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Abstract. We propose a Hamilton-Jacobi equation approach for computing time-
optimal trajectories of a vehicle which travel under curvature constraints. We de-
rive a class of Hamilton-Jacobi equations which models such motions; it unifies two
well-known vehicular models, the Dubins’ and Reeds-Shepp’s cars, and gives further
generalizations. We prove that the value function of the control problem solves the
Hamilton-Jacobi equation in the viscosity sense. Numerical schemes and results that
illustrate the versatility of the Hamilton-Jacobi approach are presented for the two
dimensional case.

1. Introduction

We present a Hamilton-Jacobi formulation that models the time optimal motion of
a particle that traces paths with an upper bound on curvature. The problem arises in
describing the motion of a simple car, illustrated in Figure 1. It can be shown that a
simple car with axes that are L length apart traces a path with a curvature bounded
from above by κmax = (tanφmax)/L, where φmax the maximum angle that the (front)
wheels can tilt. Equivalently, the simple car has a minimum turning radius ρ = 1/κmax.
There are two well-known prototypical models of a simple car. The first is the Dubins’

Figure 1. A simple car.

car [Dub57], a forward-moving (irreversible) car on a plane traveling at unit speed with
a prescribed minimum turning radius. The second is the Reeds-Shepp’s car [RS90], a
reversible version of Dubins’ car. At time t > 0, if we write x(t), y(t) to be the spatial
coordinates in two dimensions representing the position of the car and θ(t) to be the
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direction of motion, the dynamical system that models the Dubins’ and Reeds-Shepp’s
cars is

(1)

ẋ(t) = σ(t) cos θ(t)

ẏ(t) = σ(t) sin θ(t)∣∣∣θ̇(t)∣∣∣ ≤ 1
ρ
.

Here, ρ > 0 is the (minimum) turning radius of the vehicle and the control σ(·) determines
whether to move forward or backward. If σ(t) ≡ 1, Dubins’ car is obtained, and if
σ(t) ∈ {±1}, we have the Reeds-Shepp’s car. This can be further generalized to allow for
different, spatially variable forward and reverse speeds and turing radii. Generalization
could be made to higher dimensions, for instance, the problem of modeling an aircraft in
three dimensional space (a Dubins’ plane [CL07], also see Example 5 below). Throughout
this article, we shall refer to the motion of such vehicles as curvature constrained motion.

In this article, we describe a Hamilton-Jacobi formulation that unifies a wide range of
problems of curvature constrained motion in an Eulerian framework. This formulation
computes the value function (see (9) below) by solving a first order partial differential
equation, called a Hamilton-Jacobi equation, and naturally handles the aforementioned
generalizations. There are several advantages to this approach. First, the value func-
tion sought is versatile in that it contains all relevant information pertaining to a path
planning problem, such as minimum arrival times (cost-to-go), reachable sets (see Defi-
nition 24) and optimal paths. Second, the theory of weak solutions to Hamilton-Jacobi
equations known as viscosity solutions is well understood [CL83, BCD97], see also sec-
tion 3. Finally, convergent and efficient numerical schemes can be exploited from the
well-developed numerical theory for Hamilton-Jacobi equations. These schemes are easy
to implement, can be solved on uniform cartesian grids, and can handle obstacles with
arbitrary geometries with ease.

The article is organized as follows. We close the introduction by mentioning other works
concerning curvature constrained motion and Hamilton-Jacobi equations. In section 2 we
formally derive the Hamilton-Jacobi equation for curvature constrained motion in two and
three dimensions, and present the equations for some well known models. A recurring
theme in this article is the striking difference between Dubins’ and Reeds-Shepp’s car;
the value function for the former is continuous and the latter is not. In section 3, we
prove that the value function of the Reeds-Shepp’s car is continuous by showing that
it is small-time local controllable, and therefore fits in to the standard viscosity solution
framework. For the Dubins’ car, a more general class of weak solutions (called e-solutions)
are exploited to establish the connection between the (discontinuous) value function and
the Hamilton-Jacobi equation. In section 4, approximation schemes for computing the
value function and the optimal trajectories are presented. While standard monotone
finite difference scheme are sufficient for problems with continuous value functions, the
performance deteriorates for solutions with discontinuities (see Remark 18). Thus, we
apply a semi-Lagrangian scheme to specifically solve the Dubins’ car problem. Finally,
numerical results are presented for the two dimensional cases to justify the convergence
and versatility of the formulation as well as to point out limitations.

1.1. Previous Work. One of the earliest relevant work in curvature constrained motion
is the article of Dubins [Dub57], where it was shown that curvature constrained geodesics
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in R2 could be classified into just six types of paths. Later, Reeds and Shepp [RS90]
generalized Dubins’ work to allow for cusps in the curve, and showed that such geodesics
can be classified into 68 types. The pioneering works of Dubins, Reeds and Shepp were
of theoretical interest, but provided no explicit formulas.

Traditionally, numerical algorithms for curvature constrained path planning have been
combinatorial in a Lagrangian framework. Barraquad and Latombe [BL93] constructed a
reachability tree assuming that, for example, Dubins’ car would locally only move straight,
fully left or fully right for a short distance. This assumption is known as the bang-bang
principle [SVV65]. In the presence of polygonal obstacles, the authors in [WA96, JC92]
developed algorithms to compute optimal ε-robust paths; informally, a path is ε-robust if
perturbations by ε/2 distance is still feasible. Typically, the complexity of such algorithms
are inversely proportional to ε. Others have considered building optimal curvature con-
strained paths among obstacles based on obstacle free optimal paths [RW00], way-points
known a priori [BK07], or optimal paths with unconstrained curvatures [LJTM94]. Our
approach is similar to that of [KL99]: first determine the value function by discretizing
the dynamic programming principle, then compute individual trajectories. Their ap-
proach (which is Eulerian) involves approximating the value function on tetrahedrons
constructed using barycentric coordinates. For a comprehensive treatment of path plan-
ning algorithms and relevant bibliography, see [LaV06].

We also mention a related work [PT09], where reachability sets of Dubins’ and Reeds-
Shepp’s cars (and others) are geometrically investigated. While they have presented
interesting computational results of reachability sets of various simple cars, their approach
does not yield individual optimal trajectories.

Our approach approximates the value function on a uniform mesh, via numerically
solving a Hamilton-Jacobi equation. It is well known [CL84, BS91] that a monotone,
consistent scheme for a Hamilton-Jacobi equation converges to the unique viscosity so-
lution; further techniques for constructing monotone finite difference schemes were stud-
ied in [Obe06] Standard monotone, consistent numerical methods for solving discretized
static Hamilton-Jacobi equations can be roughly classified into two types: finite dif-
ference schemes and discretization of the dynamic programming principle. The former
includes the fast marching and sweeping methods; both solve the same system of nonlin-
ear equations derived from discretizing the Hamilton-Jacobi equation. The fast marching
method [Tsi95, Set95] is based on the monotonicity of information along characteris-
tics. The solutions are constructed using a variant of Dijkstra algorithm and a heap-sort
data structure. The fast sweeping method is based on a Gauss-Seidel iterative strat-
egy. Rouy and Tourin [RT92] showed that iteratively sweeping a monotone discretization
of the eikonal equation solved for the unique viscosity solution. Efficient and easy-to-
implement Gauss-Seidel type update sweeping schemes for Hamilton-Jacobi equations
with convex Hamiltonians were proposed in [TCOZ03, Zha04, KOT04]. Similar methods
for more general, non-convex Hamiltonian was proposed by Kao et. al. [KOQ04]. The dis-
cretization of the dynamic programming principle is often referred to as semi-Lagrangian
schemes [FF02]. The main advantage of the semi-Lagrangian scheme over finite difference
schemes is the former’s convergence properties for discontinuous solutions, see section 4.2.
We also mention that the techniques of discontinuous Galerkin finite element methods
have been applied to Hamilton-Jacobi equations [HS, CS07].



4 RYO TAKEI AND RICHARD TSAI

This article is a generalization of the results in [TTSL10], where the authors (joint
with H. Shen and Y. Landa) studied the Hamilton-Jacobi equation and finite difference
numerical scheme for the Dubins’ car problem.

2. The Hamilton-Jacobi Formulation

In this section we formally derive a first oder PDE, the Hamilton-Jacobi equation, that
models a class of curvature constrained motions in free space. For exposition, we shall
formulate the prototypical case of the minimum exit-time problem with spatially constant
speeds and turning radii. Modifications to accommodate further generalizations, such as
terminal costs, variable running costs and spatially varying speeds and turning radii can
be modified accordingly. Readers interested in derivations of Hamilton-Jacobi equations
for general optimal control problems are referred to [BCD97].

2.1. Notations and setup. We begin by developing the necessary notions used in the
rest of the article. For convenience, we provide a list of commonly used notations in
section 2.1.1.

In two dimensions, consider a bounded, connected, open set Ω0 ⊂ R2 representing the
free space. We call a pose to be point in Ω0 coupled with an angle θ ∈ [0, 2π) representing
the direction of forward motion of the car, in radians. Thus we write Ω := Ω0 × [0, 2π)
as the set of all allowable poses for the given free space. In three dimensions the free
space is Ω0 ⊂ R3, and using spherical coordinates the set of all allowable poses become
Ω = Ω0 × [−π/2, π/2]× [0, 2π).

We now derive a more general version of the dynamical system (1) for two dimensional
curvature constrained motion. Define a path or trajectory as a piecewise differentiable
curve z : t ∈ [0,∞)→ Ω,

(2) z(t) =
[
x(t)
θ(t)

]
, x(t) ∈ Ω0, θ(t) ∈ [0, 2π).

The parameter t represents the time elapsed from the start of the motion. We assume
the vehicle travels at a given finite positive speed. By introducing a control function
σ(t) ∈ {±1}, the spatial dynamics can be written as

(3) ẋ(t) = σ(t) v(z(t), σ(t))
[
cos θ(t)
sin θ(t)

]
.

We shall call σ(t) the switching control, since its sign “switching” between +1 and −1
determines whether to move forward or reverse. The function v(z(t), σ(t)) is the speed of
motion at the pose z(t) and choice of forward/reverse motion σ(t). Note that (3) implies

(4) |ẋ(t)| = v(z(t), σ(t)),

which is the speed constraint, as required.
For the phase dynamics, θ̇(t), the derivation requires the bound on the curvature,

modeled by

(5)
∣∣∣∣dθds

∣∣∣∣ ≤ 1
ρ
,
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where ρ > 0 is the minimum turning radius, and s is the arc length parameter. If a
vehicle travels with speed v(z(t), σ(t)) > 0,

(6)
dθ

ds
=
dθ

dt

/
ds

dt
=

1
v(z(t), σ(t))

θ̇(t),

and (5) translates to |θ̇(t)| ≤ v(z(t), σ(t))/ρ. Introduce another control a(t) ∈ [−1, 1] to
write the phase dynamics as

(7) θ̇(t) = a(t)
v(z(t), σ(t))

ρ
, a(t) ∈ [−1, 1].

(We shall see later that for trajectories in free space, the control a(t) is invoked only at
+1 and −1, see equation (15).) We combine (3) and (7) to obtain the kinetic equation
and boundary condition:

(8)
ż(t) = f(z(t), σ(t), a(t)) := v(z(t), σ(t))

[
σ(t) cos θ(t), σ(t) sin θ(t), a(t)

1
ρ

]T
,

z(0) = y0.

The function f is called the dynamics associated with the kinetic equation (8). We say
that a path is feasible if it is contained in Ω for all t ≥ 0. We call the admissible paths
from the pose y0, denoted by Ay0 , the set of feasible paths z(·) satisfying (8).

Finally, given a target set T ⊂ Ω, we define the value function u : Ω→ R as

(9) u(y) = inf { t | z(·) ∈ Ay, z(t) ∈ T }.

In other words, u(y) is the minimum arrival time to T from y under the speed constraint
(4) and the curvature constraint (5). By definition, the value function is non-negative,
and u(y0) = 0 if and only if y0 ∈ T .

2.1.1. Summaries of notation. As a reference, we list notations used frequently through-
out this article. For concreteness, the notation is for the two dimensional case; the three
dimensional case, using spherical coordinates, are analogous.

• Ω0 ⊂ R2 is the spatial domain.
• Ω = Ω0 × [0, 2π) is the set of all poses.
• x = (x, y) ∈ Ω0 is a generic point in space.
• y ∈ Ω is a generic pose.
• z(·) = (x(·), θ(·)) is a generic (feasible) path in Ω, parametrized by time t.
• σ(·), a(·) are generic controls (parametrized by time t) associated with the car

maneuverability properties. In particular, σ(·) is referred to as the switching
control.
• T denotes the target set, typically a final location or a final pose.
• f denotes the dynamics of the control problem.
• Ay represent the set of feasible paths from the pose y associated with given

dynamics.
• u denotes the value function associated with given dynamics and target set.
• Br(y) is a ball of radius r centered at y.
• Dw(y) denotes the gradient of a function w : Ω→ R at the point y ∈ Ω.
• wx denotes the partial derivative of a function w in the variable x.
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• The forward and reverse speeds and turning radii in (8) as a function of the pose
y are denoted as

(10)

v(y, σ) =

{
v1(y) = forward speed (σ = 1),
v−1(y) = reverse speed (σ = −1),

ρ(y, σ) =

{
ρ1(y) = forward turning radius (σ = 1),
ρ−1(y) = reverse turning radius (σ = −1).

2.2. Formal derivations. Here, we derive a class of Hamilton-Jacobi equations (16)
and (18) that describes curvature constrained motions in two and three dimensions, re-
spectively. For brevity we suppress the dependence of speeds and turning radii on the
pose, i.e. v1(y) = v1, ρ1(y) = ρ1, etc.

2.2.1. Two dimensions. Recall the notation for a path (2). In two dimensions, the kinetic
equations for the forward motion is

(11) ż(t) = f1(z(t), a(t)) :=
[
v1 cos θ(t), v1 sin θ(t), a(t)

v1

ρ1

]T
, a(t) ∈ [−1, 1],

and the reverse motion is

(12) ż(t) = f−1(z(t), a(t)) :=
[
−v−1 cos θ(t),−v−1 sin θ(t), a(t)

v−1

ρ−1

]T
, a(t) ∈ [−1, 1].

Thus, the set of admissible paths Ay0 contains feasible paths defined by the kinetic
equation with dynamics

f(z(t), σ(t), a(t)) := fσ(t)(z(t), a(t)), σ(t)∈{±1}, a(t)∈ [−1, 1],

with boundary conditions z(0) = y0. We emphasize that, σ(t) is the switching control
that identifies forward (+1) and reverse (−1) motion.

We start the derivation with the dynamic programming principle [Bel10] for path plan-
ning problems with unit running cost (or equivalently, the minimum arrival time formu-
lation):

(13) u(y) = inf
z(·)∈Ay

{u(z(∆t)) + ∆t}.

If u is smooth, a Taylor series expansion and a division by ∆t formally implies that, in
the limit ∆t→ 0,

0 = sup
z(·)∈Ay

{−Du(y) · ż(0)} − 1,

0 = sup
σ̂∈{±1},â∈[−1,1]

{−Du(y) · f(y, σ̂, â)} − 1.

This PDE is known as the Hamilton-Jacobi-Bellman equation associated with the dynam-
ics f . The supremum is actually a maximum since the controls are invoked over compact
sets:

(14)
0 = max

σ̂∈{±1},â∈[−1,1]

{
−vσ̂

[
σ̂(cos θ ux + sin θ uy) + â

uθ
ρσ̂

]}
− 1

0 = max
σ̂∈{±1}

{
−vσ̂σ̂(cos θ ux + sin θ uy) + vσ̂ max

â∈[−1,1]

{
−â uθ

ρσ̂

}}
− 1.
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The inner maximum can be evaluated by choosing â to be

(15) â ∈ ∂[−1, 1] = {±1}.
Thus, we arrive at the Hamilton-Jacobi equation for two dimensional curvature con-
strained motion, with constant speeds and turning radii (10):

(16) 0 = max
σ̂∈{±1}

{
−vσ̂σ̂(cos θ ux + sin θ uy) +

vσ̂
ρσ̂
|uθ|
}
− 1.

2.2.2. Three dimensions: spherical coordinates. We derive the three dimensional ana-
logue to (16) in spherical coordinates. For a path z(t) = (x(t), θ(t), φ(t)), where θ(t) ∈
[−π/2, π/2] and φ(t) ∈ [0, 2π) are the inclination and azimuth angles, respectively, the
velocity is

ẋ(t) = σ(t)vσ(t) [sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)]T ,
and the curvature is∣∣∣∣ dds ẋ(t)

|ẋ(t)|

∣∣∣∣ =
1

vσ(t)

√
θ̇2(t) + sin2θ(t) φ̇2(t)

=: κθ(t),σ(t)

(
θ̇(t), φ̇(t)

)
, σ(t) = ±1.

Thus, the kinetic equations for forward and reverse motions become

ż(t) =fσ(t)(z(t), â(t), b̂(t))

:=
[
vσ(t) sin θ(t) cosφ(t), vσ(t) sin θ(t) sinφ(t), vσ(t) cos θ(t), â(t), b̂(t)

]T
,

with controls â(·), b̂(·) restricted under the curvature constraint

(17) κθ(t),σ(t)(â(t), b̂(t)) =
1

vσ(t)

√
â2(t) + sin2θ(t) b̂2(t) ≤ 1

ρσ(t)

for σ(t) ∈ {±1}. Note that if sin θ 6= 0, then κθ,σ(·, ·) is a norm in R2, with a dual norm

κ∗θ,σ̂(x, y) := max
κθ,σ̂(â,b̂)≤1

[
â

b̂

]
·
[
x
y

]
= vσ̂

√
x2 +

y2

sin2θ

The derivation of the Hamilton-Jacobi equation from the dynamic programming prin-
ciple is nearly identical to the two dimensional case. In three dimensions, (14) becomes

0 = max
σ̂∈{±1},κθ,σ̂(â,b̂)≤1/ρσ̂

{−σ̂vσ̂(sin θ cosφux + sin θ sinφuy + cos θ uz)− âuφ − b̂uθ]} − 1

= max
σ̂∈{±1}

{
−σ̂vσ̂(sin θ cosφux + sin θ sinφuy + cos θ uz) + max

κθ,σ̂(â,b̂)≤1/ρσ̂

[
−â
−b̂

]
·
[
uθ
uφ

]}
− 1.

If sin θ 6=0, the last term is equivalent to the (scaled) dual norm expression of κθ,σ̂:
(18)

0 = max
σ̂∈{±1}

{
−σ̂vσ̂(sin θ cosφux + sin θ sinφuy + cos θ uz) +

1
ρσ̂
κ∗θ,σ̂(uθ, uφ)

}
− 1

= max
σ̂∈{±1}

−σ̂vσ̂(sin θ cosφux + sin θ sinφuy + cos θ uz) +
vσ̂
ρσ̂

√
u2
θ +

u2
φ

sin2θ

− 1.
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Remark 1. In general, if the Hamilton-Jacobi-Bellman equation is linear in a control, the
maximizing controls should be evaluated at the extremal points. This is known as the
bang-bang principle [SVV65]. For example, (14) is linear in â, so â should be evaluated as
per (15). Intuitively, choosing â to be −1 or +1 is equivalent to making a “full right” or
a “full left” turn, respectively; in this sense, the Hamilton-Jacobi formulation described
above can be seen as an Eulerian counterpart to the Lagrangian scheme proposed in
[BL93] (see section 1.1).

Remark 2. While the solution sought by invoking the bang-bang principle is optimal in
free space [Dub57, RS90], it may be suboptimal near the obstacle boundaries. For exam-
ple, consider the two dimensional case in the presence of an obstacle with a boundary of
curvature less than 1/ρ±1. If the true optimal path traces along this boundary, the control
must satisfy |â| < 1, hence does not obey the bang-bang principle. Indeed, the correct
solution near such obstacle boundaries would be characterized by the Hamilton-Jacobi-
Bellman equation, which does not assume the bang-bang principle. See section 4.5.5 for
numerical implications of this issue.

2.3. Examples. In light of the equations (16) and (18) we present the Hamilton-Jacobi
equations for several well known models of curvature constrained motion, in two and three
dimensions.

Example 3. Dubins’ Car [Dub57, TTSL10]. The parameters are v1 = 1, v−1 = 0,
ρ1 = ρ > 0 (p−1 is irrelevant). By virtue of the equation, the maximum in (16) must be
evaluated at σ = 1 (if σ = −1, then the equation becomes 0 = −1). Thus

(19) 0 = − cos(θ)ux − sin(θ)uy +
1
ρ
|uθ| − 1.

Example 4. Reeds-Shepp’s Car [RS90]. The parameters are v1 = v−1 = 1, ρ1 =
ρ−1 = ρ > 0. Thus (16) becomes,

(20)
0 = max

σ=±1
{−σ(cos θ ux + sin θ uy)}+

1
ρ
|uθ| − 1

= | cos θ ux + sin θ uy|+
1
ρ
|uθ| − 1.

For the Reeds-Shepp’s car (20), since

| cos θ ux + sin θ uy| = | cos(θ + π)ux + sin(θ + π)uy|,

the value function u(x, y, θ) is π-periodic. Indeed, a vehicle with equal forward and reverse
turning radii and speeds, will have the same optimal arrival time starting at the poses
(x, y, θ) and (x, y, θ+ π). From the point of view of numerics, one needs only to compute
the value function for [0, π) in the θ domain, with periodic boundary conditions.

Example 5. Dubins’ Plane [CL07]. The turning radius constraint is enforced as in
the Dubins car, but has an additional independent bounded constraint over speed in the
z direction: |ż| ≤ c for some c > 0. This is a simple generalization to (19), with an
additional state variable z:

0 = − cos θ ux − sin θ uy + c|uz|+
1
ρ
|uθ| − 1.
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Example 6. Dubins’ Missile. We can model a vehicle that moves forward in space
at unit speed, with a turning radius constraint in all directions. This is another three
dimensional counterpart to Dubins’ car. Thus, for sin θ 6= 0,

0 = − sin θ cosφux − sin θ cosφuy − cos θ uz +
1
ρ

√
u2
θ +

u2
φ

sin2θ
− 1.

As pointed out in [RS90], this model can also be useful for plumbers who wish to connect
two existing fixed pipe ends by pipes that can be bent, but not too quickly so that the
curvature is bounded.

3. Viscosity solutions

In this section, we present a theoretical treatment of the value function as a weak
solution to the Hamilton-Jacobi equations. The solution is in general a non-smooth
function, so typically a unique weak solution, called a viscosity solution [CL83] is sought.
See section 3.1 for the definition of a viscosity solution. We discuss the solution for the
Hamilton-Jacobi equations in two dimensions (16) in the viscosity solution framework.
We show that the value function to the Reeds-Shepp’s car problem is continuous, while the
value function of Dubins’ car is not. Consequently, we take different routes for describing
the solutions, see sections 3.2 and 3.3. For a more rigorous and comprehensive treatment
of Hamilton-Jacobi equations for control problems, see [BCD97].

3.1. Definition of a viscosity solution. In this section, we keep the equation in the
form prior to invoking the bang-bang control:

(21) 0 = H(y, Dw(y)) = max
σ∈{±1},a∈[−1,1]

{−f(y, σ, a) ·Dw(y)} − 1.

While the proofs work for a general class of dynamics, for presentation purposes we assume
the dynamics in the context of the two dimensional curvature constrained motion:

(22) f(y, σ, a) = vσ(y)
[
σ cos θ, σ sin θ,

a

ρσ(y)

]T
, y = (x, y, θ).

The boundary condition coupling the PDE (21) is

(23) w(y) = 0 for y ∈ T .

We now define viscosity solutions to the Hamilton-Jacobi equation (21).

Definition 7. We say that a continuous function w is a viscosity subsolution of (21) if
for any φ ∈ C1(Ω) such that y is a local maximum of w − φ, then

H(y, Dφ(y)) ≤ 0.

We say that a function w is a viscosity supersolution of (21) if for any φ ∈ C1(Ω) such
that y is a local minimum of w − φ, then

H(y, Dφ(y)) ≥ 0.

If w is both a viscosity subsolution and a viscosity supersolution of (21) then we say that
w is a viscosity solution of (21).
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3.2. Small time local controllability. The key difference between a Dubins’ car and
a Reeds-Shepp’s car is the former lacks the maneuverability of the latter. This intuition
will be made precise, by means of reachability sets and the concept of small-time local
controllability. Define the reachability set from y∈Ω within time t > 0 as

(24) R(y; t) := {z(τ) | z(·) ∈ Ay, 0 ≤ τ < t} t > 0.

Definition 8. The dynamics f is small-time local controllable, or STLC, at the point y
if

y ∈ intR(y; t) for all t > 0.

In other words, the given dynamics is STLC if the vehicle can be steered to anywhere
in an small enough neighborhood about the starting pose. The main result for the STLC
dynamics problem is that the value function u solves (21) in the viscosity sense, provided
STLC holds at each point in the domain:

Theorem 9. If the dynamics f is STLC in Ω, then the value function u is the viscosity
solution to (21) in Ω.

Reeds-Shepp’s car is STLC (see discussion later), therefore its value function is the
unique, continuous viscosity solution to (20). Furthermore, the same argument can be
applied to a curvature constrained motions with positive forward and reverse speeds. We
will see in the next section that characterizing a unique solution to (21) and (23) becomes
subtle if STLC fails and u is discontinuous.

To prove Theorem 9, we begin by showing that STLC implies the continuity of the
value function, which is of independent interest.

Lemma 10. If the dynamics f is STLC, then the value function u is continuous.

Proof. Fix y ∈ Ω. By the definition of STLC, for each t > 0, there exists r(t) > 0 such
that

Br(t)(y) ⊂ R(y; t), for all t > 0.
Choose an arbitrary y0 ∈ Ω so that |y − y0| < r(t). Then y0 is reachable from y within
time t. Thus,

u(y0) ≤ u(y) + t.

Swapping the roles of y and y0, we have |u(y0)− u(y)| < t. �

Next we show that STLC is a sufficient condition to admit the value function as a
viscosity solution of the Hamilton-Jacobi equation.

Proof of Theorem 9. We first show that u is a subsolution. Take φ ∈ C1(Ω) and let y
be a local maximum point of u − φ. Let z(·) ∈ Ay be a path with arbitrary constant
controls σ∗ ∈ {±1} and a∗ ∈ [−1, 1]. Then, for t > 0 small enough, since u is continuous
by Lemma 10, we have u(y)− φ(y) ≥ u(z(t))− φ(z(t)) so

u(y)− u(z(t)) ≥ φ(y)− φ(z(t)).

Since u(y) ≤ u(z(t)) + t by the dynamic programming principle, we have,
φ(y)− φ(z(t))

t
≤ u(y)− u(z(t))

t
≤ 1.

Taking t↘ 0, we have
−Dφ(y) · f(y, σ∗, a∗) ≤ 1;
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since σ∗, a∗ were arbitrary, taking the maximum over all controls implies thatH(y, Dφ(y)) ≤
0.

Next, to show that u is a supersolution, assume that y is a local minimum point of
u− φ. Then as before, for any path z(·) ∈ Ay, and small enough t > 0,

u(y)− u(z(t)) ≤ φ(y)− φ(z(t)).

Then for any ε > 0, there exists (non-constant) controls σ̃(·) ∈ {±1}, ã(·) ∈ [−1, 1], such
that the corresponding path ỹ(·) satisfies

u(x) > t+ u(ỹ(t))− ε,
Therefore,

φ(y)− φ(ỹ(t))
t

≥ u(y)− u(ỹ(t))
t

> 1− ε.
Taking t↘ 0, we have

−Dφ(y) · f(y, σ̃(0), ã(0)) > 1− ε.
By taking ε↘ 0, we conclude that H(y, Dφ(x)) ≥ 0, as desired. �

It is straightforward to see that Reeds-Shepp’s car is STLC. While this was proved using
Lie algebra in [ST91], perhaps a more intuitive argument is that a Reeds-Shepp’s car can
change its angle of direction by ∆θ in time O(∆θ) while staying within an arbitrarily
small neighborhood in Ω0. Such a feat is not possible for a Dubins’ car. For the Reeds-
Shepp’s car, this is achieved by setting the controls a(t) = sgn(∆θ) and σ(t) to alternately
‘switch’ between ±1 in contiguous arbitrarily small intervals of t. Thus, a Reeds-Shepp’s
car can maneuver like a car with zero turning radius (i.e. an omnidirectional car, which
is clearly STLC) modulo O(∆θ) extra time, to change its direction by ∆θ.

Furthermore, the preceding argument can be easily generalized for cars with v1, v−1 >
0. For velocities that vary in Ω, as long as infy v1(y), infy v−1(y) > δ > 0, STLC still
holds.

3.3. Discontinuous value function: Dubins’ car. If one of v1 or v−1 is zero, STLC
no longer holds. For instance, for ε > 0 small, a Dubins’ car with minimum turning radius
ρ starting at pose (0, ε, 0) is required to make a full turn to arrive at T = {(0, 0, 0)}, so
u(0, ε, 0) > 2ρπ for all ε > 0. But since u(0, 0, 0) = 0, the value function u for the Dubins’
car is discontinuous at T and the dynamics is not STLC. Without continuity, u cannot
be a viscosity solution as per Definition 7.

While there are several notions for discontinuous viscosity solutions [GS01, TGO03,
CS02, Ish87], we chose to exploit e-solutions [BCD97], which are particularly suited for
control problems and enjoys existence and uniqueness properties. Let us begin by defining
subsolutions and supersolutions of a boundary value problem.

Definition 11. We say that a bounded upper semicontinuous (resp. lower semicontinu-
ous) function w is a subsolution (resp. supersolution) of the boundary value problem (21)
and (23) if w is a viscosity subsolution (resp. viscosity supersolution) and w ≤ 0 (resp.
w ≥ 0) at T .

Let S and Z be the set of all subsolutions and supersolutions, respectively, to (21) and
(23). Since a continuous function is both lower and upper semicontinuous, a viscosity
solution w of (21) that satisfies the boundary condition (23) is a subsolution and a su-
persolution. Thus, in this case, w ∈ S ∩ Z. However, for discontinuous value functions u
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(e.g. for dynamics that are not STLC), it is too strong to demand that u∗ to be a super-
solution and u∗ to be a subsolution; for example, for the Dubins’ car with T = {(0, 0, 0)},
u∗ ≥ 2ρπ � 0 at T .

To achieve both existence and uniqueness of a weak solution for such a boundary value
problems, a particular viscosity sub- and supersolution must be sought.

Definition 12. We say w is an e-subsolution of (21) and (23) if there exists ∅ 6= S(w) ⊂ S
such that

(25) w(y) = sup
g∈S(w)

g(y) y ∈ Ω.

We say w is an e-supersolution of (21) and (23) if there exists ∅ 6= Z(w) ⊂ Z such that

(26) w(y) = inf
g∈Z(w)

g(y) y ∈ Ω.

Furthermore, if w is an e-subsolution and an e-supersolution of (21) and (23), we say it
is an e-solution of (21) and (23).

The main claim is this section is that the value function u associated with the dynam-
ics (22) is the unique e-solution to the boundary value problem (21) and (23).

Theorem 13. The value function u associated with the dynamics (22) is the e-solution
of the problem (21) and (23).

To prove the preceding theorem, we proceed with a sequence of lemmas. Assume that u
is the value function associated with the dynamics (22). We adopt the strategy of [BCD97]
by showing that u∗ is both an e-subsolution and an e-supersolution of (21) and (23). Then
the main claim follows by observing that u = u∗, since u is lower semi-continuous.

Lemma 14. u∗ is a supersolution of the problem (21) and (23).

Proof. Since u∗ = u = 0 ≥ 0 at T , we are left to prove that u∗ is a viscosity supersolution
to (21). Let y ∈ Ω be a local minimum of u∗ − φ, for some φ ∈ C1(Ω); without the loss
of generality, assume u∗(y) = φ(y). Towards a contradiction, suppose

H(y, Dφ(y)) < 0.

Then by the continuity of f and Dφ, there exists ε > 0 such that

H(ỹ, Dφ(ỹ)) ≤ −ε < 0, for all ỹ ∈ Bε(y).

Furthermore, there exists t > 0 such that for any ỹ ∈ Bε/2(y) and any path z(·) ∈ Aỹ,

z(s) ∈ Bε(y) ∀s ∈ [0, t].

Fix such at t and let δ = εt/2. From the dynamic programming principle,

u(y) > u(z(t)) + t− δ.
Since d

dsφ(z(s)) = Dφ(z(s)) · f(z(s), a(s)), we have

φ(z(s)) =
ˆ t

0

Dφ(z(s)) · f(z(s), a(s)) ds+ φ(ỹ)

≥ −
ˆ t

0

H(z(s), Dφ(z(s))) + 1 ds+ φ(ỹ)

≥ εt− t+ φ(ỹ).



CURVATURE CONSTRAINED MOTION 13

Then

u(ỹ)− φ(ỹ) > u(z(t)) + t− δ + εt− t− φ(z(t))
≥ u∗(z(t))− φ(z(t))− δ + εt

≥ −δ + εt

= δ.

Thus,

u∗(y)− φ(y) = lim inf
ỹ→y

(u(ỹ)− φ(ỹ)) ≥ δ,

which contradicts the assumption that u∗(y) = φ(y). �

Lemma 15. u∗ is an e-supersolution of the problem (21) and (23).

Proof. This follows immediately from the conclusion of Lemma 14; let Z(u∗) = {u∗},
then (26) trivially holds. �

Lemma 16. u∗ is an e-subsolution of the problem (21) and (23).

Sketch of proof. The proof makes use of the ε-perturbed problem [Sor93], which has a
value function uε that is a subsolution. Then we set S(u∗) = {uε}ε>0 to be the class of
subsolutions such that (25) holds.

Begin by introducing the dynamics f̃ defined by

f̃(y, σ, a) =

{
f(y, σ, a) σ ∈ {±1} , |a| ≤ 1/ρ
0 σ = 0.

By extending f to include the control σ = 0 of null dynamics yields a modified Hamil-
tonian

H̃(y,p) := max
σ∈{0,±1},a∈[−1,1]

{
−f̃(y, σ, a) · p

}
− 1

= max
{

max
σ∈{±1},a∈[−1,1]

{−f(y, σ, a) · p} , 0
}
− 1.

The value function for the dynamics f̃ coincides with the original value function with
the dynamics f , since the null dynamics control σ = 0 would never be invoked for an
optimal control. Given ε > 0, consider the optimal control problem, called the ε-perturbed
problem, with the kinetic equation

ẏε(t) = fε(y(t), σ(t), a(t), β) := f̃(y(t), σ(t), a(t)) + εβ(t)

for β(t) ∈ {(x, y, 0) | (x, y) ∈ B1(0, 0)}. Then the resulting Hamilton-Jacobi equation is

(27)
Hε(y, Dw(y)) := H̃(y, Dw(y)) + ε|Dxw| = 0 note: y = (x, θ)

w(y) = 0 for y ∈ T .
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Denote by uε the value function associated with the dynamics fε. Since fε is STLC, uε
is the unique (continuous) viscosity solution for (27). Then,

0 = H̃(y, Duε(y)) + ε|Dxuε(y)|

≥ H̃(y, Duε(y))

≥ max
σ∈{±1},a∈[−1,1]

{−f(y, σ, a) ·Duε(y)} − 1

= H(y, Duε(y)),

so uε is a viscosity subsolution of (21). Furthermore, since uε = 0 ≤ 0 at T , it is a
subsolution.

What is remaining to show is the property (25) for S(u∗) = {uε}ε>0. Note that
uε(y) ≤ u(y) by virtue of ε perturbed problem having more control (and thus, more
admissible paths). The idea is, as ε → 0, the speed associated with the omnidirectional
control β(t) of the perturbed problem tends to zero, therefore the value function uε
converges to the original u. We omit the details and refer the interested reader to [BCD97,
Theorem 3.10].

�

Proof of Theorem 13. Immediately, from Lemmas 15 and 16, we have that u∗ is the
unique e-solution. Furthermore, the dynamics f(y, σ, a) is linear in σ ∈ {±1} and
a ∈ [−1, 1] for every y, therefore, u is lower semicontinuous (see [HL69]). Thus, u = u∗
and u is an e-solution. �

4. Numerical Implementation

In this section, we describe two numerical schemes to solve the Hamilton-Jacobi equa-
tion for curvature constrained motions in two dimensions (16) and show numerical results.
The three dimensional case works analogously.

First, in section 4.1, a monotone finite difference scheme is described for solving con-
tinuous value functions. Next, in section 4.2 we present a semi-Lagrangian scheme for
the discontinuous case. This is followed, in section 4.3, by a description of how optimal
paths are computed from a given (numerical) value function. We dedicate section 4.4 on
the treatment of obstacles, required for accurate computations near obstacle boundaries.
Finally, in section 4.5, we demonstrate the performance of the aforementioned schemes
under various settings.

4.1. Continuous value functions: finite difference scheme. In order to compute the
value function of (16), we exploit the results of [CL84, BS91] that monotone, consistence
schemes converge to the (continuous) viscosity solution. In the case of discontinuous
viscosity solutions, such as the Dubins’ car, we use a different approach, see section 4.2.

Set up a three dimensional uniform Cartesian grid {(xi, yj , θk)}, i = 1, . . . , Nx, j =
1, . . . , Ny, k = 1, . . . , Nθ, with grid refinements (hx,, hy, hθ). Let ui,j,k be the approx-
imation of the solution at the grid node (xi, yj , θk). Denote ξk := sgn(cos θk) and
νk := sgn (sin θk). The finite difference construction of the scheme is as follows: the
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spatial derivative terms in x and y are discretized in the upwind sense,

(28)
(cos θ ux)ijk = | cos θk|

ui+ξk,j,k − uijk
hx

,

(sin θ uy)ijk = | sin θk|
ui+νk,j,k − uijk

hy
,

and the derivative in θ with a monotone discretization

(29) (|uθ|)ijk = max
{
uijk − ui,j,k+1

hθ
,
uijk − ui,j,k−1

hθ
, 0
}
.

To approximate (16) with the discretization (28) and (29), we solve for uijk for the cases
σ = ±1 and (|uθ|)ijk zero or non-zero. Assume for simplicity that hx = hy =: h. We
treat the cases σ = +1 and −1 separately: for the case σ = 1, if (|uθ|)ijk 6= 0,

(30)
uijk =

h
v1

+ | cos θk|ui+ξk,j,k + | sin θk|ui,j+νk,k + h
ρ1hθ

min {ui,j,k±1}
| cos θk|+ | sin θk|+ h

ρ1hθ

=: G+1
ijk

and if (|uθ|)ijk = 0,

(31) uijk =
h
v1

+ | cos θk|ui+ξk,j,k + | sin θk|ui,j+νk,k
| cos θk|+ | sin θk|

=: F+1
ijk .

For the case σ = −1, if (|uθ|)i,j,k 6= 0,

(32)
uijk =

h
v−1

+ | cos θk|ui−ξk,j,k + | sin θk|ui,j−νk,,k + h
ρ−1hθ

min {ui,j,k±1}
| cos θk|+ | sin θk|+ h

ρ−1hθ

=: G−1
ijk,

and if (|uθ|)ijk = 0,

(33) uijk =
h
v1

+ | cos θk|ui−ξk,j,k + | sin θk|ui,j−νk,k
| cos θk|+ | sin θk|

=: F−1
ijk .

We solve the system of nonlinear equations (30)-(33) for {uijk} via the fast sweeping
method [Zha04, TCOZ03]: initially set

u0
ijk =

{
0 if (xi, yj , θk) ∈ T
∞ otherwise.

for all (i, j, k), and compute unijk for n = 1, 2, . . . iteratively according to the update
scheme

(34) un+1
ijk = min

{
G±1
ijk, F

±1
ijk , u

n
ijk

}
.

by a Gauss-Seidel sweeping scheme; in each iteration, the grid nodes are visited by eight
different orderings, ascending and descending in each coordinates i, j, k. Then, unijk con-
verges to the solution of the nonlinear equations (30)-(33) as n → ∞. The above dis-
cretization is monotone in the sense that the update formula for un+1

ijk is a non-decreasing
function of the neighboring values uni±1,j+1,k, u

n
i±1,j−1,k, u

n
i,j,k±1. Thus, for continuous
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value function, the computed solution converges to the viscosity solution of the PDE as
hx, hy, hθ → 0.

4.2. Discontinuous value functions: semi-Lagrangian scheme. While a similar
finite difference discretization gives somewhat reasonable approximations of the value
function (c.f. [TTSL10]), we resort to a semi-Lagrangian scheme, which is known to have
convergence properties even for Hamilton-Jacobi equations with discontinuous solutions.

The idea of semi-Lagrangian scheme is to directly discretize the dynamic programming
principle (13) on an Eulerian (in our case Cartesian) grid, for a short time comparable to
the grid refinement. We shall describe the method for the case

v1 = v > 0, ρ1 = ρ > 0,
v−1 = ρ−1 = 0,

i.e. Dubins’ car (Example 3) with speed v and turning radius ρ. The value function is
approximated at the grid node yi,j,k = (xi, yi, θk). Denote za(·)(t) to be the path along
the characteristic curves, with the control a(·) and initial position yi,j,k:

ża(·)(t) = −v
[
cos θ(t), sin θ(t),

a(t)
ρ

]T
, a(t) ∈ [−1, 1](35)

za(·)(0) = yi,j,k.(36)

Choose a (small) time step ∆t > 0. We assume that za(·)(t) in free space for 0 ≤ t ≤ ∆t,
thus the optimal control is bang-bang. For ∆t small enough, we may further assume that
the optimal control is

a∗(t) =


aR = 1, (right bang)
aL = −1, (left bang)
a0 = 0, (no bang, move straight)

for all 0 ≤ t ≤ ∆t. The dynamic programming principle at the point yi,j,k becomes,

(37) u(yi,j,k) = ∆t + min
a∈{aL,aR,a0}

u(za(∆t))

Since za(∆t) will typically not lie on a grid node, u(za(∆t)) can be approximated by a
(three dimensional) interpolation of nearby grid values of u.

By a particular choice of ∆t, however, the interpolation can be made simpler. In our
implementation, we let v∆t = ρhθ, or equivalently

(38) ∆t =
ρhθ
v
.

Then, by construction, the θ-components of zaR(∆t) and zaL(∆t) are precisely θk+1 =
θk + hθ and θk−1 = θk − hθ, respectively. Note that the θ-component of za0(∆t) is θk.
Since za(∆t) for each a = aL, a0, and aR lie exactly on the θ grid nodes, namely θk−1, θk,
and θk+1, respectively, an interpolation is only required in the x, y directions.

For completeness, we explicitly write za(∆t) for each a ∈ {aL, aR, a0} in the case ∆t
is chosen as in (38). Denote Rot(θ) to be the rotation matrix by θ in two dimensions:

Rot(θ) =
[

cos θ sin θ
− sin θ cos θ

]
.
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For simplicity, we consider the case hx = hy =: h. For the choice of time step (38), we
have

(39)

zaR(∆t) =
(
xi + hx̃R, yi + hỹR, θk−1

)
,

zaL(∆t) =
(
xi + hx̃L, yi + hỹL, θk+1

)
,

za0(∆t) =
(
xi + hx̃0, yi + hỹ0, θk

)
,

where,

(40)

[
x̃R

ỹR

]
= Rot(θk)

[
ρ sinhθ

ρ(1− coshθ)

]
,

[
x̃L

ỹL

]
= Rot(θk)

[
ρ sinhθ

ρ(coshθ − 1)

]
,[

x̃0

ỹ0

]
= Rot(θk)

[
ρhθ
0

]
.

The interpolation of u at the points (39) can be achieved with higher accuracy with
appropriate stencils, using techniques such as ENO [OS91]. We implemented the simplest
case, linear interpolation using (xi, yj) and its eight closest neighboring grid nodes for each
θk, θk±1. For each point in (39), we approximate u at the point using the nearest four
grid nodes (in (x, y)) among the nine grid nodes. For stability, we must choose h and hθ
so that the points in (39) be within the eight neighboring grid nodes about (xi, yj), that
is,

ρhθ ≤ h.
For problems with spatially varying turning radius ρ(x), the restriction is

sup
x∈Ω
{ρ(x)} hθ ≤ h.

Remark 17. Bardi, Falcone and Soravia [BFS94, BFS99] have shown that the semi-
Lagrangian scheme converges on compact sets as ∆t/h → 0, where the e-solution is
continuous. In [KV10], however, numerical tests of control problems with discontinuous
value functions have shown that convergence can still be obtained for ∆t/h → c, for a
constant c > 0. We have found that the latter property holds for the Dubins’ car value
function also, see section 4.5.1.

4.3. Computing optimal paths. Once the value function has been approximated by
uijk, individual optimal paths can be computed by tracing the characteristic curves to-
wards the target T . Suppose the initial pose is (x(0), y(0), θ(0)) = (x0, y0, θ0). We write
z(t) = (x(t), y(t), θ(t)), the pose on the trajectory at time t ≥ 0. Note that the charac-
teristic curves are precisely the optimal trajectories, but in opposite directions. Thus, for
the Dubins’ car, the dynamical system describing the optimal path is

ẋ(t) = cos θ(t)
ẏ(t) = sin θ(t)
θ̇(t) = − 1

ρ sgn(uθ(z(t))).

and for the Reeds-Shepp’s car,
ẋ(t) = sgn[cos θ(t)ux(z(t)) + sin θ(t)uy(z(t))] cos θ(t)
ẏ(t) = sgn[cos θ(t)ux(z(t)) + sin θ(t)uy(z(t))] sin θ(t)
θ̇(t) = − 1

ρ sgn (uθ(z(t))) .
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For the general case, the characteristics equations yields

(41)


ẋ(t) = σvσ(z(t)) cos θ(t)
ẏ(t) = σvσ(z(t)) sin θ(t)
θ̇(t) = − vσ(z(t))

ρσ(z(t)) sgn (uθ(z(t))) ,

where z(t) = (x(t), y(t), θ(t)) and σ = σ(z(t)) is defined as

σ(y) = arg max
σ=±1

{
−vσ(y)σ[cos θ ux(y) + sin θ uy(y)] +

vσ(y)
ρσ(y)

|uθ(y)|
}
,

and y = (·, ·, θ). Recall that σ determined whether to move the vehicle ‘forward’ (σ = +1)
or ‘reverse’ (σ = −1). In the discrete setting, one can compute σijk ∈ {±1} at each grid
node (i, j, k), in the process of computing the value function. The minimizer among
G+1
ijk, F

+1
ijk and G−1

ijk, F
−1
ijk (recall their definitions in (30)-(33)) in the update scheme (34)

determines the value of σijk ∈ {±1}. Explicitly, initially set σ0
ijk = 0, for all grid nodes

(i, j, k), and update according to

σn+1
ijk =


1 if min

{
G+1
ijk, F

+1
ijk

}
≤ min

{
G−1
ijk, F

−1
ijk , u

n
ijk

}
−1 if min

{
G−1
ijk, F

−1
ijk

}
< min

{
G+1
ijk, F

+1
ijk , u

n
ijk

}
σnijk if unijk < G±1

ijk, F
±1
ijk .

To solve the characteristic equations we compute (x(t+ ∆t), y(t+ ∆t), θ(t+ ∆t)) from
(x(t), y(t), θ(t)) by first approximating

ux(x(t), y(t), θ(t)) =
u(x(t) + h̄x, y(t), θ(t))− u(x(t)− h̄x, y(t), θ(t))

2h̄x
+O(h̄2

x)

uy(x(t), y(t), θ(t)) =
u(x(t), y(t) + h̄y, θ(t))− u(x(t), y(t)− h̄y, θ(t))

2h̄y
+O(h̄2

y)

uθ(x(t), y(t), θ(t)) =
u(x(t), y(t), θ(t) + h̄θ)− u(x(t), y(t), θ(t)− h̄θ)

2h̄θ
+O(h̄2

θ),

where the the value function is approximated at non-grid nodes via linear approximation;
to ensure that the maximum possible speed is attained in either direction, we approximate
σ(x(t), y(t), θ(t)) by a nearest-neighbor approximation. Next, we solve (41) by the 4th
order Runge-Kutta method, until (x(t), y(t), θ(t)) reaches within a prescribed tolerance
distance from T . Where the value function is continuous, the computed paths converge
to the analytical characteristic curves as {h̄x, h̄y, h̄θ,∆t} ∼ O(hx, hy, hθ) → 0 by virtue
of the approximation schemes.

4.4. Treatment of obstacles. It is standard practice in the PDE optimal control com-
munity to implement obstacles in domains by setting the value function to be a very
large number at grid nodes inside the obstacle. This technique produces decent results
for typical problems in optimal control, such as the eikonal equation, see for example
[Fal07]. This property is carried over to the schemes described in section 4.1, where
the dynamics is STLC and the value function is continuous in Ω. However, for cases
where the dynamics is not STCT and the value function is discontinuous, we have found
that such implementation of the obstacles degrades the computed solutions (using the
semi-Lagrangian scheme, section 4.2).



CURVATURE CONSTRAINED MOTION 19

We illustrate the reason for such sensitivity by an example for the Dubins’ car prob-
lem. Assume that the value function at the grid nodes in the obstacles are forced to
be infinite (although in practice the values are set to a large number, the essence of the
example is still applicable). Fix a grid node Xk

0 := (xi, yj , θk) where θk is chosen so
that zaL(∆t), zaR(∆t), za0(∆t) all lie in the domain (xi−1, xi)× (yj , yj+1)× (θk−1, θk+1)
but not in the obstacle, see Figure 2. Suppose that both the “west” and “north-west”
neighboring grid nodes (assume as before that h is the spatial resolution in x)

Xk
W := (xi−1, yj , θk) = (xi − h, yj , θk),

Xk
NW := (xi−1, yj+1, θk) = (xi − h, yj + h, θk),

respectively, lie inside the obstacle as depicted in Figure 2, thus ui−1,j,k = ui−1,j+1,k =∞
for all k. Also define, Xk

N := (xi, yj+1, θk) = (xi, yj + h, θk), the “north” neighboring grid
node to Xk

0 . By the choice of θk, our semi-Lagrangian scheme implementation performs
three bilinear interpolations, namely,

(1) among Xk+1
0 , Xk+1

W , Xk+1
NW , X

k+1
N for approximating u(zaR(∆t)),

(2) among Xk−1
0 , Xk−1

W , Xk−1
NW , X

k−1
N for approximating u(zaL(∆t)), and

(3) among Xk
0 , X

k
W , X

k
NW , X

k
N for approximating u(za0(∆t)).

Since all three interpolations involve the value function evaluated at grid nodes in the
obstacle, the approximations will be infinite. Therefore, the update formula (37) assigns
the value function at Xk

0 to also be infinite. But clearly, the value function at Xk
0 should

be finite! It is clear that the finite difference approximation will yield the same result.
Hence, very restricted dynamics are permitted for reasonable approximations on grids
near the obstacle boundaries.

Figure 2. Illustration of the example. Black dots are the grid nodes
projected on the (x, y) plane, and the shaded area represent the obstacle.
The tips of the three arrows are the locations zaL(∆t), zaR(∆t), za0(∆t).

Rather than forcing the value function to be infinite in the obstacles, we take a more
natural and versatile approach to modeling state constraints: we interpret obstacles as
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regions where the speed is zero (or close to zero) or, equivalently, where the local cost-
to-go is infinite (or very large), thus extending the Hamilton-Jacobi equation into the
obstacles. Assume that the speed v = v(x) only varies in the spatial domain Ω0. We
introduce the slowness function r : Ω0 → R as the inverse of the speed: for a predefined
large number rmax � 1, set

(42) r(x) =

{
1/v(x) if x is not in an obstacle,
rmax if x is in an obstacle.

The key idea is to regularize r by smoothing out the discontinuities over a narrow band of
thickness ε = O(h). Let us write the regularized slowness function as rε. We implemented
the regularization

rε(x) =


r(x) if w(x) > 0
rmax if w(x) < −2ε
rmax−r(x)

2

[
cos
(

(w(x)+2ε)
2ε π

)
+ 1
]

+ r(x) if w(x) ∈ [−2ε, 0],

where w is the signed distance function to the obstacles:

w(x) = inf
r(x0)=rmax

|x− x0| − inf
r(x0)<rmax

|x− x0|.

We illustrate the above regularization rε in Figure 3 with rmax = 100, ε = 5h on a 80×80
discretization of Ω0. The obstacle is a circle of radius 1/2 centered at the origin.
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Figure 3. Left: the slowness function r(x). Right: the regularized
slowness function rε(x).

For the update scheme (37), at the grid node (xi, yj , θk), we set ∆t according to (38)
and (42):

∆t = ρhθ r
ε(xi, yj , θk).

Indeed, the numerical solution will be influenced by ε and rmax; we have found that
certain choices of these parameters noticeably improves the accuracy of the computed
optimal trajectories, see section 4.5.5.
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4.5. Numerical results. We give results of the numerical schemes described above. All
test cases were computed on the domain Ω = [−1, 1]2.

4.5.1. Dubins’ car. Recall that Dubins’ car is the case v1 = 1, v−1 = 0 and ρ1 > 0. For all
test cases, we used ρ1 = 0.2. We computed the value function in the domain Ω = [−1, 1]2

using the semi-Lagrangian scheme (see section 4.2). Two targets were considered: a final
pose target TPose = {(0, 0, 0)} and a final location target TLoc = {(0, 0, θ) | θ ∈ [0, 2π)}.
Let

(43) U(x, y) := min
θ∈[0,2π)

u(x, y, θ),

the minimum arrival time to the target from (x, y) over all initial directions. Level sets
of u(x, y, θ) as well as contour plots of U(x, y) for the target TPose is shown in Figure 4
and for TLoc in Figure 5.

As a convergence test, we compared the numerical solution of u(x, y, θ) for the case
TPose = {(0, 0, 0)} along the line segment {(x, 0, 0) | x ∈ [−1, 1]}. The exact solution is

u(x, 0, 0) =

{
−x for x ≤ 0
2π + x for x > 0.

Figure 6 shows the a semi-log plot, demonstrating a O(h1/2) convergence rate in the L2

norm for the semi-Lagrangian scheme. Note thatO(h1/2) is a standard rate of convergence
for numerical schemes of Hamilton-Jacobi equations [CL84]. As a comparison, we also
plotted the same test results for the finite difference scheme [TTSL10], which gave a
significantly slower convergence rate.

Remark 18. A possible cause of the significantly low convergence rate for the finite differ-
ence scheme is the presence of contact discontinuities [LeV90], i.e. where discontinuities
are parallel to the characteristic direction.

We also performed a convergence test for the case TLoc = {(0, 0, θ) | θ ∈ [0, 2π)} on the
same line segment {(x, 0, 0) | x ∈ [−1, 1]}. The exact solution is

u(x, 0, 0) =

{
−x for x ≤ 0
2ρ(π − tan−1(x/ρ)) for x > 0.

Figure 7 shows the L2 norm convergence of both the semi-Lagrangian and finite difference
schemes for the case TLoc. Note how the semi-Lagrangian scheme is more accurate than
the finite difference scheme by a small margin.

Figure 8 shows a sample numerical path for a domain with obstacles.

4.5.2. Reeds-Shepp’s car. Recall that the Reeds-Shepp’s car is the case v1 = 1, v−1 = 1
and ρ1 = ρ−1 =: ρ > 0. Since the dynamics is STLC and the value function is continuous,
we employ the finite difference approximation as described in section 4.1. Also, note that
the value function is computed only on [0, π) in the θ domain, with periodic boundary
conditions (see discussion after Example 4).

Figures 9 and 10 show the level sets of u(x, y, θ) and contour plots of U(x, y) (as defined
in (43)), for the target pose TPose = {(0, 0, 0)} and target location TLoc = {(0, 0, θ) | θ ∈
[0, 2π)}, respectively. The turning radius is ρ = 0.2.

Sample optimal paths for the Reeds-Shepp’s car are shown in Figure 11.
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Figure 4. Numerical solution to Dubins’ car with a target pose. Top:
0.7 and 1.1 level sets of u for TPose = {(0, 0, 0)} and turning radius
ρ1 = 0.2. The boundary point (target) is shown by a small black circle.
Bottom: contour plot of U(x, y).

4.5.3. Different forward and reverse speed. To demonstrate the versatility of our algo-
rithm, we consider the steering of a vehicle with different forward and reverse speeds,
see Figure 12. Treating different forward and reverse turning radii works analogously.
Since the forward-reverse symmetry (as in the Reeds-Shepp’s car) no longer holds, the θ
domain is set to [0, 2π).

4.5.4. Spatially varying turning radius. We tested our algorithm on a problem of steering
a Dubins’ car along a sequence of contiguous rectangles, each with difference turning radii,
see Figure 13. This is a problem posed in [CT10], where it was solved using purely geo-
metrical arguments. While explicit geometrical calculations become increasingly difficult
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Figure 5. Numerical solution to Dubins’ car with a target location.
Top: 0.4 and 0.9 level sets of u for TLoc = {(0, 0, θ) | θ ∈ [0, 2π)} and
turning radius ρ1 = 0.2. Bottom: contour plot of U(x, y).

in complicated environments, our algorithm requires only a trivial modification: replace
ρ in (40) by ρi,j,k = ρ(xi, yj , θk).

4.5.5. Obstacle implementation and limitations of the algorithm. Our Hamilton-Jacobi
equations assume the bang-bang principle, which is valid only away from the obstacles.
In the absence of obstacles, the works of Dubins and Reeds-Sheep prove that the steering
must obey the bang-bang principle. However, for steering in domains amongst obsta-
cles, the bang-bang principle may not yield exact solutions. A simple example is when
the optimal path traces along a obstacle boundary of curvature less than ρ, the turning
radius. Our algorithm forces the bang-bang principle in the grid directions of the un-
derlying stencil. While a wider stencil may partially alleviate this issue (see wide stencil
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N L2 error SL rate
100 0.7582 -
200 0.5542 0.4523
300 0.4508 0.5093
400 0.3665 0.7193

N L2 error FD rate
100 0.6985 -
200 0.6450 0.1150
300 0.6087 0.1429
400 0.5832 0.1485
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10−0.4

10−0.3
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h

L2 error. Target pose.
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finite diff
O(h1/2)
O(h1/6)

Figure 6. Convergence rates for the case TPose = {(0, 0, 0)} for the
semi-Lagrangian (SL) scheme and the finite difference (FD) scheme. N
is the number of grid points in each of the (x, y) directions, in the domain
Ω = [−1, 1]2. In all cases, hθ = 2π/300 ≈ 0.0209.

N L2 error SL rate
100 0.3759 -
200 0.2754 0.4488
300 0.2270 0.4764
400 0.1969 0.4948

N L2 error FD rate
100 0.3754 -
200 0.2779 0.4337
300 0.2343 0.4209
400 0.2082 0.4105

10−2
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10−0.5

10−0.4

h

L2 error. Target location.
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O(h1/2)
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Figure 7. Convergence rates for the case TLoc = {(0, 0, θ) | θ ∈ [0, 2π)}
for the semi-Lagrangian (SL) scheme and the finite difference (FD)
scheme. N is the number of grid points in each of the (x, y) directions,
in the domain Ω = [−1, 1]2. In all cases, hθ = 2π/300 ≈ 0.0209.

implementation in [TTSL10]), a convergence in the limit hx, hy, hθ → 0 requires a full
implementation of the minimization over the control a ∈ [−1, 1]. While this is possible in
principle, it will significantly complicate and slow down the current implementation.
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Figure 8. Numerical solution to Dubins’ car in a domain among obsta-
cles. The contour plot represents U(x, y). Parameters are: initial pose
(x0, y0, θ0) = (−0.8, 0.8,−π/2), target pose T = {(0.8,−0.7, 0)}, turning
radius ρ = 0.2. The solution was approximated on a grid size 200×200×
200.

However, we have found that employing the regularized slowness function rεijk (see
section 4.4) can also partially alleviates this issue. In Figure 14, we tested a case where
the optimal path of a Dubins’ car traces around a large circular obstacle with radius larger
than the turning radius ρ. The maximum slowness was set to rmax = 100. Four different
regularizations were tested, ε = 0 (no regularization), 3h, 10h, 40h. As the regularization
parameter ε increases, note how the computed path invoking the bang-bang principle
becomes closer to the true optimal path. However, if the regularization is too strong, the
computed path can enter the obstacle (the case ε = 40h).

5. Conclusion

We presented a Hamilton-Jacobi formulation for computing optimal trajectories with
lower bounds on curvature. It models the optimal path planning problem of simple
cars, such as the Dubins’ and Reeds-Shepp’s cars. In addition to formally deriving the
Hamilton-Jacobi equations for such problems, we give a proof that the value functions
solve the equations in the viscosity sense. Furthermore, approximation schemes are pre-
sented, as well as numerical results verifying the theory.
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Figure 9. Numerical solution to Reeds-Shepp’s car with a target pose.
Top: 0.3 and 0.6 level sets of u for TPose = {(0, 0, 0)} and turning radius
ρ1 = ρ2 = 0.2. Bottom: contour plot of U(x, y).
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