t) = (T − t)−αU(y, τ), (3.3)

where T is the blowup time, α and β are exponents characterizing the singularity

when the blowup time is approached. We call the blowup dynamics self-similar

if the transformed function U converges to some steady state as t → T−, or

equivalently τ → ∞ for some appropriate constants α and β. When (3.3) is

substituted into the original evolution equation for u, a routine calculation gives

(T − t)−α−1 (∂τU + αU + βy · ∇U)

= (T − t)(n−2)β−2α∇y ·
(

U(y, τ)∇y

∫

Rn

K
(

(y − z)(T − t)β
)

U(z, τ)dz

)

= (T − t)(n+γ−2)β−2α∇y · (U∇yK ∗ U). (3.4)

Given this, then the matching of the exponents of (T − t) in equation (3.4) gives

α = (n+ γ − 2)β + 1 (3.5)

and the equation for U is

∂τU = ∇ · (U∇K ∗ U) − αU − βy · ∇U. (3.6)

32



Any exact self-similar profile U , if it exists, must satisfy the steady equation of

(3.6), i.e.,

∇ · (U∇K ∗ U) − αU − βy · ∇U = 0, (3.7a)

∇U |y=0 = 0, lim
|y|→∞

U(y) = 0, (3.7b)

where U has no explicit dependence on τ . To completely characterize the self-

similar blowup dynamics, we need one extra condition to find the exponent β.

Very often this kind of information can be readily available from a dimensional

analysis or scale invariance of the underlying equation, like the parabolic scaling

β = 1/2 for semilinear heat equation and Nonlinear Schrdinger equation, or

β = 1/(2m) for higher order parabolic equations as those in (1.42). Here, if the

similarity solution concentrates mass in the core of the blowup, then α = nβ

from mass conservation, and consequently β = 1. However, numerical simulation

of the blowup dynamics performed later shows that no mass is concentrated. In

fact, it is proved analytically in [BCL09] that there is no such radially symmetric,

self-similar solution in odd dimension larger than one, that concentrates mass.

Taking α = n, β = 1 in (3.7), we can integrate the equation in radial coordinate

r = |y|,
−nU − rUr =

1

rn−1
∂r[r

n−1U∂r(K ∗ U)].

Multiplying both sides with rn−1 and integrating once again, we get

−rnU = rn−1U∂r(K ∗ U).

Assuming U is nonzero, we divide by yn−1U and integrate up again to get the

final result,

−1

2
r2 + C = K ∗ U. (3.8)

Now we recognize that in odd dimension n larger than one, for the special case

of K = |x|, applying repeated Laplacians to the right hand side of (3.8) gives

33



∆(n−1)K∗U = cnU , whereas the left hand side gives ∆(n−1)(y2+C) = 0. Hence we

do not have a nontrivial exact similarity solution of first kind (conserving mass)

in odd space dimension larger than one. A more rigorous analysis and derivation

of this is discussed in Lagrangian coordinates in [BCL09]. In particular, that

paper considers more general measure-valued similarity solutions due to the fact

that there are easily constructed examples that concentrate mass in finite time

in general space dimension, starting for initial data of the form of a delta-ring

(support of the solution concentrated on the boundary of a sphere). However,

here we consider solutions with U , a bounded function of spatial domain. Thus

it is reasonable to look for similarity solutions of the second kind, for which α

and β satisfy equation (3.5), which comes from the dimensional analysis of the

dynamics, but may violate conservation of mass.

The nonlocal nature of the kernel K ∗U presents a much more difficult prob-

lem, both analytically and numerically, compared to local problems as those from

nonlinear diffusion equations and nonlinear Schrodinger equations. The usual

techniques to tackle the equation for the self-similar profiles, like phase plane

analysis and shooting methods, do not work here. Smooth self-similar blowup

solutions in one dimension are considered by Bodnar and Velazquez [BV06] for

different kernel potentials K. The technique used there is to introduce an auxil-

iary function

ψ(x, t) =

∫ x

−∞

u(z, t)dz. (3.9)

Moreover, for the special kernel K = |x| considered here, the transformation (3.9)

turns the equation (3.1) in one dimension into ψt = ψx(2ψ−c) with c = ψ(∞, t) =
∫∞

−∞
u0(z)dz, which is a constant. Another change of variable φ = c − 2ψ gives

exactly the well-known inviscid Burgers equation φt+φφx = 0. For general initial

condition, the finite time blowup of u is equivalent to the onset of shock of φ,
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with mass concentration and thus α = β = 1 as considered in [BCL09]. However,

for positive, even initial condition ( the analogue for radially symmetric case in

higher dimension), the blowup exhibits a different scaling. Let the self-similar

blowup solution of φ be

φ(x, t) = (T − t)β−αf(x(T − t)−β), (3.10)

Here the exponents are chosen such that u = −φx/2 has the same form as (3.3).

Similarly, we have α = 1 and the equation for the profile

ff ′ + βyf ′ − (β − 1)f = 0. (3.11)

Because of the L∞-contraction of the solutions to Burgers equation, β must be

equal to or greater than one. If β = 1, the only nontrivial solution is f(y) = −y,
corresponding to the previous case. Otherwise if β > 1, we are looking for a

power series expansion of f near the origin, i.e.,

f(y) = a1y + a3y
3 + a5y

5 + · · · (3.12)

The system of equations the coefficients must satisfy is

a2
1 + a1 = 0 O(y)

4a1a3 + (2β + 1)a3 = 0 O(y3)

6a1a5 + 3a2
3 + (4β + 1)a5 = 0 O(y5)

... (3.13)

If a1 = 0, we have the trivial solution f ≡ 0. Therefore a1 must be −1. For

generic odd initial data, a3 is nonzero, giving the exponent β = 3/2 and the

coefficients of higher order terms are determined uniquely by a3. Otherwise, β is

decided from the next first nonvanishing term in the series.
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Actually, we can directly integrate the equation (3.11) to get an implicit

algebraic equation for f . Multiplying both sides of the differential equation (3.11)

by f(y)−(2β−1)/(β−1) and taking the integration once, we get

f(y)−
1

β−1

(

1 +
y

f(y)

)

= c1, (3.14)

for some finite constant c1. Since above equation holds in the limit when y → 0,

f(y) must be −y + o(y) such that 1 + y/f(y) vanishes at the origin. Applying

the condition that the limit exist once more, we can find the next higher order

term of f(y) must be of the form

f(y) = −y + c1(−y)
β

β−1 + o
(

(−y)
β

β−1

)

. (3.15)

Therefore, the exponent β is determined by the second non-vanishing term of the

profile, which is ultimately determined by the initial condition. For generic even

initial condition u0, f(y) is odd and the next non-vanishing term is cubic, giving

β/(β−1) = 3, or β = 3/2. This anomalous exponent is consistent with the lower

bound from numerical simulation in next section.

However, this special trick and these special solutions do not seem to carry

over to higher dimensions. Unlike the nonlinear filtration problem, the exponents

cannot be derived using perturbation [AV95] or renormalization group methods

[GMO90] from known solutions in special cases or for some “unperturbed” prob-

lems. For this reason, high resolution numerical simulations are an important

tool for uncovering the detailed dynamics of the blowup in higher dimensions.

3.1.2 Properties of the Self-similar Profile U

If the self-similar profile U exists, it must satisfy the steady state of (3.6)

AU = ∇ · (U∇K ∗ U) − αU − βy · ∇U = 0, K(x) = |x|γ . (3.16)
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A few properties are immediately available. First there is a family of solutions:

if U is a solution of (3.16), so is Uλ(y) = λn+γ−2U(λy) for any λ > 0. As a result,

all the profiles U shown are normalized by the condition U(0) = 1. Moreove,

this family of solutions gives an eigenpair for the the linearized operator L at U

defined as

LW = ∇ · (U∇K ∗W )∇ · (W∇K ∗ U) − αW − βy · ∇W. (3.17)

Using the invariance of the solution Uλ,

0 =
d

dλ
AUλ

∣

∣

∣

∣

λ=1

= L d

dλ
Uλ

∣

∣

∣

∣

λ=1

= L [(n + γ − 2)U + y · ∇U ] (3.18)

Using this eigenfunction e1(y) = (n + γ − 2)U + y∇U of the zero eigenvalue

of L, the steady state equation (3.16) and the relation (3.5), we can get

L [αU + βy · ∇U ] = L(U) = αU + βy · ∇U, (3.19)

where e2 = αU + βy · ∇U is the eigenfunction. This eigenpair is related to the

time translation of the solution u(x, t) = (T −t)−αU(x(T −t)−β). In other words,

if the time t is translated to t+ ǫ or

T − t− ǫ = (T − t)(1 − ǫeτ ) (3.20)

then

uǫ(x, t) = (T − t− ǫ)−αU(x(T − t− ǫ)−β)

= (T − t)−α(1 − ǫeτ )−αU(x(T − t)−β(1 − ǫeτ )−β)

= u(x, t) + ǫe2(x(T − t)−β(1 − ǫeτ )−β) +O(ǫ2). (3.21)

Even though the eigenvalue associated with v1 is positive, the blowup profile

is stable; any perturbation in this mode results in a translation in the blowup
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time. However, this mode does prevent any direct computation of the profile U

from (3.6); we have to either evolve the solution near the blowup time or compute

the some rescaled solution (the Renormalization Group Method), as shown in the

next section.

Another numerical observed property is the rate of the algegraic decay of the

radially symmetric solution, i.e.

U(y) ∼ |y|−α/β = |y|−(n+γ−2)− 1

β . (3.22)

In other words, the leading order asymptotics of the solution in the far field is

governed by

αU + βy · ∇U (3.23)

in (3.16) and is a direct consequence of spatial and temporal interaction only, but

not the part associated with the nonlocal convection. Another consequence of

this algebraic decay is the existence of an “envelope” of the solution away from

the origin, when the blowup time is approached.

3.2 Numerical Computation of the Blowup Dynamics

3.2.1 The Method of Characteristics in General Dimension

The computation of blowup solutions is usually quite challenging, due to the

small scale of the blowup set, which cannot be resolved quite well by conventional

numerical schemes. One of the most popular schemes is the Moving Mesh Method

[BHR96, BCR05, HMR08], using an equipartition principle to give a separate

equation for the mesh, to concentrate the computation on those regions where

high resolution is desired. Another one is dynamic rescaling used in Nonlinear

Schrodinger Equations ([MPS86] and [FGW05]). However, most of these schemes
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require a knowledge of those exponents characterizing the blowup to capture the

dynamics accurately. Therefore they tend to work more successfully for self-

similar solutions of the first kind.

Here we take advantage of the fact that our problem is a first order conserva-

tion law and thus we can use the method of characteristics to solve two coupled

ODEs, one for the radial position r and the other for the solution u. In radial

coordinates, the original equation can be written as

ut =
∂u

∂r

∂

∂r
K ∗ u+ u∆rK ∗ u, (3.24)

where ∆r = ∂rr + n−1
r
∂r. The system of ODEs along the characteristics is thus

dr

dt
= − ∂

∂r
K ∗ u, du

dt
= u∆rK ∗ u. (3.25)

The method of characteristics is used in many of the analytical arguments to prove

the existence and other important properties of the aggregation equation (1), see

[BV06] and [BB10]. This method provides a natural adaptive grid scheme to

concentrate spatial resolution near the blowup point or set, and was employed to

investigate gravitational collapse by Brenner and Witelski [BW98]. Moreover, for

nonnegative initial data, we have the monotonicity condition ∂
∂r
K ∗u ≥ 0,∆rK ∗

u > 0, i.e., the points always move towards to the origin and the magnitude is

always increasing along the path. Thus our scheme preserves the positivity of

the solution. The numerical results indicate that this simple scheme resolves the

profiles quite well, both near the core and far away from it. If the self-similarity

were of the first kind, then the characteristics would exactly preserve the spatial

resolution going into the blowup. Since it is a second-kind similarity solution with

anomalous scaling (i.e., the characteristics do not scale in time as the similarity

variable) we lose resolution over time, but at a relatively slow rate compared with

the dynamics of blowup.
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The system (3.25) is solved using the conventional fourth order Runge-Kutta

method, with the size of the time step ∆t adapted according to the following two

criteria: (a) The relative increase of the solution at all points is bounded by a

threshold at each time step. (b) The nodes cannot cross each other during each

time step. Finally, we need to compute the convolution of the kernel. We first

give a general formulation for any dimension greater than two and then a special

one in odd dimensions three and higher, to reduce computational effort by one

order of magnitude.

Instead of calculating K ∗u once and taking the numerical derivatives to solve

(3.25), we find ∂
∂r
K ∗ u and ∆rK ∗ u directly by computing the derivatives of the

kernel, i.e.,

∂

∂r
K ∗ u = cnγ

∫ ∞

0

u(r′)r′n−1K1(r, r
′)dθdr′, (3.26a)

∆rK ∗ u = γ(n + γ − 2)cn

∫ ∞

0

u(r′)r′n−1K2(r, r
′)dr′, (3.26b)

where

K1(r, r
′) =

∫ π

0

(r − r′ cos θ)(r2 + r′2 − 2rr′ cos θ)γ/2−1 sinn−2 θ, (3.27a)

K2(r, r
′) =

∫ π

0

(r2 + r′2 − 2rr′ cos θ)γ/2−1 sinn−2 θdθ, (3.27b)

where cn is the volume of the unit sphere in Rn−1. The computation can still be

expensive, because at each point we have to perform a double integration. The

expense can be reduced by observing the homogeneity of the kernel, which gives

the following formulation

(r − r′ cos θ)(r2 + r′2 − 2rr′ cos θ)γ/2−1

=







max(r, r′)γ−1(1 − ρ sin θ)(1 + ρ2 − 2ρ sin θ)γ/2−1, if r′ ≤ r,

max(r, r′)γ−1(ρ− sin θ)(1 + ρ2 − 2ρ sin θ)γ/2−1, if r ≤ r′,
(3.28a)

(r2 + r′2 − 2rr′ cos θ)γ/2−1 = max(r, r′)γ−2(1 + ρ2 − 2ρ sin θ)γ/2−1, (3.28b)
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where ρ = min(r, r′)/max(r, r′). In this way, the integrations of the kernel with

respect to the angular variable have only to be calculated once at the very begin-

ning as functions of ρ ∈ [0, 1], i.e., we only need to perform numerical integrations

once for the auxiliary functions

I1(ρ) =

∫ π

0

(1 − ρ cos θ)(1 + ρ2 − 2ρ sin θ)γ/2−1 sinn−2 θdθ, (3.29a)

I2(ρ) =

∫ π

0

(ρ− cos θ)(1 + ρ2 − 2ρ sin θ)γ/2−1 sinn−2 θdθ, (3.29b)

I3(ρ) =

∫ π

0

(1 + ρ2 − 2ρ sin θ)γ/2−1 sinn−2 θdθ. (3.29c)

The auxiliary variable ρ is chosen such that those integrations are computed

only at discrete points and the interpolations of I1, I2 and I3 are restricted on the

bounded interval [0, 1]. Therefore these functions I1, I2 and I3 can be computed

as accurately as needed without increasing the computation effort during the

time evolution. In this way the total computational expense is reduced to O(N2)

at each time step, where N is number of spatial points used to represent the

solution. These auxiliary functions (Figure 3.1 for γ = 1 and Figure 3.2 for

γ = 0.4 ) are relatively smooth inside the interval [0, 1] for dimension greater or

equal than three, but not at ρ = 1 if γ is small in lower dimensions. It is easy to

see that I3(1) actually becomes divergent as the dimension n less or equal than

two. For these reason, the computations are performed only for n > 2.

3.2.2 Computation Reduction for the Special Kernel K(x) = |x| in

Odd Dimensions

In odd dimension, using the fact that the successive Laplacians of the kernel

K(x) = |x| is proportional to the fundamental solution of the Laplace equation,

we can further reduce the computation to be O(N) per time step. This is exactly

the fact used to prove the nonexistence of mass concentrating self-similar solutions
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Figure 3.1: Auxiliary functions in different spatial dimensions for γ = 1: (a) I1

(upper branch) and I2 (lower branch), (b) I3.
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Figure 3.2: Auxiliary functions in different spatial dimensions for γ = 0.4: (a) I1

(upper branch) and I2 (lower branch), (b) I3. For the smaller γ here, I3(ρ) is not

smooth at ρ = 1 in dimension three, which may introduce numerical artifacts.
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in [BCL09]. First, we start with dimension three to give the basic idea and then

generalize it to any odd dimension greater than three. Let v0 = u, and define v1

and v2 to be the solutions of the following equations

−∆v1 = v0, ∆v2 = 8πv1 in R3, (3.30)

with v1 and v2 decay to zero at infinity. We can just write down the solution via

the method of fundamental solution, i.e.,

v1(x) =

∫

R3

v0(y)

4π|x− y|dy,

v2(x) =

∫

R3

2v1(y)

|x− y|dy =

∫

R3

∫

R3

v0(z)

2π|x− y||y − z|dzdy

=

∫

R3

|x− z|u(z)dz = K ∗ u(x). (3.31)

In the radial symmetric case, we only need to solve

− 1

r2

d

dr

(

r2dv1

dr

)

= v0, − 1

r2

d

dr
(r2v2r) = 8πv1, (3.32)

with the following boundary condition

v1(∞) = 0,
∂v1(0)

∂r
= 0, v2r(0) = 0. (3.33)

Then the right hand sides of the equations in (3.25) are replaced by

∂

∂r
K ∗ u = −v2r, ∆rK ∗ u = 8πv1, (3.34)

with the time scaled by 8π. Note that we only need to find the derivative ∂rv2 of

v2, instead of v2 itself. In actual implementation, the infinity boundary condition

v1(∞) = 0 is transformed to a condition at r = 0, i.e., the value of v1(0),

v1(0) = −
∫ ∞

0

∂v1(r)

∂r
dr =

∫ ∞

0

1

r2

∫ r

0

v0(s)s
2dsdr =

∫ ∞

0

u(r)rdr. (3.35)

This integral is usually truncated on a bounded domain if u is compactly sup-

ported or decays fast enough. In theory, this transformed boundary condition at
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the origin gives the unique zero boundary condition at infinity, while any inap-

propriate choice of v1 at the end of the computational domain (an approximation

to the condition v1(∞) = 0) could give a different effective kernel K, resulting

in some inconsistence in theory and numerics. Once we have the right boundary

condition, we can use an O(N) numerical quadrature scheme to find the solution

of (3.32), i.e.,

v1(r) = v1(0) −
∫ r

0

1

η2

∫ η

0

u(s)s2dsdτ = v1(0) −
∫ r

0

u(s)(s− s2

r
)ds, (3.36a)

v2r(r) =
8π

r2

∫ r

0

v1(s)s
2ds. (3.36b)

In odd dimension greater than three, with n = 2k+ 1, similarly we introduce

v1, v2, · · · , vk+1 such that

−∆v1 = v0, −∆v2 = v1, · · · , −∆vk = vk−1, ∆vk+1 = dkvk in Rn, (3.37)

and finally set in the characteristics ODEs (3.25)

∂

∂r
K ∗ u = −∂vk+1

∂r
, ∆rK ∗ u = dkvk, (3.38)

where v0 = u and

dk = 2k(2k + 1)k!
π

2k+1

2

Γ(k + 1 + 1
2
)
. (3.39)

To transform the boundary condition at infinity to the one at the original, we

need to find the appropriate integration like (3.35) with the aid of fundamental

solution of the Laplace equation, which is given by

N(x) =
1

n(n− 2)ωn|x|n−2
, ωn =

πn/2

Γ(n/2 + 1)
, (3.40)

where ωn is the volume of the unit sphere in Rn. Using the presentation formula

of the solution to the Poisson equation, we have

vi(xi) =

∫

Rn

· · ·
∫

Rn

N(xi−xi−1)N(xi−1−xi−2) · · ·N(x1−x0)u(x0)dx0dx1 · · · dxi−1

(3.41)
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for any 1 ≤ i ≤ k + 1. Translation and rotation invariance of the fundamental

solutions gives the following identity

∫

Rn

· · ·
∫

Rn

N(xi − xi−1)N(xi−1 − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−1 = Ni(xi − x0),

(3.42)

for some radially symmetric function Ni. Moreover, dimensional analysis indi-

cates that Ni is homogeneous of degree 2i− n, i.e.,

Ni(xi − x0) =
ci,n
nωn

|xi − x0|2i−n (3.43)

for some constant ci,n. When i = 1, this is just the fundamental solution, giving

the following initial condition

c1,n =
1

n− 2
. (3.44)

We can find a recursive relation for ci,n by taking the negative Laplacian of Ni

w.r.t xi. Formally, on one hand using equation (3.43),

−∆xi
Ni(xi − x0) =

2(n− 2i)(i− 1)ci,n
nωn

|xi − x0|2(i−1)−N . (3.45)

On the other hand, using the definition of Ni,

−∆xi

∫

Rn

· · ·
∫

Rn

N(xi − xi−1)N(xi−1 − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−1

=

∫

Rn

· · ·
∫

Rn

δ(xi − xi−1)N(xi−1 − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−1

=

∫

Rn

· · ·
∫

Rn

N(xi − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−2

=
ci−1,n

nωn

|xi − x0|2(i−1)−N . (3.46)

Match the coefficients of above two identities, we have the following recursive

formula

ci,n =
1

2(i− 1)(n− 2i)
ci−1,n (3.47)
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and consequently with the initial condition (3.44),

ci,n =
1

2i−1(i− 1)!(n− 2i)!!
, (3.48)

where m!! is the double factorial of m. Finally, we get the boundary condition of

vi at the origin in terms of the integral with u, i.e.,

vi(0) =
ci,n
nωn

∫

Rn

|x0|2i−nu(x0)dx0 =
1

2i−1(i− 1)!(n− 2i)!!

∫ ∞

0

r2i−1u(r)dr.

(3.49)

With these boundary conditions, we can find all the auxiliary functions vis

through a series of O(N) numerical integrations like (3.36) to find the right hand

side the characteristic ODEs (3.25).

3.2.3 Postprocessing of the Numerical Data

Close to the blowup time, U(0, τ) should approach a constant U0, and u(0, t) ≈
(T − t)−αU0. The time derivative ut(0, t) can be approximated by u(0, t) too, i.e.,

ut(0, t) ∼ αU
−1/α
0 u(0, t)1+1/α. (3.50)

On the other hand, from the second characteristic ODE (3.25), ut(0, t) = u(0, t)∆rK∗
u(0, t), we have

ln (∆rK ∗ u(0, t)) = ln(αU
−1/α
0 ) +

1

α
ln u(0, t). (3.51)

Using u(0, t),∆rK∗u(0, t) at each time step, a simple least square fitting gives

the pair of parameters (α, U0), as in Figure 3.3(a). To estimate the exponent β

for spatial spread, we need to introduce a spatial scale. The most natural one is

the half-width of the blowup profile, r1/2(t), the position at which the magnitude

is half of that at the origin, i.e.,

u(r1/2(t), t) = u(0, t)/2. (3.52)
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Figure 3.3: Estimation of α and β in dimension three for γ = 1. The straight

lines in the log-log plots indicate a strong evidence of the self-similar blowup of

the radially symmetric solutions.
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The similarity form of the blowup implies

r1/2(t) ∼ r0(T − t)β (3.53)

for some constant r0. Using r1/2(t) (from interpolation if there is no function

value that is exactly half of the maximum magnitude) and T − t estimated with

parameters obtained above, we can get β, as in Figure 3.3(b). In all the parameter

estimation, only those data that close to blowup time (u(0, t) > 1010) is used and

the profiles should be radially decreasing such that there is one unique r1/2(t).

The simulation is terminated when u(0, t) reaches an upper bound 1050 provided

that the profile near the origin is well resolved, say there are at least one hundred

points nodes on the interval [0, r1/2(t)].

3.2.4 Numerical Renormalization Group Method

Since we are more interested in the exponents characterizing the intermediate

asymptotics of the dynamics than other quantitative details, we can rescale

the solution appropriately to get the the profile. This is the basic principle

underlying Renormalization Group Method, which is employed successfully to

the numerical investigation of nonlinear filtration and porous medium equations

[CG95, BAA00].

We start with the solution u(0)(x, t) = u(x, t), whose solution is known on

the time interval [t00, t
0
1]. Without loss of generality, we let u(0)(0, t00) = 1 and

t01 is determined implicitly by u(0)(0, t01) = M for some predetermined constant

M > 1. For a given guess of the exponent βm, at then end of m−th iteration, we

can renormalize the function as

u(m+1)(x, tm+1
0 ) = M−1u(m)(xM−βm/αm , tm1 ), αm = (n− 1)βm + 1. (3.54)

An equation for βm can be estimated from the spatial-temporal relation of
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the blowup dynamics. Near blow-up time, we have

u(0, t) = (T − t)−αU0, r1/2(t) = (T − t)βr0, (3.55)

where r1/2(t) is the position where u is half of u at the origin, i.e.,

u(r1/2(t), t) =
1

2
u(0, t). (3.56)

Therefore, on one hand we have

d ln u(0, t)

d ln r1/2(t)
=
d lnu(0, t)/dt

d ln r1/2(t)/dt
= −α

β
= 1 − n− 1

β
. (3.57)

On the other hand, using the original evolution equation, we can calculate

the time derivatives explicitly, i.e.,

d lnu(0, t)

d ln r1/2(t)
=
r1/2(t)

u(0, t)

du(0, t)/dt

dr1/2(t)/dt
=
r1/2(t)

u(0, t)

∇ · (u∇K ∗ u)|r=0

dr1/2(t)/dt
. (3.58)

Finally dr1/2(t)/dt can be obtained by taking the time derivative of equation

(3.56)

ur(r1/2(t), t)
dr1/2(t)

dt
+ ut(r1/2(t), t) =

1

2
ut(0, t), (3.59)

or equivalently

dr1/2(t)

dt
=

1
2
∇ · (u∇K ∗ u)|r=0 −∇ · (u∇K ∗ u)|r=r1/2(t)

ur(r1/2(t), t)
. (3.60)

At the end of m−th iteration, the exponent βm is solved by combining (3.57)

and (3.58), i.e.,

1 − n− 1

βm

=
r1/2(t

m
1 )

u(m)(0, tm1 )

Am

Bm

, (3.61)

where

Am = u(m)
r (r1/2(t

m
1 ), tm1 )∇ · (u(m)∇K ∗ u(m))|r=0 (3.62a)

Bm =
1

2
∇ · (u(m)∇K ∗ u(m))|r=0 −∇ · (u(m)∇K ∗ u(m))|r=r1/2(t

m
1

) (3.62b)
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Above relation is preserved under the renormalization transformation (3.54),

in the sense that the constant Am and Bm can be expressed as

Am = u(m+1)
r (r1/2(t

m+1
0 ), tm+1

0 )∇ · (u(m+1)∇K ∗ u(m+1))|r=0, (3.63a)

Bm =
1

2
∇ · (u(m+1)∇K ∗ u(m+1))|r=0 −∇ · (u(m+1)∇K ∗ u(m+1))|r=r1/2(t

m+1

0
),

(3.63b)

Because the renormalized function decays only algebraically even with a com-

pactly supported initial data, the function u(m) is computed on a interval r ∈ [0, L]

and is chosen to be u(L)(L/r)αm/βm for r > L.
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Figure 3.4: The convergence rate of the nuemerical renormalization method in

dimension three for γ = 1. This rate is almost identitical for both M = 2 and

M = 4 but can be slower when M becomes large.

When the larger M is, the longer it takes for one single RG iteration. The

convergence rate of the exponent β for different M is shown in Figure 3.4 in
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dimension three for γ = 1. The number of iterations (called effective number

of iterations in the figure) is rescaled such that the computational expense is

roughly the same for the same number of iterations. Therefore, it is better to use

a smaller M , say M = 2, rather than a larger one.

Since this numerical renormalization method is a fixed point iteration, it is not

necessary convergent for any initial guess. Numerical experiments indicate that

as long as we start with a function decaying fast enough, this iteration always

converges. The convergence of the profile U is shown in Figure 3.5, in dimension

three for γ = 1. The profile is already very close to the final profile after thirty

iterations.

The anomalous exponent β computed using this numerical renormalization

method is compared with that from direct simulation in Figure 3.12. The former

concentrates the computation on the profile and the exponents with a fixed spatial

domain while the latter have to resolve the solution on a large spatial domain and

eventually cannot give a good fit at lower dimension when the kernel becomes

singular. Therefore, the profile and the exponents can be computed with high

accuracy without any formation of singularity. On the other hand, the direct

simulation tells more details about the blowup dynamics, like various norms of

the solution when approaching the blowup time.

For simulation in general dimensions, the auxiliary functions I1, I2 and I3 are

computed on 104 equally-spaced points on the interval [0, 1]. The number of

spatial points is 4000 and the whole simulation takes a few days for one single

dimension on a 3.0 GHz Intel Pentium IV cluster machine compiled with GNU

GCC. For the special formulation in odd dimensions, the number of spatial points

is as large as 2 × 104, and the simulation takes usually a few hours. Initially the

grid points {rj} are placed such that ln(1 + rj) is equally spaced on [0, ln(1 +
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Figure 3.5: The convergence of the numerical renormalization method in dimen-

sion three for γ = 1. After thirty iteration, the profiles can not be distinguished

from each other and are very close to the final profile.
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rN)]. The initial condition is chosen to be Gaussian, even though other smooth,

compactly supported functions (not necessary to be radially decreasing) work well

too and produce computationally identical similarity solutions. The special code

for simulation in odd dimensions gives exponents α and β and other parameters

consistent with code for general dimensions. The main difference is computational

speed. We reiterate that we do not have to perform adaptive mesh refinement

because the characteristics due a good job of following the similarity variables,

although they are not identical.

3.2.5 Numerical Results

Here we use the same U to denote the blowup profile at different times and

its final steady state, and later even the radially symmetric profile, when no

confusion would arise. Moreover, it is easy to check that if U(y) is a solution of

above equation (3.7), so is

Uλ(y) = λn+γ−2U(λy), λ > 0 (3.64)

and we have a family of profiles (see Section 3.1.2 for more discussion). Without

loss of generality, any blowup profile shown below is normalized according to

above scaling such that U(0) = 1.

The overall results show exact self-similar scaling in all dimensions studied.

The normalized profiles (U(0) = 1) obtained from our simulations of the PDE,

in different spatial dimensions, are shown in Figure 3.6-3.8. Near the origin,

the profiles are ordered according to the dimension. Far away from the origin,

due to different algebraic decay rate in different dimensions, these profiles are

ordered. The algebraic tails (appearing as straight lines in the right log-log plot)

will extend to infinity at the blowup time. The profiles for different γ are shown

in Figure 3.9 for dimension three and in Figure 3.10 for dimension seven.
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Figure 3.6: Similarity solution profiles show in the similarity variables U and

r = |y| as defined in (3.2-3.3), in different space dimensions for γ = 0.4, obtained

by numerical integration of the PDE. All profiles are rescaled so that U(0) = 1

according to (3.64).
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r = |y| as defined in (3.2-3.3), in different space dimensions for γ = 1, obtained

by numerical integration of the PDE. All profiles are rescaled so that U(0) = 1
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Figure 3.8: Similarity solution profiles show in the similarity variables U and
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Figure 3.10: Similarity solution profiles show in the similarity variables U and

r = |y|, in dimension seven for different γ.
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Once we have the profiles, we can numerically check the validity of equation

(3.7), which is shown in Figure 3.11 for dimension three. We observe that the

part αU + βy · ∇U coming from the spatial-temporal scaling converges faster to

a limit than the part associated with the kernel ∇ · (U∇K ∗ U).
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Figure 3.11: Comparison of the two contributions ∇ · (U∇K ∗ U)(kernel) and

αU + βy · ∇U(scaling) in equation (3.7) for different u(0, t) in dimension three.

The term αU + βy · ∇U (dash-dots) at smaller value of u(0, t) is almost indistin-

guishable from both terms at larger value of u(0, t).

The exponents α and β for γ = 1 are shown in Figure 3.12, by both post-

processing of the data from the blowup dynamics and numerical renormalization

group method. For radially symmetric solutions considered here, the computa-

tion can be extended to fractional dimension, giving more insight into the depen-

dence of the parameters on the spatial dimension. In particular, the parameter

β appears to increase with dimension.

The exponents β for different γ in different dimensions are shown in Fig-

ure 3.13. The dependence of β is much stronger on the exponent β than on the
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Figure 3.12: The exponents β and α characterizing the blowup in different spatial

dimensions. The relation (3.5) is perfectly satisfied in the direct simulation while

it is used exactly in the numerical renormalization.
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This exponent has a weak dependence on the dimension n but a strong depen-

dence on γ. We can clear see the asymptotic value of β to one when γ goes to

zero.

dimension n; the increase of β for different dimensions is almost indistinguishable.

From this figure, we can easily tell the asymptotic behaviors of β: when γ goes

to zero, β goes to one; when γ goes to two, β goes to infinity. This observation

motivates the perturbation expansion studied in later section.

We can have a closer look at the detailed blowup scenario in Figure 3.14 and

3.15 for the rescaled profile U and the original function u. Even though the

results are presented only in dimension three and for γ = 1, it is generic in all

dimensions for any γ. In Figure 3.14, the rescaled profiles U(r, τ) converges to the

steady state quickly near the origin and the dynamics just adjusts the algebraic

decay of the tails. In Figure 3.15, the original variable u is plotted at different

62



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

r

U
(r

)

 

 

u(0,t)=1.23e+05
u(0,t)=1.22e+14
u(0,t)=1.54e+26
u(0,t)=1.56e+38
u(0,t)=1.95e+47

10
−10

10
0

10
10

10
20

10
−80

10
−70

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

(b)

r

U
(r

)

u(0,t)=1.23e5

u(0,t)=1.22e14

u(0,t)=1.54e26

u(0,t)=1.95e47

u(0,t)=1.56e38

Figure 3.14: The convergence of the normalized profiles in dimension three. (a)

Near the origin, all the profiles are indistinguishable. (b) Far away from the

origin, the blowup dynamics adjusts the algebraic decay of the tail.
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Figure 3.15: The convergence of the original function u in dimension three. (a)

Away from the blowup point, the solution barely changes because the blowup

happens in such a short time scale. (b) Close to the blowup point, the solution

fills an envelope which becomes infinity at the origin.
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stage during the blowup. Since the blowup takes place in such a short time,

away form the core u barely changes. Near the blowup point, the solution fills

an envelope when approaching the blowup time. Moreover, the algebraic decay

of u and U are intimately related through the self-similar relation (3.3). In fact

any fixed |x| > 0, u(x, t) = (T − t)−αU(x(T − t)−β, τ) approaches a constant

as t → T−. This gives the rate of algebraic decay for the steady profile U ,

U(y) ∼ |y|−α/β = |y|−(n−1+1/β), making the part αU + βy · ∇U in the equation

(3.7) vanish at leading order.

3.3 Exponents in Odd Dimension by Shooting Methods

3.3.1 Equivalent System and Shooting Methods

In radially symmetric coordinates, the steady equation (3.7) for the profile be-

comes

∇ · (U∇K ∗ U) = αU + βr
∂U

∂r
, K(x) = |x| (3.65)

with α = (n− 1)β + 1 = 2Nβ + 1.

We introduce additional variables U0(= U), U1, · · · , UN+1 such that

− 1

r2N

d

dr

(

r2N dU
i+1

dr

)

= Ui, i = 0, 1, · · · , N − 1, (3.66a)

1

r2N

d

dr

(

r2N dU
N+1

dr

)

= kNUN , (3.66b)

where kN is a normalization constant defined to be

kN = 2N(2N + 1)N !
π

2N+1

2

Γ(N + 1 + 1
2
)

=
2(4π)NN !

(2N − 1)!!
,

such that UN+1 = K ∗ U0. Under this transformation, the steay equation (3.65)
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can be written as

kNUNU0 +
dUN+1

dr

dU0

dr
= (2Nβ + 1)U0 + βr

dU0

dr
. (3.66c)

To put this system in a more convenient scaled form, we use the change of

variables:

ζ =
r

[(β − 1)/kN ]1/(2N)
, (3.67a)



























Ui(r) = [(β − 1)/kN ]i/NVi(ζ), i = 0, 1, · · · , N − 1

UN (r) = 2N+1
kN

+ β−1
kN
VN(ζ),

UN+1(r) = 1
2
η2 + (β − 1)

[

β−1
kN

]1/N

VN+1(ζ),

(3.67b)

yielding the final scaled (β and kN independent) equations for the V’s

VNV0 +
dVN+1

dζ

dV0

dζ
= 2NV0 + ζ

dV0

dζ
, (3.68a)

− 1

ζ2N

d

dζ

(

ζ2N dVi+1

dζ

)

= Vi, i = 0, 1, · · · , N − 1 (3.68b)

1

ζ2N

d

dζ

(

ζ2N dVN+1

dζ

)

= VN . (3.68c)

The zero boundary conditions for Ui,i = 1, 2, · · · , N is now transformed to

V0(∞) = V1(∞) = · · · = VN−1(∞) = 0, VN(∞) = −2N + 1

β − 1
. (3.69)

With the right initial condition at ζ = 0, we can recover the anomalous exponent

β from the far field behavior of VN .

This problem can be re-written as a system of first order equations in terms

of variables

i = 0, 1, 2, · · · , N,











z2i(ζ) = Vi(ζ),

z2i+1(ζ) = V ′
i (ζ),

(3.70)
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or
dz0
dζ

= −
(

2N − z2N

ζ − z2N+1

)

z0, (3.71a)

i = 1, 2, , · · · , N,



















dz2i−1

dζ
= −z2i−2 −

2N

ζ
z2i−1,

dz2i

dζ
= z2i−1,

(3.71b)
dz2N+1

dζ
= z2N − 2N

ζ
z2N+1. (3.71c)

3.3.2 Shooting Method

Since the system (3.71) has a regular singular point at the origin, the system

(3.71) is solved with any ODE solver starting at small r = r0(> 0) with the

initial condition at r0 given by a convergent power series for zi. For r near the

original, we assume the following series expansion for z0,

z0(ζ) =
∞
∑

k=0

u2kζ
2k. (3.72)

Only the even order terms survive due to the radial symmetry and all odds terms

vanishes identically. Integrating the system (3.71) with the initial condition (or

the shooting parameters), we have for i = 1,2,· · · ,N,

z2i−1(ζ) = (2N − 1)!!

i−1
∑

j=1

(−1)j 1

2j−1(j − 1)!(2N + 2j − 1)!!
si−jζ

2j−1

+
(−1)i

2i−1

∞
∑

k=0

k!(2k + 2N − 1)!!

(k + i− 1)!(2k + 2N + 2i− 1)!!
u2kζ

2k+2i−1,

z2i(ζ) = (2N − 1)!!

i−1
∑

j=0

(−1)j 1

2jj!(2N + 2j − 1)!!
si−jζ

2j

+
(−1)i

2i

∞
∑

k=0

k!(2k + 2N − 1)!!

(k + i)!(2k + 2N + 2i− 1)!!
u2kζ

2k+2i,
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z2N+1(ζ) = kN(2N − 1)!!

N−1
∑

j=0

(−1)j 1

2jj!(2N + 2j + 1)!!
sN−jζ

2j+1

+
(−1)NkN

2N

∞
∑

k=0

k!(2k + 2N − 1)!!u2k

(k +N)!(2k + 4N + 1)!!
ζ2k+2N+1.

Substituting the expression z0, z2N , z2N+1 into the first equation in (3.71), we

have

kN

[

(2N − 1)!!
N−1
∑

j=0

(−1)j 1

2jj!(2N + 2j − 1)!!
sN−jζ

2j

+
(−1)N

2N

∞
∑

k=0

k!(2k + 2N − 1)!!u2k

(k +N)!(2k + 4N − 1)!!
r2k+2N

]

∞
∑

k=0

u2kζ
2k

+ kN

[

(2N − 1)!!

N−1
∑

j=0

(−1)j 1

2jj!(2N + 2j + 1)!!
sN−jζ

2j

+
(−1)N

2N

∞
∑

k=0

k!(2k + 2N − 1)!!u2k

(k +N)!(2k + 4N + 1)!!
ζ2k+2N

]

∞
∑

k=0

2ku2kr
2k

=

∞
∑

k=0

(2N + 2k)u2kζ
2k. (3.73)

This gives the following recursive relations for the coefficients u2k,

u2j =
kN(2N + 1)!!(2N + 2j + 1)

2j

j
∑

l=1

(−1)l 1

2ll!(2N + 2l + 1)!!
u2j−2lsN−l

for j = 1, · · · , N − 1 and

u2N+2k =
(−1)NkN(4N + 2k + 1)(2N + 1)

2N+1(N + k)

k
∑

l=0

l!(2N + 2l − 1)!!

(N + l)!(4N + 2l + 1)!!
u2lu2k−2l

+
kN(2N + 1)!!(4N + 2k + 1)

2(N + k)

N−1
∑

j=1

(−1)jsN−j

2jj!(2N + 2j + 1)!!
u2N+2k−2j

for any interger k ≥ 0.

The coefficients a2k converges geometrically, and the correspoding power seiers

has a finite radius of convergence (approximated 0.87 in dimension three). For
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small r0, for a fixed shooting parameter ss, the initial condition zi(r0) can be

obtained with just a few terms in the expansion.

3.3.3 Numerical Results

For each shooting parameter s = (s1, · · · , sN−1) = (z2(0), · · · , z2N−2(0)), we

can find a direction δs = (δs1, δs2, · · · , δsN−1) to make the far field condition

z̃(L) = (z2(L), z4(L), · · · , z2N−4(L)) as close to zero as possible for L large

enough. Assuming a weak dependence on z1, then the variation of z̃ can be

written as

δz2i(L) = (2N − 1)!!

i−1
∑

j=0

(−1)j

2jj!(2N + 2j − 1)!!
L2jδsi−j, i = 1, 2, · · · , N − 1,

(3.74)

from which the variation δs can be solved in terms of δz2i.

Once the variation δs is found, a fixed point iterative scheme can be con-

structed as

sm+1 = sm − ωδsm. (3.75)

Here ω(< 1) is a positive relaxation parameter to stablize the iteration.

Because of the sensitive dependence of u2N(L) on the shooting parameters,

the anomalous exponent β is recovered not by the last equatio in (3.69) but with

the following equivalent but much more stable relation

2Nβ + 1

β − 1
= z2N(0) − z2N (∞) =

1

(N − 1)!

∫ ∞

0

ζ2Nz0(ζ)dζ, (3.76)

from successive integration of the system (3.71).
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3.3.3.1 Dimension Three (N = 1)

Dimension three is special in the sense that there is no need for any shooting

parameter. The anomalous exponent β is obtained from the solution of the

sytem (3.71) via either (3.69) or (3.76), where the accuracy depends on the size

of the interval [0, L] we solve it. This is also compared with those by either

direct similation of the blowup dynamic followed by data fitting or numerical

renormalization group calculation performed in [HB10]. The computation time

is at most a few seconds for the ODE system while at least a few hours for

numerical RG.

L β(n = 3) β(n = 5) β(n = 7) β(n = 9)

shooting method 102 1.580957 1.593860 1.574476 1.602537

shooting method 103 1.582976 1.598702 1.596328 1.607854

shooting method 104 1.583092 1.602900 N/A N/A

numerical RG 400 1.582889 1.599152 1.604324 1.629743

Direct Computation N/A 1.582226 1.598044 1.606732 1.623508

Table 3.1: Comparison of the computed anomalous exponents β from different

methods in dimension three and higher.

3.3.3.2 Higher Dimension (N ≥ 2)

Since the solution to the system (3.71) is not defined on the whole non-negative

interval for certain shooting parameters when the denominator of the right hand

side of the first equation in (3.71) changes sign and the assumption of weak

dependence of z2is i ≥ 1 on z1 is not valid, the variation (3.74) is true only on

part of the parameter space. This is is shown in Figure 3.3.3.1. The solution

ceases to exist for s on the upper right region and the gradient field does not
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Figure 3.16: The gradient field and sample trajectories in dimension seven

lead us to the unique fixed point on the bottom region. However, once the initial

guess s0 is in the basin of attraction, it alway converges to the unique fixed point.

Numerical experiments indicate that the initial guess can be chosen as alternative

large positive numbers and zeros from higer indices, i.e.

s0
N−1 = C, s0

N−2 = 0, s0
N−3 = C, · · · where C is positive and large. (3.77)

The choice of C = 2 works for any test cases up to dimension fifteen. The

numerical results are presented in Table (3.3.3.1), compared with those obtained

from much slower computation of the full partial different equation.

3.4 The Case When ǫ = γ → 0

In general, the exponent β in the second-kind self-similar solution is governed

by a nonlinear eigenvalue problem [AV95]. For the special case of K(x) = |x|
in odd dimension, the exponents are calculated by transforming the steady state
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equation (3.7) into a system of ODEs, followed a shooting method to match the

boundary conditions of these two. Despite the difficulty of find it, the exponent

β has a asymptotic limit when γ approaches zero and two. This is the subject of

this and the next subsection.

When ǫ = γ → 0, we first rescale the solution Uǫ to Wǫ(x) = Uǫ(ǫ
1/(n+ǫ−2)x),

since it is Wǫ instead of Uǫ that has a well-defined limit when ǫ→ 0. The equation

for Wǫ is the same as Uǫ except with the rescaled kernel K̃ǫ(x) = |x|ǫ/ǫ, that is

∇ · (Wǫ∇K̃ǫ ∗Wǫ) = αǫWǫ + βǫr
∂Wǫ

∂r
. (3.78)

The numerical results in Figure 3.13 suggests the following asymptotic expan-

sion

βǫ = 1 + C1ǫ+ C2ǫ
2 + · · · , (3.79a)

αǫ = (n− 2 + ǫ)βǫ + 1 = n− 1 + ((n− 2)C1 + 1)ǫ+ · · · (3.79b)

and

Wǫ = W 1+ǫV1+ǫ2V2+···
0 = W0 + ǫV1W0 lnW0 + · · · . (3.80)

The leading order equation in (3.78) is

∇ · (W0∇ ln |x| ∗W0) = (n− 1)W0 + r
∂W0

∂r
, (3.81)

with the boundary conditions

W0(0) = 1,
∂W0(0)

∂r
= 0, W0(r) ∼ O(r1−n) as r → ∞. (3.82)

Define the linearized operator L0 for at W0 as

L0(V ) = ∇ · (V∇ ln |x| ∗W0) +∇ · (W0∇ ln |x| ∗ V )− (n− 1)V − x · ∇V. (3.83)
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Similarly by the invariance of the family of solutions W0λ(y) = λn−2W0(λy) we

have

L0 [(n− 2)W0 + y · ∇W0] = 0. (3.84)

The O(ǫ) in equation (3.78) is

L0(V1W0 lnW0) = ((n− 2)C1 + 1)W0 + C1x · ∇W0 −∇ ·
[

W0

(

x

|x|2 ln |x|
)

∗W0

]

= C1L(W0) − C1W0 −∇ ·
[

W0

(

x

|x|2 ln |x|
)

∗W0

]

. (3.85)

Compared to (3.7) in general situations, there is no unknown parameters any

more, even though it is still nonlinear and nonlocal.

Let L∗
0 be the formal adjoint of L0, defined as

L∗
0(V ) = −∇V ·∇ ln |x|∗W0+∇x

∫

ln |x−y|W0(y)∇V (y)dy−(n−1)V +∇·(xV ).

Since L0 has an one-dimensional null space, so does L∗
0, spanned by some function

W ∗. The solvability condition for (3.85) is then obtained by mulitiplying both

sides of it and integrating on the whole space, i.e.

0 =

∫

W ∗

(

C1L(W0) − C1W0 −∇ ·
[

W0

(

x

|x|2 ln |x|
)

∗W0

])

dx

= −C1

∫

W ∗W0dx−
∫

W ∗∇ ·
[

W0

(

x

|x|2 ln |x|
)

∗W0

]

dx (3.86)

or

C1 = − 1
∫

W ∗W0dx

∫

W ∗∇ ·
[

W0

(

x

|x|2 ln |x|
)

∗W0

]

dx. (3.87)

Compared to the equation of the profile in general cases, (3.81) does not have

any unknown parameters. However, there is no easy way to solve this nonlinear,

nonlocal integral-differential equation. By a smoothing method similar to the last

section, we can solve it in even dimensions for the special kernel γ = 1. In figure

3.12, the first order correction and the numerically computed β are compared.
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Figure 3.17: The comparison of the first order correction and the numerically

computed β.
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CHAPTER 4

Infinite Time Blowup: Convergence of the

Delta-rings

When γ ∈ (2,∞), smooth solutions to the aggregation equation

ut = ∇ · (u∇K ∗ u), K(x) = |x|γ (4.1)

blows up only at infinite time according to the Osgood condition in [BCL09]. In

this chapter, after applying a similarity transform, we show various properties of

the transformed equation. For general initial condition, we show that the solution

converges to some limit; for smooth, radially symmetric initial data, we show that

the limit is a Dirac δ-ring and the detailed convergence to the this ring.

4.1 Similarity Transform

The intermediate asymptotics can be obtained with the introduction the following

self-similar variables,

y = xtα, τ = ln t, U = t−αu (4.2)

or u(x, t) = tαU(xtβ , τ). The new function U satisfies the equation

Uτ = ∇ · [U(∇ ·K ∗ U − βy)] , (4.3)

provided that

α =
n

γ − 2
, β =

1

γ − 2
. (4.4)
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These exponents α and β are determined uniquely by the matching condition for

the power of t in the equation and the conservation of the mass for U , while this

is not true for the finite-time self-similar blowup solutions considered in the next

section when γ < 2.

4.2 Convergence in the Similarity Variables

The long time behavior of the solution U is intimately related to the associated

Lyapunov function, or the energy

E(U) =
1

2

∫

Rn

∫

Rn

K(x− y)U(x)U(y)dxdy − β

2

∫

Rn

|x|2U(x)dx. (4.5)

In fact, the solution U can be regarded as a gradient flow of this energy in the

space of probability measure [Vil03, AGS08] of the form

∂U

∂τ
= −div

[

U

(

δE

δU

)]

(4.6)

and
d

dτ
E(U) = −

∫

Rn

U(x)|∇K ∗ U(x) − βx|2dx ≤ 0. (4.7)

To include the limiting solutions U , possibly Dirac-delta functions in the

solution space, we consider the measure solution in the spaces

M =

{

µ is a nonnegative Radon measure on R
n, µ(Rn) = M,

∫

Rn

xdµ = 0

}

,

(4.8)

Pγ(R
n) =

{

µ ∈ M :

∫

Rn

|x|γdµ <∞
}

. (4.9)

By abuse of notation, we write U(x)dx instead of dµ in the following. For any

initial condition U(·, 0) ∈ Pγ(R
n) , we can show that the γ−th order and thus
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second order moments are bounded uniformly at τ → ∞. In fact,

∫

|x|2U(x)dx =
1

2M

∫

(|x|2 + |y|2 − 2x · y)U(x)U(y)dxdy

=
1

2M

∫ ∫

|x− y|2U(x)U(y)dxdy. (4.10)

Using the Hölder’s inequality

∫ ∫

|x−y|2U(x)U(y)dxdy ≤
(
∫ ∫

|x− y|γU(x)U(y)dxdy

)2/γ

M2−4/γ , (4.11)

we have

E(U) ≥ 1

2

(∫ ∫

|x− y|2U(x)U(y)dxdy

)γ/2

M2−γ

− β

4M

∫ ∫

|x− y|2U(x)U(y)dxdy. (4.12)

Since γ > 2, E(U) is bounded below on Pγ(R
n). Consequently, the boundness of

the second order moments and the γ−th order moments implies the tightness of

the sequence of solutions U(τ) in Pγ(R
n). The weak compactness of the solutions

U(τ) garantees the existence of limits U∞ along some subsequence, proving the

following theorem.

Theorem 4.2.1. The solution U(t) has a limit along some subsequence when t

goes to infinity.

Since E(U) is bounded below, from the dissipation inequality (4.7), these

limiting measures U∞ satisfy the condition

∫

U∞(y)|∇K ∗ U∞ − βy|2dy = 0. (4.13)

In another word, U∞ is concentrated on the set ∇K ∗ U∞ − βy vanishes. In the

community of granular flow, for a given U∞, the correspoding self-similar solution

u(x, t) = tαU∞(xtβ) is called homogeneous colling states [CV02], expected to
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Figure 4.1: The solution u at different times
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Figure 4.2: The solution U at different times
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play the same role as the Maxwellian distribution for the Boltzmann equation in

rarified gas dynamics.

However, because the energy E(U) is not convex, the limits U∞ above can be

local minimizers or unstable equilibrium points. In general, the convergence of the

solution to the limit U∞ is so weak, there is no more information rather than the

equality (4.13) characterizing it. This weak characterization can also be implied

by the large family of solution. In dimension two, if L identical particles with

total unit mass distributed uniformly on a circle of radius r, then the equilibrium

condition (4.13) implies that

βrL =
γ

L

L−1
∑

j=1

∣

∣1 − e2πji/L
∣

∣

γ−2
rγ−1
L (1 − e2πji/L) (4.14)

where i =
√
−1, the unit imaginary number. Then the equilibrium radius can be

solved as

rL =





L

γ(γ − 2)
∑L−1

j=1

(

1 − cos 2πj
L

) (

2 − 2 cos 2πj
L

)(γ−2)/2





1/(γ−2)

. (4.15)

When the number of particles L goes to infinite, the radius rL converges to the

one for the δ-ring discussed in the next section, i.e.

r∞ =

(

γ(γ − 2)

∫ 1

0

(1 − cos 2πθ)(2 − 2 cos θ)(γ−2)/2

)−1/(γ−2)

. (4.16)

Similarly it is easy to construct these saddle point solutions in higher dimen-

sion with particles distribution on the sphere with certain symmetry.

To get more qualitative properties, we consider only radially symmetric solu-

tions in the rest of this section. Let

V (r) =
d

dr
K ∗ U∞ − βr, (4.17)
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since U∞ is a nonnegative measure, d3

dr3V (r) > 0 on [0,∞) and d2

dr2V (0) = 0,

d
dr
V (r) has at more one zero r0 on (0,∞). In another word, by condition (4.13),

U∞ can only be be supported at the origin and r0. If the fraction of mass con-

centrated at the origin is λ and the rest on the sphere of radius r0,λ is 1 − λ,

or

U∞,λ(x) = λMδ(x) +
(1 − λ)M

nωnr
n−1
0,λ

δ(|x| − r0,λ) (4.18)

then r0,λ con be solved from the equation V ′(r0,λ) = 0, giving the explicit value

for the radius of mass concentrating sphere,

r0,λ =

(

1

γM

β

2λ+ (1 − λ)2γ−2B(n+γ−2
2

, n−1
2

)/B(n−1
2
, n−1

2
)

)1/(γ−2)

. (4.19)

where B is the Beta function.

We note that the limiting measure for λ > 0 is not stable: the amount of

mass λM concentrated at the origin is exactly that from the initial condition; any

perturbation of mass from the origin will concentrate to the sphere with positive

radius instead of at the origin. In fact, the measure with λ = 0 corresponds to

the global minimizer of the energy (4.5) while the one with λ 6= 0 is only a saddle

point of the energy. For generic initial data without any concentration of mass

at the origin, the solution U converges to the global minimizer U∞,0. Therefore,

we consider the asymptotic behavior of U for this case and the generalization of

it to the case λ > 0 requires only minor modification.

4.3 Asymptotic Convergence to the δ-Ring

For smooth initial data U0(y) = U(y, 0) decaying fast enough, the solution to

(4.3) stays smooth, though converging to a δ−ring. This brings the question of

the intermediate asymptotics of U when τ is large. The key observation is that
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Figure 4.3: The characteristic velocity dr/dτ
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Figure 4.4: The rate of change of U
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K ∗ U and its first and second derivatives change on a much slower scale than

U itself, as shown in Figure 4.3 and 4.4, and the leading order asymptotics is

governed by linear first order equation

Uτ = ∇ · [∇K ∗ U∞ − βy] (4.20)

or the system of ODEs for the characteristic variables r and U

dr

dτ
= βr − Mγ

∫ π

0
sinn−2 θdθ

∫ π

0

(r − r0 cos θ)(r2 + r2
0 − 2rr0 cos θ)γ/2−1 sinn−2 θdθ,

dU

dτ
=

Mγ(n + γ − 2)U
∫ π

0
sinn−2 θdθ

∫ π

0

(r2 + r2
0 − 2rr0 cos θ)γ/2−1 sinn−2 θdθ − nβ. (4.21)

For r < r0, above characteristic equations can be approximated as

dr

dτ
≈ A0r,

dU

dτ
≈ (−B0 + C0r

2)U (4.22)

where

A0 = β

(

1 − γ − 1

2γ−1

B(n−1
2
, n−1

2
)

B(n+γ−1
2

, n−1
2

)

)

, (4.23)

B0 = β

(

n− n+ γ − 2

2γ−2

B(n−1
2
, n−1

2
)

B(n+γ−1
2

, n−1
2

)
−
)

, (4.24)

C0 = β

(

1 − γ − 2

2γ−2

B(n−1
2
, n−1

2
)

B(n+γ−1
2

, n−1
2

)
−
)

, (4.25)

(4.26)

leading to asymptotics form of the solution

U(r, τ) ∼ U0(s)e
−B0τ+

C0
3

r2 ∼ e−B0τ+
C0
3

r2

(4.27)

This implies that the decay of the solution at the origin is e−B0τ , comfirmed

numerically in Figure 4.6 and the increase of the solution near the origin is

U(r, τ) ∼ U(0, τ)eC0r2/3,
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comfirmed numerically in Figure 4.7.

For r exponentially close to r0, the characteristic equations can be approxi-

mated as
dr

dτ
≈ −A1(r − r0),

dU

dτ
≈ B1 − C1(r − r0) (4.28)

leading to the asymptotic form

U(r, τ) ∼ eB1τ+C1eA1τ (r−r0)/A1 . (4.29)

In general, we can only get the order of magnitude as above (4.27) and (4.29),

while the prefactor depends on the initial condition U0 and the transit behavior

when K ∗ U is replaced by K ∗ U∞.
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Figure 4.5: The asymptotic form approaching the ring profile
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CHAPTER 5

Conclusion and Future Works

This thesis focuses on the radially symmetric solutions with smooth initial data

for the aggregation equation in its simplest form and with the special homoge-

neous power-law kernel K(x) = |x|γ . When γ ∈ (0, 2), the self-similar solutions

are of the second kind and we have to rely on high resolution numerics to find the

blowup profiles and the anomalous exponents. When γ ∈ (2,∞), the asymptotic

behaviors of the solutions can be obtained by a similarity transform. All these

results can be extended in various general settings.

Even though it is unlikely to find exact self-similar solutions and other quan-

titative information for the non-radially symmetry problem, it is interesting to

know the stability of the solutions under perturbation. When γ ∈ (2,∞), be-

cause of the existence of the Lyapunov function, all smooth perturbations do not

change the final limit. In contrast, when γ ∈ (0, 2), there is not much known

and numerical renormalization study, similar to those done for porous medium

equation in [BAA00] can be prolific.

In this thesis, we consider only the blowup of solutions with smooth initial

data. The solutions cease to exist as smooth functions or Sobolev functions in

Lp(Rn). However, these solutions can be continued in more general sense, as

measured-valued solutions [CDF10]. Right after the blowup time, the solutions

can be written as the combination of a smooth part and a singular part. It is

interesting to know the interaction of these two parts.

85



The aggregation equation we considered here is in its simplest form. There

are many variants of it, notably with diffusion, either degenerate or diffusion.

Unusually, because of the presence of diffusion effects, the solutions are less likely

to blowup and possibly converges to smooth steady solutions. Because of the

extra length scale associated with diffusion, the self-similar solutions, if they

exists, are more likely to be of the first kind. It is also interesting to know the

detailed behavior of the transition of these similarity solutions of the first kind

to those of the second kind, when the diffusion vanishes.
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