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Introduction

This collection of lecture notes is based on a series of lectures presented by the
authors at Institute for Advanced Studies/Park City Mathematics 2010 Summer
Program on “The Mathematics of Image Processing”. The aim is to provide a
concise, systematic and self contained overview on wavelet frames derived from a
multiresolution analysis (MRA-based wavelet frames) and its applications in image
analysis and restoration.

The publication of the unitary extension principle [158] in 1997 was the starting
point of the MRA-based wavelet frames, especially the MRA-based tight wavelet
frames. The unitary extension principle makes constructing wavelet frame systems
with multiresolution structure painless. Wavelet frames derived from a multires-
olution provide sparse approximations for piecewise smooth functions and have
fast decomposition and reconstruction algorithms associated with them. These
two important properties of MRA-based wavelet frames lead to many applications
of wavelet frames in image processing. These lecture notes provide a detailed and
comprehensive description of MRA-based wavelet frame theory and its applications.

Frame theory and its applications, notably the Gabor frames (see e.g. [61,
99, 132]) and wavelet frames (without a multiresolution structure) (see e.g. [61,
132]), were developed long before the discovery of the multiresolution analysis
of [131, 134] and the systematic construction of the MRA-based compactly sup-
ported orthonormal wavelets of [60]. The concept of frame can be traced back
to [80]. The rich literature of Gabor and wavelet frames provides a wide range
of applications including time frequency analysis for signal processing, coherent
state in quantum mechanics, filter bank design in electrical engineering, edge and
singularity detection in image processing, and etc. It is not an intention of this
note to give a complete survey on frame theory and applications. Details on the
earlier development and applications of Gabor and wavelet frames are provided in
[61, 99, 132, 134, 135] and the references therein. Instead, the purpose here is
to summarize some of contributions of the authors and their collaborators on the
MRA-based wavelet frames and their applications. Special attention is given to ap-
plications of MRA-based tight wavelet frames in image restorations and analysis;
a theme that is easily followed. We hope that these notes can be used for a course
on this subject in future. A short note of such is given in [167].

MRA-based wavelet frames, especially, MRA-based wavelet tight frames, can
be viewed as a generalization of the MRA-based orthonormal wavelet of [60, 131].
Since the publication of [60, 131], especially after the compactly supported MRA-
based orthonormal wavelets being constructed by [60], wavelet analysis and its
applications have been one of the most active research areas in applied mathematics
over the past two decades. Algorithms and methods based on wavelet analysis have
become powerful tools in image/signal processing and analysis. One well known
application of MRA-based wavelets is image compression (see e.g. [132]) using the
orthonormal or bi-orthogonal MRA-based wavelet bases of [56, 60]. Tight wavelet
frames derived from over sampled orthonormal wavelet basis are already used in
noise removal by [57, 77]. The publication of the unitary extension principle of
[158] initiated a new wave of theoretical development, as well as exploration of new
applications of MRA-based tight wavelet frames. Further theoretical developments
on MRA-based wavelet frames can be found in e.g. [52, 65, 106] and the references
therein. In order to be useful in applications, tight wavelet frames that have a
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multiresolution structure are preferred because this guarantees the existence of fast
decomposition and reconstruction algorithms. Recently, MRA-based tight wavelet
frames have been used in image inpainting, image denoising, image deblurring, blind
deblurring, and image decompositions (see e.g. [14, 15, 16, 22, 23, 25, 32, 34, 36,
38]). More recently in [71], the MRA-based tight wavelet frame is used to develop
algorithms for image segmentation. In some of applications mentioned above, the
unitary extension principle is used to design a tight wavelet frame system adapted to
the real life problems in hand, see, e.g. [14, 25, 32, 36, 38]. In other applications,
simple tight wavelet frames derived from the unitary extension principle are used.
Frame based algorithms for 3D surface reconstruction from scattered points and
medical imaging (e.g. tomography) are currently being explored.

The community’s effort to develop redundant wavelet systems that have sparse
approximations for various classes of functions has led to the development of the
MRA-based wavelet frames. The properties of redundancy, sparse approximation
and the existence of fast decomposition and reconstruction algorithms are the key
factors for the wide usage of wavelet frame systems. There are a few other redun-
dant wavelet systems that have been developed and widely used in image/signal
processing and analysis. Such redundant systems include, for example, bi-frames
of [52, 65, 101, 157], bandlets of [132], ridgelets of [78], curvelets of [26, 27],
and shearlets of [102, 123]. We forgo discussing any other redundant wavelet sys-
tems in order to have a clear focus in these lecture notes. Interested readers should
consult the relevant references for further details.

The lecture notes are organized as follows. In Lecture 1, we present the mul-
tiresolution analysis, which lays the foundation of MRA-based wavelets and tight
wavelet frames and provides a platform for multi-level analysis of images/signals.
In Lecture 2, based on the MRA structure, we introduce the unitary extension
principle of [158], which provides a general and convenient framework to construct
MRA-based tight frames (framelets) of L2(Rd). The MRA-based tight frames de-
rived from the unitary extension principle have fast decomposition and reconstruc-
tion algorithms with the same complexity as convolutions. Details of fast algorithms
for framelet decomposition and reconstruction are also given. In Lecture 3, we in-
troduce a general class of refinable functions, called pseudo-splines [65, 165, 75],
which includes B-splines, Daubechies orthogonal refinable function and interpo-
latory refinable functions as special cases. Comprehensive regularity analysis of
pseudo-splines, as well as the construction of (anti)symmetric pseudo-spline tight
frames is provided. In Lecture 4, we present tight frame based models namely, bal-
anced, synthesis based and analysis based approach, as well as the corresponding
fast algorithms for image restoration problems, e.g. image deblurring, denoising
and inpainting. In Lecture 5, we consider some other interesting and important
applications of tight frames. We discuss the model proposed in [18] on blind de-
blurring (motion deblurring to be specific) problems. The major difficulty of blind
deblurring problems is that the convolution kernel is unknown and needs to be
solved simultaneously with the underlying images. Then, we present a frame based
image segmentation model with a fast algorithm for the general image segmenta-
tion problems of [71]. At the end of this lecture, we discuss the model proposed by
[112] on reconstruction of scenes (visible surfaces) from scattered, noisy and pos-
sibly sparse range data (point clouds). High-quality 3D scene modeling has long
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been an important research topic in computer vision, robotic navigation, computer
graphics and animation.



LECTURE 1

Multiresolution Analysis

The concept of multiresolution analysis (MRA) was first introduced by Mallat
[131] and Meyer [134]. It is a general framework that makes constructing orthonor-
mal wavelet bases for L2(R) very easy. The MRA-based compactly supported or-
thonormal wavelet systems were constructed by Daubechies [60]. Furthermore, the
MRA structure grants fast implementation of wavelet decomposition and recon-
struction which makes wavelets a very practical tool for image/signal processing
and analysis.

1. Definitions and Basics

Here, we adopt a more general MRA structure as proposed in [68], rather than
the structure originally proposed by Mallat and Meyer.

For a given function φ ∈ L2(R), we define the shift-invariant subspace V (φ) ⊂
L2(R) generated by φ as

V (φ) := span{φ(· − k), k ∈ Z},
and denote Vn as the 2n-dilate of V (φ), i.e.

(1.1) Vn = span{φ(2n · −k), k ∈ Z}, n ∈ Z.

We have V = V0. A subspace S ⊂ L2(R) is called translation-invariant if for any
t ∈ R and f ∈ S, we have f(· − t) ∈ S. The subspace S is called s-shift-invariant
if for any k ∈ Z and f ∈ S, we have f(· − sk) ∈ S, and in particular if s = 1, we
call S a shift-invariant subspace.

Now for a given sequence of subspaces {Vn}n∈Z, we say that {Vn} forms a
multiresolution analysis (MRA) for L2(R), if the following conditions are satisfied:

(1.2) Vn ⊂ Vn+1, n ∈ Z;

(1.3) ∪nVn = L2(R);

(1.4) ∩nVn = {0}.
Here we call φ the generator of the MRA. The major tasks of Lecture 1 are to
investigate which conditions φ must satisfy in order for the corresponding sequence
of subspaces {Vn}n∈Z to form an MRA, and to study the approximation properties
of an MRA.

To make (1.2) hold, the generator φ ∈ L2(R) must be in V1. Once φ ∈ V1,
the shifts of φ are in V1 as well since V1 is 1

2 -shift invariant. Therefore, to have
V0 ⊂ V1, it is natural to require φ to be refinable. A function φ ∈ L2(R) is said to
be refinable if

(1.5) φ(x) = 2
∑
k∈Z

h0[k]φ(2x− k)

9
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for some h0 ∈ �2(Z). The sequence h0 is called the refinement mask of φ. In Fourier
domain, the definition of refinability of φ can be rewritten as

(1.6) φ̂(2·) = ĥ0φ̂.

Here φ̂ denotes the Fourier transform of φ, and ĥ0 denotes the Fourier series of
sequence h0. Recall that the Fourier transform of a function f ∈ L1(R) is defined
by

f̂(ξ) :=

∫
R

f(t)e−iξtdt, ξ ∈ R,

which can be extended to more general function spaces (e.g. L2(R) or space of
tempered distributions) in a natural manner. The Fourier series of a sequence
h0 ∈ �2(Z) is defined as

ĥ0(ξ) :=
∑
j∈Z

h0[j]e
−ijξ , ξ ∈ R.

It follows from [69, Theorem 2.14] (also see [68]) that φ ∈ V1 whenever (1.6)

holds with ĥ0 being a 2π periodic measurable function. Therefore, we generally do
not need to require h0 ∈ �2(Z). However, we still assume that h0 ∈ �2(Z) for conve-
nience. Indeed, when the unitary extension principle is applied to construct tight
wavelet frames, we normally assume that φ and its shifts form a Bessel sequence,
i.e. there exist C <∞, such that for any sequence b ∈ �2(Z),

(1.7)
∥∥∑
k∈Z

b[k]φ(· − k)
∥∥
L2(R)

≤ C‖b‖�2(Z).

When φ and its shifts form a Bessel sequence, it is easy to prove that φ ∈ V1 under
the assumption that φ is refinable with its mask h0 ∈ �2(Z). Finally, we remark
that when φ ∈ L2(R) is compactly supported, φ automatically satisfies (1.7) (see
Lemma 3.1 in Lecture 3).

Examples of refinable functions include B-splines or more generally pseudo-
splines. Here, we give examples of refinable B-splines, and postpone detailed dis-
cussion on pseudo-splines until Lecture 3. A (centered) B-spline with order m,
denoted as Bm, is defined in the Fourier domain by

(1.8) B̂m(ξ) = e−ij
ξ
2

(
sin(ξ/2)

ξ/2

)m
,

where j = 0 when m is even, j = 1 when m is odd. The corresponding refinement
mask of Bm is

â(ξ) = e−ij
ξ
2 cosm(ξ/2).

The B-spline Bm is a compactly supported function in Cm−2(R) with m as the
length of its support. For detailed discussions about B-splines, one may refer to
[67].

It turns out that we only need to place very mild requirements on φ ∈ L2(R)
for conditions (1.3) and (1.4) be satisfied. For example, any compactly supported

refinable function φ ∈ L2(R) with φ̂(0) 	= 0 will generate an MRA. In particular,
any B-spline of (1.8) generates an MRA. Details will be discussed in the next two
Sections.
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2. Density of the Union of Vn

In the following discussions we denote φn := 2n/2φ(2n·). Then Vn, defined
in (1.1), is the 2−n-shift-invariant subspace generated by φn. We know from [69,
Theorem 2.14] that a function s belongs to Vn if and only if there exists some
2n+1π-period measurable function τ such that

(1.9) ŝ = τφ̂n,

and τφ̂n ∈ L2(R).
Before we give a complete characterization of the density property (1.3) , we

first recall two classical results of [163].

Proposition 1.1. ([163, Theorem 9.5]) For any function f ∈ L2(R) and every
t ∈ R, let ft be the translate of f defined by

ft(x) = f(x− t) x ∈ R.

Then the mapping
t 
→ ft

is a uniformly continuous mapping of R into L2(R).

Proposition 1.2. ([163, Theorem 9.17] or [181] page 100) Let X be a closed
translation-invariant subspace of L2(R) with its Fourier transforms defined as

X̂ := {f̂ : f ∈ X}.
Then we have X̂ = L2(Ω) for some measurable set Ω ∈ R. Let X1 and X2 are

two closed translation-invariant subspaces of L2(R) with X̂1 = L2(Ω1) and X̂2 =
L2(Ω2). Then X1 = X2 if and only if Ω1 = Ω2 modulo a null-set.

Remark 1.1. In particular, when one takes the Ω2 in Proposition 1.2 to be R,
then we have that X̂1 = L2(Ω1) and X̂2 = L2(R). Proposition 1.2 tells us that
X1 = X2 if and only if Ω1 = R modulo a null-set, where we note that X2 = L2(R).

Now, we begin with the following lemma of [68]

Lemma 1.1. Let {Vn}n∈Z be a nested sequence, i.e. (1.2) is satisfied. Then ∪nVn
is a closed translation-invariant subspace of L2(R).

Proof. Let X := ∪Vn. Then X is certainly closed. We first show that if
f ∈ X , and then for any t0 ∈ R, ft0 ∈ X. We take f ∈ X . Since Vn is a
nested sequence, i.e. Vn ⊂ Vn+1, then for n sufficiently large we have f ∈ Vn
(i.e. ∃K > 0, s.t. for all n > K, f ∈ Vn). Since Vn is 2−n-shift-invariant,
ft = f(· + t) is in X for any t = 2−nk, n, k ∈ Z, which means that ft is in X
for all dyadic t = 2−nk, k, n ∈ Z. Proposition 1.1 tells us that translation is a
continuous operation in L2(R), i.e. for any ε > 0, ∃δ > 0 and |s− t| < δ, such that
‖fs − ft‖L2(R) < ε. It is also well known that the dyadic set A := {2kj}k,n∈Z is
dense in R, which means for any t0 ∈ R we can choose t ∈ A s.t. |t− t0| < δ for any
given δ > 0. Then by the continuity of translation of L2 functions, for any t0 ∈ R,
we can always find t ∈ A such that for any ε > 0, ‖ft − ft0‖L2(R) < ε. Since X is

closed, we have ft0 ∈ X.
Now, we show that for g ∈ X and t0 ∈ R, gt0 ∈ X. We take g ∈ X. Then there

always exists a function f ∈ X , s.t. ‖g− f‖L2(R) < ε, ∀ε > 0. We take t0 ∈ R, and
then the equality ‖gt0 − ft0‖L2(R) = ‖g− f‖L2(R) and the closeness of X show that
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gt0 ∈ X , since we have already proved that ft0 ∈ X . This concludes that X = ∪Vn
is a closed translation-invariant subspace of L2(R).

Lemma 1.1 gives us the translation-invariance of ∪Vn which allows us to use
Proposition 1.2 to prove the important theorem below which is first proven in [68]
(also see [115]).

Theorem 1.1. Let {Vn}n∈Z be a nested sequence, i.e. (1.2) is satisfied. Then

∪nVn = L2(R) if and only if Ω0 := ∪nsupp φ̂n = R (modulo a null-set).

Proof. Let X := ∪Vn. From Proposition 1.2 we have X̂ = L2(Ω) for some
measurable set Ω ⊂ R. Moreover, Proposition 1.2 tells us that X = L2(R) if and
only if Ω = R modulo a null-set. We verify that Ω = Ω0 modulo a null-set which

will complete the proof. Since each φn is in X , we must have supp φ̂n ⊂ Ω modulo
a null-set, and so, Ω0 ⊂ Ω modulo a null-set. Now we suppose that Ω \Ω0 contains

a set Ω1 of positive measure. From (1.9), we have supp ŝ ⊂ supp φ̂n for any s ∈ Vn.

Since φ̂n vanishes on Ω1 for all n ∈ Z, so does the Fourier transform of each element
in Vn, n ∈ Z. Hence, each element in ∪Vn has Fourier transform which vanishes on
Ω1. Lastly, if we show that by taking the closure, each element in X has Fourier

transform which vanishes on Ω1, then it contradicts with the fact that X̂ = L2(Ω)
contains L2(Ω1). Thus we will have Ω \ Ω0 is of measure zero, which then implies
that Ω = Ω0 modulo a null-set.

Now take f ∈ X , there exists g ∈ ∪Vn with ĝ vanishes on Ω1, such that for any
ε > 0,

‖f − g‖L2(R) < ε.

Applying Parseval’s identity we have

‖f − g‖L2(R) =
1√
2π

‖f̂ − ĝ‖L2(R).

By the fact that ĝ vanishes on Ω1 we have

1√
2π

‖f̂ − ĝ‖L2(R) ≥
1√
2π

‖f̂ − ĝ‖L2(Ω1) ≥
1√
2π

‖f̂‖L2(Ω1) −
1√
2π

‖ĝ‖L2(Ω1)

=
1√
2π

‖f̂‖L2(Ω1).

Thus we have
1√
2π

‖f̂‖L2(Ω1) < ε.

Therefore f̂ also vanishes on Ω1 and this concludes the proof of this theorem.

Theorem 1.2. [115] Let φ ∈ L2(R) and Vn defined by (1.1). Assume that φ is
refinable. Then,

∪nVn = L2(R)

if and only if

∩n2nZ(φ̂)
is a set of measure zero, where Z(φ̂) := {ξ ∈ R : φ̂(ξ) = 0}.
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Proof. We first note that (1.2) holds because φ is refinable. Indeed, from the
refinement equation (1.6), we have

φ̂(2−n+1ξ) = ĥ0(2
−nξ)φ̂(2−nξ).

Since ĥ0 is 2π-periodic, ĥ0(2
−n·) is 2n+1π-periodic and hence φ(2n−1·) ∈ Vn by

(1.9). Since Vn is 2−n-shift-invariant which is obviously also 2−n+1-shift-invariant,
we have {φ(2n−1 · −k) : k ∈ Z} ⊂ Vn which implies Vn−1 ⊂ Vn.

From Theorem 1.1 we know that ∪Vn = L2(R) if and only if Ω0 := ∪ supp φ̂n =
R modulo a null-set. We will show that Ω0 = R modulo a null-set if and only if

m(∩2nZ(φ̂)) = 0 which will complete the proof. The fact that ∪ supp φ̂n = R
modulo a null-set is equivalent to

m
((

∪ supp φ̂n
)c)

= 0.

Moreover we have (
∪ supp φ̂n

)c
= ∩(supp φ̂n)c = ∩Z(φ̂n),

modulo a null-set. Last, we show that Z(φ̂n) = 2nZ(φ̂). We first note that φ̂n = 0 is

equivalent to φ̂(2−n·) = 0. Now, we take any ξ0 ∈ Z(φ̂n) = {ξ ∈ R : φ̂(2−nξ) = 0}.
We have 2−nξ0 ∈ Z(φ̂) and that means ξ0 ∈ 2nZ(φ̂). We take ξ0 ∈ 2nZ(φ̂) which

means that ξ0 = 2nξ1, where φ̂(ξ1) = 0. Since φ̂(2−nξ0) = φ̂(ξ1) = 0, we obtain

ξ0 ∈ Z(φ̂n). This shows that Z(φ̂n) = 2nZ(φ̂). Now we conclude that

m
((

∪ supp φ̂n
)c)

= m
(
∩ 2nZ(φ̂)

)
.

Therefore, ∪ supp φ̂n = R modulo a null-set if and only if m
(
∩ 2nZ(φ̂)

)
= 0. This

concludes the proof of the theorem.

Corollary 1.1. Let φ ∈ L2(R) and Vn defined by (1.1). Assume that {Vn}n is

nested. If φ̂ is non-zero almost everywhere (a.e.) in some neighborhood of the

origin, we have ∪nVn = L2(R). In particular, assume that φ̂ is continuous at the

origin and φ̂(0) 	= 0. Then we have ∪nVn = L2(R).

Proof. Since φ̂n = 2−n/2φ̂(2−n·), φ̂ being non-zero a.e. on Ω implies φ̂n is
non-zero on 2nΩ. Now if Ω is some neighborhood of the origin, we obtain that

∪ supp φ̂n = R, since ∪2nΩ = R. By Theorem 1.1 we have ∪Vn = L2(R).

Corollary 1.2. Let φ ∈ L2(R) with φ̂(0) = 1 be a compactly supported refinable
function, and Vn is defined as in (1.1). Then ∪nVn = L2(R).

Proof. Since φ is compactly supported, the set of zero points of φ̂, i.e. Z(φ̂)
is of measure zero. Then this corollary follows directly from Theorem 1.2.

3. Triviality of the Intersections of Vn

In this section, we study which requirements placed on φ guarantee that (1.4)
is satisfied. Let us first introduce some basic concepts and notations that are used
in the last section of this lecture as well.
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We define the bracket product of two functions f, g ∈ L2(R), denoted as [f, g],
as follows:

[f, g](ξ) :=
∑
k∈Z

f(ξ + 2πk)g(ξ + 2πk).

It is easy to verify that if f, g ∈ L2(R), then [f, g] ∈ L1([−π, π]), and the Cauchy-
Schwartz inequality gives that

(1.10)
∣∣[f, g]∣∣2 ≤ [f, f ][g, g],

where the right hand side is finite a.e. (see e.g. [114]. Inequality (1.10) shows that
bracket products for functions in L2(R) are well defined.

Using the notation of bracket products, one can easily show that (see Lemma
3.1 in Lecture 3) the shifts of φ forming an orthonormal set, i.e.

〈φ, φ(· − k)〉 = δk,0,

with δk,0 = 0 if k 	= 0 and δ0,0 = 1, is equivalent to

[φ̂, φ̂] = 1 a.e.

We need the following lemma to prove the main theorem of this section.

Lemma 1.2. For a given φ ∈ L2(R), one can always find ψ ∈ L2(R) such that
V (φ) ⊂ V (ψ) and the shifts of ψ are orthonormal.

Proof. For given φ ∈ L2(R), we define ψ as follows:

ψ̂(ξ) :=

⎧⎪⎨⎪⎩
φ̂(ξ)√
[φ̂,φ̂](ξ)

, if [φ̂, φ̂](ξ) > 0;

1, if [φ̂, φ̂](ξ) = 0 and ξ ∈ [−π, π);
0, elsewhere.

Since [φ̂, φ̂] ∈ L1(R), it is finite almost everywhere, and thus

[ψ̂, ψ̂](ξ) = 1 for almost all ξ ∈ R.

Hence ψ ∈ L2(R) and the shifts of ψ are orthonormal. Moreover,

φ̂ =

√
[φ̂, φ̂]ψ̂.

Then (1.9) implies that φ ∈ V (ψ), and hence V (φ) ⊂ V (ψ).

The following result was first proven in [68] and the proof given here is from
[115]).

Theorem 1.3. Given any φ ∈ L2(R), we have ∩nVn = {0}.

Proof. By lemma 1.2, it suffices to prove the theorem for the case when
{φ(· − k), k ∈ Z} is an orthonormal set. We note that whenever {φ(· − k), k ∈ Z}
forms an orthonormal set, so does {2n/2φ(2n · −k), k ∈ Z}. Here we denote φn,k :=

2n/2φ(2n · −k).
Let Pn be the orthogonal projector from L2(R) onto Vn. The theorem will be

established if we can prove

(1.11) Pnf → 0 as n→ −∞
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for every f ∈ L2(R). Note that compactly supported functions are dense in L2(R),
which means there always exists f̃ ∈ L2(R) which is compactly supported and

‖f − f̃‖L2(R) < ε.

Hence suppose we have Pnf̃ → 0, n→ −∞, then

‖Pnf‖L2(R) − ‖Pnf̃‖L2(R) ≤ ‖Pnf − Pnf̃‖L2(R)

= ‖Pn(f − f̃)‖L2(R)

≤ ‖f − f̃‖L2(R) ≤ ε

which means that Pnf̃ → 0 implies Pnf → 0. So it is sufficient to show that (1.11)
is true for any compactly supported function f ∈ L2(R). Let f be such a function.
Then Pnf can be expressed as

Pnf =
∑
k∈Z

cn[k]φn,k,

where

cn[k] =

∫
R

f(x)φn,k(x)dx

are sequences in �2(Z). Since the shifts of φ are orthonormal, we deduce from the
equation of Pnf that

‖Pnf‖2L2(R)
= ‖cn‖2�2(Z)

=
∑
k∈Z

|
∫
R

f(x)φn,k(x)dx|2

≤
∑
k∈Z

( ∫
R

|f(x)φn,k(x)|dx
)2

=
∑
k∈Z

( ∫
R

|f(x)2n/2φ(2nx− k)|dx
)2

.

The first identity follows by Plancherel formula for the orthonormal basis {φn,k}k∈Z.
If f is supported in the interval [−R,R], then by the Cauchy-Schwartz inequality
we have,

‖Pnf‖2L2(R)
≤ ‖f‖2L2(R)

∑
k∈Z

∫
{2n[−R,R]−k}

|φ(x)|2dx.

Now if n < 0 and |n| is sufficiently large, we have that

{2n[−R,R]− k1} ∩ {2n[−R,R]− k2} = ∅, k1 	= k2.

Therefore,

(1.12) ‖Pnf‖2L2(R)
≤ ‖f‖2L2(R)

∫
En

|φ(x)|2dx = ‖f‖2L2(R)

∫
R

χEn |φ(x)|2dx,

where

En = ∪k∈Z(2
n[−R,R]− k).

Since when n → −∞, χEn |φ(x)|2 → 0 for almost every x ∈ R, and χEn |φ(x)|2 ≤
|φ(x)|2 ∈ L1(R), then by the dominated convergence theorem we have

lim
n→−∞ ‖f‖2L2(R)

∫
R

χEn |φ(x)|2dx = ‖f‖2L2(R)

∫
R

lim
n→−∞χEn |φ(x)|2dx = 0.
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Thus limn→−∞ ‖Pnf‖2L2(R)
= 0.

Now we summarize the results we get in this section and the previous one in
the following theorem.

Theorem 1.4. Let φ ∈ L2(R), and Vn defined as in (1.1). Then,

(1) ∩nVn = {0};
(2) Assume, in addition, that φ is refinable. Then,

∪nVn = L2(R)

if and only if

∩n2nZ(φ̂)
is a set of measure zero, where Z(φ̂) := {ξ ∈ R : φ̂(ξ) = 0}.

In particular, the sequence of subspaces {Vn}n∈Z generated by φ ∈ L2(R) forms an
MRA if either of the following condition is satisfied:

(1) φ is a compactly supported refinable function with φ̂(0) 	= 0 ;

(2) φ is refinable and φ̂ is continuous at 0 with φ̂(0) 	= 0.

4. Approximation

In order to obtain a function in Vn that provides a good approximation to
a given function f , one needs an approximation scheme. One of the commonly
used approximation schemes is the quasi-interpolation scheme. There are many
quasi-interpolatory schemes that give good approximations. We start by defining
the quasi-interpolatory scheme that is used in MRA-based tight wavelet frame
approximation.

For any function f ∈ L2(R), the dyadic dilation operator D is defined by

Df(x) :=
√
2f(2x) and the translation operator T is defined by Taf(x) := f(x− a)

for a ∈ R. Given j ∈ Z, we have TaDj = DjT2ja. Define φn,k := DnTkφ.
For a given φ ∈ L2(R) that generates an MRA {Vn}n, the quasi-interpolatory

operator used here is defined as

(1.13) Pn : f 
→
∑
k∈Z

〈f, φn,k〉φn,k,

for an arbitrary f ∈ L2(R).
We first provide the following proposition which will become handy for our

analysis.

Proposition 1.3. Let f, φ ∈ L2(R). Assume that [φ̂, φ̂] is essentially bounded.
Then

(1) The shifts of φ form a Bessel system, i.e. (1.7) is satisfied. Furthermore,

the Bessel bound, C in (1.7), is equal to ‖[φ̂, φ̂]‖
1
2

L∞([−π,π]).

(2) The 2π-periodic function [f̂ , φ̂] ∈ L1([−π, π]) is the Fourier series of the
sequence {〈f, φ(· − k)〉 : k ∈ Z}. As a consequence,∑

k∈Z

〈f, φ(· − k)〉e−ikξ = [f̂ , φ̂](ξ)

almost everywhere.
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(3) The operator Pn is bounded with bound ‖[φ̂, φ̂]‖L∞([−π,π]). Furthermore,
the Fourier transform of Pnf satisfies

(1.14) P̂nf = [f̂(2n·), φ̂](2−n·)φ̂(2−n·)

Proof. For (1), we denote φ̃ := [φ̂, φ̂]
1
2 . The Plancherel theorem says that for

all finite sequences b ∈ �2(Z) we have

2π

∥∥∥∥∥∑
k∈Z

b[k]φ(· − k)

∥∥∥∥∥
2

L2(R)

= ‖b̂φ̂‖2L2(R)
.

By breaking the real line into R = ∪k∈Z{[−π, π] + 2kπ} and noticing that b̂ is
2π-periodic, we have

‖b̂φ̂‖2L2(R)
=

∫
R

|̂b(ξ)|2|φ̂(ξ)|2dξ

=
∑
k∈Z

∫
[−π,π]+2kπ

|̂b(ξ)|2|φ̂(ξ)|2dξ

=
∑
k∈Z

∫ π

−π
|̂b(ξ)|2|φ̂(ξ + 2kπ)|2dξ

= ‖b̂φ̃‖2L2([−π,π]).

Therefore, we obtain the following identity

(1.15) 2π

∥∥∥∥∥∑
k∈Z

b[k]φ(· − k)

∥∥∥∥∥
2

L2(R)

= ‖b̂φ̃‖2L2([−π,π]).

Suppose φ̃ is essentially bounded. Then (1.15) is satisfied for all b ∈ �2(Z). There-
fore,

‖b̂φ̃‖L2([−π,π]) ≤ C‖b̂‖L2([−π,π]),

with C = ‖φ̃‖L∞([−π,π]) and thus (1.7) follows.

For (2), using Fubini’s theorem and the fact that eikξ is 2π-periodic, we have,∫ π

−π
[f̂ , φ̂](ξ)eikξdξ =

∫ π

−π

∑
k∈Z

f̂(ξ + 2kπ)φ̂(ξ + 2kπ)eikξdξ

=
∑
k∈Z

∫ π

−π
f̂(ξ + 2kπ)φ̂(ξ + 2kπ)eikξdξ

=
∑
k∈Z

∫
[−π,π]+2kπ

f̂(ξ)φ̂(ξ)eikξdξ

=

∫
R

f̂(ξ)φ̂(ξ)eikξdξ,

for any k ∈ Z. Now by the Plancherel theorem, we have∫
R

f̂(ξ)φ̂(ξ)eikξdξ =

∫
R

f̂(ξ)φ̂(ξ)e−ikξdξ = 2π

∫
R

f(x)φ(x − k)dx.

Therefore, we have

1

2π

∫ π

−π
[f̂ , φ̂](ξ)eikξdξ = 〈f, φ(· − k)〉.
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This means that [f̂ , φ̂](ξ) is the Fourier series of {〈f, φ(· − k)〉 : k ∈ Z}.
For (3), the boundedness of Pn follows directly from the facts that ‖Pn‖ = ‖P0‖

for all n ∈ Z and the shifts of φ form a Bessel system. Now, we show the identity
(1.14) in part (3). Notice that Pn = DnP0D−n. Therefore, all we need to show is
that

(1.16) P̂0f = [f̂ , φ̂]φ̂.

Indeed, we have

P̂0f(ξ) =

∫
R

∑
k∈Z

〈f, φ(· − k)〉φ(x − k)e−iξxdx

=
∑
k∈Z

〈f, φ(· − k)〉e−ikξ
∫
R

φ(x− k)e−iξ(x−k)dx

=
∑
k∈Z

〈f, φ(· − k)〉e−ikξ φ̂(ξ)

= [f̂ , φ̂](ξ)φ̂(ξ),

where the switching of orders of summation and integration is justified by the
fact that the summation converges in the sense of L2(R) and Fourier transform is
continuous on L2(R).

We say that Pn provides approximation order m if, for all f ∈ Wm
2 (R),

‖f − Pnf‖L2(R) = O(2−nm).

Here Wm
2 (R), m ∈ R+, are Sobolev spaces defined by

Wm
2 (R) := {f ∈ L2(R) : ‖f‖Wm

2 (R) :=
√
2π‖(1 + | · |)mf̂‖L2(R) <∞}.

The rest of this section is devoted to the analysis of approximation orders of Pn.
As one will see, the approximation order of Pn is closely related to the property of

1− |φ̂|2 and [φ̂, φ̂]− |φ̂|2 at the origin.

In the following discussions, we denote |f | = O(| · |m) whenever limx→0
|f |(x)
|x|m ≤

C with C > 0. We say that a function has zero of order m if f (j)(0) = 0 for
j = 0, 1, . . . ,m − 1. It is clear that whenever f ∈ Cm and it has zero of order m,
then |f | = O(| · |m). For convenience of arguments, whenever we say that f has
zero of order m, we implicitly assume that f ∈ Cm (although we only require the
existence of f (m−1) in the original definition).

The following theorem, whose proof follows similar ideas of [69], shows the
approximation order of the operator Pn depends on the behavior of the function

[φ̂, φ̂]− |φ̂|2 at the origin.

Theorem 1.5. Let Pn be defined by (1.13) for a given function φ ∈ L2(R) satisfying

(1) [φ̂, φ̂] is essentially bounded;

(2) [φ̂, φ̂]− |φ̂|2 = O(| · |2m);

(3) 1− |φ̂|2 = O(| · |2m0).

Then, Pn provides approximation order m1 = min{m, 2m0}.
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Proof. Part (3) of Proposition 1.3 gives us

P̂nf = [f̂(2n·), φ̂](2−n·)φ̂(2−n·)

=
∑
k∈Z

f̂(ξ + 2n+1kπ)φ̂(2−nξ + 2kπ)φ̂(2−nξ).

Then we have

‖P̂nf − f̂‖2L2(R)
=

∫
R

∣∣∣[f̂(2n·), φ̂](2−nξ)φ̂(2−nξ)− f̂(ξ)
∣∣∣2 dξ

=

∫
R

∣∣∣[f̂(2n·), φ̂](2−nξ)∣∣∣2 ∣∣∣φ̂(2−nξ)∣∣∣2 dξ
−

∫
R

[f̂(2n·), φ̂](2−nξ)φ̂(2−nξ)f̂(ξ)dξ

−
∫
R

[f̂(2n·), φ̂](2−nξ)φ̂(2−nξ)f̂(ξ)dξ + ‖f̂‖2L2(R)

Since [f̂(2n·), φ̂](2−nξ) is 2n+1π-periodic, we have∫
R

∣∣∣[f̂(2n·), φ̂](2−nξ)∣∣∣2 ∣∣∣φ̂(2−nξ)∣∣∣2 dξ
=

∑
l∈Z

∫
2n([−π,π]+2lπ)

∣∣∣[f̂(2n·), φ̂](2−nξ)∣∣∣2 ∣∣∣φ̂(2−nξ)∣∣∣2 dξ
=

∫
2n[−π,π]

∣∣∣[f̂(2n·), φ̂](2−nξ)∣∣∣2 [φ̂, φ̂](2−nξ)dξ.
Similarly, we have∫

R

[f̂(2n·), φ̂](2−nξ)φ̂(2−nξ)f̂(ξ)dξ =
∫
2n[−π,π]

∣∣∣[f̂(2n·), φ̂](2−nξ)∣∣∣2 dξ
=

∫
R

[f̂(2n·), φ̂](2−nξ)φ̂(2−nξ)f̂(ξ)dξ.

Now altogether, we have

‖P̂nf − f̂‖2L2(R)
=

∫
2n[−π,π]

∣∣∣[f̂(2n·), φ̂](2−nξ)∣∣∣2 ([φ̂, φ̂](2−nξ)− 1
)
dξ

+ ‖f̂‖2L2(R)
−

∫
2n[−π,π]

∣∣∣[f̂(2n·), φ̂](2−nξ)∣∣∣2 dξ.
Now suppose suppf̂ ⊂ 2n[−π, π]. Then

∑
k∈Z

f̂(ξ + 2n+1kπ)φ̂(2−nξ + 2kπ) = f̂(ξ)φ̂(2−nξ)
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on 2n[−π, π]. Thus,

‖P̂nf − f̂‖2L2(R)
=

∫
2n[−π,π]

∣∣∣f̂(ξ)φ̂(2−nξ)∣∣∣2 ([φ̂, φ̂](2−nξ)− 1
)
dξ

+

∫
2n[−π,π]

|f̂(ξ)|2(1− |φ̂(2−nξ)|2)dξ

=

∫
2n[−π,π]

∣∣∣f̂(ξ)φ̂(2−nξ)∣∣∣2 ([φ̂, φ̂](2−nξ)− |φ̂(2−nξ)|2
)
dξ

+

∫
2n[−π,π]

|f̂(ξ)|2
(
|φ̂(2−nξ)|2 − 1

)2

dξ

Since [φ̂, φ̂] is essentially bounded, then when n is large enough, we have

‖P̂nf − f̂‖2L2(R)
≤ C

∫
2n[−π,π]

|f̂(ξ)|2
∣∣∣[φ̂, φ̂](2−nξ)− |φ̂(2−nξ)|2

∣∣∣dξ
+

∫
2n[−π,π]

|f̂(ξ)|2
(
|φ̂(2−nξ)|2 − 1

)2

dξ

= C

∫
2n[−π,π]

(1 + |ξ|)2m̃|f̂(ξ)|2
∣∣∣[φ̂, φ̂](2−nξ)− |φ̂(2−nξ)|2

∣∣∣
(1 + |ξ|)2m̃ dξ

+

∫
2n[−π,π]

(1 + |ξ|)2m̃|f̂(ξ)|2
(
|φ̂(2−nξ)|2 − 1

)2

(1 + |ξ|)2m̃ dξ.

Therefore, Pnf provides approximation order m̃ for all f ∈ W m̃
2 (R) with suppf̂ ⊂

2n[−π, π] whenever we have∥∥∥∥∥ [φ̂, φ̂](2−nξ)− |φ̂(2−nξ)|2
(1 + |ξ|)2m̃

∥∥∥∥∥
L∞(2n[−π,π])

≤ C2−2nm̃,

and ∥∥∥∥∥∥∥
(
|φ̂(2−nξ)|2 − 1

)2

(1 + |ξ|)2m̃

∥∥∥∥∥∥∥
L∞(2n[−π,π])

≤ C2−2nm̃,

for n large enough. The above two inequalities are equivalent to∥∥∥∥∥ [φ̂, φ̂](ξ)− |φ̂(ξ)|2
(2−n + |ξ|)2m̃

∥∥∥∥∥
L∞([−π,π])

≤ C,

and ∥∥∥∥∥∥∥
(
|φ̂(ξ)|2 − 1

)2

(2−n + |ξ|)2m̃

∥∥∥∥∥∥∥
L∞([−π,π])

≤ C,

which are all satisfied when m̃ = m1 = min{m, 2m0}.
So far we have established that for f ∈ Wm1

2 (R) with suppf̂ ⊂ 2n[−π, π], we
have

‖Pnf − f‖L2(R) ≤ C2−nm1 .
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Now consider general f ∈ Wm1
2 (R) and define ĝ := χ2n[−π,π]f̂ . Then we have

‖Pnf − f‖L2(R) − ‖Png − g‖L2(R) ≤ ‖Pnf − f − Png + g‖L2(R)

≤ ‖Pn(f − g)‖L2(R) + ‖f − g‖L2(R)

≤ C‖f̂ − ĝ‖L2(R),

where the last inequality follows from the boundedness of operator Pn because

[φ̂, φ̂] is essentially bounded (part (1) of Proposition 1.3). Since we have already

established that ‖Png−g‖L2(R) ≤ C2−nm1 , all we need to show is that ‖f̂−ĝ‖L2(R) ≤
C2−nm1 for every n. Indeed, we have

‖f̂ − ĝ‖2L2(R)
=

∫
R

(
1− χ2n[−π,π](ξ)

)
|f̂(ξ)|2dξ

= 2n
∫
R

(
1− χ[−π,π](ξ)

)
|f̂(2nξ)|2dξ

= 2n
∫
R\[−π,π]

|f̂(2nξ)|2dξ

= 2n
∫
R\[−π,π]

(1 + |2nξ|)2m1 |f̂(2nξ)|2
(1 + |2nξ|)2m1

dξ.

Letting ν := (1 + | · |)m1 f̂ , we then have

‖f̂ − ĝ‖2L2(R)
= 2n(1−2m1)

∫
R\[−π,π]

|ν(2nξ)|2
(2−n + |ξ|)2m1

dξ

≤ C12
n(1−2m1)

∫
R\[−π,π]

|ν(2nξ)|2dξ

= C12
−2nm1

∫
2n(R\[−π,π])

|ν(ξ)|2dξ

≤ C22
−2nm1 .

This concludes the proof of the theorem.

The approximation order of the quasi-interpolatory operator Pn may not reach
the maximal approximation order that space Vn provides. Recall that for a given
shift-invariant subspace V of L2(R) and any function f ∈ L2(R), the approximation
error of V to function f is defined as

E(f, V ) := min{‖f − g‖L2(R) : g ∈ V }.

We say that the shift-invariant subspace V (φ) provides approximation order m (or
we say φ provides approximation order m) if, for every f ∈ Wm

2 (R),

(1.17) E(f, Vn) = O(2−nm).

If {Vn}n generates an MRA, we say that the MRA provides approximation order
m if V (φ) (or φ) provides an approximation order m.

When the shifts of φ form a Bessel system, we have Pnf ∈ Vn. Therefore, the
approximation order of Pnf can never exceed that of V (φ). The two approximation
orders coincide when, for example, Pn is an orthogonal projector.
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It was shown in [69] that the approximation order of V (φ) is completely deter-
mined by the following function

(1.18) Λφ :=
(
1− |φ̂|2

[φ̂, φ̂]

)1/2

, on [−π, π].

As shown in the following theorem, the behavior of the function Λφ at the origin is
crucial. The proof of the theorem is omitted here and we refer interested readers
to the original paper [69] for details.

Theorem 1.6. [69] The shift-invariant subspace V (φ) (or φ) provides approxi-
mation order m > 0 if and only if the function Λφ defined on the set ([−π, π])
as

(1.19) Λφ :=

(
1− |φ̂|2

[φ̂, φ̂]

)1/2

,

satisfies | · |mΛφ ∈ L∞([−π, π]).

The condition (1.19) is closely related to the Strang-Fix conditions of φ. Recall
that a function φ satisfies the Strang-Fix (SF) conditions of order m ∈ N+ if

(1.20) φ̂(0) 	= 0, φ̂(j)(2πk) = 0, j = 0, 1, 2, ...,m− 1, k ∈ Z\{0}.
It is shown in [69] that under certain conditions on φ (e.g. if φ is compactly

supported and φ̂(0) 	= 0), (1.19) is equivalent to the SF conditions, meaning V (φ)
(or φ) provides approximation order m if and only if φ satisfies SF conditions of
order m.

When φ̂ is smooth enough, e.g. when φ is compactly supported and φ̂(0) 	= 0,
assumption (2) of Theorem 1.5 is equivalent to the Strang-Fix (SF) conditions. In
this case, we can easily see that assumption (2) of Theorem 1.5 ensures that the
approximation order of V (φ) ism. If, in addition, m0 in assumption (3) of Theorem
1.5 satisfies the inequality 2m0 ≥ m, then Theorem 1.5 asserts that the operator
Pn attains the approximation order of the space Vn.

If φ is a compactly supported refinable function with a finitely supported mask,

h0, satisfying ĥ0(0) = 1, it satisfies the SF conditions of order m. Hence φ provides

an approximation order m whenever ĥ0 has a zero of order m at π. On the other
hand, Proposition 2.1 in the next lecture will show that assumption (3) of Theorem

1.5, i.e. 1− |φ̂|2 = O(| · |2m0), is equivalent to the condition 1− |ĥ0|2 = O(| · |2m0).
Therefore, the approximation order of V (φ), with φ satisfying some additional mild
conditions, is entirely determined by the refinement mask h0 of φ. In fact, as we
will see in the following two lectures, not only the approximation order of V (φ),
but also the regularity of φ can be easily characterized by h0. Furthermore, thanks
to the MRA structure and the unitary extension principle [158], the constructions
of tight frames and the approximation properties of the tight frames can also be
easily obtained from corresponding properties of h0.



LECTURE 2

MRA-Based Tight Wavelet Frames

This lecture is devoted to MRA-based tight wavelet frames. We first introduce
the general notion of tight wavelet frames in space L2(R) with some other basic
concepts and notations.

For any function f ∈ L2(R), the dyadic dilation operator D is defined by

Df(x) :=
√
2f(2x) and the translation operator T is defined by Ttf(x) := f(x− t)

for t ∈ R. Given j ∈ Z, we have TtDj = DjT2jt.
For given Ψ := {ψ1, . . . , ψr} ⊂ L2(R), define the wavelet system (or affine

system) as

(2.1) X(Ψ) := {ψ�,n,k : 1 ≤ � ≤ r; n, k ∈ Z},
where ψ�,n,k = DnTkψ� = 2n/2ψ�(2

n · −k). The system X(Ψ) ⊂ L2(R) is called a
tight wavelet frame of L2(R) if

‖f‖2L2(R)
=

∑
g∈X(Ψ)

| 〈f, g〉 |2,

holds for all f ∈ L2(R), where 〈·, ·〉 is the inner product in L2(R) and ‖ · ‖L2(R) =√
〈·, ·〉. This is equivalent to

f =
∑

g∈X(Ψ)

〈f, g〉 g,

for all f ∈ L2(R). Here {〈f, g〉}g∈X(Ψ) is called canonical tight frame coefficients.
It is clear that an orthonormal basis is a tight frame. When X(Ψ) forms an

orthonormal basis of L2(R), then X(Ψ) is called an orthonormal wavelet basis.
When X(Ψ) forms a tight frame of L2(R), then X(Ψ) is called a tight wavelet
(affine) frame. We note that in some literature, the definition of tight frame we
present is called the tight frame with bound one or Parseval frame.

More generally, the system X(Ψ) ⊂ L2(R) is called a wavelet frame of L2(R)
if there are constants 0 < C1 ≤ C2 <∞ such that

(2.2) C1‖f‖2L2(R)
≤

∑
g∈X(Ψ)

| 〈f, g〉 |2 ≤ C2‖f‖2L2(R)
,

holds for all f ∈ L2(R). We call X(Ψ) a Bessel system if only the right inequality
holds.

Recall that for a given system X(Ψ), the corresponding frame operator is de-
fined by

Sf =
∑

g∈X(Ψ)

〈f, g〉 g, f ∈ L2(R).

It is clear that X(Ψ) is a frame of L2(R) if and only if S is bounded and has a
bounded inverse; X(Ψ) is a tight frame of L2(R) if and only if S is the identity. For

23
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comprehensive characterizations of frames in terms of various operators associated
with them, the papers [156, 162] and the book [50] are good references.

The first interesting question is how to choose Ψ such that X(Ψ) is a tight
frame, or more generally a frame for L2(R). A general characterization of all
wavelet frames whose dilation matrix is an integral (via dual Gramian analysis of
[156, 162]) provided in [158] and derived from it a special characterization of tight
wavelet frames in [158] and bi-frame in [157].

The dual Gramian analysis identifies the frame operator corresponding to the
wavelet system X(Ψ) as the dual Gramian matrix with each entry being written
in terms of the Fourier transform of the generators Ψ. The dual Gramian analysis
decomposes the operator S into a collection of simpler operators which are called
fibers in [156, 162] in Fourier domain. The operator S is bounded and has a
bounded inverse if and only if almost every fiber operator is uniformly bounded
and has a uniformly bounded inverse. S is the identity operator if and only if
almost every fiber operator is the identity operator. This leads to the conclusion
that the wavelet system X(Ψ) forms a tight frame of L2(R) if and only if the dual
Gramian corresponding to the wavelet system X(Ψ) is the identity operator almost
everywhere. By writing each entry of the dual Gramian explicitly, one obtains the
following theorem (see, e.g. Corollary 1.3 of [158]). For general results and dual
Gramian analysis, interested readers should consult [158, 156, 162] for details.
Note that the dual Gramian analysis was also applied to the Gabor frame analysis
in [159] to derive the duality principle for the Gabor frames.

Theorem 2.1. [158] The wavelet system X(Ψ) is a tight frame of L2(R) if and
only if the identities

(2.3)
∑
ψ∈Ψ

∑
k∈Z

|ψ̂(2kξ)|2 = 1;
∑
ψ∈Ψ

∞∑
k=0

ψ̂(2kξ)ψ̂(2k(ξ + (2j + 1)2π)) = 0 j ∈ Z

hold for a.e. ξ ∈ R. Furthermore, X(Ψ) is an orthonormal basis of L2(R) if and
only if (2.3) holds and ‖ψ‖ = 1 for all ψ ∈ Ψ.

There were many contributions over the last two decades to the study of the
Bessel frame and other related properties of wavelet systems. Examples of uni-
variate wavelet frames can be found in [63]; necessary and sufficient conditions
for mother wavelets to generate frames were discussed (implicitly) in [61, 134].
Characterizations of univariate orthonormal bases associated with integer dilation
were established independently in [98] and [108]. The multivariate counterparts of
these results for the dyadic dilation appeared in [93]. Characterization of bi-frames
(tight frame is a special case) in multivariate case for an integer dilation matrix
was given in [101]. Independent of all these, as discussed before Theorem 2.1, a
general characterization of all wavelet frames whose dilation matrix is an integral
(via dual Gramian analysis) were provided in [158] and derived from it a special
characterization of tight wavelet frames in [158] and bi-frame in [157].

Although Theorem 2.1 gives a complete characterization of the wavelet system
X(Ψ) being a tight frame of L2(R) and it helps to obtain tight wavelet frame systems
with band-limited generators, directly applying this theorem provides little help in
the construction of wavelet systems with compactly supported generators. On the
other hand, because fast decomposition and reconstruction algorithms exist for
compactly supported tight wavelet frames constructed from an MRA, these frames
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are very handy to use in practice. This motivates the study of MRA-based tight
wavelet frames in [158]. The key is the introduction of extension principles, e.g.
the unitary extension principle. The MRA-based band-limited tight wavelet frames
are also constructed in [6] without invoking extension principles.

1. Extension Principles

In this section, we introduce the unitary extension principle (UEP), which leads
to explicit constructions of tight wavelet frames based on the multiresolution anal-
ysis generated by a refinable function φ. In particular, examples of spline tight
wavelet frame will be given. The approximation order of tight wavelet frames is
studied and the fast algorithm for tight wavelet frame derived from the unitary
extension principle is discussed as well. Also, the decomposition and reconstruc-
tion algorithms for the MRA-based tight wavelet frames are provided. We briefly
introduce other extension principles as well. Although the main interest here is
to construct compactly supported tight frames with finitely supported masks, we
state the UEP in a more general setting. An even more general form of the UEP
(e.g. multivariate case) can be found in [65, 158]).

1.1. Unitary Extension Principle

Let {Vn}n∈Z be the MRA generated by the refinable function φ with refinement
mask h0. The construction of tight frame systems starts with the construction of
Ψ ⊂ L2(R). The objective of MRA-based construction of tight wavelet frames is to
find Ψ = {ψ1, . . . , ψr} ⊂ V1 such that X(Ψ) forms a tight frame for L2(R). Since
V1 is a 1

2 -shift-invariant subspace generated by φ(2·), finding Ψ ⊂ V1 is the same as
finding h� such that

(2.4) ψ�(x) = 2
∑
k∈Z

h�[k]φ(2x− k).

The sequences h1, . . . , hr are called wavelet masks, or the high pass filters of the
system; the refinement mask h0 is also known as the low pass filter. In the Fourier
domain, (2.4) can be written as

(2.5) ψ̂�(2·) = ĥ�φ̂, � = 1, . . . , r,

where ĥ1, . . . , ĥr are 2π periodic functions. Throughout this lecture, φ and masks
{h�, � = 0, 1, . . . , r} are assumed to satisfy the following mild assumptions:

Assumptions 2.1. All MRA-based constructions that are considered in this article
are assumed to satisfy the following assumptions:

(1) Each mask of {h� : � = 0, 1, . . . , r} is a sequence in �2(Z) and its Fourier

series ĥ� is measurable and (essentially) bounded.
(2) The refinement mask h0 of refinable function φ ∈ L2(R) satisfies

|ĥ0(ξ)− 1| ≤ C|ξ|.
(3) The function [φ̂, φ̂] :=

∑
k∈2πZ |φ̂(·+ k)|2 is essentially bounded, which is

equivalent to (1.7) (see [70]), i.e. the shifts of φ form a Bessel system.

Under the assumption in item 2, the proof of Theorem 3.1 reveals the following
property of φ

lim
ξ→0

φ̂(ξ) = 1.
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Our analysis in the previous lecture shows that the sequence of subspaces {Vn}n
defined in (1.1) forms an MRA. When φ is a compactly supported refinable function

generated by a finitely supported refinement mask with φ̂(0) = 1, all conditions in
Assumption 2.1 are satisfied. We note that item 2 in Assumption 2.1 is in fact not
necessary and were not required in the original proof of UEP [158]. We include
them here for the simplicity of the proof.

For the UEP in the most general setting with mild assumptions, interested
readers should consult [65, 158] for the details. The univariate version of the UEP
of [158] can be stated as following.

Theorem 2.2 (Unitary Extension Principle, (UEP) [158]). Let φ ∈ L2(R) be a
refinable function with refinement mask h0 and {h1, . . . , hr} be a set of sequences.
Assume that the refinable function φ and masks {h0, h1, . . . , hr} satisfy Assumption
2.1. Then the system X(Ψ) where Ψ = {ψ1, . . . , ψr} defined in (2.4) forms a tight
frame in L2(R) provided the equalities

(2.6)

r∑
�=0

|ĥ�(ξ)|2 = 1 and

r∑
�=0

ĥ�(ξ)ĥ�(ξ + π) = 0

hold for almost all ξ ∈ σ(V0), where

(2.7) σ(V0) := {ξ ∈ R : [φ̂, φ̂](ξ) 	= 0}.
Furthermore, assuming r = 1 and ‖φ‖L2(R) = 1, then X(Ψ) is an orthonormal
wavelet bases of L2(R).

First, we note that in order to use the UEP, the mask h0 must necessarily
satisfy

(2.8) |ĥ0(ξ)|2 + |ĥ0(ξ + π)|2 ≤ 1.

Indeed, the UEP condition (2.6) means that the following matrix has the two rows
orthonormal to each other(

ĥ0(ξ), ĥ1(ξ), · · · , ĥr(ξ)

ĥ0(ξ + π), ĥ1(ξ + π), · · · , ĥr(ξ + π),

)
i.e. ξ ∈ R.

Then one can extend the above matrix to a (r+1)×(r+1) unitary matrix. The fact
that the first column of the extended matrix has norm one implies the inequality
(2.8).

Conditions in (2.6) can be written in terms of sequences {h0, h1, . . . , hr}. The
first condition becomes

(2.9)

r∑
�=0

∑
k∈Z

h�[k]h�[k − p] = δp,0, p ∈ Z,

where δp,0 = 1 when p = 0 and 0 otherwise, and the second condition can be written
as

(2.10)

r∑
�=0

∑
k∈Z

(−1)k−ph�[k]h�[k − p] = 0, p ∈ Z.

Before proving Theorem (2.2), we first prove the following Lemma 2.1. We
will prove Lemma 2.1 in the Fourier domain which is similar to the proof of [65,
Lemma 2.4]. Also, we demonstrate another proof of Lemma 2.1 in the time domain
with some additional assumptions. The reason that we are showing the proof of
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identity (2.12) in the time domain is because both the identity itself and the proof
of it are the foundation of the fast decomposition and reconstruction algorithms for
MRA-based wavelet frame systems.

For a given φ and its corresponding MRA {Vn}n, the quasi-interpolatory oper-
ator is defined as (same as (1.13))

(2.11) Pn : f 
→
∑
k∈Z

〈f, φn,k〉φn,k,

for an arbitrary f ∈ L2(R).

Lemma 2.1. Let φ ∈ L2(R) be a refinable function with mask h0. Let

{h0, h1, . . . , hr}

be a set of sequences satisfying (2.6) (or equivalently (2.9) and (2.10)) and As-
sumption 2.1. Then

(2.12) Pnf = Pn−1f +

r∑
�=1

∑
k∈Z

〈f, ψ�,n−1,k〉ψ�,n−1,k.

Proof. To simplify notations, let φ be defined as ψ0, and

Pn,�f :=
∑
k∈Z

〈f, ψ�,n,k〉ψ�,n,k,

for � = 0, 1, . . . , r. Note that Pn,0 = Pn. By Assumption 2.1, the system {ψ�,n,k; k ∈
Z} for each � and n, forms a Bessel system. Hence the operator Pn,� : L2(R) 
→
L2(R) is well-defined. Therefore, (2.12) is equivalent to

(2.13) P̂nf =

r∑
�=0

P̂n−1,�f.

Since Pn,� = DnP0,�D−n, we only need to show (2.13) for n = 1, i.e.

(2.14) P̂1f =

r∑
�=0

P̂0,�f.

By Proposition 1.3 item (3), (2.14) is equivalent to

(2.15) [f̂(2·), φ̂]( ·
2
)φ̂(

·
2
) =

r∑
�=0

[f̂ , ψ̂�]ψ̂�.
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Indeed, since ψ̂� = ĥ�(
·
2 )φ̂(

·
2 ), we thus have

r∑
�=0

[f̂ , ψ̂�]ψ̂� =

r∑
�=0

[f̂ , ĥ�(
·
2
)φ̂(

·
2
)]ĥ�(

·
2
)φ̂(

·
2
)

=

r∑
�=0

(
ĥ�(

·
2
)[f̂(2·), φ̂]( ·

2
) + ĥ�(

·
2
+ π)[f̂(2·), φ̂]( ·

2
+ π)

)
ĥ�(

·
2
)φ̂(

·
2
)

=

r∑
�=0

|ĥ�(
·
2
)|2[f̂(2·), φ̂]( ·

2
)φ̂(

·
2
)

+

r∑
�=0

ĥ�(
·
2
)ĥ�(

·
2
+ π)[f̂(2·), φ̂]( ·

2
+ π)φ̂(

·
2
)

= [f̂(2·), φ̂]( ·
2
)φ̂(

·
2
).

The last identity above follows from (2.6) for ξ
2 ∈ σ(V0) and the fact that φ̂( ξ2 ) = 0

when ξ
2 /∈ σ(V0). This concludes the proof of the lemma.

Remark 2.2. When Lemma 2.1 is proven in spacial domain, it reveals some details
of the fast framelet decomposition and reconstruction algorithms given in Section
1.4. For simplicity, we assume that the refinable function and all framelets are
compactly supported, and that their corresponding masks are finitely supported,
i.e. we assume that ψ�, for � = 0, 1, . . . , r, are compactly supported and the masks
h� are finite sequences; these assumptions are commonly satisfied in applications.

Since the system {ψ�,n,k; k ∈ Z} for any n ∈ Z, forms a Bessel system, the
operators Pn,� : L2(R) → L2(R), for each �, is bounded. Therefore, we only need
to prove (2.12) for all f that are compactly supported.

By the definition of refinability of φ and (2.4), we have for � = 0, 1, . . . , r,

ψ�(x) = 2
∑
k∈Z

h�[k]φ(2x− k) = 2
∑
k∈Z

h�[k]ψ0(2x− k).

Thus we have

ψ�,n−1,k = 2(n−1)/2ψ�(2
n−1 · −k)

= 2(n−1)/2+1
∑
k′∈Z

h�[k
′]ψ0(2

n · −2k − k′)

= 21/2
∑
k′∈Z

h�[k
′]2n/2ψ0(2

n · −2k − k′)

= 21/2
∑
k′∈Z

h�[k
′]ψ0,n,2k+k′
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Therefore, we have

r∑
�=0

∑
k∈Z

〈f, ψ�,n−1,k〉ψ�,n−1,k

= 2

r∑
�=0

∑
k∈Z

(∑
k′∈Z

h�[k′]〈f, ψ0,n,2k+k′ 〉
)( ∑

k′′∈Z

h�[k
′′]ψ0,n,2k+k′′

)

= 2

r∑
�=0

∑
k∈Z

⎛⎝∑
j∈Z

h�[j − 2k]〈f, ψ0,n,j〉

⎞⎠⎛⎝∑
j′∈Z

h�[j
′ − 2k]ψ0,n,j′

⎞⎠
= 2

∑
j∈Z

∑
j′∈Z

(
r∑
�=0

∑
k∈Z

h�[j − 2k]h�[j
′ − 2k]

)
〈f, ψ0,n,j〉ψ0,n,j′ ,

where the switching of summations order is valid since all summations involved are
finite sum.

Now we focus on proving that

(2.16)

r∑
�=0

∑
k∈Z

h�[j − 2k]h�[j
′ − 2k] =

1

2
δj,j′ .

Suppose j′ − j is even, i.e. there exists p ∈ Z such that j′ = j + 2p. Then we have

r∑
�=0

∑
k∈Z

h�[j − 2k]h�[j
′ − 2k] =

r∑
�=0

∑
k∈Z

h�[2k + j]h�[2k + j′]

=

r∑
�=0

∑
k∈Z

h�[2k + j]h�[2k + j + 2p]

=

{ ∑r
�=0

∑
k∈Z

h�[2k]h�[2k + 2p], j even∑r
�=0

∑
k∈Z

h�[2k + 1]h�[2k + 2p+ 1], j odd.

=:

{
c1[p], j even
c2[p], j odd.

Now replacing p by −2p and breaking the summations (2.9) and (2.10) into even
and odd parts, we have

c1[p] + c2[p] = δ−2p,0 = δp,0

c1[p]− c2[p] = 0,

which leads to

c1[p] = c2[p] =
1

2
δp,0.

Since j′ − j = 2p, we have δp,0 = δj,j′ which concludes that (2.16) is satisfied when
j′ − j is even.
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Suppose j′− j is odd, which means there exists p ∈ Z such that j′ = j+2p+1.
Then we have
r∑
�=0

∑
k∈Z

h�[j − 2k]h�[j
′ − 2k] =

r∑
�=0

∑
k∈Z

h�[2k + j]h�[2k + j + 2p+ 1]

=

{ ∑r
�=0

∑
k∈Z

h�[2k]h�[2k + 2p+ 1], j even∑r
�=0

∑
k∈Z

h�[2k + 1]h�[2k + 2p+ 2], j odd.

=:

{
c1[p], j even
c2[p], j odd.

Now replacing p by −2p − 1 and breaking the summations (2.9) and (2.10) into
even and odd parts, we have

c1[p] + c2[p] = 0

−c1[p] + c2[p] = 0,

which implies that c1[p] = c2[p] = 0 for all p ∈ Z. Therefore, we have

r∑
�=0

∑
k∈Z

h�[j − 2k]h�[j
′ − 2k] = 0 =

1

2
δj,j′ .

This concludes the proof of (2.16) and hence the identity (2.12) is proved.

Note that identity (2.12) essentially provides a decomposition and reconstruc-
tion formula for any function f ∈ L2(R) under the system X(Ψ). This formula and
the MRA structure generated by the underlying refinable function φ are used to
prove that X(Ψ) is a tight frame for L2(R).

The following two lemmata are necessary in order to prove the UEP. Lemma
2.2 below is in fact a direct consequence of ∩nVn = {0} and the weakly compactness
of the unit ball in L2(R). However, we provide a direct proof which is similar to
the proof of ∩nVn = {0} (Theorem 1.3).

Lemma 2.2. Let refinable function φ ∈ L2(R) satisfying Assumption 2.1and oper-
ator Pn be defined by (2.11). Then, for all f ∈ L2(R),

lim
n→−∞Pnf = 0.

Proof. Part (1) of Proposition 1.3 gives us

‖Pnf‖2L2(R)
≤ C

∑
k∈Z

|〈f, φn,k〉|2

= C
∑
k∈Z

( ∫
R

|f(x)2n/2φ(2nx− k)|dx
)2

.

If f is supported in the interval [−R,R], then by the Cauchy-Schwartz inequality
we have,

‖Pnf‖2L2(R)
≤ C‖f‖2L2(R)

∑
k∈Z

∫
{2n[−R,R]−k}

|φ(x)|2dx.

Now if n < 0 and |n| is sufficiently large, we have that

{2n[−R,R]− k1} ∩ {2n[−R,R]− k2} = ∅, k1 	= k2.
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Therefore,

‖Pnf‖2L2(R)
≤ C‖f‖2L2(R)

∫
En

|φ(x)|2dx = C‖f‖2L2(R)

∫
R

χEn |φ(x)|2dx,

where

En = ∪k∈Z(2
n[−R,R]− k).

Since when n → −∞, χEn |φ(x)|2 → 0 for almost every x ∈ R, and χEn |φ(x)|2 ≤
|φ(x)|2 ∈ L1(R), then by the dominated convergence theorem we have

lim
n→−∞ ‖f‖2L2(R)

∫
R

χEn |φ(x)|2dx = ‖f‖2L2(R)

∫
R

lim
n→−∞χEn |φ(x)|2dx = 0.

Thus

lim
n→−∞ ‖Pnf‖2L2(R)

= 0,

for all compactly supported f ∈ L2(R). By a standard density argument and
noting that Pn is bounded for each n, we can conclude that limn→−∞ Pnf = 0 for
all f ∈ L2(R).

Lemma 2.3. Let refinable function φ ∈ L2(R) satisfy Assumption 2.1 and (2.8)
and operator Pn be defined by (2.11). Then for all f ∈ L2(R),

lim
n→∞Pnf = f.

Proof. We will prove this lemma by showing that for any f ∈ L2(R)

(2.17) lim
n→∞〈Pnf, f〉 = ‖f‖2L2(R)

.

and for n ∈ Z,

(2.18) ‖Pn‖L2(R) ≤ 1.

Once (2.17) and (2.18) are established, we will have

0 ≤ lim
n→∞ ‖Pnf − f‖2L2(R)

= lim
n→∞ ‖Pnf‖2L2(R)

− 2〈Pnf, f〉+ ‖f‖2L2(R)

= lim
n→∞ ‖Pnf‖2L2(R)

− ‖f‖2L2(R)
≤ 0,

which will conclude the proof of this lemma.
Now, we show (2.17), whose proof is similar to [50, Lemma 11.2.3]. Following

the routine arguments in approximation theory, we only need to prove (2.17) for

all f ∈ L2(R) with f̂ continuous and compactly supported. By a similar proof

of part (2) of Proposition 1.3, one can show that [Dnf̂ , φ̂] is the Fourier series of

{〈f, φn,k〉 : k ∈ Z} for each n ∈ Z. Since f̂ is continuous and compactly supported,
the infinite sum

[Dnf̂ , φ̂] =
∑
k∈Z

(Dnf̂)(ξ + 2kπ)φ̂(ξ + 2kπ)

is in fact finite. Then, the boundedness of f̂ implies that [Dnf̂ , φ̂] ∈ L2([−π, π]).
Now by Parseval’s identity, we have

〈Pnf, f〉 =
1

2π
‖[Dnf̂ , φ̂]‖2L2([−π,π]) =

1

2π

∫ π

−π

∣∣∣∣∣∑
k∈Z

(Dnf̂)(ξ + 2kπ)φ̂(ξ + 2kπ)

∣∣∣∣∣
2

dξ.
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Since f̂ is compactly supported, when n is large enough, we have

〈Pnf, f〉 =
1

2π

∫ π

−π

∣∣∣(Dnf̂)(ξ)φ̂(ξ)
∣∣∣2 dξ.

Since item 2 of Assumption 2.1 implies that limξ→0 φ̂(ξ) = 1. Then, for any ε > 0,

there exists r ∈ (0, π) such that 1−ε ≤ |φ̂(ξ)|2 ≤ 1+ε for ξ ∈ [−r, r]. Furthermore,

when n large enough, Dnf̂ has support in [−r, r]. Then we have,

〈Pnf, f〉 =
1

2π

∫ r

−r

∣∣∣(Dnf̂)(ξ)φ̂(ξ)
∣∣∣2 dξ

and thus
1− ε

2π
‖Dnf̂‖2L2(R)

≤ 〈Pnf, f〉 ≤
1 + ε

2π
‖Dnf̂‖2L2(R)

.

Now, (2.17) follows by noting that 1
2π‖Dnf̂‖2L2(R)

= ‖f‖2L2(R)
.

From part (3) of Proposition 1.3, it is easy to see that it suffices to prove that

[φ̂, φ̂] ≤ 1 a.e. on [−π, π]. Define a sequence of functions {φn}n as (known as the
cascade algorithm)

φ̂n(ξ) := ĥ0(
ξ

2
)φ̂n−1(

ξ

2
) =

n∏
j=1

ĥ0(2
−jξ)φ̂0(2−nξ),

with φ̂0 := χ[−π,π]. It is clear that [φ̂0, φ̂0] ≤ 1, by induction, we have

[φ̂n, φ̂n](ξ) =
∑
k∈Z

|ĥ0(
ξ

2
+ kπ)|2|φ̂n−1(

ξ

2
+ kπ)|2

=
∑
k∈Z

|ĥ0(
ξ

2
+ 2kπ)|2|φ̂n−1(

ξ

2
+ 2kπ)|2

+
∑
k∈Z

|ĥ0(
ξ

2
+ 2kπ + π)|2|φ̂n−1(

ξ

2
+ 2kπ + π)|2

= |ĥ0(
ξ

2
)|2

∑
k∈Z

|φ̂n−1(
ξ

2
+ 2kπ)|2

+ |ĥ0(
ξ

2
+ π)|2

∑
k∈Z

|φ̂n−1(
ξ

2
+ 2kπ + π)|2

≤ |ĥ0(ξ/2)|2 + |ĥ0(ξ/2 + π)|2

≤ 1, a.e. ξ ∈ R.

the last inequality follows from the fact that |ĥ0(ξ/2)|2 + |ĥ0(ξ/2 + π)|2 ≤ 1. By

item 2 of Assumption 2.1, we have that φ̂n converges pointwise to φ̂. (The proof of
this argument is the same as that of Theorem 3.1. Although we assume in Theorem
3.1 that h0 is finitely supported, only item 2 of Assumption 2.1 is necessary to show

pointwise convergence of φ̂n to φ̂.) By Fatou’s lemma, we have

[φ̂, φ̂] ≤ lim inf
n→∞ [φ̂n, φ̂n] ≤ 1, a.e. ξ ∈ R

This concludes the proof of (2.18).
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Proof. (Proof of Theorem 2.2) By (2.12), we have

Pnf = Pn−1f +

r∑
�=1

∑
k∈Z

〈f, ψ�,n−1,k〉ψ�,n−1,k

Applying (2.12) inductively, one has that

Pnf = Pn′f +

r∑
�=1

n−1∑
j=n′

∑
k∈Z

〈f, ψ�,j,k〉ψ�,j,k.

Letting n′ → −∞ and employing Lemma 2.2, we have

(2.19) Pnf =
r∑
�=1

∑
j<n

∑
k∈Z

〈f, ψ�,j,k〉ψ�,j,k.

Then taking n → ∞ at both sides of (2.19), noting that (2.8) holds by (2.6), and
applying Lemma 2.3, we have, for all f ∈ L2(R),

f =

r∑
�=1

∑
n∈Z

∑
k∈Z

〈f, ψ�,n,k〉ψ�,n,k.

This proves that X(Ψ) is a tight frame for L2(R).
Finally, we show that if r = 1 and ‖φ‖L2(R) = 1 (or equivalently ‖φ̂‖2L2(R)

= 2π),

then X(Ψ) forms an orthonormal basis for L2(R). Using (2.6), φ̂(2·) = ĥ0φ̂ and

ψ̂(2·) = ĥ1φ̂, we have

‖ψ̂‖2L2(R)
= 2

∫
|ψ̂(2ξ)|2dξ = 2

∫
|ĥ1(ξ)|2|φ̂(ξ)|2dξ

= 2

∫
(1− |ĥ0(ξ)|2)|φ̂(ξ)|2dξ

= 4π − 2

∫
|φ̂(2ξ)|2dξ

= 2π

This proves that ‖ψ‖L2(R) = 1 and hence ‖ψn,k‖L2(R) = 1 for all n, k ∈ Z. Since
X(ψ) is a tight frame for L2(R). Then for any atom h ∈ X(ψ), we have

‖h‖2L2(R)
=

∑
g∈X(ψ)

|〈h, g〉|2 =
∑

g∈X(ψ), g �=h
|〈h, g〉|2 + ‖h‖4L2(R)

,

which implies that ∑
g∈X(ψ), g �=h

|〈h, g〉|2 = 0, for all h ∈ X(ψ).

Therefore, 〈h, g〉 = 0 whenever h 	= g and hence X(ψ) forms an orthonormal basis
for L2(R).

In practice, it is common to decompose a given function down to a certain level
instead of down to negative infinity. The following corollary states that if a function
is decomposed to a finite level L, the system {φL,k, ψ�,n,k : 1 ≤ � ≤ r, n ≥ L, k ∈ Z}
forms a tight frame of L2(R). The proof of the corollary follows directly from (2.19)
and that X(Ψ) is a tight frame of L2(R).
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Corollary 2.1. Let Ψ = {ψ� : 1 ≤ � ≤ r} be the set of tight framelets constructed
from the UEP with φ the corresponding refinable function. Then for any given
L ∈ Z, the system

X(φ,Ψ;L) := {φL,k, ψ�,n,k : 1 ≤ � ≤ r, n ≥ L, k ∈ Z}
forms a tight frame of L2(R), i.e. for any f ∈ L2(R),

f =
∑
k∈Z

〈f, φL,k〉φL,k +
r∑
�=1

∑
n≥L

∑
k∈Z

〈f, ψ�,n,k〉ψ�,n,k.

In general, we refer to the elements in Ψ as mother wavelets. If the genera-
tors in Ψ are constructed from a MRA, we call them framelets. For the special
case r = 1, the above theorem is given in [124]. What makes constructing tight
framelets painless is the ability to choose the number of generators r in the UEP.
For example, one can easily construct tight framelets from splines. In fact, [158]
gives a systematic construction of tight wavelet frame systems from B-splines by
using the UEP. In the next section, we begin with a simple construction of tight
frame from B-splines by using the UEP. We present more constructions of framelets
from pseudo-splines using UEP in Lecture 3.

1.2. B-spline Tight Frames

Consider (centered) B-splines of order m. The corresponding refinement mask

ĥ0 is given as ĥ0(ξ) = e−ij
ξ
2 cosm(ξ/2) with j = 0 when m is even and j = 1 when

m is odd. We define m wavelet masks as

(2.20) ĥ�(ξ) := −i�e−ij
ξ
2

√(
m

�

)
sin�(ξ/2) cosm−�(ξ/2), � = 1, 2, . . . ,m.

Clearly, all assumptions in Assumption 2.1 are satisfied. Furthermore, we have

m∑
�=0

|ĥ�(ξ)|2 = (cos2(ξ/2) + sin2(ξ/2))m = 1,

and
m∑
�=0

ĥ�(ξ)ĥ�(ξ + π) = e
π
2 ij(sin(ξ/2) cos(ξ/2))m(1 − 1)m = 0.

Therefore, the m wavelets defined by

ψ̂� := −i�e−ij
ξ
2

√(
m

�

)
cosm−�(ξ/4) sinm+�(ξ/4)

(ξ/4)m

generate a tight frame for L2(R). Note that each framelet ψ� is a real valued
(anti)symmetric function supported in [−(m + j)/2, (m + j)/2]. The cases for
m = 2 and m = 4 are given in the following two examples.

Example 2.1. Let h0 = [ 14 ,
1
2 ,

1
4 ] be the refinement mask of the piecewise linear

B-spline B2(x) = max (1− |x|, 0). Define h1 = [− 1
4 ,

1
2 ,−

1
4 ] and h2 = [

√
2
4 , 0,−

√
2
4 ].

Then h0, h1 and h2 satisfy (2.9) and (2.10). Hence, the system X(Ψ) where Ψ =
{ψ1, ψ2} defined in (2.4) by using h1, h2 and φ is a tight frame of L2(R) (see Figure
1).
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φ ψ
1

ψ
2

Figure 1. Piecewise linear refinable spline and corresponding framelets.

φ ψ
1

ψ
2

ψ
3

ψ
4

Figure 2. Piecewise cubic refinable B-spline and corresponding framelets.

Example 2.2. Let h0 = [ 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16 ] be the refinement mask of piecewise cubic

B-spline B4. Define h1, h2, h3, h4 as follows:

h1 = [ 1
16 ,−

1
4 ,

3
8 ,−

1
4 ,

1
16 ], h2 = [− 1

8 ,
1
4 , 0,−

1
4 ,

1
8 ],

h3 = [
√
6

16 , 0,−
√
6
8 , 0,

√
6

16 ], h4 = [− 1
8 ,−

1
4 , 0,

1
4 ,

1
8 ].

Then h0, h1, h2, h3, h4 satisfy (2.9) and (2.6) and hence the system X(Ψ) where
Ψ = {ψ1, ψ2, ψ3, ψ4} defined in (2.4) by h1, h2, h3, h4 and φ is a tight frame of
L2(R) (see Figure 2).

An advantage of the tight wavelet frames derived from the UEP is that those
systems have fast decomposition and reconstruction algorithms (see [65]), just as
the orthonormal wavelet bases of [60]. Detailed discussions of decomposition and
reconstruction algorithms are given in Section 1.4 for the univariate case and Section
3 for multivariate case.

1.3. Approximations

In this section, we focus on approximation properties of tight frame systems
X(Ψ) constructed from the UEP, its relations with approximation order of the
underlying MRA, and vanishing moments of Ψ.

In Lecture 1 we introduced the concept of approximation order of MRA. Here,
we introduce the concepts of vanishing moments and approximation orders of tight
frame systems X(Ψ) as follows.

Definition 2.1. Let X(Ψ) be a tight frame system constructed from the UEP with
the underlying MRA generated by the refinable function φ.
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(1) We say that the tight frame system X(Ψ) has vanishing moments of order

m0 if ψ̂� has a zero of order m0 at the origin, i.e. |ψ̂�| = O(| · |m0), for
every � = 1, 2, . . . , r.

(2) Define the truncated operator of the tight frame system X(Ψ) as

(2.21) Qn : f 
→
∑

ψ∈Ψ,k∈Z,j<n

〈f, ψj,k〉 ψj,k.

We say that the tight frame system X(ψ) provides approximation order
m1 if, for all f ∈ Wm1

2 (R),

‖f −Qnf‖L2(R) = O(2−nm1).

Since Ψ is constructed from the UEP with the underlying MRA generated by
a refinable function φ, the order of vanishing moments can be characterized by the

masks {ĥ� : � = 0, 1, . . . , r}, or φ̂. This provides a very convenient way of analyzing
the vanishing moments of Ψ because usually we do not have an explicit formula for
Ψ. Now, we summarize this characterization in the following proposition.

Proposition 2.1. Suppose Ψ is constructed from the UEP. Then it has vanishing
moments of order m0 if and only if one of the following three conditions is satisfied:

(1)
∑r

�=1 |ĥ�|2 = O(| · |2m0);

(2) 1− |ĥ0|2 = O(| · |2m0);

(3) 1− |φ̂|2 = O(| · |2m0).

Proof. Since Ψ is constructed from UEP, then by (2.6) we have
r∑
�=1

|ĥ�(·)|2 = 1− |ĥ0(·)|2.

Furthermore, since ψ̂� =
(
ĥ�φ̂

)
(·/2) and φ̂(0) = 1, it is clear that

∑r
�=1 |ĥ�(·)|2 =

O(| · |2m0) if and only if |ψ̂�| = O(| · |m0) for all � = 1, 2, . . . , r, which establishes (1)
and (2).

Let us consider (3). By the refinability of φ, we have

|ĥ0|2|φ̂|2 = |φ̂(2·)|2.
Then

(2.22) (1− |ĥ0|2)|φ̂|2 = |φ̂|2 − |φ̂(2·)|2.
Suppose 1− |φ̂|2 = O(| · |m̃), i.e. 1− |φ̂|2 = q+ o(| · |m̃) near the origin, with q some

homogeneous polynomial of total degree m̃ (here m̃ > 0 because φ̂(0) = 1). Then
near the origin, we have

|φ̂|2 − |φ̂(2·)|2 = q(2·)− q(·) + o(| · |m̃).

Since q(2·) − q(·) is a nonzero homogeneous polynomial of total degree m̃, we see

that |φ̂|2−|φ̂(2·)|2 = O(| · |m̃). Since φ̂(0) = 1 and (2) gives us 1−|ĥ0|2 = O(| · |2m0),
we have m̃ = 2m0.

Notice from (2.19) in the proof of Theorem 2.2 that if X(Ψ) is constructed from
the UEP with corresponding MRA generated by φ, we have

(2.23) Pnf = Qnf, for all f ∈ L2(R),
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where Pn is the quasi-interpolatory operator defined by φ in (2.11). This means
that the approximation order of tight frame system X(Ψ) is the same as that of
Pn.

We note that when X(Ψ) forms an orthonormal basis for L2(R), the set {φn,k :
k ∈ Z} forms an orthonormal basis of Vn, and hence Qn is an orthogonal projection
onto Vn. Therefore, the approximation order of Qn, coincides with the approxi-
mation order of the underlying MRA. The same may not be true when X(Ψ) is a
tight frame for L2(R). In general, approximation order of Qn cannot exceed the
approximation order provided by the underlying MRA.

The following theorem of [65] shows how the approximation order of the tight
frame system X(Ψ) depends on the refinable functions and framelets. The proof of
it is a direct consequence of Theorem 1.5 and Proposition 2.1.

Theorem 2.3. [65] Let X(Ψ) be a tight frame system constructed from the UEP
with underlying MRA generated by φ. Assume that Ψ has vanishing moments of

order m0 (equivalently, 1 − |φ̂|2 = O(| · |2m0) by Proposition 2.1) and that the

refinable function φ satisfies [φ̂, φ̂] − |φ̂|2 = O(| · |2m). Then the approximation
order of the tight frame system is m1 = min{m, 2m0}.

It is easy to verify that for an arbitrary B-spline Bm, the order of the zero of

1− |B̂m|2 at the origin cannot exceed 2. Then Theorem 2.3 implies that the tight
frame system X(Ψ) constructed from Bm via the UEP (the corresponding masks
are given by (2.20)) cannot have approximation order more than 2 (in fact, it is
exactly 2 for all m ≥ 2). Furthermore, Proposition 2.1 tells us that there is at
least one wavelet among Ψ that has a vanishing moment of order 1. High order of
approximation of a tight frame system X(Ψ) gives good approximations to smooth
functions. Furthermore, the high orders of vanishing moments of the framelets
provide good sparse approximations to piecewise smooth functions. Hence, in order
to have a good tight wavelet system, we need to have refinable functions whose
Fourier transform are very flat at the origin. This leads to the introduction of
pseudo-splines in [65, 75]. We revisit this issue with full details in Lecture 3.

Next, we briefly discuss how the order of vanishing moments plays a role in
sparse approximation of piecewise smooth functions. The theory of the sparse
approximation is based on nonlinear approximation and the characterization of
various function spaces by a weighted norm of framelet coefficients. Here, we only
provide some hubristic discussions. Interested readers should consult [9, 10, 106,
134] for comprehensive studies of this subject.

We start with the following proposition. It roughly says that when a wavelet
function ψ has a high order vanishing moment, the majority of the corresponding
wavelet coefficients are small. Hence, if all mother wavelets in Ψ have high vanishing
moments, then the systemX(Ψ) can have a good sparse approximation to piecewise
smooth functions. We note that a compactly supported wavelet ψ having order of
vanishing moments m is equivalent to∫

xkψ(x)dx = 0, for all 0 ≤ k ≤ m− 1.

Proposition 2.2. If ψ ∈ L2(R) is a compactly supported function with order of
vanishing moments m, then

〈f, ψn,k〉 = O(
1

m!
2−n(m+1/2))
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for any f ∈ L2(R) ∩ Cm(R), when n is large enough.

Proof. Without loss of generality, we assume k = 0. Then suppψn,0 =
2−nsuppψ ⊆ (−ε, ε) for some small ε > 0 when n is large enough. So, by
f ∈ Cm(R),

f(x) = f(0)+f ′(0)x+· · ·+f (m−1)(0)xm−1/(m−1)!+f (m)(ζx)x
m/m!, x ∈ (−ε, ε).

So, we have∣∣∣∣∫
R

f(x)ψn,0(x) dx

∣∣∣∣ = 2n/2
∣∣∣∣∫

R

f(0)ψ(2nx) dx +

∫
R

f ′(0)xψ(2nx) dx + · · ·

+

∫
R

f (m−1)(0)
xm−1

(m− 1)!
ψ(2nx) dx +

∫
R

f (m)(ζx)
xm

m!
ψ(2nx) dx

∣∣∣∣
≤ 2n/2

m!
‖f (m)‖∞

∫
R

|x|m|ψ(2nx)| dx

=
2−n(m+1/2)

m!
‖f (m)‖∞

∫
R

|x|m|ψ(x)| dx

which completes the proof.

Since ψ is compactly supported, the above proof can be modified to show that
the majority of wavelet coefficients not near singularities can be small when f is
a piecewise smooth function. This indicates that if all mother wavelets in Ψ have
high orders of vanishing moments and short supports, then the system X(Ψ) can
have an ideally sparse approximation for piecewise smooth functions. However,
higher orders of vanishing moments usually imply larger supports of Ψ, and shorter
supports usually implies lower orders of vanishing moments of Ψ. Therefore, in
practice, one should balance accordingly between the two properties as well as
other properties like the regularity of Ψ, for each type of application.

1.4. Decomposition and Reconstruction Algorithms

The decomposition and reconstruction algorithms for MRA-based tight wavelet
frames derived from the UEP is essentially the same as those of MRA-based or-
thonormal wavelets. Here, we assume that all masks used are finitely supported.

Since

PLf = DLP0D
−Lf,

without loss of generality, one may use P0f ∈ V0 to approximate f . If it is necessary,
we can always consider the function f(2−L·) instead of f , since the approximation
of a function f in space VL is the same as that of the function f(2−L·) in space V0.

When a tight wavelet frame is used, the given data is considered to be sampled
as a local average v[k] = 〈f, φ(· − k)〉, which means that we can use

P0f =
∑
k∈Z

v[k]φ(· − k)

to approximate the underlying function f . The accuracy of the approximation P0f
to f is discussed in Theorem 1.5 which depends on the sampling function φ.

Given the sequence h� = {h�[k]}k∈Z for any � = 0, 1, . . . , r, we define an infinite
matrix H� which corresponds to h� as

H� := (H�[l, k]) := (
√
2 · h�[k − 2l]),
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where the (l, k)th entry in H� is fully determined by the (k−2l)th entry in h�. Then
for any v ∈ �2(Z), we have

(H�v)[l] =
√
2
∑
k∈Z

h�[k − 2l]v[k].

Similarly, we can define H∗
� , the adjoint of H�, as

(H∗
� v)[k] =

√
2
∑
l∈Z

h�[k − 2l]v[l].

Let ↓ (·) denote the downsampling operator which is defined as

↓ (v)[k] = v[2k], k ∈ Z;

and ↑ (·) denote the upsampling operator which is defined as

(↑ v)[k] =
{
v[k/2], k even;

0, k odd.

Then we have

H�v =↓ (
√
2 · h�[−·] ∗ v) and H∗

� v =
√
2h� ∗ (↑ v).

In the literature of wavelets, it is traditional to use notations based on convolution
with upsampling and downsampling.

We collect the coefficients in each level n < 0 to form an infinite column vector

v�,n := [. . . , 〈f, ψ�,n,k〉, . . .]
, � = 0, 1, . . . , r,

where ψ0 := φ. From the proof of Lemma 2.1, we have shown that (identity (2.16))
r∑
�=0

∑
k∈Z

h�[j − 2k]h�[j
′ − 2k] =

1

2
δj,j′ ,

which is equivalent to

(2.24)

r∑
�=0

H∗
�H� = I .

Thus, the decomposition and reconstruction process (2.12) can be written in the
matrix form as

v0,n+1 =

r∑
�=0

H∗
�H�v0,n+1.

For a multiple level decomposition operator, we define AL, L < 0, as a (rect-
angular) block matrix given as:

(2.25) AL := [H−L
0 ;H1H

−L−1
0 ; . . . ;HrH

−L−1
0 ; . . . ; H1; . . . ;Hr]


.

Then we have the reconstruction operator A∗
L, the adjoint operator of AL,

defined as

(2.26) A∗
L = [H∗−L

0 ;H∗−L−1
0 H∗

1 ; . . . ;H
∗−L−1
0 H∗

r ; . . . ; H∗
1 ; . . . ;H

∗
r ]


.

Similar to (2.24), we have a multi-level perfect reconstruction formula A∗
LAL =

I , which is summarized in the following proposition; the proof is just straightforward
calculation and is omitted.

Proposition 2.3. The decomposition operator AL, as defined in (2.25) satisfies
A∗
LAL = I , where I is the identity operator.
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In practice, signals are of finite lengths. Therefore, we need a proper definition
of operations H�v when v is of finite length. Now suppose v = {v[k]}N−1

k=0 . We
define the periodic and symmetric extensions of v as

(2.27) ṽ[k] :=

{
v[k mod N ], periodic
vf[k mod 2N ], symmetric,

where vf is defined as

vf[k] :=

{
v[k], k = 0, 1, . . . , N − 1
v[2N − 1− k], k = N,N + 1, . . . , 2N − 1.

Therefore, whenever v is of finite length, we define

H�v := H�ṽ,

with ṽ being one of the extensions in (2.27).
Note that when v is of finite length, the decomposition and reconstruction

process can be realized as matrix multiplications (see e.g. [15, 35]). When ṽ is
a periodic or symmetric extension of v, the operation H�v can be understood as
convolutions of v (followed by downsampling) with periodic or Neumann boundary
conditions; where, the former is also known as circular convolution. In practice,
one normally uses convolutions to implement the operation H�v instead of matrix
multiplications due to efficiency considerations. A similar argument applies to H∗

� v
as well.

Algorithm 2.1 is the univariate fast framelet decomposition and reconstruction
algorithm; Figure 3 is a diagram of the algorithm. For simplicity of notation, we
denote h̃� :=

√
2 · h�[−·] and h̃∗� :=

√
2h�. For a given finite signal v ∈ RN , we

denote the finite length convolution operation as h̃�� v (similarly for h̃∗� � v) which
is understood as a restriction of h̃� ∗ ṽ on the set {0, 1, . . . , N − 1}:

h̃� � v := (h̃� ∗ ṽ)|{0,1,...,N−1},

where ṽ is either periodic or symmetric extension of v. Under this definition, h̃��v
is a convolution of h̃� with the finite signal v using either periodic or Neumann
boundary conditions.

Algorithm 2.1. Given signal v ∈ RN with N assumed to be an integer multiple
of 2L, L ∈ N+. Denote v0,0 = v. Then the L-level fast framelet decomposition and
reconstruction are given as follows:

(1) Decomposition: For each j = 1, 2, . . . , L
(a) Obtain low frequency approximation to v at level j:

v0,j =↓ (h̃0 � v0,j−1);

(b) Obtain framelet coefficients of v at level j:

v�,j =↓ (h̃� � v0,j−1), � = 1, 2, . . . , r.

(2) Reconstruction: For each j = L,L− 1, . . . , 1,

v0,j−1 =

r∑
�=0

h̃∗� � (↑ v�,j).
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Figure 3. The above diagrams illustrate the fast framelet decom-
position and reconstruction procedure given by Algorithm 2.1.

1.5. Other Extension Principles

The unitary extension principle of [158] was stated in a more general multi-
variate setting. In fact, the unitary extension principle is a consequence of a more
general theorem on MRA-based tight wavelet frames. The details can be found in
[158]. Since the publication of [158] in 1997, there are many generalizations of the
unitary extension principle. Here, we briefly review some of them. The interested
reader should consult the references mentioned below for further details.

The first generalization of the unitary extension principle is the oblique exten-
sion principle of [52, 65]. One of the major motivations to generalize the unitary
extension principle is to obtain a spline tight wavelet system with better approxima-
tion power. As mentioned before, when the unitary extension principle is applied to
construct tight wavelet frames from refinable spline functions, the approximation
order of the corresponding truncated wavelet system cannot exceed 2; and there is
at least one framelet that has vanishing moments of order 1.

The oblique extension principle can be used to obtain spline tight frame system
whose truncated wavelet system has high approximation order and whose generators
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have high order vanishing moments. The oblique extension principle is stated as
following:

Proposition 2.4. (The Oblique Extension Principle (OEP)) Suppose that the re-
finable function φ and the masks h0, h1, . . . , hr satisfy Assumptions 2.1; and there
exists a 2π-periodic function Θ that is non-negative, essentially bounded, continu-
ous at the origin with Θ(0) = 1. Assume that for ξ ∈ σ(V0), and ξ+π ∈ σ(V0), the
following equalities

(2.28)
|ĥ0(ξ)|2Θ(2ξ) +

∑r
�=1 |ĥ�(ξ)|2 = Θ(ξ);

ĥ0(ξ)ĥ0(ξ + π)Θ(2ξ) +
∑r
�=1 ĥ�(ξ)ĥ�(ξ + π) = 0.

hold. Then the wavelet system X(Ψ) defined by h1, . . . hr is a tight wavelet frame.

Proof. Setting θ := Θ1/2, we define a function ϕ via ϕ̂ := θφ̂. Since θ is
bounded, ϕ lies in L2(R). Consider the masks

ˆ̃h0 :=
θ(2·)ĥ0
θ

, ˆ̃hi :=
ĥi
θ
, i = 1, . . . , r.

Applying (2.28), we obtain that
∑r

i=0 |
ˆ̃
hi(ξ)|2 = 1, a.e. on σ(V0), hence

ˆ̃
hi, i =

0, 1, . . . , r is well-defined and bounded, and ˆ̃h0 is the refinement mask of ϕ. More-
over, since Θ is continuous at 0 with Θ(0) = 1, we obtain that ϕ̂ is continuous at 0

and ϕ̂(0) = 1. Now, apply the UEP (Theorem 2.2 and remarks after it) to
ˆ̃
hi, and

observe that the wavelets obtained from the masks ˆ̃hi and ϕ are the same as the

wavelets induced by ĥi and φ. This concludes the proof of the theorem.

We note that the unitary extension principle can be viewed as a special case of
the oblique extension principle by taking Θ to be 1.

Theorem 2.3 says that when the Fourier transform of the refinable function
is not flat at the origin, one can chose a proper Θ which is flat at the origin.
The vanishing moments of the resulting framelets have high order of the vanishing
moment and the truncated tight wavelet system has a high approximation order.
Detailed discussions can be found in [65]. This leads to many nice examples of spline
tight wavelet frames with high order of vanishing moment and high approximation
power in [52, 64, 65].

Example 2.3. Take ĥ0(ξ) = (1 + e−iξ)4/16 and

Θ(ξ) = 2452/945− 1657/840 cos(ξ) + 44/105 cos(2ξ)− 311/7560 cos(3ξ).

Let
(2.29)

ĥ1(ξ) = t1 (1− e−iξ)4
[
1 + 8e−iξ + e−i2ξ

]
,

ĥ2(ξ) = t2 (1− e−iξ)4
[
1 + 8e−iξ + (77754396 t−

53854
1099 )e−i2ξ + 8e−i3ξ + e−i4ξ

]
,

ĥ3(ξ) = t3 (1− e−iξ)4
[
1 + 8e−iξ + (21 + t

8 )(e
−i2ξ + e−i4ξ)

+t e−i3ξ + 8e−i5ξ + e−i6ξ
]
,

where t3 =
√
32655/20160, t = 317784/7775 + 56

√
16323699891/2418025, and

t1 =

√
11113747578360− 245493856965 t

62697600
, t2 =

√
1543080− 32655 t/40320.
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Figure 4. Figures from left to right are: refinable function φ, and
framelets ψ1, ψ2 and ψ3.

The above masks satisfy the OEP conditions, hence they lead to a tight wavelet
frame. Here, all the wavelets have vanishing moments of order 4, i.e. m0 = 4.
Furthermore, the mother wavelets ψ1, ψ2, ψ3 are symmetric. Note that for the above
given φ the approximation order of the MRA is m = 4. Hence, the approximation
order of the tight wavelet system is 4 = min(m, 2m0). The three filters {h1, h2, h3}
are of size 7, 9, 11. The refinable function φ and the three framelets ψ1, ψ2 and ψ3

are shown in Figure 4

Since it is impossible to obtain a tight wavelet frame that provides an arbitrary
high approximation order from either the unitary extension principle or the oblique
extension principle, a new approach is developed in [104]. This new approach of
[104] starts with a non-stationary multiresolution analysis that has different refin-
able functions and refinement masks at different levels. A non-stationary version of
the unitary extension principle is then established and the corresponding wavelet
masks are obtained. For a different level, the corresponding set of wavelet masks
is different, since the refinement mask is different. Hence, the wavelets and its
masks vary by levels. By a proper choice of pseudo-spline masks, symmetric C∞

real-valued tight wavelet frames in L2(R) with compact support and the spectral
frame approximation order are obtained in [104]. Furthermore, these tight wavelet
frames are used to characterize Sobolev spaces with arbitrary regularity in [105].
We omit the detailed discussions here and interested readers should consult [104]
and [105] for details.

More recently, a concept of adaptive MRA (AMRA) was introduced in [102]
to derive a fast and flexible decomposition strategy which adapts to data and pro-
vides a sparse approximation to the underlying function. This new AMRA is a
variant of the classical MRA. For the general AMRA wavelet system, a unitary
extension principle for filter design is derived. Then, it is applied to the directional
representation system of shearlets, which, in turn, leads to the unitary extension
principle for shearlets. This leads to a comprehensive theory for fast decomposition
and reconstruction algorithms associated with 2D as well as 3D-shearlet systems
encompassing tight shearlet frames with spatially compactly supported generators
within such an AMRA structure. Furthermore, within the framework of [102]
shearlet-like systems associated with parabolic scaling and unimodular matrices
optimally close to rotation are studied.

Finally, both the unitary extension principle and the oblique extension prin-
ciple can be generalized to a bi-frame setting which is called the mixed extension
principle. Interested reader should consult [52, 65, 157] where the mixed exten-
sion principle is given in the multivariate setting with an arbitrary integer dilation
matrix.
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Furthermore, the mixed extension principle for L2(Rd)) of [157] is generalized
for a pair of dual Sobolev spaces Hs(Rd) and H−s(Rd) in [106]. Here, we briefly
discuss the univariate case and encourage the reader to consult [106] for details of
the multivariate case. The mixed extension principle is given to ensure that a pair of
systemsXs(φ;ψ1, . . . , ψr) and X

−s(φ̃; ψ̃1, . . . , ψ̃r) form a dual wavelet frame pair in
the corresponding dual Sobolev spaces Hs(R) and H−s(R). Recall that the system
Xs(φ,Ψ) := Xs(φ;ψ1, . . . , ψr) is called a homogenous wavelet system generated by
φ and Ψ := {ψ1, . . . , ψr}, i.e.,

Xs(φ,Ψ) := {φ(·−k) : k ∈ Zd}∪
{
2n(d/2−s)ψ�(2n ·−k) : n ∈ N0, k ∈ Zd, 1 ≤ � ≤ r

}
.

The key new feature in this general mixed extension principle is that the regularity
and vanishing moment are shared by two different systems in the dual pair. In this
case, if φ, ψ1, . . . , ψr are in Hs(R) for s > 0, then the regularity of φ, ψ1, . . . , ψr is
required, but ψ1, . . . , ψr is not required to have any order of vanishing moment. At
the same time, the vanishing moments of ψ̃1, . . . , ψ̃r are required, while φ̃, ψ̃1, . . . , ψ̃r
are in H−s(R) can be tempered distributions instead of in L2(R). (Note that in
order to have a dual pair in L2(R), both systems in the dual pair must have a
certain order of regularity and vanishing moment at the same time.) This implies

that it is not necessary for the systems Xs(φ;ψ1, . . . , ψr) and X−s(φ̃; ψ̃1, . . . , ψ̃r)
to be normalized into a frame of L2(R). This leads to many simple constructions
of frames in an arbitrarily given Sobolev space. For example, let Bm be the B-
spline of order m. Then by [106], {2j(1/2−s)Bm(2j · −k) : j ∈ N0, k ∈ Z}
is a wavelet frame in Hs(R) for any 0 < s < m − 1/2. This construction is
applied to multivariate box splines to obtain wavelet frames with small supports,
which is known to be difficult if the traditional approach is taken. Recall that in
the traditional approach, frames in Sobolev spaces are obtained by normalizing a
frame in L2(R) to a frame in Sobolev space. Since it is hard to construct small
support wavelet frames in L2(Rd) in general, it is difficult to obtain small support
frames in Sobolev spaces by this traditional method. Also, this general mixed
extension principle also naturally leads to a characterization of the Sobolev norm
of a function in terms of the weighted norm of its wavelet coefficient sequence
(decomposition sequence) without requiring that dual wavelet frames be in L2(R).
This approach is quite different from others in the literature (see e.g. [10, 9,
108, 134]). Furthermore, applying this general mixed extension principle obtains

a characterization for a pair of systems Xs(φ;ψ1, . . . , ψr) and X−s(φ̃; ψ̃1, . . . , ψ̃r)
in Sobolev spaces Hs(R) and H−s(R)) that form a pair of dual Riesz bases. This
characterization, for example, leads to a proof of the fact that all interpolatory
wavelet systems defined in [76] generated by an interpolatory refinable function
φ ∈ Hs(R) with s > 1/2 are Riesz bases of the Sobolev space Hs(R).

2. Quasi-affine Systems and Associated Algorithms

In the context of signal and image processing, it is usually preferred to use
wavelet systems that are shift-invariant. Recall that a system X , that contains
countably many elements, is τ-shift-invariant with τ ∈ R, if for any k ∈ Z and
g ∈ X , we have g(· − τk) ∈ X . In particular, if a system is 1-shift-invariant, we
simply call it shift-invariant. Notice that the wavelet system (affine system) X(Ψ)
defined by (2.1) is not shift-invariant. In order to achieve shift-invariance, we need
to over-sample the affine system X(Ψ) below level 0. This over-sampled affine
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system is called a quasi-affine system, which was first introduced in [158]. One
implicitly uses quasi-affine systems when the wavelet decomposition algorithm is
applied without downsampling [57]. This type of wavelet transform is also known
as the undecimated wavelet transform. As a consequence, the theory of quasi-
affine systems established in [158] also provides a theoretic foundation of using the
undecimated wavelet transform which was not available in the literature before.
The definition of quasi-affine system is given as follows. Note that most part of this
section is taken from [32].

2.1. Quasi-affine Systems

The notion of quasi-affine systems was first introduced and extensively studied
in [158].

Definition 2.2. Let Ψ = {ψ1, . . . , ψr} be a set of functions. A quasi-affine system
from level L is defined as

Xq
L(Ψ) = {ψq�,n,k : 1 ≤ � ≤ r;n, k ∈ Z},

where ψq�,n,k is defined by

ψq�,n,k :=

{ DnTkψ�, n ≥ L;

2
n−L

2 T2−LkDnψ�, n < L.

The quasi-affine system is obtained by over sampling the wavelet frame system
starting from level L− 1 and downward. Hence, the whole quasi-affine system is a
2−L-shift-invariant system. The quasi-affine system from level 0 was first introduced
in [158] to convert a non-shift invariant affine system to a shift invariant system.
Further, it was shown in [158, Theorem 5.5] that a wavelet system X(Ψ) (not
necessarily an MRA-based wavelet system) is a tight frame of L2(R) if and only
if the corresponding quasi-affine counterpart Xq

L(Ψ) is a tight frame of L2(R). In
fact, this result plays important roles in the proof of Theorem 2.1 by using the
dual Gramian analysis. This result enables us to convert a wavelet system into
a shift invariant system which makes it possible to use the powerful tool of the
dual Gramian analysis of [156, 162]. Note that dual Gramian analysis of [156] is
designed for shift invariant systems.

Here we provide a direct proof of a special case of [158, Theorem 5.5], the case
for the MRA-based wavelet system, in Theorem 2.4. Precisely speaking, we prove
that the quasi-affine system Xq

L(Ψ) is a tight frame for L2(R) if Ψ is constructed
from UEP (Theorem 2.2).

When we consider the MRA-based quasi-affine system Xq
L(Ψ) generated by Ψ,

the spaces Vn, n < L in the MRA for the affine system are replaced by V q,Ln , n < L,
for the quasi-affine system. Note that the space Vn is spanned by the functions φn,k,
while the space V q,Ln is spanned by functions φqn,k, where φ

q
n,k is defined by

φqn,k :=

{
DnTkφ, n ≥ L;

2
n−L

2 T2−LkDnφ, n < L.

The spaces V q,Ln for all n ∈ Z are 2−L-shift invariant.
Similar to an affine system, we can define the quasi-interpolatory operator Pq,Ln

and the truncated operator Qq,L
n , n ∈ Z, for the quasi-affine system by

(2.30) Pq,Ln : f 
→
∑
k∈Z

〈f, φqn,k〉φ
q
n,k
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and

(2.31) Qq,L
n : f 
→

r∑
�=1

∑
j<n,k∈Z

〈f, ψq�,j,k〉ψ
q
�,j,k.

Whenever {φqn,k : k ∈ Z} is a Bessel system, the quasi-interpolatory operator

Pq,Ln maps f ∈ L2(R) into V q,Ln . From the definition of φqn,k, we can see that

Pq,Ln = Pn when n ≥ L, and that these two operators are different only when
n < L. Moreover, since for an arbitrary f ∈ L2(R) and n < L,

Pq,Ln f =
∑
k∈Z

〈f, φqn,k〉φ
q
n,k = DL

∑
k∈Z

〈D−Lf, 2
n−L−0

2 TkDn−Lφ〉2n−L−0
2 TkDn−Lφ

= DLPq,0n−LD−Lf,

one only needs to understand the case L = 0. In this case we simplify our notation
by setting

(2.32) Pqn := Pq,0n , Qq
n := Qq,0

n

for the quasi-interpolatory operators and V qn := V q,0n , for n ∈ Z. From now on,
we only give the properties for Pqn, the corresponding spaces V qn , and the associ-
ated quasi-affine system Xq(Ψ) := Xq

0 (Ψ). The corresponding results for the over
sampling rate of 2−LZ can be obtained in a similar manner.

Also, for operator Pqn, n ∈ Z, we have a decomposition and reconstruction
formula similar to (2.12). Similar to the presentation of affine systems, we present
proof of Lemma 2.4 in the Fourier domain under Assumption 2.1, and in the time
domain with some additional assumptions.

Lemma 2.4. Let X(Ψ), where the framelets Ψ = {ψ1, . . . , ψr}, be the affine tight
frame system obtained from the UEP with corresponding refinable function φ and
the set of refinement masks {h0, h1, . . . , hr}. Let Xq(Ψ) be the quasi-affine system
derived from X(Ψ). Assume that Assumption 2.1 is satisfied. Then we have, for
all f ∈ L2(R),

(2.33) Pqnf = Pqn−1f +

r∑
�=1

∑
k∈Z

〈f, ψq�,n−1,k〉ψ
q
�,n−1,k.

Proof. When n ≥ 0, we have φqn,k = φn,k and ψqn,k = ψn,k, which imply that

Pnf =
∑
k∈Z

〈f, φn,k〉φn,k =
∑
k∈Z

〈f, φqn,k〉φ
q
n,k = Pqnf,

and
r∑
�=1

∑
k∈Z

〈f, ψq�,n,k〉ψ
q
�,n,k =

r∑
�=1

∑
k∈Z

〈f, ψ�,n,k〉ψ�,n,k.

Then (2.12) implies that

Pqnf = Pnf = Pn−1f +
r∑
�=1

∑
k∈Z

〈f, ψ�,n−1,k〉ψ�,j,k

= Pqn−1f +

r∑
�=1

∑
k∈Z

〈f, ψq�,n−1,k〉ψ
q
�,n−1,k,
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i.e. the identity (2.33) holds when n ≥ 1. Next, we show (2.33) holds for n ≤ 0.
We denote φ as ψ0.

First, we note that the system {ψq�,n,k : k ∈ Z} for any given � = 0, 1, . . . , r and

n ≤ 0 is a Bessel system. Indeed, by Assumption 2.1, we know that {ψ�,n,k : k ∈ Z}
is a Bessel system, i.e. there exists constant 0 < C <∞ such that for all f ∈ L2(R),∑

k∈Z

|〈f, ψ�,n,k〉|2 ≤ C‖f‖2L2(R)
.

Notice that

{ψq�,n,k : k ∈ Z} = {2nψ�(2nx− 2nk) : k ∈ Z}

=
⋃

l∈Z/2−nZ

{2nψ�(2n(· − l)− k) : k ∈ Z}.

By a simple change of variables, one can easily check that the system {2nψ�(2n(· −
l)− k) : k ∈ Z} is also a Bessel system with bound 2n/2

√
C for every l ∈ Z/2−nZ.

Therefore, we have ∑
k∈Z

|〈f, ψq�,n,k〉|2 ≤ C‖f‖2L2(R)
.

Denote

Pqn,�f :=
∑
k∈Z

〈f, ψq�,n,k〉ψ�,n,k
q
,

for � = 0, 1, . . . , r. Note that Pqn,0 = Pqn. Since, the system {ψq�,n,k; k ∈ Z} for each

� and n, forms a Bessel system, the operator Pqn,� : L2(R) → L2(R) is well-defined.
Therefore, to prove (2.33) for n ≤ 0, it is equivalent to show

(2.34) P̂qnf =
r∑
�=0

P̂qn−1,�f.

Letting In := 2n(Z/2−nZ), we observe that

Pqn,�f =
∑
k∈Z

〈f, ψq�,n,k〉ψ
q
�,n,k

= 2n
∑
α∈In

∑
k∈Z

〈f, (Tαψ�)n,k〉(Tαψ�)n,k.

Then by Proposition 1.3 item (3), we have

P̂qn,�f(ξ) = 2n
∑
α∈In

[f̂(2n·), T̂αψ�](2−nξ)T̂αψ�(2−nξ)

= 2n
∑
α∈In

∑
k∈Z

f̂(ξ + 2n+1kπ)T̂αψ�(
ξ

2n
+ 2kπ)T̂αψ�(2

−nξ)

= 2n
∑
α∈In

∑
k∈Z

f̂(ξ + 2n+1kπ)eiα(2
−nξ+2kπ)ψ̂�(

ξ

2n
+ 2kπ)e−iα2

−nξψ̂�(2
−nξ)

= 2n
∑
α∈In

∑
k∈Z

f̂(ξ + 2n+1kπ)ψ̂�(
ξ

2n
+ 2kπ)eiα2kπψ̂�(2

−nξ)

=
∑
k∈Z

f̂(ξ + 2n+1kπ)ψ̂�(
ξ

2n
+ 2kπ)

(
2n

∑
α∈In

eiα2kπ

)
ψ̂�(2

−nξ).
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Notice that

2n
∑
α∈In

eiα2kπ = 2n
∑

l∈Z/2−nZ

(
ei2

n+1kπ
)l

=

{
1, k ∈ 2−nZ
0, k /∈ 2−nZ

.

Therefore

P̂qn,�f =
∑

k∈2−nZ

f̂(ξ + 2n+1kπ)ψ̂�(
ξ

2n
+ 2kπ)ψ̂�(2

−nξ)

= [f̂ , ψ̂�(
·
2n

)]ψ̂�(
·
2n

).

Now, identity (2.34) is equivalent to

(2.35) [f̂ , φ̂(
·
2n

)]φ̂(
·
2n

) =

r∑
�=0

[f̂ , ψ̂�(
·

2n−1
)]ψ̂�(

·
2n−1

),

for n ≤ 0. Using ψ̂� = ĥ�(
·
2 )φ̂(

·
2 ) and the first identity of the UEP condition (2.6),

we have
r∑
�=0

[f̂ , ψ̂�(
·

2n−1
)]ψ̂�(

·
2n−1

) =
r∑
�=0

|ĥ�(
·
2n

)|2[f̂ , φ̂( ·
2n

)]φ̂(
·
2n

) = [f̂ , φ̂(
·
2n

)]φ̂(
·
2n

).

This concludes the proof of (2.35) and hence the lemma follows.

Remark 2.3. Lemma 2.4 can be proven in the time domain. We prove a simple case
here because the proof will reveal some details of the fast framelet decomposition
and reconstruction algorithm for quasi-affine systems. For simplicity, we assume
that ψ�, for � = 0, 1, . . . , r, are compactly supported and the masks h� are finite
sequences.

We only need to prove (2.33) for n ≤ 0. Since system {ψq�,n,k : k ∈ Z} for any

given � = 0, 1, . . . , r and n ≤ 0 is a Bessel system, the operators Pqn,� : L2(R) 
→
L2(R), for each � is bounded. Therefore, we only need to show (2.33) for all
compactly supported f .

By the definitions of a refinable equation (1.5) and a framelet (2.4), one obtains
for � = 0, 1, . . . , r,

ψ� = 2
∑
k∈Z

h�[k]φ(2 · −k).

This leads to

ψq�,n−1,k = 2n−1Tkψ�(2
n−1·) = 2nTk

(∑
k′∈Z

h�[k
′]ψ0(2

n · −k′)
)

=
∑
k′∈Z

h�[k
′]2nψ0(2

n(· − k − 2−nk′))

=
∑

k′∈2−nZ

h�[2
nk′]2nψ0(2

n(· − k − k′)).

We define the dilated sequence h�,n by

(2.36) h�,n[k] =

{
h�[2

nk], k ∈ 2−nZ;
0, k /∈ 2−nZ.
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The sequence h�,n is obtained inductively by inserting 0 between every two entries
in h�,n+1, and h�,0 = h�. With the dilated sequence, we have

ψq�,n−1,k =
∑
k′∈Z

h�,n[k
′]ψq0,n,k+k′ .

Therefore, we have

r∑
�=0

∑
k∈Z

〈f, ψq�,n−1,k〉ψ
q
�,n−1,k

=
r∑
�=0

∑
k∈Z

(∑
k′∈Z

h�,n[k′]〈f, ψq0,n,k′+k〉
)( ∑

k′′∈Z

h�,n[k
′′]ψq0,n,k′′+k

)

=
∑
k′∈Z

∑
k′′∈Z

(
r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k + k′′ − k′]

)
〈f, ψq0,n,k′〉ψ

q
0,n,k′′ ,

where the switching of summation order is valid since all summations involved are
finite sums.

Now, we focus on showing

r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k + k′′ − k′] = δk′−k′′,0.

When k′ − k′′ ∈ 2−nZ, there exists p ∈ Z such that k′ − k′′ = 2−np and we have

r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k + k′′ − k′] =
r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k − 2−np]

=

r∑
�=0

∑
k∈2−nZ

h�,n[k]h�,n[k − 2−np]

=

r∑
�=0

∑
k∈Z

h�[k]h�[k − p] = δp,0.

The last identity follows by (2.9). The sum is nonzero if and only if p = 0, which is
equivalent to k′ = k′′. When k′ − k′′ 	∈ 2−nZ, there exist p1, p2 ∈ Z and p2 	∈ 2−nZ
such that k′ − k′′ = 2−np1 + p2. Then we have

r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k + k′′ − k′] =
r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k − 2−np1 − p2]

=
r∑
�=0

∑
k∈2−nZ

h�,n[k]h�,n[k − 2−np1 − p2].

Since k − 2−np1 − p2 	∈ 2−nZ when k ∈ 2−nZ, we have h�,n[k − 2−np1 − p2] = 0
for any k ∈ 2−nZ and the last identity is equal to 0. In conclusion, for the dilated
filters h0,n, h1,n, . . . , hr,n, we still have a result similar to (2.9)

(2.37)

r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k − p] = δp,0, n ≤ 0, p ∈ Z.
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Thus we have proven (2.33), which leads to
r∑
�=0

∑
k∈Z

〈f, ψq�,n−1,k〉ψ
q
�,n−1,k =

∑
k∈Z

〈f, ψq0,n,k〉ψ
q
0,n,k = Pqnf.

This is the identity we need to prove the case when n ≤ 0. In all, identity (2.33)
holds for any n ∈ Z.

Remark 2.4. We note that in the proof of identity (2.12) for the affine system,
one needs both identities of (2.6); while in the proof of identity (2.33) for n ≤ 0,
when the quasi-affine system is used, one only needs the first identity of (2.6).

The next theorem shows that a result similar to (2.23) also holds for quasi-affine
systems, and that Xq(Ψ) is a tight frame for L2(R).

Theorem 2.4. Let X(Ψ), where the framelets Ψ = {ψ1, . . . , ψr}, be the affine tight
frame system obtained from the UEP. Then the quasi-affine system Xq(Ψ) forms a
tight frame for L2(R), and Pqnf = Qq

nf for all f ∈ L2(R).

Proof. We begin by showing that Pqnf = Qq
nf . Telescoping on (2.33) we have,

for any f ∈ L2(R) and n > n′,

(2.38) Pqnf = Pqn′f +

r∑
�=1

n−1∑
j=n′

∑
k∈Z

〈f, ψq�,j,k〉ψ
q
�,j,k.

Thus the proof of Pqnf = Qq
nf is transferred to the proof of P qn′f → 0 as n′ → −∞.

Since we are interested in the behavior of P qn′ as n′ → −∞, we now assume that
n′ < 0.

As shown in the proof of Lemma 2.4, {φqn′,k : k ∈ Z} is a Bessel system for any

given n′ ∈ Z. Thus, we have∑
k∈Z

|〈f, φqn′,k〉|2 ≤ C‖f‖2L2(R)
.

Using the above inequality and

Pqn′f =
∑
k∈Z

〈f, φqn′,k〉φ
q
n′,k,

we have the norm of Pqn′f satisfying

(2.39) ‖Pqn′f‖2L2(R)
≤ C

∑
k∈Z

|〈f, φqn′,k〉|
2.

Based on routine arguments in approximation theory, we only need to check the
value of ‖Pqn′f‖L2(R) when f is supported on an interval [−R,R] for an arbitrary
given R > 0. Applying the Cauchy-Schwartz inequality to (2.39), we have,

‖Pqn′f‖2L2(R)
≤ C‖f‖2L2(R)

∑
k∈Z

∫
[−R,R]

∣∣∣2n′
φ(2n

′
(x− k))

∣∣∣2 dx
= 2n

′
C‖f‖2L2(R)

∑
k∈Z

∫
En′,k

|φ(x)|2 dx,
(2.40)

where En′,k = 2n
′
([−R,R]− k). Now, we prove that

(2.41) 2n
′ ∑
k∈Z

∫
En′,k

|φ(x)|2 dx→ 0, as n′ → −∞.
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By the monotone convergence theorem, we have

2n
′ ∑
k∈Z

∫
En′,k

|φ(x)|2 dx = 2n
′
∫ ∑

k∈Z

χEn′,k |φ(x)|
2 dx.

Observe that
∑
k∈Z

χEn′,k ≤ CR with the constant CR only depending on R. There-
fore, we have

2n
′ ∑
k∈Z

χEn′,k |φ(x)|
2 → 0 a.e. and 2n

′ ∑
k∈Z

χEn′,k |φ(x)|
2 ≤ CR|φ(x)|2.

Then, the dominated convergence theorem implies (2.41), and hence (2.38) becomes

Pqnf =

r∑
�=1

∑
j<n

∑
k∈Z

〈f, ψq�,j,k〉ψ
q
�,j,k = Qq

nf.

This completes the proof of Pqnf = Qq
nf .

Since Pqnf = Pnf for n ≥ 0, we have P qnf = Pnf → f as n → ∞ (by Lemma
2.3). This implies that Xq(Ψ) forms a tight frame of L2(R) and thus concludes the
proof of this theorem.

From the above theorem, the following result on approximation orders of quasi-
affine tight frame systems Xq(Ψ) is obvious. Note that the approximation order of
Xq(Ψ) is defined similarly as X(Ψ) in Definition 2.1.

Proposition 2.5. Let Xq(Ψ) be a quasi-affine tight frame system constructed
from UEP with the underlying MRA generated by a refinable function φ. As-
sume that Ψ has vanishing moments of order m0 and φ provides approximation
order m. Then the approximation order of the quasi-affine tight frame system is
m1 = min{m, 2m0}.

Similar to the affine counterpart, we normally do not perform full levels of
decomposition and reconstruction as given by Theorem 2.4. We normally stop at a
certain level instead. The following corollary states that by doing so, we still have
a tight frame system which includes the shifts of φ at a certain scale.

Corollary 2.2. Let Ψ = {ψ� : 1 ≤ � ≤ r} be the set of tight framelets constructed
from the UEP with φ the corresponding refinable function. Then for any given
L ∈ Z, the system

Xq(φ,Ψ;L) := {φqL,k, ψ
q
�,n,k : 1 ≤ � ≤ r, n ≥ L, k ∈ Z}

forms a tight frame of L2(R), i.e. for any f ∈ L2(R),

f =
∑
k∈Z

〈f, φqL,k〉φ
q
L,k +

r∑
�=1

∑
n≥L

∑
k∈Z

〈f, ψq�,n,k〉ψ
q
�,n,k.

In practical calculations, we always assume that the function we have is Pq0f ∈
V q0 , and perform decomposition down to V q−L for some L ∈ Z+. Then the decom-
position and reconstruction formula can be written as

Pq0f = Pq−Lf +
r∑
�=1

−1∑
j=−L

∑
k∈Z

〈f, ψq�,j,k〉ψ
q
�,j,k.

This process corresponds to the so-called undecimated wavelet decomposition and
reconstruction. Details of this process are described in the next section.
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2.2. Algorithms for Quasi-Affine Tight Frames

In this subsection we provide the decomposition and reconstruction algorithms
for quasi-affine tight frame systems following a similar discussion as in Section 1.4.

Since

Pq,LL f = PLf = DLP0D
−Lf = DLPq0D−Lf,

one may use Pq0f ∈ V q0 to approximate f without loss of generality. If it is necessary,
we can always consider function f(2−L·) instead of f , since the approximation of a

function f in space V q,LL is the same as that of the function f(2−L·) in space V q0 .
In level n ≤ 0, the dilated filter is denoted by h�,n, which is defined by (same

as (2.36))

(2.42) h�,n[k] =

{
h�[2

nk], k ∈ 2−nZ;
0, k ∈ Z\2−nZ.

Given a sequence h�,n = {h�,n[k]}k∈Z for any � = 0, 1, . . . , r, and n ≤ 0, we define
an infinite matrix Hq

�,n corresponding to h�,n as

Hq
�,n := (Hq

�,n[l, k]) := (h�,n[k − l]),

where the (l, k)th entry in Hq
�,n is fully determined by the (k − l)th entry in h�,n.

Then for any vector v ∈ �2(Z), we have

(Hq
�,nv)[l] =

∑
k∈Z

h�,n[k − l]v[k].

Note that the matrix multiplication defined above is in fact the convolution of v
with filter h�,n[−·], i.e.

Hq
�,nv = h�,n[−·] ∗ v.

We denote Hq∗
�,n as the adjoint of Hq

�,n with

(Hq∗
�,nv)[k] =

∑
l∈Z

h�,n[k − l]v[l] = (h�,n ∗ v)[k].

We collect the coefficients in each level n < 0 to form an infinite column vector

v�,n := [. . . , 〈f, ψq�,n,k〉, . . .]

, � = 0, 1, . . . , r,

where ψq0 := φq. From the proof of Lemma 2.4, we have shown that (identity (2.37))

r∑
�=0

∑
k∈Z

h�,n[k]h�,n[k − p] = δp,0, p ∈ Z.

which is equivalent to

(2.43)

r∑
�=0

Hq∗
�,nH

q
�,n = I .

Thus, the decomposition and reconstruction process (2.33) can be written in matrix
form as

v0,n =

r∑
�=0

Hq∗
�,nH

q
�,nv0,n n ≤ 0.
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For a multiple level decomposition operator, we define Aq
L, for L < 0, as a

(rectangular) block matrix given as:
(2.44)

Aq
L := [

( 0∏
n=L

Hq
0,n

)
;
(
Hq

1,L

0∏
n=L+1

Hq
0,n

)
; . . . ;

(
Hq
r,L

0∏
n=L+1

Hq
0,n

)
; . . . ; Hq

1,0; . . . ;H
q
r,0]


,

where the product of operators is defined as,

L2∏
n=L1

Tn := TL1TL1+1 · · ·TL2.

Then, we have the reconstruction operator Aq∗
L , the adjoint operator of Aq

L, defined
as
(2.45)

Aq∗
L = [

( L∏
n=0

Hq∗
0,n

)
;
( L+1∏
n=0

Hq∗
0,nH

q∗
1,L

)
; . . . ;

( L+1∏
n=0

Hq∗
0,nH

q∗
r,L

)
; . . . ; Hq∗

1,0; . . . ;H
q∗
r,0].

For the case L = 0, we denote

Aq
0 := [Hq

0,0;H
q
1,0; . . . ;H

q
r,0]


; Aq∗
0 := [Hq∗

0,0;H
q∗
1,0; . . . ;H

q∗
r,0].

The next proposition shows that the decomposition and reconstruction process
is perfect, i.e. Aq∗

L Aq
L = I .

Proposition 2.6. The decomposition operator Aq
L, as defined in (2.44) satisfies

Aq∗
L Aq

L = I , where I is the identity operator.

Here, we provide the univariate fast framelet decomposition and reconstruction
algorithm for quasi-affine tight frame systems in Algorithm 2.2. For simplicity of

notation, we denote h̃�,n := h�,n[−·]. For a given finite signal v ∈ RN , we denote

the finite length convolution operation as h̃�,n � v, and understand it to be the

restriction of H�,nṽ = h̃�,n ∗ ṽ on the set {0, 1, . . . , N − 1}:

h̃�,n � v := (H�,nṽ)|{0,1,...,N−1} = (h̃�,n ∗ ṽ)|{0,1,...,N−1},

where ṽ is either periodic or a symmetric extension of v given by (2.27).

Algorithm 2.2. Given signal v ∈ RN with N ∈ N+. Denote v0,0 = v. Then
the L-level fast quasi-affine framelet decomposition and reconstruction is given as
follows:

(1) Decomposition: For each j = 1, 2, . . . , L
(a) Obtain low frequency approximation to v at level j:

v0,j = h̃0,1−j � v0,j−1;

(b) Obtain framelet coefficients of v at level j:

v�,j = h̃�,1−j � v0,j−1, � = 1, 2, . . . , r.

(2) Reconstruction: For each j = L,L− 1, . . . , 1,

v0,j−1 =
r∑
�=0

h�,1−j � v�,j .
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3. Higher Dimension Tight Frame Systems

So far we have focused on univariate tight frame systems. However, almost
all theorems and propositions mentioned so far were established in a multivariate
setting. For example, the unitary extension principle, the mixed extension principle
and the oblique extension principle are stated for a multivariate setting in [65, 158].
In fact, examples of multivariate spline tight frames from Box splines by using
the unitary extension principle are provided in [160]. Here, we present simplified
versions of them.

3.1. MRA and Tight Frame Systems for L2(Rd)
For a given function φ ∈ L2(Rd), we define the shift-invariant subspace V (φ) ⊂

L2(Rd) generated by φ as

V (φ) := span{φ(· − k), k ∈ Zd},
and denote Vn as the 2n-dilate of V (φ), i.e.

(2.46) Vn = span{φ(2n · −k), k ∈ Zd}, n ∈ Z.

We say that {Vn}n forms a multiresolution analysis (MRA) for L2(Rd) if the fol-
lowing conditions are satisfied:

Vn ⊂ Vn+1; ∪nVn = L2(R
d); and ∩n Vn = {0}.

The function φ is refinable if

(2.47) φ(x) = 2d
∑
k∈Zd

h0[k]φ(2x− k)

for some h0 ∈ �2(Zd). In frequency domain, the above equation can be rewritten as

φ̂(2·) = ĥ0φ̂.

The Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(ξ) :=

∫
Rd

f(t)e−iξ·tdt, ξ ∈ Rd,

which can be extended to more general function spaces (e.g. L2(Rd)) in a natural
manner. The Fourier series of a sequence h0 ∈ �2(Zd) is defined as

ĥ0(ξ) :=
∑
j∈Zd

h0[j]e
−ij·ξ, ξ ∈ Rd.

The following theorem is the corresponding Rd version of Theorem 1.4.

Theorem 2.5. [115] Let φ ∈ L2(Rd), and Vn defined as (2.46). Then,

(1) ∩nVn = {0};
(2) Assume, in addition, that φ is refinable. Then,

∪nVn = L2(R
d)

if and only if

∩n2nZ(φ̂)
is a set of measure zero, where Z(φ̂) := {ξ ∈ Rd : φ̂(ξ) = 0}.

In particular, the sequence of subspaces {Vn}n∈Z generated by a refinable function
φ ∈ L2(Rd) forms an MRA if either of the following conditions is satisfied:

(1) φ is a compactly supported refinable function;
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(2) φ is refinable and φ̂ is continuous at 0 with φ̂(0) 	= 0.

Proof. The proof is a direct analog to that of Theorem 1.4.

With a refinable function φ generating an MRA for L2(Rd), we can construct
tight frames systems for L2(Rd).

Definition 2.3. Let Ψ = {ψ1, . . . , ψr} be a set of functions. A wavelet/affine
system generated by Ψ is defined as

X(Ψ) = {ψ�,n,k : 1 ≤ � ≤ r;n ∈ Z; k ∈ Zd}

where ψ�,n,k is defined by

ψ�,n,k := DnTkψ� := 2nd/2ψ�(2
n · −k).

A quasi-affine system from level 0 is defined as

Xq(Ψ) = {ψq�,n,k : 1 ≤ � ≤ r;n ∈ Z; k ∈ Zd},

where ψq�,n,k is defined by

ψq�,n,k :=

{
DnTkψ�, n ≥ 0;

2
nd
2 T2−LkDnψ�, n < 0.

The following is the unitary extension principle for L2(Rd) which was originally
proved in [158]. For simplicity, we assume the underlying refinable function φ is

compactly supported with φ̂(0) = 1 and the associated masks are finely supported.
Under these assumptions, items 1-3 in Assumption 2.1 are satisfied.

Theorem 2.6 (Unitary Extension Principle for L2(Rd) [158]). Let φ ∈ L2(Rd) be
the compactly supported refinable function with finitely supported refinement mask

h0 satisfying φ̂(0) = 1. Let {h1, . . . , hr} be a set of finitely supported sequences.
Then the wavelet system X(Ψ) and its quasi-affine counterpart Xq(Ψ), with Ψ =

{ψ1, . . . , ψr} defined by ψ̂�(2·) = ĥ�φ̂, forms a tight frame in L2(Rd) provided the
equalities

(2.48)

r∑
�=0

|ĥ�(ξ)|2 = 1 and

r∑
�=0

ĥ�(ξ)ĥ�(ξ + ν) = 0,

hold for all ν ∈ {0, π}d \ {0} and ξ ∈ [−π, π]d. Furthermore, assuming r = 2d − 1
and ‖φ‖L2(Rd) = 1, then X(Ψ) is an orthonormal wavelet bases of L2(Rd).

Proof. The proof is analogous to that of Theorem 2.2 and Theorem 2.4; hence
we only sketch it here.

First, one can establish the following equalities using (2.48),

Pnf = Pn−1f +

r∑
�=1

∑
k∈Zd

〈f, ψ�,n−1,k〉ψ�,n−1,k

= Pn′f +

r∑
�=1

n−1∑
j=n′

∑
k∈Zd

〈f, ψ�,j,k〉ψ�,j,k,
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and

Pqnf = Pqn−1f +

r∑
�=1

∑
k∈Zd

〈f, ψq�,n−1,k〉ψ
q
�,n−1,k

= Pqn′f +
r∑
�=1

n−1∑
j=n′

∑
k∈Zd

〈f, ψq�,j,k〉ψ
q
�,j,k.

(2.49)

Finally one can show that

Pn′f → 0 and Pqn′f → 0, n′ → −∞
and

Pnf → f and Pqnf → f, n→ ∞
which establishs that X(Ψ) and Xq(Ψ) form tight frames for L2(Rd).

One way to construct tight frames for L2(Rd) is by taking tensor products of
univariate tight frames. For simplicity of notation, we consider 2D case, i.e. d = 2.
Arguments for higher dimensions are similar. Given a set of univariate masks
{h� : � = 0, 1, . . . , r}, define the 2D masks hi,j [k1, k2] as

(2.50) hi,j [k1, k2] := hi[k1]hj[k2], 0 ≤ i, j ≤ r; (k1, k2) ∈ Z2,

or equivalently in Fourier domain

ĥi,j [ξ1, ξ2] := ĥi[ξ1]ĥj [ξ2], 0 ≤ i, j ≤ r; (ξ1, ξ2) ∈ R2.

Then the corresponding 2D refinable function and mother wavelets are defined by

ψi,j(x, y) = ψi(x)ψj(y), 0 ≤ i, j ≤ r; (x, y) ∈ R2.

Denote the collection of mother wavelets as

Ψ2 := {ψi,j ; 0 ≤ i, j ≤ r; (i, j) 	= (0, 0)},
which contains (r + 1)2 − 1 elements. (Here, ψ0 is defined to be the underlying
univariate refinable function.) If the univariate masks {h�} are constructed from
UEP, then it is easy to verify that {hi,j} satisfies (2.48) and thusX(Ψ2) andX

q(Ψ2)
are tight frames for L2(R2).

3.2. Algorithms for Tensor Product Tight Frame Systems

In this section, we only discuss the fast framelet decomposition and reconstruc-
tion algorithm for 2D finite signals. Since we are using tensor product tight frame
systems, the 2D fast algorithms can be easily derived based on 1D fast algorithms
for both wavelet and quasi-affine systems.

Now, we introduce some notation. Let the set of masks {h� : � = 0, 1, . . . , r} be
constructed from univariate UEP (Theorem 2.2). For a given signal v ∈ RN1 ×RN2

with N1, N2 ∈ N+, let D
x
�,j and Dy

�,j denote the one level of decomposition with
respect to the x-index and y-index of v, which are defined as follows:

(Dx
�,jv)[·, k2] =

{
↓ (h̃� � v[·, k2]), wavelet system,

h̃�,j � v[·, k2], quasi-affine system;

(Dy
�,jv)[k1, ·] =

{
↓ (h̃� � v[k1, ·]), wavelet system,

h̃�,j � v[k1, ·], quasi-affine system,
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where h̃� =
√
2 · h�[−·] and h̃�,j = h�,j[−·] with h�,j defined as in (2.42). Similarly,

we can define one level of reconstruction Dx∗
�,j and D

y∗
�,j as

(Dx∗
�,jv)[·, k2] =

{
h̃∗�� ↑ (v[·, k2]), wavelet system,
h�,j � v[·, k2], quasi-affine system;

(Dy∗
�,jv)[k1, ·] =

{
h̃∗�� ↑ (v[k1, ·]), wavelet system,
h�,j � v[k1, ·], quasi-affine system,

where h̃∗� =
√
2h�.

Now, we present the following 2D fast framelet decomposition and reconstruc-
tion algorithm, which unifies the algorithm for wavelet systems and quasi-affine
systems. A diagram illustrating one level of decomposition and reconstruction is
given in Figure 5.

Algorithm 2.3. Given signal v ∈ RN1 ×RN2 with N1, N2 ∈ N+. If the underlying
system is affine, then N1 and N2 are assumed to be integer multiples of 2L with L
the total level of decompositions. Denote v0,0,0 = v. Then the L-level fast framelet
decomposition and reconstruction is given as follows:

(1) Decomposition: For each j = 1, 2, . . . , L
(a) Obtain low frequency approximation to v at level j:

v0,0,j = Dy
0,1−j(D

x
0,1−jv0,0,j−1);

(b) Obtain framelet coefficients of v at level j: for each �1 = 0, 1, . . . , r
and �2 = 0, 1, . . . , r with (�1, �2) 	= (0, 0),

v�1,�2,j = Dy
�2,1−j(D

x
�1,1−jv0,j−1).

(2) Reconstruction: For each j = L,L− 1, . . . , 1,

v0,0,j−1 =

r∑
�1=0

r∑
�2=0

Dx∗
�1,1−j(D

y∗
�2,1−jv�1,�2,j).
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Figure 5. The above diagram illustrates one level of the fast
framelet decomposition and reconstruction procedure given by Al-
gorithm 2.3.



LECTURE 3

Pseudo-splines and Tight Frames

A class of refinable and compactly supported functions known as pseudo-splines
encompasses a wide variety of refinable functions which provide much flexibility in
the construction of wavelets and framelets. Functions such as B-splines, interpola-
tory, or Daubechies’ orthogonal refinable functions (see [61, 60]) are special cases
of pseudo-splines. Pseudo-splines were first introduced in [65, 165] in order to con-
struct tight framelets with satisfactory approximation order for the truncated frame
series of the tight wavelet system generated by the unitary extension principle.

The organization of this lecture is as follows. After a general introduction of
pseudo-splines in Section 1, a construction of tight framelets is presented in Section
2. As a special example, we can obtain orthonormal wavelet bases for L2(R) which
were originally constructed by Daubechies in [60]. Furthermore, the technique used
to estimate the regularity of pseudo-splines can be applied to discover that the tight
frame systems constructed in [65] and [75] always have one framelet whose dilations
and shifts already form a Riesz basis for L2(R). This leads to a new understanding
about the structure of pseudo-spline tight frame systems.

An optimal regularity analysis of pseudo-splines does not come easily, as has
already been illustrated in a regularity estimate of the orthonormal refinable func-
tions, which is a special case of pseudo-splines (see [54] and [61]). In [75], a
systematic regularity analysis of both types of pseudo-splines was given. In Section
3, we provide regularity analysis for pseudo-splines. In particular, the exact decay
of the Fourier transforms of the pseudo-splines is given which leads to an estimate
of their Hölder regularity. The last section contains two technical lemmata which
are needed in the proofs of the properties of pseudo-splines. Finally, we note that
some key part of this lecture (e.g. regularity analysis) follows from [75].

1. Definitions and Basics

This section is devoted to the definitions of various pseudo-splines and their
basic properties.

1.1. Definitions

Pseudo-splines are defined in terms of their refinement masks. It starts with the
simple trigonometric identity 1 = cos2(ξ) + sin2(ξ). For given nonnegative integers
l and m with l ≤ m− 1, we have

(3.1) 1 =
(
cos2(ξ/2) + sin2(ξ/2)

)m+l
.

The refinement masks of pseudo-splines are defined by the summation of the first
l + 1 terms of the binomial expansion of (3.1). In particular, the refinement mask

59
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of a pseudo-spline of Type I with order (m, l) is given by, for ξ ∈ [−π, π],

(3.2) |1â(ξ)|2 := |1â(m,l)(ξ)|2 := cos2m(ξ/2)
l∑

j=0

(
m+ l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2)

and the refinement mask of a pseudo-spline of Type II with order (m, l) is given by,
for ξ ∈ [−π, π],

(3.3) 2â(ξ) := 2â(m,l)(ξ) := cos2m(ξ/2)

l∑
j=0

(
m+ l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

Define

(3.4) Pm,l(y) :=

l∑
j=0

(
m+ l

j

)
yj(1− y)l−j

and

(3.5) Rm,l(y) := (1− y)mPm,l(y),

where m, l are nonnegative integers with l ≤ m− 1. Then, it is obvious that

2â(ξ) = Rm,l(sin
2(ξ/2)).

Except for some special circumstances, we simply notation by dropping the
subscript “(m, l)” in 1â(m,l)(ξ) and 2â(m,l)(ξ) for simplicity. We note that the mask
of Type I is obtained by taking the square root of the mask of Type II using the
Fejér-Riesz lemma (see e.g. [61] and [152]), i.e. 2â(ξ) = |1â(ξ)|2. Type I was
introduced and used by [65] to construct tight framelets.

Finally, a family of dual pseudo-splines was first discovered by [81] and the
general refinement mask of a dual pseudo-spline of order (m, l) with 0 ≤ l ≤ m− 1
is

(3.6) b̂m,l(ξ) = eiξ/2 cos2m+1(ξ/2)

l∑
j=0

(
m+ 1/2 + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

Notice that dual pseudo-spline of order (m, 0) is the B-spline of degree 2m and
dual pseudo-spline of order (m,m − 1) is the limit function of the dual 2m-point
scheme. The masks of dual pseudo-splines are very similar in format to those of
pseudo-splines. In fact, if we let r = m+ 1

2 , then (3.6) can be rewritten as

b̂r,l(ξ) = eiξ/2 cos2r(ξ/2)
l∑

j=0

(
r + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

Therefore, the analysis of dual pseudo-splines is similar to that of pseudo-splines by
using Newton’s generalized binomial theorem. Hence, we focus on the analysis of
pseudo-splines because the analysis of dual pseudo-splines is analogous. Interested
readers should work out the details as exercises.
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1.2. Underlying Refinable Functions

Given refinement masks kâ, the corresponding pseudo-splines can be formally

defined in terms of their Fourier transforms kφ̂(ξ) :=
∏∞
j=1 kâ(2

−jξ) for k = 1, 2.

To make sure that kφ̂ is well defined, we need to consider the convergence of the
right-hand-side which is given below. For finitely supported refinement masks, the
following theorem is well known and one can find the proof in e.g. [61]. Here, we
provide an alternative proof motivated from a proof of [116].

Proposition 3.1. [116] Suppose that h0 is a finitely supported refinement mask

satisfying ĥ0(0) = 1. Then, the product

(3.7) φ̂(ξ) :=

∞∏
j=1

ĥ0(2
−jξ)

converges uniformly on any compact subset of R. Furthermore, φ̂ is the Fourier
transform of a compactly supported tempered distribution φ that satisfies refinement
equation (1.6).

Proof. Since ĥ0 is a trigonometric polynomial with ĥ0(0) = 1, we have

(3.8) |ĥ0(ξ)| ≤ 1 + C|ξ| ≤ eC|ξ|,

for some C > 0. This leads to
∞∏
j=1

|ĥ0(2−jξ)| ≤ eC|ξ|.

Therefore, the right-hand-side of (3.7) converges uniformly on any compact subset

K of R. It is clear that φ̂ satisfies refinement equation (1.6). Note that in the above
proof, we only require that the refinement mask satisfy (3.8). The finiteness of the
support of the refinement mask is not needed.

Let c0 = maxξ |ĥ0(ξ)| and c1 = max|ξ|≤2 |φ̂(ξ)|. For any positive j, consider ξ,

such that 2j ≤ |ξ| < 2j+1. Since

φ̂(ξ) =

j∏
k=1

ĥ0(2
−kξ)φ̂(2−jξ),

we have

(3.9) |φ̂(ξ)| ≤ c1c
j
0 ≤ c1c

log2 |ξ|
0 = c1|ξ|log2 c0 .

Therefore, φ̂ has at most polynomial growth at infinity. Hence, φ is a tempered

distribution with φ̂(0) = 1.
Finally it remains to prove that φ is compactly supported. Let φ0 = δ be

the Dirac function. Then it is a compactly supported tempered distribution whose
Fourier transform is 1. Define the cascade algorithm

φ̂n+1(ξ) = ĥ0(ξ/2)φ̂n(ξ/2).

Then, the infinity product in the right-hand-side of (3.7) converges uniformly on

any compact subset R if and only if φn does. Furthermore, (3.9) shows that φ̂n has
at most polynomial growth at infinity. Assume that the support of the refinement
mask is [−q, q]. Let K be any compact subset in R containing [−q, q]. Then it can
be shown inductively that the support of φn is in K for all n ≥ 0. Now, let g be
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an arbitrary test function whose support is disjoint with K. Then, applying the
dominated converge theorem, one has

〈φ, g〉 = (2π)1/2〈φ̂, ĝ〉 = (2π)1/2〈lim
n
φ̂n, ĝ〉 = (2π)1/2 lim

n
〈φ̂n, ĝ〉 = lim

n
〈φn, g〉 = 0.

Hence, φ is compactly supported.

One of the fundamental questions for the study of refinable functions is that
given a refinement mask h0, does there exist a corresponding refinable function
φ ∈ L2(R) such that the refinement equation (1.5) is satisfied. This question will
be answered by the following result where part of the proof is taken from [32] (see
[125] for a more general analysis). To establish these results, we need to introduce
the cascade algorithm. For a given refinement mask h0, define the cascade algorithm
as

(3.10) f̂n(ξ) = ĥ0(
ξ

2
)f̂n−1(

ξ

2
) =

n∏
j=1

ĥ0(2
−jξ)f̂0(2−nξ), n > 0,

with initial function f0 satisfying f̂0(ξ) = χ[−π,π](ξ). Proposition 3.1 shows that fn
converges uniformly on each compact set.

Theorem 3.1. [32] Suppose h0 is finitely supported and satisfies the following
condition:

(3.11)

{
|ĥ0(ξ)|2 + |ĥ0(ξ + π)|2 � 1, a.e. ξ ∈ R;
ĥ0(0) = 1.

Then, the limit φ of the cascade algorithm (3.10) is a compactly supported function

in L2(R) satisfying φ̂(0) = 1.

Proof. Since h0 is finitely supported and ĥ0(0) = 1, then by Proposition 3.1,
there exists a unique compactly supported refinable distribution φ whose Fourier

transform given by (3.7) satisfies φ̂(0) = 1 (also see [61, 29]). Now, consider

‖f̂n‖2L2(R)
=

∫ 2nπ

−2nπ

n∏
j=1

|ĥ0(2−jξ)|2dξ

(ĥ0 is 2π-periodic) =

∫ 2n+1π

0

n∏
j=1

|ĥ0(2−jξ)|2dξ

=

∫ 2nπ

0

n∏
j=1

|ĥ0(2−jξ)|2dξ +
∫ 2n+1π

2nπ

n∏
j=1

|ĥ0(2−jξ)|2dξ

=

∫ 2nπ

0

n∏
j=1

|ĥ0(2−jξ)|2dξ +
∫ 2nπ

0

n∏
j=1

|ĥ0(2−j(ξ + 2nπ))|2dξ

=

∫ 2nπ

0

n−1∏
j=1

|ĥ0(2−jξ)|2
(
|ĥ0(2−nξ)|2 + |ĥ0(2−nξ + π)|2

)
dξ.

By (3.11), we have

‖f̂n‖2L2(R)
≤

∫ 2nπ

0

n−1∏
j=1

|ĥ0(2−jξ)|2dξ = ‖f̂n−1‖2L2(R)
.
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Then by induction, we have

‖f̂n‖2L2(R)
≤ ‖f̂0‖2L2(R)

= 2π, for all n ≥ 0.

Since the sequence {f̂n}n converges to φ̂ pointwise, then by Fatou’s lemma

‖φ̂‖2L2(R)
≤ lim inf

n→∞ ‖f̂n‖2L2(R)
≤ 2π <∞,

and hence φ ∈ L2(R).

By the definition of the refinement masks of the pseudo-splines, the pseudo-
splines of both types satisfy (3.11), and hence all pseudo-splines are compactly
supported functions in L2(R). In fact, they are much smoother than merely being
in L2(R) as is shown in Section 3. Furthermore, from Theorem 1.4 in Lecture 1
the sequence of subspaces {Vn}n (defined via (1.1)) generated by any pseudo-spline
forms an MRA for L2(R).

Since most pseudo-splines do not have an analytical form (B-splines as the
exception). It is important to know whether the infinite product (3.7) converges
in L2(R), so that one can obtain the approximation of the corresponding refinable
function.

Proposition 3.2. The cascade algorithm defined in (3.10) by the refinement mask
h0 of an arbitrary given pseudo-spline with any type and order converges to the
corresponding pseudo-spline φ in L2(R).

Proof. Since we already have pointwise convergence of the cascade algorithm

by Proposition 3.1, all we need to show is that ‖φ̂‖2L2(R)
= limn→∞ ‖f̂n‖2L2(R)

.

Indeed, we have

0 ≤ ‖f̂n − φ̂‖2L2(R)
= 〈f̂n − φ̂, f̂n − φ̂〉 = ‖f̂n‖2L2(R)

− 2Re〈f̂n, φ̂〉+ ‖φ̂‖2L2(R)
.

Since f̂n pointwise converges to φ̂, one needs to show that limn→∞〈f̂n, φ̂〉 = ‖φ̂‖2L2(R)

and ‖φ̂‖2L2(R)
= limn→∞ ‖f̂n‖2L2(R)

. This leads to

0 ≤ lim
n→∞ ‖f̂n − φ̂‖2L2(R)

≤ lim
n→∞

(
‖f̂n‖2L2(R)

− ‖φ̂‖2L2(R)

)
.

By the dominated convergence theorem, it suffices to show that

(3.12) |f̂n|2 ≤ C|φ̂|2 and |f̂nφ̂| ≤ C|φ̂|2

Since we have already shown that φ ∈ L2(R), for any given n ≥ 0, the existence

of C > 0 satisfying (3.12) is obvious when |ξ| > 2nπ since f̂n(ξ) = 0. Now, for
|ξ| ≤ 2nπ, since φ is refinable, it follows that

|φ̂(ξ)|2 =

∣∣∣∣∣∣
∞∏
j=1

ĥ0(2
−jξ)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
n∏
j=1

ĥ0(2
−jξ)

∞∏
j=n+1

ĥ0(2
−jξ)

∣∣∣∣∣∣
2

= |f̂n(ξ)|2|φ̂(2−nξ)|2.

By (3.16) one can easily check that the inequality

|φ̂(ξ)|2 ≥ 1/C > 0, ξ ∈ [−π, π]
holds for some C > 0 for all pseudo-spines. Hence, (3.12) holds for all pseudo-
splines.
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1.3. Approximation

Recall the definition of the refinement mask of a pseudo-spline of Type II with
order (m, l)

2â(ξ) = cos2m(ξ/2)

l∑
j=0

(
m+ l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

One can see that a pseudo-spline of Type II with order (m, l) is a convolution
of a B-spline of order 2m with a distribution. The mask of the distribution
is Pm,l(sin

2(ξ/2)), where Pm,l(y) is given by (3.4). Since Lemma 3.3 says that

Pm,l(y) =
∑l

j=0

(
m−1+j

j

)
yj , one has Pm,l(sin

2(ξ/2)) ≥ 1 for all ξ. Hence, pseudo-

spline of Type II with order (m, l) can be viewed as a convolution of a B-spline with
a distribution whose Fourier transform is at least 1 at any point ξ. Therefore, the
pseudo-spline 2φ of Type II with order (m, l) satisfies the SF condition of order 2m.
By a similar discussion with some special treatment of the case when m is odd, one
can conclude that the pseudo-spline 1φ of Type I with order (m, l) satisfies the SF
condition of order m.

Consider the masks of 1â of the pseudo-splines of type I of order (m, l). Since

1 − |1â|2 has a factor sin2(l+1)(ξ/2), we have 1 − |1â|2 = O(| · |2l+2). Then by
Theorem 1.5 and Proposition 2.1, the operator Pnf defined by (1.13) corresponding
to the pseudo-spline 1φ of order (m, l) provides approximation order min{m, 2l +
2} for sufficiently smooth functions. Hence, Theorem 2.3 implies that any tight
frame system constructed by the UEP using pseudo-splines of type I of order (m, l)
provides approximation order min{m, 2l+ 2}.

The following theorem shows that, if we start from pseudo-splines of Type II
with order (m, l) in Construction 3.3, the corresponding tight frame system X(Ψ)
provides approximation order 2l+ 2.

Theorem 3.2. Let m and l be nonnegative integers satisfying l ≤ m − 1. Let kφ,
k = 1, 2 be the pseudo-spline of Type I and II with order (m, l) and kâ , k = 1, 2 be
its refinement mask. Let Pn be defined by (1.13) for a given refinable function kφ
Then, Pn provides approximation order min{m, 2l + 2} for Type I and 2l + 2 for
type II. Consequently, the corresponding truncated operator Qn defined in (2.21) for
any tight wavelet frame system constructed from a refinable function kφ, k = 1, 2
of order (m, l) via the unitary extension principle provides approximation order
min{m, 2l+ 2} for Type I and 2l + 2 for Type II.

Proof. Notice that 2â = |1â|2 and 1−2â
2 = (1+2â)(1−2â). Since 1+2â(0) 	=

0, the order of zeros of 1− 2â
2 at the origin is the same as that of 1− 2â, which is

exactly 2l+2 based on the discussion above. This, together with Theorem 1.5 and
Proposition 2.1, concludes the proof of the theorem.

For fixed m, since the value of the mask |kâ(ξ)|, for k = 1, 2 and ξ ∈ R,
increases with l (by (1) of Lemma 3.3 in section 4), and the length of the mask

ka also increases with l, we conclude that the decay rate of the Fourier transform
of a pseudo-spline decreases with l (see Section 3 for details) and the support
of the corresponding pseudo-spline increases with l. In particular, for fixed m,
the pseudo-spline with order (m, 0) has the highest order of smoothness with the
shortest support, the pseudo-spline with order (m,m − 1) has the lowest order of
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smoothness with the largest support in the family. When we move from B-splines
to orthogonal or interpolatory refinable functions, we sacrifice the smoothness and
short support of the B-splines to gain some other desirable properties, such as
orthogonality or interpolatory property. What do we get for the pseudo-splines
of other orders? When we move from B-splines to pseudo-splines, we gain the
approximation power of the truncated tight frame systems derived from them and
the vanishing moments of wavelets.

As mentioned in Lecture 1, if φ satisfies the SF condition of orderm, then φ (or
V (φ), or the underlying MRA) provides approximation order m. Therefore, even
though the (Vn)n∈Z may be generated by a different pseudo-spline of order (m, l)
with m fixed, the corresponding spaces (Vn)n∈Z provide the same approximation
order. However, in many applications we are more interested in the performance
of the tight frame system constructed using UEP. Therefore, we normally use the
truncated operator Qn defined in (2.21) or, equivalently, the quasi-interpolatory
operator Pn : L2(R) 
→ Vn defined in (2.11) to approximate f . Theorem 3.2 tells
us that for B-splines, the approximation order of the corresponding Qn (hence Pn)
can never exceed 2 even if a high order B-spline is used. On the other hand, for
pseudo-spline of either type with order (m, l), 0 ≤ l ≤ m − 1, the approximation
order of Qn (hence Pn) is min{m, 2l + 2} for Type I and 2l + 2 for Type II. This
indicates that the tight frame system derived from a pseudo-spline normally gives
better approximation order when the truncated series is used to approximate the
underlying functions than that derived from B-splines. For fixed m, the choice of
l depends entirely on applications. According to the practical problems in hand,
one must properly balance the approximation order, the length of support of the
wavelet, and regularity.

1.4. Stability and Orthogonality

Recall that φ is stable, if {φ(· − k)}k∈Z forms a Riesz basis for V (φ), i.e. there
exist 0 < C1, C2 <∞, such that for any sequence b ∈ �2(Z),

(3.13) C1‖b‖�2(Z) ≤
∥∥∑
k∈Z

b[k]φ(· − k)
∥∥
L2(R)

≤ C2‖b‖�2(Z).

In particular if only the upper bound of (3.13) is satisfied, we say that {φ(·−k)}k∈Z

forms a Bessel sequence (as we have already discussed in Lecture 1). On the other
hand, if C1 = C2 = 1, then we say that φ is orthonormal, i.e. {φ(· − k)}k∈Z

forms an orthonormal basis for V (φ). Recall that φ is orthonormal if and only if
〈φ, φ(· − k)〉 = δk,0 for all k ∈ Z.

The stability of function φ ∈ L2(R) can also be characterized by its bracket
product which is well known in the literature (see e.g. [70, 61, 114, 156]). Now,
we summarize and prove this characterization in the following lemma.

Lemma 3.1. For any given φ ∈ L2(R), then φ is stable, i.e. (3.13) is satisfied, if

and only if [φ̂, φ̂] satisfies

(3.14) 0 < C1 ≤ [φ̂, φ̂](ξ) ≤ C2;

holds for almost every ξ ∈ R with

ess inf [φ̂, φ̂] = C1 and ess sup [φ̂, φ̂] = C2.
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As a consequence, φ and its shifts form an orthonormal basis of V (φ) if and only

if [φ̂, φ̂] = 1 holds almost everywhere. Furthermore, assume that φ is compactly
supported, and then the upper bound of (3.14) or equivalently (3.13) is satisfied.

Proof. For simplicity, we denote φ̃ := [φ̂, φ̂]
1
2 . Then for all finite sequences

b ∈ �2(Z), we have the following identity (see proof of part (1) of Proposition 1.3)

(3.15) 2π

∥∥∥∥∥∑
k∈Z

b[k]φ(· − k)

∥∥∥∥∥
2

L2(R)

= ‖b̂φ̃‖2L2([−π,π]).

Suppose φ̃ satisfies (3.14). Then the upper bound of (3.14) implies that (3.15)
is satisfied for all b ∈ �2(Z). Therefore,

C1‖b̂‖2L2([−π,π]) ≤ ‖b̂φ̃‖2L2([−π,π]) ≤ C2‖b̂‖2L2([−π,π])
with

C1 = ess inf [φ̂, φ̂] and C2 = ess sup [φ̂, φ̂],

and hence (3.13) follows.

Now suppose the upper bound of (3.13) is satisfied. If φ̃ is not essentially
bounded, then there exists a sequence of domains Ωn ⊂ [−π, π] with positive mea-

sure such that φ̃ > n on Ωn. Let c
n be a sequence in �2(Z) satisfying ĉn = χΩn as

n→ ∞. Then by (3.15), we have

2π

∥∥∥∥∥∑
k∈Z

cn[k]φ(· − k)

∥∥∥∥∥
2

L2(R)

= ‖ĉnφ̃‖2L2([−π,π]) ≥ n‖ĉn‖2L2([−π,π]) = 2πn‖cn‖2�2(Z).

This contradicts with the upper bound of (3.13). Therefore, φ̃ must be essentially

bounded and the upper bound of (3.14) follows. Notice that φ̃ is essentially bounded

away from 0 if and only if 1/φ̃ is essentially bounded. Then using a similar argument
we can show that the lower bound of (3.14) follows from that of (3.13).

Now, we show that whenever φ is compactly supported, the upper bound of
(3.14), or equivalently (3.13), is satisfied automatically. Indeed, part (2) of Propo-

sition 1.3 implies that φ̃ is the Fourier series of {〈φ, φ(· − k)〉 : k ∈ Z} which is a

finite sequence since φ is compactly supported. Then φ̃ is in fact a trigonometric
polynomial which is continuous and hence bounded on [−π, π].

Consider the compactly supported centered B-splines

B̂m(ξ) = e−ij
ξ
2

(
sin(ξ/2)

ξ/2

)m
.

Since it is obvious that there is C1 > 0, such that |B̂m(ξ)| >
√
C1 for all ξ ∈ [−π, π],

we have

[B̂m, B̂m](ξ) = |B̂m(ξ)|2 +
∑
k∈Z\0

|B̂m(ξ + 2kπ)|2 ≥ |B̂m(ξ)|2 ≥ C1.

Hence all B-splines are stable. Next, we prove that all pseudo-splines are stable as
given by [74].

Proposition 3.3. [74] All pseudo-splines for both types with arbitrary orders are
stable.
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Proof. Here, we only prove stability for pseudo-splines of type II. The argu-
ments for pseudo-splines of type I are similar.

Let φ(m,l) be pseudo-spline of type II with order (m, l) and â(m,l) be its re-
finement mask. Since pseudo-splines are compactly supported functions in L2(R),
Lemma 3.1 tells us that we only need to show that there is a constant C1 > 0 such

that C1 ≤ [φ̂(m,l), φ̂(m,l)](ξ) holds for every ξ ∈ R.
Since for each fixed m ≥ 1 and for every 0 ≤ l ≤ m− 1, we have

Pm,l(sin
2(ξ/2)) ≥ 1,

and the following inequality

cos2m(ξ/2) ≤ â(m,l)(ξ)

holds for all ξ ∈ R. Therefore, by (3.7), we have for all ξ ∈ R,

(3.16) |B̂2m(ξ)| ≤ |φ̂(m,l)(ξ)|.

Since B2m is stable, there is a constant C1 > 0 such that C1 ≤ [φ̂(m,l), φ̂(m,l)](ξ)
holds for every ξ ∈ R. Altogether, we have that φ(m,l) is stable.

Let φm be the pseudo-splines of type I with order (m,m − 1). Next, we show
that φm is orthonormal, which means φm satisfies (3.13) with C1 = C2 = 1. By
Lemma 3.1, we know that φm is orthonormal if and only if

(3.17) [φ̂m, φ̂m] = 1

almost everywhere. We now have the following proposition.

Proposition 3.4. Pseudo-splines of type I with order (m,m− 1) are orthonormal
refinable functions.

Proof. All we need to show is that [φ̂m, φ̂m] = 1 a.e. We first note that for
any k ∈ Z, ∫ π

−π
[φ̂m, φ̂m](ξ)eikξdξ =

∫
R

|φ̂m(ξ)|2eikξdξ.

Define f0 such that f̂0(ξ) = χ[−π,π](ξ). Using the identity (3.27) and following the
same arguments as in the proof of Theorem 3.4, we have∫

R

|f̂n(ξ)|2eikξdξ =
∫
R

|f̂0(ξ)|2eikξdξ =
∫ π

−π
eikξdξ = 2πδk,0.

Then by the dominated convergence theorem (similarly as the proof of Theorem
3.4), we have ∫

R

|φ̂m(ξ)|2eikξdξ = 2πδk,0,

which means ∫ π

−π
[φ̂m, φ̂m](ξ)eikξdξ = 2πδk,0.

This proves that [φ̂m, φ̂m] = 1 a.e.

Following arguments similar to those used in proving the previous proposition,
we can show that all pseudo-splines of type II with order (m,m− 1) are indeed in-
terpolatory as given by the following proposition. Recall that a continuous function
φ ∈ L2(R) is said to be interpolatory if φ(k) = δk,0 for k ∈ Z (see e.g. [79]).
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One of the key steps in the proof of the following proposition is to show that

|φ̂(ξ)| ≤ C(1 + |ξ|)−1−ε. In fact, the Fourier transform of pseudo-splines of type
II with order (m,m − 1) has a faster decay than O((1 + |ξ|)−1−ε), which means
they are actually smoother than merely continuous. We provide an optimal decay
analysis of all pseudo-splines in Theorem 3.8.

Proposition 3.5. All pseudo-splines of type II with order (m,m− 1) are interpo-
latory.

Proof. Let φ be pseudo-spline of type II with order (m,m − 1) and â be its

refinement mask. First, we show that |φ̂(ξ)| ≤ C(1+ |ξ|)−1−ε for some ε > 0. Such

decay makes sure that φ̂ ∈ L1(R), which ensures the continuity of φ and thus φ(k)
is well-defined for all k ∈ Z.

Now, we show the decay of φ̂. Recall from (3.3) that

â(ξ) = cos2m(ξ/2)

m−1∑
j=0

(
2m− 1

j

)
sin2j(ξ/2) cos2(m−j−1)(ξ/2).

Define

L(ξ/2) :=
m−1∑
j=0

(
2m− 1

j

)
sin2j(ξ/2) cos2(m−j−1)(ξ/2).

Then

|φ̂(ξ)| =
∞∏
j=1

∣∣∣∣(1 + e−i(2
−jξ)

2

)∣∣∣∣2m ∞∏
j=1

L(2−jξ)

=
∣∣∣(1− e−iξ

iξ

)∣∣∣2m ∞∏
j=1

L(2−jξ)

≤ C(1 + |ξ|)−2m
∞∏
j=1

L(2−jξ).

(3.18)

By item 1 of Lemma 3.3, it is easy to see that supξ L(ξ) = 22m−2. We now provide

a decay estimate of
∏∞
j=1 L(2−jξ). Since L is a trigonometric polynomial with

L(0) = 1, we have L(ξ) ≤ 1 + C|ξ|. Therefore,

sup
|ξ|≤1

∞∏
j=1

L(2−jξ) ≤ sup
|ξ|≤1

∞∏
j=1

eC2−j|ξ| ≤ eC .

For a given |ξ| ≥ 1, there exists J ≥ 1 such that 2J−1 ≤ |ξ| ≤ 2J . Therefore,

∞∏
j=1

L(2−jξ) =
J∏
j=1

L(2−jξ)
∞∏
j=1

L(2−j−J ξ)

≤ 2J(2m−2)eC

≤ C(1 + |ξ|)2m−2.

(3.19)

Combining inequalities (3.18) and (3.19), we have the desired decay estimate of φ̂.
Now, proving φ is interpolatory is equivalent to showing that

(3.20)
∑
k∈Z

φ(k)e−ikξ = 1
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almost everywhere. Define φo(ξ) :=
∑

k∈Z
φ̂(ξ + 2πk). Since φ̂ ∈ L1(R), it is easy

to show that φo ∈ L1([−π, π]). Considering the Fourier coefficients of φo, we have

φ̂o[k] =

∫ π

−π
φo(ξ)eikξdξ =

∫
R

φ̂(ξ)eikξdξ = 2πφ(k).

Since φ is compactly supported, we know that {φ[k] : k ∈ Z} is a finite sequence.

Then
∑

k∈Z
|φ̂o[k]| <∞, which means φo has a Fourier series with absolute conver-

gence. Therefore,

(3.21)
∑
k∈Z

φ̂(ξ + 2πk) = φo(ξ) =
∑
k∈Z

φ(k)e−ikξ .

Identity (3.21) is known as the Poisson summation formula. Combining (3.21) with
(3.20) we have that φ is interpolatory if and only if∑

k∈Z

φ̂(ξ + 2πk) = 1

almost everywhere. Noting that â+ â(·+π) = 1, the rest of the proof follows similar
to that of Proposition 3.4 and we leave the details to the readers as an exercise.

Note that pseudo-splines with order (m, 0) for both types are in fact B-splines.
Pseudo-splines of Type I with order (m,m − 1) are the refinable functions with
orthonormal shifts (called orthogonal refinable functions) given in [60]. The pseudo-
splines of Type II with order (m,m − 1) are the interpolatory refinable functions
(which were first introduced in [79] and a systematic construction was given in
[60]). The other pseudo-splines fill the gap between the B-splines and orthogonal
or interpolatory refinable functions.

Similarly, we have the stability of all dual pseudo-splines.

Proposition 3.6. [72] All dual pseudo-splines are stable.

2. Wavelets From Pseudo-splines

For a given pseudo-spline, there are many ways to construct pseudo-spline tight
wavelet frames from it. Here, we provide a general construction of pseudo-spline
tight wavelet frames.

2.1. Framelets

In this Section, we give a construction of a tight wavelet frame system from
pseudo-splines. The construction is from [75] which is motivated from [51] and
one of the constructions of [65]. The construction can be applied to any refinable
function whose mask is a trigonometric polynomial and satisfies (3.11).

Construction 3.3. Let φ ∈ L2(R) be a compactly supported refinable function with

its trigonometric polynomial refinement mask ĥ0 satisfying ĥ0(0) = 1 and (3.11).
Let

T = 1− |ĥ0|2 − |ĥ0(·+ π)|2 and A :=

√
T

2
,

where
√
T is obtained via the Fejér-Riesz lemma. Define

ĥ1(ξ) := e−iξĥ0(ξ + π), ĥ2(ξ) := A(ξ) + e−iξA(−ξ)
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and

ĥ3(ξ) := e−iξĥ2(ξ + π).

Let Ψ := {ψ1, ψ2, ψ3}, where

ψ̂�(ξ) = ĥ�(ξ/2)φ̂(ξ/2), � = 1, 2, 3.

Then X(Ψ) is a tight frame for L2(R). Moreover, assume that φ, hence its refine-

ment mask ĥ0, is symmetric about the origin. Then, ψ1 is symmetric about 1
2 , ψ2

is symmetric about 1
4 and ψ3 is antisymmetric about 1

4 .

Proof. By Theorem 2.2, in order to verify that X(Ψ) is a tight frame for

L2(R), one needs to show that the masks {ĥ0, ĥ1, ĥ2, ĥ3} satisfy (2.6). Using the

definitions of ĥ1 and ĥ3

ĥ1 = e−iξĥ0(·+ π) and ĥ3 = e−iξĥ2(·+ π),

we have
3∑
�=0

ĥ�ĥ�(·+ π) = ĥ0ĥ0(·+ π)− ĥ0ĥ0(·+ π) + ĥ2ĥ2(·+ π)− ĥ2ĥ2(·+ π) = 0.

Next, we show that

(3.22)

3∑
�=0

|ĥ�|2 = 1.

Since

|ĥ0|2 + |ĥ1|2 = |ĥ0|2 + |ĥ0(·+ π)|2,
it remains to show that

|ĥ2|2 + |ĥ3|2 = 1− |ĥ0|2 − |ĥ0(·+ π)|2 = T.

Since h0 has real coefficients, we have ĥ0(−ξ) = ĥ0(ξ), and thus T (ξ) = T (−ξ).
Furthermore, T (ξ) is nonnegative and π-periodic. Then by the Fejér-Riesz lemma
(and spectral factorization [61, Lemma 6.1.3]), the function A(ξ) is also π-periodic
and has real Fourier coefficients. In summary, we have

(3.23) A(ξ) = A(ξ + π), and |A(ξ)|2 = |A(−ξ)|2, for all ξ ∈ R.

Since

ĥ2(ξ) = A(ξ) + e−iξA(−ξ) and ĥ3(ξ) = e−iξĥ2(·+ π) = e−iξA(−ξ)−A(ξ),

applying (3.23), one obtains

|ĥ2(ξ)|2 =
(
A(ξ) + e−iξA(−ξ)

)(
A(ξ) + eiξA(−ξ)

)
= |A(ξ)|2 + |A(−ξ)|2 + eiξA(ξ)A(−ξ) + e−iξA(−ξ)A(ξ)

= 2|A(ξ)|2 + eiξA(ξ)A(−ξ) + e−iξA(−ξ)A(ξ)

and

|ĥ3(ξ)|2 =
(
e−iξA(−ξ)−A(ξ)

)(
eiξA(−ξ)−A(ξ)

)
= |A(ξ)|2 + |A(−ξ)|2 − eiξA(ξ)A(−ξ) − e−iξA(−ξ)A(ξ)

= 2|A(ξ)|2 − eiξA(ξ)A(−ξ) − e−iξA(−ξ)A(ξ).
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Hence,

|ĥ2(ξ)|2 + |ĥ3(ξ)|2 = 4|A(ξ)|2 = T (ξ),

which gives (3.22) and thus concludes that the masks {ĥ0, ĥ1, ĥ2, ĥ3} satisfy (2.6).
Therefore, X(Ψ) is indeed a tight frame for L2(R) by the unitary extension princi-
ple.

Now we show that ψ1 is symmetric about 1
2 while ψ2 is symmetric about 1

4

and ψ3 is antisymmetric about 1
4 . It is well known that a function f ∈ L2(R), is

symmetric about the point γ1 ∈ R if and only if

f(x) = f(2γ1 − x) a.e.,

which is equivalent to

(3.24) f̂(ξ) = e−i2γ1ξf̂(−ξ) a.e..

Similarly, a function f ∈ L2(R) is antisymmetric about the point γ2 ∈ R if and
only if

f(x) = −f(2γ2 − x) a.e.,

which is equivalent to

(3.25) f̂(ξ) = −e−i2γ2ξf̂(−ξ) a.e..

By the definition of ĥ1 and the fact that ĥ0 is symmetric about the origin and
2π-periodic, one obtains

ĥ1(ξ) = e−iξĥ0(ξ + π) = e−2iξ
(
eiξĥ0(−ξ + π)

)
= e−2iξĥ1(−ξ).

Since φ is symmetric about the origin, then by (3.24) one obtains

(3.26) φ̂(ξ) = φ̂(−ξ), for all ξ ∈ R.

Therefore,

ψ̂1(ξ) = ĥ1(ξ/2)φ̂(ξ/2) = e−iξĥ1(−ξ/2)φ̂(−ξ/2) = e−iξψ̂1(−ξ),
which, by (3.24), means that ψ1 is symmetric about 1

2 . Similarly by the definition

of ĥ2, one obtains

ĥ2(ξ) = A(ξ) + e−iξA(−ξ) = e−iξ
(
A(−ξ) + eiξA(ξ)

)
= e−iξĥ2(−ξ).

Applying (3.26) and the definition of ψ̂2, one obtains,

ψ̂2(ξ) = ĥ2(ξ/2)φ̂(ξ/2) = e−i
ξ
2 ĥ2(−ξ/2)φ̂(−ξ/2) = e−i

ξ
2 ψ̂2(−ξ),

which, by (3.24), means that ψ2 is symmetric about 1
4 . Similarly, we can show that

ψ3 is antisymmetric about 1
4 .

Remark 3.5. Theorem 3.6 proves that the first framelet ψ1 constructed from dual
pseudo-splines generates a Riesz basis for L2(R). Furthermore, when pseudo-splines
of type I with order (m,m−1) are used in Construction 3.3, the set Ψ contains only
one element ψ which coincides with Daubechies’ orthonormal wavelets of order m
[61, 60] (see the next subsection for more details).

Next, we give one example of (anti)symmetric tight framelets constructed from
Construction 3.3 using pseudo-splines of Type II with order (3, 1).
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Figure 1. (a) is the pseudo-spline of Type II with order (3, 1) and
(b)-(d) are the corresponding (anti)symmetric tight framelets.

Example 3.1. Let ĥ0 to be the mask of the pseudo-spline of Type II with order
(3, 1) i.e.

ĥ0(ξ) = cos6(ξ/2)
(
1 + 3 sin2(ξ/2)

)
.

We define

ĥ1(ξ) := e−iξĥ0(ξ + π) = e−iξ sin6(ξ/2)
(
1 + 3 cos2(ξ/2)

)
,

ĥ2(ξ) := A(ξ) + e−iξA(−ξ) and ĥ3(ξ) := e−iξA(−ξ)−A(ξ),

where

A =
1

2

(
0.00123930398199e−4iξ+ 0.00139868605052e−2iξ− 0.22813823298962

+ 0.44712319189971e2iξ− 0.22162294894260e4iξ
)
.

The graphs of Ψ are given by (b)-(d) in Figure 1. The tight frame system has
approximation order 4.

Since Construction 3.3 is generic and applies on any refinement mask, we can
apply this construction on dual pseudo-splines. Notice that dual pseudo-splines are
symmetric about−1/2. Then, we have the following simple results on the symmetry
of the framelets constructed via Construction 3.3. Furthermore, arguments similar
to those used in proving Theorem 3.6 can be used to prove that the first framelet
ψ1 constructed from dual pseudo-splines generates a Riesz basis for L2(R).

Proposition 3.7. Let Ψ = {ψ1, ψ2, ψ3} be the tight framelets constructed from
Construction 3.3 from dual pseudo-splines. Then, ψ1 is antisymmetric about 1

2 , ψ2

is symmetric about 0 and ψ3 is antisymmetric about 0.

2.2. Orthonormal Wavelets

In this subsection, we show that the tight frame systems constructed from Con-
struction 3.3 using pseudo-splines of type I with order (m,m− 1) are orthonormal
bases for L2(R). In fact, they are the orthonormal bases originally constructed
by Daubechies in [60]. For simplicity, we denote pseudo-splines of type I with
order (m,m − 1) simply as φm, and its mask as am. In fact, one can see easily
that the masks, am, for all m are exactly the same as the refinement masks of the
orthonormal refinable functions in [60] by item 1 of Lemma 3.3.

By definition of pseudo-splines, we have

(3.27) |âm(ξ)|2 + |âm(ξ + π)|2 = 1, and âm(0) = 1.
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Under the condition (3.27), Construction 3.3 produces only one framelet ψ with
mask

ĥ1(ξ) = e−iξâm(ξ + π).

Now, we show that the tight frame system X(ψ) is in fact an orthonormal basis
for L2(R). Based on the unitary extension principle (Theorem 2.2), all we need to
show is that ‖φm‖2 = 1 for any given m ≥ 1.

Theorem 3.4. Given φm, pseudo-spline of type I with order (m,m − 1), let ψ be
the single framelet constructed from Construction 3.3 using φm. Then X(ψ) forms
a compactly supported orthonormal wavelet basis for L2(R).

Proof. As we discussed above, all we need to show is that ‖φm‖2 = 1 or

equivalently, ‖φ̂m‖22 = 2π.
Consider the cascade algorithm defined by (same as (3.10))

f̂n(ξ) = âm(
ξ

2
)f̂n−1(

ξ

2
) =

n∏
j=1

âm(2−jξ)f̂0(2−nξ), n > 0,

with initial function f0 satisfying f̂0(ξ) = χ[−π,π](ξ). By Proposition 3.1, f̂n → φ̂m
pointwise as n→ ∞.

Following a proof similar to that of Theorem 3.1, we have

‖f̂n‖2L2(R)
=

∫ 2nπ

−2nπ

n∏
j=1

|âm(2−jξ)|2dξ

=

∫ 2nπ

0

n−1∏
j=1

|âm(2−jξ)|2
(
|âm(2−nξ)|2 + |âm(2−nξ + π)|2

)
dξ

(by (3.27)) =

∫ 2nπ

0

n−1∏
j=1

|âm(2−jξ)|2dξ

= ‖f̂n−1‖2L2(R)
= · · · = ‖f̂0‖2L2(R)

= 2π.

Note that

|φ̂m(ξ)|2 ≥ |B2m(ξ)| =
(
sin(ξ/2)

ξ/2

)2m

≥ C > 0, ξ ∈ [−π, π].

Then arguments similar to those in Proposition 3.2 imply that

‖φ̂m‖2L2(R)
= lim
n→∞ ‖f̂n‖2L2(R)

= 2π,

which concludes the proof of this theorem.

2.3. Riesz Wavelets from Pseudo-splines

In this section, we focus on the structure of the tight frame systems constructed
from pseudo-splines by applying the unitary extension principle [158]. We show
that in all pseudo-spline tight frame systems constructed using Construction 3.3,
there is one wavelet whose dilations and shifts already form a Riesz basis for L2(R).
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A system X(ψ) is a Riesz basis if there exist 1 < C1 ≤ C2 < ∞ such that, for
all sequences c ∈ �2(Z2),

C1‖c‖�2(Z2) ≤
∥∥∥∥∥ ∑

(n,k)∈Z2

c[n, k]ψn,k

∥∥∥∥∥
L2(R)

≤ C2‖c‖�2(Z2)

holds and the span of {ψn,k : n, k ∈ Z} is dense in L2(R). The function ψ is called
Riesz wavelet if X(ψ) forms a Riesz basis for L2(R) which is also called the Riesz
wavelet system. When only the right hand side of the above inequalities holds, the
wavelet system X(ψ) is a Bessel system. Note that the definition of a Bessel system
used here is equivalent to the earlier definition which uses the right hand side of
the inequality in the definition of the frame in (2.2) (see e.g. [50, 156]).

For a given stable refinable function φ ∈ L2(R), the key step in the MRA-based
construction of the Riesz wavelet ψ is to select some desirable wavelet mask h1 with

ψ̂(2·) = ĥ1φ̂.

When {φ(· − k) : k ∈ Z} forms an orthonormal basis for V0(φ), e.g. φ is a pseudo-
spline of Type I with order (m,m− 1), and if we choose h1 as

h1[k] = (−1)k−1h0[1− k], k ∈ Z,

or equivalently

(3.28) ĥ1(ξ) = e−iξĥ0(ξ + π).

then Theorem 2.2 implies that the corresponding wavelet system X(ψ) is an or-
thonormal basis for L2(R). It was shown in [103] that if φ is a B-spline, then the
wavelet system X(ψ) with the corresponding wavelet mask h1 given by (3.28) is
a Riesz basis for L2(R). The first goal of this section is to show that if φ is any
pseudo-spline with mask h0, then the wavelet system X(ψ) with the corresponding
wavelet mask h1 given by (3.28) is a Riesz basis for L2(R). To prove this, we use the
following theorem which is a special case of [103, Theorem 2.1]. Note that when
both refinement masks are finitely supported the result is similar to those already
obtained in [55, 56, 53].

Theorem 3.5. Let h0 be a finitely supported refinement mask of a refinable function

φ ∈ L2(R) with ĥ0(0) = 1 and ĥ0(π) = 0, such that ĥ0 can be factorized into the
form

(3.29) |ĥ0(ξ)| =
∣∣∣∣(1 + e−iξ

2

)n
L(ξ)

∣∣∣∣ = cosn(ξ/2)|L(ξ)|, ξ ∈ [−π, π],

where L is the Fourier series of a finitely supported sequence with L(π) 	= 0. Suppose
that

|ĥ0(ξ)|2 + |ĥ0(ξ + π)|2 	= 0, ξ ∈ [−π, π].
Define

ψ̂(2ξ) := e−iξĥ0(ξ + π)φ̂(ξ)

and

(3.30) L̃(ξ) := L(ξ)
|ĥ0(ξ)|2 + |ĥ0(ξ + π)|2

.
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Assume that

(3.31) ρL := ‖L(ξ)‖L∞(R) < 2n−
1
2 and ρL̃ := ‖L̃(ξ)‖L∞(R) < 2n−

1
2 ,

Then X(ψ) is a Riesz basis for L2(R).

Recall that the refinement masks of pseudo-splines of Type I and II are

|1â(ξ)| := cosm(ξ/2)

( l∑
j=0

(
m+ l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2)

) 1
2

and

2â(ξ) := cos2m(ξ/2)

l∑
j=0

(
m+ l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

Using the polynomial Pm,l(y) given by (3.4) with y = sin2(ξ/2), we can rewrite 1â
and 2â as

(3.32) |1â| =
(
(1− y)mPm,l(y)

) 1
2

, 2â = (1− y)mPm,l(y).

Hence, the corresponding L function in (3.29) for pseudo-splines of Type I and II
are

(3.33) |1L| = (Pm,l(y))
1
2 , |2L| = Pm,l(y).

Furthermore, using Rm,l(y) defined by (3.5), we have

|1â(ξ)|2 + |1â(ξ + π)|2 = Rm,l(y) +Rm,l(1− y)

and
|2â(ξ)|2 + |2â(ξ + π)|2 = R2

m,l(y) +R2
m,l(1− y),

with y = sin2(ξ/2). Hence,

(3.34) |1L̃| =
(Pm,l(y))

1
2

Rm,l(y) +Rm,l(1 − y)
and |2L̃| =

Pm,l(y)

R2
m,l(y) +R2

m,l(1− y)
.

Theorem 3.5 tells us that the key step is to estimate the upper bounds of |L(ξ)|
and |L̃(ξ)|. The estimation of ‖1L̃‖L∞(R) and ‖2L̃‖L∞(R) are based on the following
result:

Proposition 3.8. Let m and l be given nonnegative integers with l ≤ m − 1 and
|1L̃| and |2L̃| be defined in (3.34). Then,

(1) ‖1L̃‖L∞(R) = supy∈[0,1]
(Pm,l(y))

1
2

Rm,l(y)+Rm,l(1−y) < 2m− 1
2 .

(2) ‖2L̃‖L∞(R) = supy∈[0,1]
Pm,l(y)

R2
m,l(y)+R

2
m,l(1−y)

< 22m− 1
2 .

Proof. Item 1 of Lemma 3.3 gives

(3.35) Pm,l(y) =
l∑

j=0

(
m+ l

j

)
yj(1− y)l−j =

l∑
j=0

(
m− 1 + j

j

)
yj ,

with y ∈ [0, 1]. Hence both (Pm,l(y))
1
2 and Pm,l(y) attain their maximum at y = 1

and the maximum values are:

(Pm,l(1))
1
2 =

(
m+ l

l

) 1
2

and Pm,l(1) =

(
m+ l

l

)
.
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By item 3 of Lemma 3.3, one obtains

‖1L̃‖L∞(R) = sup
y∈[0,1]

(Pm,l(y))
1
2

Rm,l(y) +Rm,l(1− y)

≤
(
m+ l

l

) 1
2

max
y∈[0,1]

1

Rm,l(y) +Rm,l(1− y)

≤
2m+l−1

(
m+l
l

) 1
2∑l

j=0

(
m+l
j

) .

Applying item 3 of Lemma 3.2, i.e.

(3.36)
2l
(
m+l
l

) 1
2∑l

j=0

(
m+l
j

) ≤ 1,

one obtains
‖1L̃‖L∞(R) ≤ 2m−1 < 2m− 1

2 .

The proof of (2) is similar to that of (1). Indeed, by item 4 of Lemma 3.3 and
applying (3.36) again, we have

‖2L̃‖L∞(R) = sup
y∈[0,1]

Pm,l(y)

R2
m,l(y) +R2

m,l(1− y)

≤
(
m+ l

l

)
max
y∈[0,1]

1

R2
m,l(y) +R2

m,l(1− y)

=
22m+2l−1

(
m+l
l

)(∑l
j=0

(
m+l
j

))2 ≤ 22m−1 < 22m− 1
2 .

Theorem 3.6. Let kφ, k = 1, 2 be the pseudo-spline of Type I and II with order
(m, l). The refinement masks ka, k = 1, 2, are given in (3.2) and (3.3). Define

(3.37) kψ̂(2ξ) := e−iξkâ(ξ + π)kφ̂(ξ), k = 1, 2,

then X(kψ) forms a Riesz basis for L2(R).

Proof. To apply Theorem 3.5, we first note that by items 3 and 4 of Lemma
3.3,

|1â(ξ)|2 + |1â(ξ + π)|2 = Rm,l(sin
2(ξ/2)) +Rm,l(cos

2(ξ/2)) 	= 0

and
|2â(ξ)|2 + |2â(ξ + π)|2 = R2

m,l(sin
2(ξ/2)) +R2

m,l(cos
2(ξ/2)) 	= 0,

for all ξ ∈ [−π, π].
Since Proposition 3.8 showed that

ρ
1L̃ = ‖1L̃‖L∞(R) < 2m− 1

2 and ρ
2L̃ = ‖2L̃‖L∞(R) < 22m− 1

2 ,

we only need to check whether

ρ1L = ‖1L‖L∞(R) < 2m− 1
2 , ρ2L = ‖2L‖L∞(R) < 22m− 1

2 .

Indeed, we have

|kâ(ξ)|2 + |kâ(ξ + π)|2 ≤ 1 for all ξ ∈ R.
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Hence,
|kL(ξ)| ≤ |kL̃(ξ)| for all ξ ∈ R.

This concludes the proof.

Remark 3.6. The Riesz wavelet constructed in the above theorem has the same
length of support and at least the same order of smoothness as that of the cor-
responding pseudo-spline. The order of its vanishing moments is the same as the
order of the B-spline factor of the pseudo-spline. But, in general, its dual Riesz
wavelet system is not compactly supported. However, this is not a problem for some
applications. In applications like image compression, the short Riesz wavelet sys-
tem can be applied to obtain a fast reconstruction algorithm, while decomposition
is obtained by solving a linear system of equations (see [121]).

In Construction 3.3 as well as in the three constructions of [65] for pseudo-
splines of Type I where the number of wavelets is either two or three (see [65]
Section 3.1 for details), we observe that one of the wavelets ψ1 is defined by

ψ̂1 := e−iξĥ0(ξ + π)φ̂(ξ/2),

where ĥ0 is the refinement mask of a pseudo-spline. Then, from Theorem 3.6,
X(ψ1) forms a Riesz basis for L2(R). This means that each pseudo-spline tight
frame system constructed in [65] or by Construction 3.3, already has a subsystem
form a Riesz basis for L2(R). Finally, we note that if dual pseudo-splines are used
in Construction 3.3 or any of the constructions in [65], we will have the same
conclusion by a similar argument as for pseudo-splines.

3. Regularity of Pseudo-splines

This section is on theoretical analysis of pseudo-splines. Those who are in-
terested in the basics of MRA-base wavelet frames and applications may skip this
section. Also, we note that the material of this section is mainly taken from [75].

For α = n+β, n ∈ N, 0 ≤ β < 1, the Hölder space Cα (see e.g. [61]) is defined
to be the set of functions which are n times continuously differentiable and whose
nth derivative f (n) satisfies the condition,

|f (n)(x+ h)− f (n)(x)| ≤ C|h|β , ∀x, h.
It is well known (see [61]) that if∫

R

|f̂(ξ)|(1 + |ξ|)α <∞,

then f ∈ Cα. In particular, if |f̂(ξ)| ≤ C(1 + |ξ|)−1−α−ε, then f ∈ Cα.
The main idea here is to obtain a lower bound of the regularity of pseudo-

splines with order (m, l) by estimating the decay of the Fourier transform of them.
It turns out that this lower bound coincides with the upper bound when m goes to
infinity, as will be shown in Theorem 3.9. It is well known that the exact Sobolev
regularity of a given refinable function can be obtained via its mask by applying the
transfer operator (see e.g. [61, 161] and references in there). Although the Sobolev
exponent of a given refinable function can be computed exactly through finding
the spectrum of the transfer operator derived from the corresponding refinement
mask, this approach does not lead itself to a systematic computation of Sobolev
exponents for a class of refinable functions, such as pseudo-splines. This is simply
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because different refinable functions lead to different transfer operators. This is the
main reason we give a systematic estimate of the decay of the Fourier transform of
pseudo-splines instead.

Since for any compactly supported refinable function φ in L2(R) with φ̂(0) = 1,

the refinement mask h0 must satisfy ĥ0(0) = 1 and ĥ0(π) = 0 (see e.g. [61] or [116]),

then ĥ0(ξ) can be factored as

ĥ0(ξ) =
(1 + e−iξ

2

)n
L(ξ),

where n is the maximum multiplicity of zeros of ĥ0 at π and L(ξ) is a trigonometric
polynomial with L(0) = 1. Hence, we have

φ̂(ξ) =

∞∏
j=1

â(2−jξ) =
∞∏
j=1

(
1 + e−i2

−jξ

2

)n ∞∏
j=1

L(2−jξ) =
(1− e−iξ

iξ

)n ∞∏
j=1

L(2−jξ).

This shows that any compactly supported refinable function in L2(R) is the convo-
lution of a B-spline of some order, say n, with a distribution (see [155]). Indeed, a
B-spline of order n can be rewritten as

B̂n =
(1− e−iξ

iξ

)n
.

It is a piecewise polynomial of degree n − 1 in Cn−1−ε(R), supported on [0, n],

and has refinement mask
(

1+e−iξ

2

)n
. Since L(ξ) is bounded, L(ξ) is actually the

refinement mask of a refinable distribution (see e.g. [61]). Therefore, φ is the
convolution of the B-spline Bn with the distribution. The regularity of φ comes
from the B-spline factor while the distribution factor takes away the regularity. But
the distribution component provides some desirable properties for φ, such as inter-
polatory properties, orthogonality of its shifts and approximation order of certain
quasi-interpolants.

The decay of |φ̂| can be characterized by |ĥ0| as stated in the following theorem.
The proof of this theorem can be found in [61]. Note that in the following theorem,

we write |ĥ0| in the form of

|ĥ0(ξ)| =
∣∣∣(1 + e−iξ

2

)n
L(ξ)

∣∣∣ = cosn(ξ/2)|L(ξ)|, ξ ∈ [−π, π].

Theorem 3.7. [61] Let h0 be the refinement mask of the refinable function φ of
the form

|ĥ0(ξ)| = cosn(ξ/2)|L(ξ)|, ξ ∈ [−π, π].
Suppose that

|L(ξ)| ≤ |L(2π
3
)| for |ξ| ≤ 2π

3
,

|L(ξ)L(2ξ)| ≤ |L(2π
3
)|2 for

2π

3
≤ |ξ| ≤ π.

(3.38)

Then |φ̂(ξ)| ≤ C(1 + |ξ|)−n+κ, with κ = log(|L(2π3 )|)/ log 2, and this decay is opti-
mal.

This theorem allows us to estimate the decay of the Fourier transform of a

refinable function via its refinement mask. Since |1φ̂|2 = |2φ̂|, the decay rate of |1φ̂|
is half of that of |2φ̂|. Thus we can focus on the analysis of the decay of the Fourier
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transforms of pseudo-splines of Type II. Based on (1) of Lemma 3.3, we show that
Pm,l(y), defined in (3.4), satisfies (3.38). This directly leads to the estimate of
the regularity of pseudo-splines. Note that the corresponding result for l = m − 1
was proven in [54] which led to the optimal estimates for the decay of the Fourier
transforms of the orthogonal and interpolatory refinable functions. Here, the more
general result for pseudo-splines is obtained by a simpler proof than the original
one of [54] and [61].

Proposition 3.9. [75] Let Pm,l(y) be defined as in (3.4), where l,m are nonnega-
tive integers with l ≤ m− 1. Then

(3.39) Pm,l(y) ≤ Pm,l
(3
4

)
, for y ∈ [0,

3

4
],

(3.40) Pm,l(y)Pm,l(4y(1− y)) ≤
(
Pm,l

(3
4

))2

, for y ∈ [
3

4
, 1].

Proof. Since Pm,l(y) is monotonically increasing (using item 1 of Lemma 3.3),
(3.39) is obviously true. Hence, we focus on the proof of (3.40).

Throughout this proof, we let m be fixed. Let

Wm,l(y) := Pm,l(y)Pm,l(4y(1− y))−
(
Pm,l

(3
4

))2

.

Then, the inequality (3.40) is equivalent to

(3.41) Wm,l(y) ≤ 0 for all y ∈ [
3

4
, 1].

Note that when l = 0, Pm,0(y) = 1 for all y ∈ [0, 1]; then (3.41) is obviously true
for l = 0. Therefore, if we can show that

(3.42) Wm,l+1(y)−Wm,l(y) ≤ 0, for all y ∈ [
3

4
, 1], l = 0, 1, . . . ,m− 2,

then (3.41) follows from (3.42) which is equivalent to (3.40). We now focus on the
inequality (3.42).

Using item 1 of Lemma 3.3, we have

Wm,l+1(y)−Wm,l(y) =

(
l+1∑
j=0

(
m− 1 + j

j

)
yj

)(
l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

−
(

l∑
j=0

(
m− 1 + j

j

)
yj

)(
l∑

j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

+ P 2
m,l

(3
4

)
− P 2

m,l+1

(3
4

)
.
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Splitting the sum
∑l+1
j=0

(
m−1+j

j

)
yj , one obtains

Wm,l+1(y)−Wm,l(y) =

(
l∑

j=0

(
m− 1 + j

j

)
yj

)(
l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

+

(
m+ l

l+ 1

)
yl+1

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

−
(

l∑
j=0

(
m− 1 + j

j

)
yj

)(
l∑

j=0

(
m− 1 + j

j

)
(4y(1− y))j

)

+ P 2
m,l

(3
4

)
− P 2

m,l+1

(3
4

)
.

Combining the first and the third term, one obtains

Wm,l+1(y)−Wm,l(y) =

(
m+ l

l+ 1

)
(4y(1− y))l+1

l∑
j=0

(
m− 1 + j

j

)
yj

+

(
m+ l

l + 1

)
yl+1

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+P 2
m,l

(3
4

)
− P 2

m,l+1

(3
4

)
=

(
m+ l

l+ 1

)(
(4y(1− y))l+1

l∑
j=0

(
m− 1 + j

j

)
yj

+yl+1
l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

)
(3.43)

+P 2
m,l

(3
4

)
− P 2

m,l+1

(3
4

)
.

Since Wm,l+1

(
3
4

)
−Wm,l

(
3
4

)
= 0− 0 = 0, it suffices to show that Wm,l+1(y)−

Wm,l(y) monotonically decreases on [34 , 1], which is equivalent to showing that

G(y) := (4y(1− y))l+1
l∑

j=0

(
m− 1 + j

j

)
yj + yl+1

l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j
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monotonically decreases on [ 34 , 1]. We now compute G′ as follows:

G′(y) = (l + 1)(4− 8y)(4y(1− y))l
l∑

j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1
l∑

j=1

(
m− 1 + j

j

)
jyj−1

+(l + 1)yl
l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+yl+1(4− 8y)

l+1∑
j=1

(
m− 1 + j

j

)
j(4y(1− y))j−1

= (l + 1)(4− 8y)(4y(1− y))l
l∑

j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1
l−1∑
j=0

(
m+ j

j + 1

)
(j + 1)yj

+(l + 1)yl
l+1∑
j=0

(
m− 1 + j

j

)
(4y(1− y))j

+yl+1(4− 8y)

l∑
j=0

(
m+ j

j + 1

)
(j + 1)(4y(1− y))j .

Applying item 1 of Lemma 3.2 to the second and the fourth term above, one obtains

G′(y) = (l + 1)(4− 8y)(4y(1− y))l
l∑

j=0

(
m− 1 + j

j

)
yj

+(4y(1− y))l+1
l∑

j=0

(
m− 1 + j

j

)
(m+ j)yj

−(m+ l)

(
m− 1 + l

l

)
yl(4y(1− y))l+1

+(l + 1)yl
l∑

j=0

(
m− 1 + j

j

)
(4y(1− y))j

+(l + 1)

(
m+ l

l + 1

)
yl(4y(1− y))l+1

+yl+1(4− 8y)
l∑

j=0

(
m− 1 + j

j

)
(m+ j)(4y(1− y))j .

By (l + 1)
(
m+l
l+1

)
= (m+ l)

(
m−1+l

l

)
(item 1 of Lemma 3.2), we have

(l + 1)

(
m+ l

l+ 1

)
yl(4y(1− y))l+1 − (m+ l)

(
m− 1 + l

l

)
yl(4y(1− y))l+1 = 0.
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Hence,

G′(y) =
l∑

j=0

(
m− 1 + j

j

)(
(l + 1)(4− 8y)(4y(1− y))lyj + (m+ j)(4y(1− y))l+1yj

+ (l + 1)yl(4y(1− y))j + (m+ j)(4 − 8y)yl+1(4y(1− y))j
)
.

Noting the common factor yj(4y(1− y))j in the right hand side of the above equa-
tion, one obtains

G′(y) =
l∑

j=0

(
m− 1 + j

j

)
yj(4y(1− y))j

(
(l + 1)(4− 8y)(4y(1− y))l−j

+ (m+ j)(4y(1− y))l+1−j + (l + 1)yl−j + (m+ j)(4 − 8y)yl+1−j
)
.

For 0 ≤ j ≤ l ≤ m− 2, consider

gl,j(y) := (l + 1)(4− 8y)
(
4y(1− y)

)l−j
+ (m+ j)

(
4y(1− y)

)l+1−j

+(l + 1)yl−j + (m+ j)(4− 8y)yl+1−j

= (l + 1)(4y(1− y))l−j
(
4y(1− y)− (8y − 4)

)
+ (l + 1)yl−j

(
1− (8y − 4)y

)
+(m+ j − l − 1)

(
(4y(1− y))l+1−j − (8y − 4)yl+1−j

)
.

The inequality 4y(1− y) ≤ y and 8y − 4 ≥ 2 for y ∈ [3/4, 1] show that gl,j(y) ≤ 0
and G′(y) ≤ 0 on this interval.

Remark 3.7. It is clear that Wm,0(y) = 0, y ∈ [ 34 , 1], because Pm,0 = 1. It was

also proven by [54] that Wm,m−1(y) ≤ 0, y ∈ [ 34 , 1], which is equivalent to (3.40).

The decreasing of Wm,l(y), for y ∈ [ 34 , 1], as l increases shown above indicates some
difficulties in directly proving (3.40) for an arbitrary l, 0 < l < m − 1, because it
has a smaller margin than the case when l = m − 1. In fact, to some extent, the
proof of (3.40) for the case when l = m− 1 relies on a numerical check for m ≤ 12
(see [61]). Inequality (3.40) for the case l = m− 1 as proven in [54] (also see [61])
is one of the cornerstones of the wavelet theory, because it immediately leads to the
optimal estimate of the decay of the Fourier transforms (hence, an estimate of the
regularity) of both interpolatory and orthogonal refinable functions. Here, we take
a different approach by proving that Wm,l(y), y ∈ [ 34 , 1], decreases as l increases.
As a result, we obtain (3.40) for all 0 ≤ l ≤ m − 1 by the fact that Wm,0(y) = 0,
y ∈ [ 34 , 1]. This shows that introducing the concepts of the pseudo-splines gives
a better understanding and a more complete picture of the proof of (3.40) and
also, we hope, enriches the theory of wavelets. Note that the proof of (3.40) for
all 0 ≤ l ≤ m − 1 given here does not rely on any numerical computation and is
simpler than the original proof of [54] and [61]. More recently, the authors in [136]
provided a simpler proof of Proposition 3.9.

With this proposition, one obtains the regularity of pseudo-splines by applying
Theorem 3.7.

Theorem 3.8. [75] Let 2φ be the pseudo-spline of Type II with order (m, l). Then

|2φ̂(ξ)| ≤ C
(
1 + |ξ|

)−2m+κ
,
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where κ = log(Pm,l
(
3
4

)
)/ log 2. Consequently, 2φ ∈ Cα2−ε with α2 = 2m − κ − 1.

Furthermore, let 1φ be the pseudo-spline of Type I with order (m, l). Then

|1φ̂(ξ)| ≤ C
(
1 + |ξ|

)−m+κ
2 .

Consequently, 1φ ∈ Cα1−ε with α1 = m− κ
2 − 1.

Proof. Since

2â(ξ) = cos2m(ξ/2)

l∑
j=0

(
m+ l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2)

=
(
cos(ξ/2)

)2m
Pm,l(sin

2(ξ/2)),

the function |L(ξ)| in Theorem 3.7 is exactly Pm,l(sin
2(ξ/2)). Applying (3.39) of

Proposition 3.9

Pm,l(y) ≤ Pm,l
(3
4

)
, y ∈ [0,

3

4
],

and using y = sin2(ξ/2), we have

|L(ξ)| = Pm,l(sin
2(ξ/2))

= Pm,l(y) ≤ Pm,l
(3
4

)
= Pm,l(sin

2(
π

3
)) for |ξ| ≤ 2π

3
.

Note that

|L(2ξ)| = Pm,l(sin
2(ξ)) = Pm,l(4 sin

2(ξ/2)(1− sin2(ξ/2))) = Pm,l(4y(1− y)).

Applying (3.40) of Proposition 3.9

Pm,l(y)Pm,l(4y(1− y)) ≤
(
Pm,l

(3
4

))2
, y ∈ [

3

4
, 1],

we have

|L(ξ)L(2ξ)| = Pm,l(sin
2(ξ/2))Pm,l(4 sin

2(ξ/2)(1− sin2(ξ/2)))

= Pm,l(y)Pm,l(4y(1− y))

≤
(
Pm,l

(3
4

))2
=

(
Pm,l(sin

2(
π

3
))
)2
, for

2π

3
≤ |ξ| ≤ π.

Hence, by Theorem 3.7, 2φ̂ satisfies

|2φ̂(ξ)| ≤ C
(
1 + |ξ|

)−2m+κ
,

where κ = log(Pm,l
(
3
4

)
)/ log 2. This leads to 2φ ∈ Cα2−ε, where α2 = 2m− κ− 1.

Since the decay of |1φ̂| is exactly half of |2φ̂|, we have

|1φ̂(ξ)| ≤ C
(
1 + |ξ|

)−m+κ
2 ,

consequently 1φ ∈ Cα1−ε, where α2 = m− κ
2 − 1.

Table 1 gives the decay rates βm,l of the Fourier transform of pseudo-splines
of Type II with order (m, l), for 2 ≤ m ≤ 8 and 1 ≤ l ≤ m − 1. The regularity
exponent of the corresponding pseudo-spline is, at least, α2 = βm,l − 1 − ε. The
decay rate of the Fourier transform of the pseudo-spline of Type I with the same

order is
βm,l

2 and its regularity exponent α1 is α2−1
2 . Therefore, the table shows

that for either type of the pseudo-splines and fixed order m, the decay rate of
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their Fourier transform decreases as l increases, while for fixed l, it increases as m
increases. This is true indeed as shown in the following proposition.

Table 1. Decay rates βm,l = 2m− κ of pseudo-splines of Type II
with order (m, l), for 2 ≤ m ≤ 8 and 1 ≤ l ≤ m− 1.

(m, l) l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
m = 2 2.67807
m = 3 4.29956 3.27208
m = 4 6.00000 4.73321 3.82507
m = 5 7.75207 6.27890 5.19506 4.35316
m = 6 9.54057 7.88626 6.64465 5.66363 4.86449
m = 7 11.35614 9.54057 8.15608 7.04717 6.13261 5.36349
m = 8 13.19265 11.23182 9.71691 8.48992 7.46770 6.59988 5.85310

Proposition 3.10. [75] Let βm,l = 2m− κ with κ = logPm,l
(
3
4

)
/ log 2 as given in

Theorem 3.8 and 0 ≤ l ≤ m− 1. Then:

(1) For fixed m, βm,l decreases as l increases.
(2) For fixed l, βm,l increases as m increases.
(3) When l = m− 1, βm,l increases as m increases.

Consequently, the decay rate β2,1 = 2.67807 is the smallest among all βm,l, with
m ≥ 2 and 0 ≤ l ≤ m− 1.

Proof. Part (1) follows directly from item 1 of Lemma 3.3, which shows that
Pm,l

(
3
4

)
increases with l for fixed m.

For part (2), note that

βm,l = 2m−
logPm,l

(
3
4

)
log 2

.

Consider

2βm,l = 22m− log Pm,l

(
3
4

)
log 2 =

4m

Pm,l
(
3
4

) =
1

4−mPm,l
(
3
4

) .
Hence, part (2) is equivalent to the fact that

Im := 4−mPm,l
(3
4

)
decreases as m increases for fixed l, which is equivalent to that for fixed 0 ≤ l ≤
m− 1,

(3.44) Im+1 − Im < 0.

Note that

Im+1 − Im = 4−m−1Pm+1,l

(3
4

)
− 4−mPm,l

(3
4

)
= 4−m−1

l∑
j=0

((
m+ j

j

)
− 4

(
m− 1 + j

j

))(3
4

)j
.

Inequality (3.44) follows from the fact that for 0 ≤ j ≤ m− 1,

(3.45)

(
m+ j

j

)
=
m+ j

m

(
m− 1 + j

j

)
= (1+

j

m
)

(
m− 1 + j

j

)
< 4

(
m− 1 + j

j

)
.
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This concludes the proof of part (2).
Following an argument similar to that of part (2), one can show that part (3)

is equivalent to having that

Jm := 4−mPm,m−1

(3
4

)
decreases as m increases, which is equivalent to

(3.46) Jm+1 − Jm < 0 for m ≥ 1.

Following a direct computation, we have

Jm+1 − Jm = 4−m−1

( m∑
j=0

(
m+ j

j

)(3
4

)j − 4

m−1∑
j=0

(
m− 1 + j

j

)(3
4

)j)
.

Let

M :=
m∑
j=0

(
m+ j

j

)(3
4

)j − 4
m−1∑
j=0

(
m− 1 + j

j

)(3
4

)j
.

Then, (3.46) is equivalent to M < 0 for m ≥ 1. It is easy to see that M < 0, when
m = 1. For the case m ≥ 2, we first note that

M =

m−1∑
j=0

(
m+ j

j

)(3
4

)j − 4

m−1∑
j=0

(
m− 1 + j

j

)(3
4

)j
+

(
2m

m

)(3
4

)m
=

m−1∑
j=1

(
m− 1 + j

j − 1

)(3
4

)j − 3
m−1∑
j=0

(
m− 1 + j

j

)(3
4

)j
+

(
2m

m

)(3
4

)m
,

where the last identity follows from item 1 of Lemma 3.2. Substituting j for j − 1
in the first term, one obtains that

(3.47) M =
3

4

m−2∑
j=0

(
m+ j

j

)(3
4

)j − 3

m−1∑
j=0

(
m− 1 + j

j

)(3
4

)j
+

(
2m

m

)(3
4

)m
,

Splitting the second term in (3.47), one obtains

M =
3

4

m−2∑
j=0

(
m+ j

j

)(3
4

)j − 3

m−2∑
j=0

(
m− 1 + j

j

)(3
4

)j
+

(
2m

m

)(3
4

)m − 3

(
2m− 2

m− 1

)(3
4

)m−1

(3.48)

For the last two terms of (3.48), we have(
2m

m

)(3
4

)m − 3

(
2m− 2

m− 1

)(3
4

)m−1
=

(3
4

)m((
2m

m

)
− 4

(
2m− 2

m− 1

))
=

(3
4

)m(
(4− 2

m
)

(
2m− 2

m− 1

)
− 4

(
2m− 2

m− 1

))
< 0.
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Therefore,

M <
3

4

m−2∑
j=0

(
m+ j

j

)(3
4

)j − 3

m−2∑
j=0

(
m− 1 + j

j

)(3
4

)j
<

m−2∑
j=0

(
m+ j

j

)(3
4

)j − 3

m−2∑
j=0

(
m− 1 + j

j

)(3
4

)j
=

m−2∑
j=0

((
m+ j

j

)
− 3

(
m− 1 + j

j

))(3
4

)j
.

Applying (3.45), one obtains, for 0 ≤ j ≤ m− 2,(
m+ j

j

)
= (1 +

j

m
)

(
m− 1 + j

j

)
< 3

(
m− 1 + j

j

)
.

Therefore, we conclude that M < 0 and part (3) follows.
Finally, note that the decay rate of the Fourier transform of the pseudo-spline

of Type I with order (2, 1) is
βm,l

2 ≈ 1.33903. Hence, it follows from parts (1)-(3)
that the decay rate of an arbitrary pseudo-spline of either type with order (m, l),
m > 2, 0 ≤ l ≤ m− 1 is higher than 1.33903.

Proposition 3.10 reveals that the decay rates of the Fourier transforms of either
type of pseudo-splines increase as m increases for fixed l and decrease as l increases
for fixed m. Here, we give an asymptotical analysis of the decay rate which, in
turn, gives an asymptotical analysis of the regularity of 1φ and 2φ as the order
(m, l) → ∞.

Theorem 3.9. [75] Let 1φ and 2φ be the pseudo-splines of Type I and II respectively
with order (m, l). Fix l = �λm�, 0 ≤ λ ≤ 1, where �λm� denotes the largest integer
which is smaller than or equal to λm. Then, we have

|1φ̂(ξ)| ≤ C(1 + |ξ|)−
μ
2m and |2φ̂(ξ)| ≤ C(1 + |ξ|)−μm,

where μ =
log ( 4

1+λ )λ+1(λ
3 )

λ

log 2 , asymptotically for large m. This means that the asymp-

totic rates of the pseudo-spline of Type I and Type II are μ
2 and μ respectively.

Proof. We will only analyze pseudo-splines of type II, and the analysis for
pseudo-splines of type I is similar. We first show the following identity:

(3.49) x−lPm,l(x) ≥ y−lPm,l(y), for 0 < x ≤ y ≤ 1.

Indeed, item 1 of Lemma 3.3 implies that

x−lPm,l(x) =
l∑

j=0

(
m− 1 + j

j

)
xj−l ≥

l∑
j=0

(
m− 1 + j

j

)
yj−l = y−lPm,l(y),

for 0 < x ≤ y ≤ 1.
In order to compute the asymptotic rate, we need to estimate the upper and

lower bound of Pm,l
(
3
4

)
in terms of m and l. For this, we let x = 3

4 and y = 1 in
(3.49) and obtain

(3.50) Pm,l
(3
4

)
≥

(3
4

)l
Pm,l(1) =

(3
4

)l(m+ l

l

)
.
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Next, let x = 1
2 and y = 3

4 in (3.49), we obtain

Pm,l(
3

4
) ≤

(3
2

)l
Pm,l(

1

2
).

Since

Pm,l(
1

2
) =

l∑
j=0

(
m+ l

j

)
2−j2j−l = 2−l

l∑
j=0

(
m+ l

j

)
,

one obtains

(3.51) Pm,l
(3
4

)
≤

(3
4

)l l∑
j=0

(
m+ l

j

)
.

Putting (3.50) and (3.51) together, we obtain the following estimates of Pm,l
(
3
4

)
,

(3
4

)l(m+ l

l

)
≤ Pm,l

(3
4

)
≤

(3
4

)l l∑
j=0

(
m+ l

j

)
.

For l ≤ m− 1, we have

l∑
j=0

(
m+ l

j

)
≤ m

(
m+ l

l

)
.

Hence,

(3.52)
(3
4

)l(m+ l

l

)
≤ Pm,l

(3
4

)
≤ m

(3
4

)l(m+ l

l

)
.

Next, we use this estimate to analyze the decay of |2φ̂| as m goes to infinity. The
upper bound of Pm,l

(
3
4

)
in (3.52) implies that

2m−
logPm,l

(
3
4

)
log 2

≥ 2m−
log

(
m(34 )

l
(
m+l
l

))
log 2

.

We estimate the right hand side of the above inequality asymptotically for large

(m, l) to obtain the asymptotical lower bound of 2m − logPm,l

(
3
4

)
log 2 . For this, we

first recall the Stirling approximation, i.e. m! ∼
√
2πe(m+ 1

2 ) logm−m (see e.g. [88]),
where am ∼ bm means that am

bm
→ 1, m → ∞. By the Stirling approximation, we

have

logm! ∼ log
√
2πe(m+ 1

2 ) logm−m

∼ m logm−m.(3.53)

Applying (3.53), one obtains

log

(
m+ l

l

)
= log(m+ l)!− logm!− log l!

∼ (m+ l) log(m+ l)− (m+ l)− (m logm−m)− (l log l − l)

∼ (m+ l) log(m+ l)−m logm− l log l.
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Thus,

2m−
log

(
m 3

4

l(m+l
l

))
log 2

= 2m−
logm+ l log 3

4 + log
(
m+l
l

)
log 2

∼ m

(
2−

l
m log 3

4 + (1 + l
m ) log(m+ l)− logm− l

m log l

log 2

)
.

By the assumption, l = �λm�, 0 ≤ λ ≤ 1. Hence, when m is sufficiently large,
l
m ∼ λ and therefore,

2m−
log

(
m 3

4

l(m+l
l

))
log 2

∼ m

(
2−

log (1 + λ)
(
3+3λ
4λ

)λ
log 2

)
= m

(
log ( 4

1+λ)
λ+1(λ3 )

λ

log 2

)
.

Now we obtain the asymptotical lower bound of 2m− logPm,l

(
3
4

)
log 2 , i.e. asymptotically,

for large m with l = �λm�,

(3.54) 2m−
log |Pm,l

(
3
4

)
|

log 2
≥ m

(
log ( 4

1+λ )
λ+1(λ3 )

λ

log 2

)
.

Next, we use the left hand side of (3.52) to obtain the asymptotical upper

bound of 2m− logPm,l

(
3
4

)
log 2 . First note that (3.52) gives

2m−
logPm,l

(
3
4

)
log 2

≤ 2m−
l log 3

4 + log
(
m+l
l

)
log 2

.

Applying arguments similar to the estimate of the lower bound by using (3.53), we
obtain the following

2m−
l log 3

4 + log
(
m+l
l

)
log 2

∼ m

(
2−

l
m log 3

4 + (1 + l
m ) log(m+ l)− logm− l

m log l

log 2

)
∼ m

(
log ( 4

1+λ)
λ+1(λ3 )

λ

log 2

)
.

This leads to the asymptotical lower bound of 2m− logPm,l

(
3
4

)
log 2 , i.e. asymptotically,

for large m with l = �λm�,

(3.55) 2m−
logPm,l

(
3
4

)
log 2

≤ m

(
log ( 4

1+λ )
λ+1(λ3 )

λ

log 2

)
.

Combining (3.54) and (3.55), we conclude that for large m, the asymptotical
upper and lower bounds coincide and equal to

(3.56) 2m−
logPm,l

(
3
4

)
log 2

∼ m

(
log ( 4

1+λ )
λ+1(λ3 )

λ

log 2

)
= μm.
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Therefore the equation (3.56) gives that, fixing l = �λm� and asymptotically, for
large m, we have

|2φ̂(ξ)| ≤ C(1 + |ξ|)−μm and |1φ̂(ξ)| ≤ C(1 + |ξ|)−
μ
2m,

where μ =
log ( 4

1+λ )λ+1(λ
3 )λ

log 2 .

Remark 3.8. The above theorem shows that, asymptotically for large m, the
smoothness of the pseudo-splines of type I and II increases at a rate μ/2 and μ
respectively. The proof of Theorem 3.9 also leads to the following two observations:

(1) Consider pseudo-splines of Type II with order (m,m − p), where p is a

fixed positive integer independent of m. The asymptotic rate is 2− log 3
log 2 ≈

0.4150. Indeed, when l = m− p, λ ∼ l
m = m−p

m ∼ 1 for sufficiently large
m. Similarly, for pseudo-splines of Type I with order (m,m − p), the

corresponding asymptotic rate is 1− log 3
2 log 2 ≈ 0.2075.

(2) Assume that l is fixed for all m. The asymptotic rates of pseudo-splines
of Type I and II with order (m, l) are 1 and 2 respectively. This is simply
because, for the fixed integer l, λ ∼ l

m ∼ 0 for sufficiently large m.

Table 2. Asymptotically for large m, the smoothness of 2φ in-
creases at rate μ, which is given in the following table with some
choices of l.

m→ ∞ l = 0 l = m
10 l = m

8 l = m
6 l = m

4 l = m
2 l = m− 1

μ ≈ 2.0000 1.5581 1.4857 1.3789 1.2013 0.8301 0.4150

Example 3.2. In Table 2, we give μ, the asymptotical rate of pseudo-splines
of Type II with order (m, �λm�), as m goes to infinity and the parameter λ =
1
10 ,

1
8 ,

1
6 ,

1
4 ,

1
2 , 1. The asymptotic rate μ0 for pseudo-splines of Type I with the same

order is just μ0 = μ
2 .

A similar discussion can lead the regularity analysis for the dual pseudo-splines
as it was done in [72].

Theorem 3.10. [72] Let φ̃m,l be the dual pseudo-spline of order (m, l) with 0 ≤
l ≤ m− 1. Then

|̂̃φm,l| ≤ C(1 + |ξ|)−γm,l

with

γm,l = 2m+ 1− log
(
Pm− 1

2 ,l
(
3

4
)
)
/ log 2,

and the decay rate γm,l is optimal. Consequently, φ̃m,l ∈ Cα with α = γm,l− 1− ε.

4. Two Lemmata

This section gives the two key technical lemmata that were used in the previous
sections.

Lemma 3.2. For given nonnegative integers m, j, l, we have:

(1)
(
m+1
j

)
=

(
m
j

)
+

(
m
j−1

)
for j ≥ 1 and (j + 1)

(
m+j
j+1

)
= (m+ j)

(
m−1+j

j

)
.
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(2) 2(m + 1)
∑l−1
j=0

(
m+l
j

)
− l

∑l
j=0

(
m+l
j

)
≥ 0, for m ≥ 1 and 1 ≤ l ≤

m− 1.

(3)
2l(m+l

l )
1
2

∑
l
j=0 (

m+l
j )

≤ 1, for all m ≥ 1 and 0 ≤ l ≤ m− 1.

Proof. The identities in (1) are well known and can be proven directly by the
definition of the binomial coefficients.

For (2), since m > l, we have

(m+ 1)

l−1∑
j=0

(
m+ l

j

)
− l

l−1∑
j=0

(
m+ l

j

)
≥ 0.

Subtracting this inequality from (2), we conclude that it remains to check if

(m+ 1)
l−1∑
j=0

(
m+ l

j

)
− l

(
m+ l

l

)
≥ 0

holds, in order to verify (2). Since (m+ 1)
(
m+l
l−1

)
= l

(
m+l
l

)
, we have

(m+ 1)

l−1∑
j=0

(
m+ l

j

)
> (m+ 1)

(
m+ l

l − 1

)
= l

(
m+ l

l

)
.

This gives (2) immediately.
Finally, we prove (3) by induction with respect to m. Since (3) is obviously

true for l = 0, we now focus on 1 ≤ l ≤ m−1. When m = 1, the inequality trivially
holds. Assume (3) holds when m = m0, i.e.

22l
(
m0 + l

l

)
≤

( l∑
j=0

(
m0 + l

j

))2

,
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for all 1 ≤ l ≤ m0 − 1. Consider the case m = m0 +1. We first show that (3) holds
for all l, where 1 ≤ l ≤ m0 − 1. For 1 ≤ l ≤ m0 − 1, we have

22l
(
m0 + l + 1

l

)
=

m0 + l + 1

m0 + 1
22l

(
m0 + l

l

)
≤ m0 + l + 1

m0 + 1

( l∑
j=0

(
m0 + l

j

))2

(by induction hypothesis)

=

( l∑
j=0

(
m0 + l

j

)
+

(√m0 + l + 1

m0 + 1
− 1

) l∑
j=0

(
m0 + l

j

))2

=

( l∑
j=0

(
m0 + l

j

)

+
l

m0 + 1 +
√
(m0 + l + 1)(m0 + 1)

l∑
j=0

(
m0 + l

j

))2

<

( l∑
j=0

(
m0 + l

j

)
+

l

2m0 + 2

l∑
j=0

(
m0 + l

j

))2

≤
( l∑
j=0

(
m0 + l

j

)
+

l−1∑
j=0

(
m0 + l

j

))2

(from (2))

=

(
1 +

l∑
j=1

(
m0 + l

j

)
+

l∑
j=1

(
m0 + l

j − 1

))2

=

( l∑
j=0

(
m0 + l+ 1

j

))2

(from (1)).

This shows that (3) holds for all 1 ≤ l ≤ m0 − 1, it remains to show (3) holds for
l = m0, i.e. to show

(3.57) 22m0

(
2m0 + 1

m0

)
≤

( m0∑
j=0

(
2m0 + 1

j

))2

.

Applying
(
n
j

)
=

(
n
n−j

)
, we have

m0∑
j=0

(
2m0 + 1

j

)
=

1

2

(
m0∑
j=0

(
2m0 + 1

j

)
+

m0∑
j=0

(
2m0 + 1

j

))

=
1

2

(
m0∑
j=0

(
2m0 + 1

j

)
+

2m0+1∑
j=m0+1

(
2m0 + 1

j

))

=
1

2

2m0+1∑
j=0

(
2m0 + 1

j

)
= 22m0 .

Then (3.57) is equivalent to
(
2m0+1
m0

)
≤

∑m0

j=0

(
2m0+1

j

)
, which is obviously true. This

concludes the proof of (3).
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Next, we give several basic properties of the polynomials Pm,l(y) and Rm,l(y)
defined by (3.4) and (3.5). Part (2)-(4) of the following lemma were mainly used
in the proof of Theorem 3.2.

Lemma 3.3. For nonnegative integers m and l with l ≤ m − 1, let Pm,l(y) and
Rm,l(y) be the polynomials defined in (3.4) and (3.5). Then:

(1) Pm,l(y) =
∑l
j=0

(
m−1+j

j

)
yj.

(2) R′
m,l(y) = −(m+ l)

(
m+l−1

l

)
yl(1− y)m−1.

(3) Define Q(y) := Rm,l(y) +Rm,l(1− y). Then,

min
y∈[0,1]

Q(y) = Q(
1

2
) = 21−m−l

l∑
j=0

(
m+ l

j

)
.

(4) Define S(y) := R2
m,l(y) +R2

m,l(1− y). Then,

min
y∈[0,1]

S(y) = S(
1

2
) = 21−2m−2l(

l∑
j=0

(
m+ l

j

)
)2.

Proof. For fixedm, we prove (1) by induction with respect to l. It is obviously
true for l = 0. Now suppose (1) holds for l0. Consider l = l0 + 1,

Pm,l(y) =

l0+1∑
j=0

(
m+ l0 + 1

j

)
yj(1 − y)l0−j+1

= (1− y)l0+1 +

l0+1∑
j=1

(
m+ l0 + 1

j

)
yj(1− y)l0−j+1.

Applying the first identity in (1) of Lemma 3.2, we have,

Pm,l(y) = (1− y)l0+1 +

l0+1∑
j=1

(
m+ l0
j

)
yj(1− y)l0−j+1

+

l0+1∑
j=1

(
m+ l0
j − 1

)
yj(1− y)l0−j+1

=

l0+1∑
j=0

(
m+ l0
j

)
yj(1 − y)l0−j+1 +

l0+1∑
j=1

(
m+ l0
j − 1

)
yj(1− y)l0−j+1

=

l0∑
j=0

(
m+ l0
j

)
yj(1− y)l0−j+1 +

(
m+ l0
l0 + 1

)
yl0+1

+

l0∑
j=0

(
m+ l0
j

)
yj+1(1− y)l0−j

= (1− y)Pm,l0(y) +

(
m+ l0
l0 + 1

)
yl0+1 + yPm,l0(y)

= Pm,l0(y) +

(
m+ l0
l0 + 1

)
yl0+1.
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Then, by the inductive hypothesis,

Pm,l(y) =

l0∑
j=0

(
m− 1 + j

j

)
yj +

(
m+ l0
l0 + 1

)
yl0+1

=

l0+1∑
j=0

(
m− 1 + j

j

)
yj.

We prove (2) by induction with respect to l for given m. It is obviously true

when l = 0. Suppose (2) holds for l0, i.e. R
′
m,l0

(y) = −(m + l0)
(
m+l0−1

l0

)
yl0(1 −

y)m−1, and consider the case l = l0+1 ≤ m−1. Using (1) and definition of Rm,l(y)
in (3.5), we have

Rm,l0+1(y) = (1 − y)mPm,l0+1(y)

= (1 − y)m
(
Pm,l0(y) +

(
m+ l0
l0 + 1

)
yl0+1

)
.

Since Rm,l0(y) = (1− y)mPm,l0(y), we have

Rm,l0+1(y) =

(
m+ l0
l0 + 1

)
yl0+1(1− y)m +Rm,l0(y).

Then,

R′
m,l0+1(y) = (l0 + 1)

(
m+ l0
l0 + 1

)
yl0(1− y)m −m

(
m+ l0
l0 + 1

)
yl0+1(1 − y)m−1

+R′
m,l0(y)

= (l0 + 1)

(
m+ l0
l0 + 1

)
yl0(1− y)m −m

(
m+ l0
l0 + 1

)
yl0+1(1 − y)m−1

−(m+ l0)

(
m+ l0 − 1

l0

)
yl0(1− y)m−1.

Pulling the common factor yl0(1− y)m−1 out, one obtains

R′
m,l0+1(y) = yl0(1 − y)m−1

(
(l0 + 1)

(
m+ l0
l0 + 1

)
(1− y)−m

(
m+ l0
l0 + 1

)
y

−(m+ l0)

(
m+ l0 − 1

l0

))
= yl0(1 − y)m−1

(
(l0 + 1)

(
m+ l0
l0 + 1

)
− (l0 + 1)

(
m+ l0
l0 + 1

)
y

−m
(
m+ l0
l0 + 1

)
y − (m+ l0)

(
m+ l0 − 1

l0

))
Combining the second and the third term, one obtains

R′
m,l0+1(y) = yl0(1− y)m−1

(
(l0 + 1)

(
m+ l0
l0 + 1

)
− (m+ l0 + 1)

(
m+ l0
l0 + 1

)
y

−(m+ l0)

(
m+ l0 − 1

l0

))
.
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By the second identity in (1) of Lemma 3.2, one obtains (l0 + 1)
(
m+l0
l0+1

)
= (m +

l0)
(
m+l0−1

l0

)
. Hence, R′

m,l0+1(y) = −(m+ l0 + 1)
(
m+l0
l0+1

)
yl0+1(1 − y)m−1. This con-

cludes the proof of (2).
For (3), we compute Q′(y), i.e.

Q′(y) = R′
m,l(y) + (Rm,l(1− y))′ = R′

m,l(y)−R′
m,l(1− y).

Applying (2), one obtains

Q′(y) = (m+ l)

(
m+ l − 1

l

)(
ym−1(1− y)l − (1− y)m−1yl

)
.

Now, we show that Q′(y) ≤ 0 on [0, 12 ], Q
′(y) ≥ 0 on [ 12 , 1]. Note that

ym−l−1 ≤ (1− y)m−l−1, for all y ∈ [0,
1

2
].

Multiplying both sides by yl(1 − y)l,

ym−1(1− y)l ≤ (1− y)m−1yl, for all y ∈ [0,
1

2
].

Similarly we have

ym−1(1− y)l ≥ (1− y)m−1yl, for all y ∈ [
1

2
, 1].

We conclude that

Q′(y)
{

≤ 0, y ∈ [0, 12 ]
≥ 0, y ∈ [ 12 , 1].

This means that Q(y) reaches its minimum value at point y = 1
2 . Now, we compute

Q(12 ). Note that Q(12 ) = 2Rm,l(
1
2 ) = 21−mPm,l(12 ). Recall that Pm,l(y) is defined in

(3.4), i.e. Pm,l(y) =
∑l
j=0

(
m+l
j

)
yj(1−y)l−j . Then Q(12 ) = 21−m2−l

∑l
j=0

(
m+l
j

)
=

21−m−l∑l
j=0

(
m+l
j

)
.

With (3), the proof of (4) is simpler. Since

S′(y) = 2Rm,l(y)R
′
m,l(y) + 2Rm,l(1− y)

(
Rm,l(1− y)

)′
,

using the identities Rm,l(y) = (1 − y)mPm,l(y), R
′
m,l(y) = −(m + l)

(
m+l−1

l

)
yl(1 −

y)m−1 and
(
Rm,l(1− y)

)′
= (m+ l)

(
m+l−1

l

)
ym−1(1− y)l, we obtain

S′(y)
2(m+ l)

(
m+l−1

l

) = ymPm,l(1− y)ym−1(1− y)l − (1− y)mPm,l(y)y
l(1− y)m−1

= y2m−1
l∑

j=0

(
m− 1 + j

j

)
(1− y)l+j

− (1− y)2m−1
l∑

j=0

(
m− 1 + j

j

)
yl+j

=

l∑
j=0

(
m− 1 + j

j

)(
(1− y)l+jy2m−1 − yl+j(1− y)2m−1

)
.
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Since, for each 0 ≤ j ≤ l, when y ∈ [0, 12 ], y
2m−l−j−1 ≤ (1 − y)2m−l−j−1, and

when y ∈ [ 12 , 1], y
2m−l−j−1 ≥ (1− y)2m−l−j−1, then by similar arguments in (2) we

conclude,

S′(y)
{

≤ 0, y ∈ [0, 12 ]
≥ 0, y ∈ [ 12 , 1].

Thus miny∈[0,1] S(y) = S(12 ). Since Rm,l(
1
2 ) = 2−m−l∑l

j=0

(
m+l
j

)
, we have

S(
1

2
) = 2R2

m,l(
1

2
) = 21−2m−2l

( l∑
j=0

(
m+ l

j

))2

.

Remark 3.9. From (1) of Lemma 3.3 we know that the refinement mask of the
pseudo-spline of Type I in (3.2) can be written as

|1â(ξ)|2 = cos2m(ξ/2)

l∑
j=0

(
m− 1 + j

j

)
sin2j(ξ/2).

Hence, the pseudo-spline of Type I with order (m,m − 1) is indeed the refinable
function whose shifts form an orthonormal system constructed in [60] and the
pseudo-spline of Type II with order (m,m− 1) is indeed the autocorrelation of the
orthogonal refinable function, which is interpolatory.





LECTURE 4

Frame Based Image Restorations

Image restoration is often formulated as an inverse problem. For simplicity of
notation, we denote images as vectors in Rn with n equal to the total number of
pixels. The objective is to find the unknown true image u ∈ Rn from an observed
image (or measurements) f ∈ Rl defined by

(4.1) f = Au+ η,

where η is a white Gaussian noise with variance σ2, and A ∈ Rl×n is a linear
operator, typically a convolution operator for image deconvolution problems, a
projection operator for image inpainting and the identity for image denoising. This
lecture is devoted to frame based image restorations.

As we discussed in Lecture 2, fast framelet decomposition and reconstruction
algorithms are linear operators. When we consider signals living in Rn, these linear
operators have matrix representations. Here we simply denote the framelet decom-
position as a matrix W ∈ Rm×n with m ≥ n, and reconstruction as W
. Then
based on our analysis in Lecture 2, we have WTW = I, where I is the identity
matrix. Thus, for every vector u ∈ Rn,

(4.2) u =W
(Wu).

The components of the vector Wu are called the canonical coefficients representing
u. The matrix W is generated from the masks {h� : � = 0, 1, . . . r} constructed
from the univariate UEP (Theorem 2.6). We emphasize that we view the image as
a column vector and the corresponding tight wavelet frame transform as the matrix
W action just for simplicity of notation. In computations of image restorations, we
use 2D wavelet decomposition and reconstruction algorithms given by Algorithm
2.3 instead of matrix multiplications.

Since tight wavelet frame systems are redundant systems (i.e. m ≥ n), the
mapping from the image u to its coefficients is not one-to-one, i.e., the representa-
tion of u in the frame domain is not unique. Therefore, there are three formulations
for the sparse approximation of the underlying images; namely, the analysis based
approach, the synthesis based approach and the balanced approach. The analysis
based approach was first proposed in [84, 170]. In this approach, we assume that
the coefficient vector Wu can be sparsely approximated, and is usually formulated
as a minimization problem involving a penalty on the term ‖Wu‖1. The synthesis
based approach was first introduced in [66, 86, 87, 90, 91]. In that approach, the
underlying image u is assumed to be synthesized from a sparse coefficient vector α
with u = W
α, and it is usually formulated as a minimization problem involving
a penalty on the term ‖α‖1. The balanced approach was first used in [34, 36] for
high resolution image reconstruction. It was further developed for various image
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restoration problems in [14, 15, 16, 17, 25, 32, 38]. In this approach, the un-
derlying image u is assumed to be synthesized from some sparse coefficient vector
α via u = W
α which is penalized by ‖α‖1, and the distance of α to the range of
W is minimized at the same time. Although the synthesis based, analysis based
and balanced approaches are developed independently in the literature, the bal-
anced approach can be viewed as a way to balance the analysis and synthesis based
approach.

First, Section 1 gives a general introduction. Then Section 2 illustrates the
ideas of the development of the balanced approach, as well as details of a fast
algorithm, under the scenario of image inpainting [16, 168]. Then an accelerated
algorithm of [168] for both balanced and synthesis based approach for general
image restorations (4.1) is discussed. Within this section we discuss the linearized
Bregman algorithm and its connection to the Uzawa’s algorithm as an alternative
to either the balanced or the synthesis based approaches. In Section 3, we present
the analysis based approach [24], and its applications in image deblurring.

1. Modeling

This section establishes the models for frame based image restorations, espe-
cially, image inpainting, denoising, and deblurring.

1.1. Preliminaries

We start with some basic notations. For any x ∈ Rn,

‖x‖p :=

⎛⎝ n∑
j=1

|xj |p
⎞⎠1/p

,

1 ≤ p <∞. We denote the inner product 〈·, ·〉 : Rn × Rn 
→ R as

〈x, y〉 = x
y =
n∑
j=1

xjyj .

Then ‖x‖22 = 〈x, x〉. Let ‖x‖D denote the D-norm, where D is a symmetric positive

definite matrix, defined by ‖x‖D =
√
x
Dx. For any real symmetric matrix H ,

ρmax(H) denotes the maximum eigenvalue of H in magnitude. For any m× n real

matrices A, ‖A‖2 =
√
ρmax(A
A).

Now we recall some concepts and facts from general convex analysis, which are
used throughout this lecture. A function F : Rn 
→ R̄ is convex if the domain of F
is convex and for all u in the domain of F ,

F (tu+ (1 − t)v) ≤ tF (u) + (1− t)F (v), for all t ∈ [0, 1],

and it is said to be strictly convex if

F (tu+ (1− t)v) < tF (u) + (1− t)F (v), for all t ∈ (0, 1) and u 	= v.

Here R̄ := R ∪ {±∞}.
A function F is said to be subdifferentiable at u if there exists u∗ ∈ Rn such

that

(4.3) F (v) ≥ F (u) + 〈v − u, u∗〉, for all v ∈ Rn,

and u∗ is called a subgradient of F at u. The set of subgradients of F at u is denoted
as ∂F (u), which, in general, is not a singleton. By definition of subgradients, it is
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easy to see that for u∗ ∈ ∂F (u) and v∗ ∈ ∂F (v) with F (u) and F (v) being finite,
we have

(4.4) 〈u∗ − v∗, u− v〉 ≥ 0.

The same as derivatives, we have the following chain rule for subgradients, where
the equality is the set equality,

∂(F (Tu)) = T
(∂F )(Tu),

where T is some linear operator on Rn, whenever both sides of equality are well
defined. If F is convex and differentiable at u, then we have ∂F (u) = {∇F (u)},
i.e. ∂F (u) contains ∇F (u) as its unique element. If F is 2nd order differentiable,
then F is convex if and only if the Hessian of F , ∇2F is semi-positive definite; and
F is strictly convex if and only if ∇2F is positive definite.

It is well known (see e.g. [82]) that if a convex function F is bounded in a
neighborhood of some point v ∈ {u ∈ Rn : F (u) < ∞}, then it is continuous and
subdifferentiable everywhere in the interior of {u ∈ Rn : F (u) <∞}. In particular
if the convex function F nowhere assumes the values ±∞, then it is continuous and
subdifferentiable everywhere in Rn (this statement is not true if F is defined on a
Banach space, instead of a finite dimensional space).

The general optimality condition for a convex subdifferentiable functional F (u)
can be characterized by subgradients which is known as the Fermat’s rule [154,
Theorem 10.1]. The statement is as follows:

(4.5) u = argmin
u
F (u) if and only if 0 ∈ ∂F (u).

In other words, u minimizes F (u) if and only if 0 is a subgradient of F at u.
A convex function F : Rn 
→ R̄ is said to be proper, if it nowhere takes the

value −∞ and is not identically equal to +∞. We call F lower semi-continuous at
v if

lim inf
u→v

F (u) ≥ F (v).

Note that if a convex function F nowhere assumes ±∞, then it is proper and lower
semi-continuous (in fact it is continuous based on the above discussions). The
reason to introduce the concept of proper and lower semi-continuity is to include
functions F that actually assumes value ∞. For example, given a set Ω ∈ Rn, we
can define the corresponding indicator function CΩ as

CΩ(u) =
{

0, u ∈ Ω

∞, u ∈ Ωc.

The function CΩ is proper, but it is lower semi-continuous if and only if Ω is closed.
If the set Ω is convex, then CΩ is a convex function. Note that we can use indicator
functions to move convex constraints for an optimization problem into the cor-
responding objective function. For example, minimizing F (u) subject to u ∈ Ω is
equivalent to minimizing F (u)+CΩ(u), which is still a convex optimization problem
whenever Ω is convex.

The function F is said to be coercive, if

F (u) → ∞ when ‖u‖2 → ∞.
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Then the general existence theorem of convex optimization problems states as fol-
lows (see e.g. [82]): the problem

min
u∈Rn

F (u)

has at least one solution if F is proper, convex, lower semi-continuous and coercive;
if, in addition, F is strictly convex, then the solution is unique.

A function F is said to have an L-Lipschitz continuous gradient if

(4.6) ‖∇F (u)−∇F (v)‖ ≤ L‖u− v‖, ∀ u, v
for some L > 0. We call L the Lipschitz constant of F .

Finally, we recall the following result on convergence of minimizing sequences,
which is a special case of one of the results of [130]. The proof of this result is
taken from [24].

Proposition 4.1. Let F (u) be a convex function defined on Rn and nowhere as-
sumes the values ±∞. Suppose F has a unique minimizer u ∈ Rn. Then any
minimizing sequence {uk}∞k=0, i.e. F (uk) → F (u) as k → ∞, converges to u in
any Euclidean norm of Rn.

Proof. Since all norms of Rn are equivalent, we shall focus on the �2-norm
and prove that

(4.7) lim
k→∞

‖uk − u‖2 = 0.

Since u ∈ Rn is the unique minimizer of F (u), we have F (u) > F (u) for all
u 	= u. Now, we suppose that (4.7) does not hold, so there exists a subsequence uki
such that ‖uki − u‖2 > ε for some ε > 0 and for all i. Then, F (uki) > min{F (u) :
‖u− u‖2 = ε}. Indeed, let v be the intersection of the sphere {u : ‖u− u‖2 = ε}
and the line segment from u to uki ; then there exists a positive number t ∈ (0, 1)
such that v = tu + (1 − t)uki . By the convexity of F and the definition of u, we
have

F (uki) > tF (u) + (1− t)F (uki) ≥ F (tu + (1 − t)uki) = F (v)

≥ min{F (u) : ‖u− u‖2 = ε}.
Denote ũ = argmin{F (u) : ‖u− u‖2 = ε}, which exists because spheres in Rn are
compact and F is continuous. By noting that ũ 	= u, we have

F (u) = lim
i→+∞

F (uki) ≥ F (ũ) > F (u),

which is a contradiction.

Remark 4.10. The conclusion of Proposition 4.1 is no longer true if F is a func-
tional defined on a general normed space. The reason is that infu{F (u) : ‖u−u‖ =
ε} may not be attainable for any u ∈ {‖u−u‖ = ε}, and infu{F (u) : ‖u−u‖ = ε}
could be equal to infu F (u) (see [130] for a counterexample, as well as general
theories on the convergence of minimizing sequences).

1.2. Image Restoration Models

The balanced approach, synthesis based approach and analysis based approach
can be integrated into one minimization problem as follows:

(4.8) min
α∈Rm

1

2
‖AW
α− f‖2D +

κ

2
‖(I −WW
)α‖22 + ‖diag(λ)α‖1,
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where 0 ≤ κ ≤ ∞ and λ is a given vector defined as

(4.9) λ = (λ1, λ2, · · · , λm)
,

with λi > 0 for i = 1, · · · ,m. We denote λmin := mini λi > 0. The matrix D is
some symmetric positive definite matrix. It is usually chosen as a preconditioner
to the equation AW
α = f . Throughout this lecture, we take D = (AA
 + θI)−1

for some properly chosen θ > 0. We refer to the model (4.8) as the (single-system)
balanced approach.

When 0 < κ < ∞, the problem (4.8) is called the balanced approach. When
κ = 0, the problem (4.8) is reduced to the synthesis based approach:

(4.10) min
α∈Rm

1

2
‖AW
α− f‖2D + ‖diag(λ)α‖1.

When κ = ∞, the problem (4.8) is reduced to the analysis based approach. To
see this, we note that the distance ‖(I −WW
)α‖ must be 0 when κ = ∞. This
implies that α is in the range of W , i.e., α = Wu for some u ∈ Rn, so we can
rewrite (4.8) as

min
α∈Range(W )

1

2
‖AW
α−f‖2D+‖diag(λ)α‖1 = min

u∈Rn

1

2
‖Au−f‖2D+‖diag(λ)Wu‖1.

Now, we refer to the problem

(4.11) min
u∈Rn

1

2
‖Au− f‖2D + ‖diag(λ)Wu‖1,

as the analysis based approach. We remark that the analysis based approach does
not require using the inverse of W . Hence, it can be generalized to any linear
transform W .

The objective functions in (4.8) with 0 ≤ κ ≤ ∞ and in (4.11) are convex (but
not strictly convex in general), proper and continuous on Rm. Furthermore, as
Theorem 4.2 shows that they are also coercive. Therefore, there exists at least one
solution for both problems.

It is clear that when 0 < κ < ∞, (4.8) balances between (4.10) and (4.11);
hence, is called the balanced approach. Since the algorithms and convergence anal-
ysis on the balanced approach are still valid when κ = 0, we include discussion of
the synthesis based approach into our presentation of the balanced approach. We
even intend to call the model (4.10) the general balanced approach for 0 ≤ κ <∞
and include the synthesis based approach as a special case.

We note that when the rows of W form an orthonormal basis, instead of being
a redundant tight frame, the above three approaches are exactly the same, since in
this case, WW
 = I. However, for redundant tight frame system W , the analysis
based, synthesis based and balanced approach cannot be derived from one another.
In fact, it was observed in [47, 83] for example, that there is a gap between the
analysis based and synthesis based approach. Both of them have their own favorable
data sets and applications. In general, it is hard to draw definitive conclusions on
which approach is better without specifying the applications and data sets. We
further note that the �1-minimization problems in compressed sensing is akin to the
synthesis based approach in nature. On the other hand, the TV-norm minimization
problem in imaging restoration is, for many cases, an analysis based approach.
For frame based image restoration, numerical simulations in [24] show that the
analysis based approach tends to generate smoother images than the synthesis
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based approach. This is because the coefficient Wu is quite often linked to the
smoothness of the underlying image [10, 9, 97, 106, 110]. However, the synthesis
based approach tends to exploit more of the sparse representation of the underlying
solution in terms of the given frame system by utilizing the redundancy. Therefore,
the synthesis based approach usually enhances and sharpens edges, although it
may introduce some artifacts as shown in [16]. The balanced approach bridges the
analysis based and synthesis based approach and it balances the smoothness and
the sparsity provided by frames as shown in [14, 15, 16, 25, 32, 34, 36, 38].

To solve the synthesis based approach (4.10), the proximal forward and back-
ward splitting algorithm was used in [62, 66, 86, 87, 90, 91]. Also, the accelerated
proximal gradient (APG) algorithms of [168], designed for the general balanced ap-
proach, can be applied to get a fast algorithm for the synthesis based approach.

For the analysis based approach (4.11), the coordinate descent method was used
in [84, 170]. More recently, the split Bregman algorithm was used to develop a fast
algorithm for the analysis based approach in frame based image restoration in [24],
where numerical simulations showed that the split Bregman algorithm is efficient
for image deblurring, decomposition, denoise, and inpainting. The split Bregman
algorithm was first proposed in [96] and was shown to be powerful in [96, 185]
when it was applied to various PDE based image restoration approaches, e.g., ROF
and nonlocal variational models. Convergence analysis of the split Bregman was
given in [24].

For the balanced approach in frame based image restoration, the model and al-
gorithm were first developed in [32, 34, 36, 38]. The balanced approach was
reformulated as the proximal forward-backward splitting algorithm in [14, 15,
16, 25]. The balanced approach gives satisfactory simulation results, as shown
in [14, 15, 16, 25, 32, 34, 36, 38]. Recently, fast algorithms for the balanced
approach in frame based image restoration whose convergence speeds are much
faster than those of the proximal forward-backward splitting algorithm were de-
veloped in [168]. The accelerated proximal gradient algorithms proposed in [168]
are based on and extended from several variants of accelerated proximal gradient
algorithms that were studied in [4, 140, 141, 142, 143, 175]. These accelerated
proximal gradient algorithms have an attractive iteration complexity of O(1/

√
ε)

for achieving ε-optimality. Also these accelerated proximal gradient algorithms are
simple and only use the soft-thresholding operator, just like algorithms such as
the linearized Bregman algorithm, the split Bregman algorithm and the proximal
forward-backward splitting algorithm.

Finally, we note that the formulation of (4.8) can be extended to image restora-
tion of two-layered images [24, 84, 170]. Real images usually have two layers,
referring to cartoons (the piecewise smooth part of the image) and textures (the
oscillating pattern part of the image). Usually, different layers have sparse approx-
imations under different tight frame systems. Therefore, these two different layers
should be considered separately. One natural idea is to use two tight frame systems
that can sparsely represent cartoons and textures respectively. The correspond-
ing image restoration problem can be formulated as the following �1-minimization
problem:
(4.12)

min
α1,α2∈Rm

1

2
‖A(

2∑
i=1

W

i α

i)− f‖2D +

2∑
i=1

κi
2
‖(I −WiW



i )αi‖22 +

2∑
i=1

‖diag(λi)αi‖1,
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where, for i = 1, 2, WT
i Wi = I, κi > 0, λi is a given positive weight vector, and

D is a given symmetric positive definite matrix. We refer to model (4.12) as the
two-system balanced approach.

2. Balanced Approach

The balanced approach for frame based image restorations was first developed
in [34, 36, 38] for high resolution image reconstruction from a few low resolution
images. The problem of high resolution image constructions is converted to the
problem of filling in the missing wavelet frame coefficients, i.e. inpainting in wavelet
frame transformation domain, by designing a proper wavelet tight frame [34, 36,
38]. The ideas of [34, 36] are used in [37] to develop the balanced approach
for frame based image inpainting (in pixel domain) whose complete analysis of
convergence and optimal properties of the solution are given in [16]. Analysis of
the convergence and optimal properties of the solutions of algorithms in [34, 36, 38]
is given in [14, 25, 32].

In this section, we use image inpainting to illustrate how the ideas of the bal-
anced approach are formed and developed. Also, we prove the convergence of the
image inpainting algorithm. Then we present an accelerated algorithm of [168]
for the balanced approach (which includes the synthesis based approach) and the
proof of convergence given by [168] is included. After that, we recall the linearized
Bregman algorithm as an alternative to the balanced and synthesis approaches.
We prove the convergence of the linearized Bregman algorithm by connecting it
to the Uzawa’s algorithm. Numerical experiments on both image inpainting and
deblurring are presented at the end of this section.

2.1. Balanced Approach for Image Inpainting

The mathematical model for image inpainting can be stated as follows. Let
the original image u ∈ Rn be defined on the domain Ω = {1, 2, · · · , n} and the
nonempty set Λ � Ω be the given observed region. Then the observed (incomplete)
image f is

(4.13) f(i) =

{
u(i) + η(i), i ∈ Λ,

arbitrary, i ∈ Ω \ Λ,

where η(i) is the noise. The goal is to find u from f . When η(i) = 0 for all i ∈ Λ,
we require that u(i) = f(i) and u is just the solution of an interpolation problem.
Otherwise, we seek a smooth solution u that satisfies |u(i) − f(i)| ≤ η(i) for all
i ∈ Λ. In both cases, variational approaches will penalize some cost functionals
(which normally are weighted function norms of the underlying solution) to control
the roughness of the solution, see for instance [7, 42].

Image inpainting is to recover data by interpolation. There are many interpola-
tion schemes available, e.g., spline interpolation, but the majority of them are only
good for smooth functions. Images are either piecewise smooth function or formed
by textures which do not have the global smoothness required by most interpola-
tion schemes. The major challenge in image inpainting is to keep the features, e.g.
edges, of images which cannot be well preserved by many of the available interpo-
lation algorithms. Furthermore, since images are usually contaminated by noise, a
good inpainting algorithm should have a built-in denoising component.
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The simple idea of the balanced approach for frame based image inpainting
comes as follows: one may use any simple interpolation scheme to interpolate the
given data that leads to an inpainted image. Edges might be blurred and noises are
still present in this inpainted image. One of the simplest ways to sharpen the image
and remove noises at the same time is to set small coefficients under a tight wavelet
frame transform to zero. When we reconstruct the image using the modified frame
coefficients, it will no longer interpolate the data, and the simplest way to make
it interpolate the given data is to put the given data back. One may iterate this
procedure till convergence.

To be precise, let PΛ be the diagonal matrix with diagonal entries 1 for the
indices in Λ and 0 otherwise. Starting with the initial guess u0, the iterative
procedure mentioned above can be expressed as

(4.14) uk+1 = PΛf + (I − PΛ)W

Tλ(Wuk).

Here

(4.15) Tλ([β1, β2, . . . , βm]
) := [tλ1(β1), tλ2(β2), . . . , tλm(βm)]


is the soft-thresholding function [77]:

(4.16) tλi(βi) :=

{
sgn(βi)(|βi| − λi), if |βi| > λi,

0, if |βi| ≤ λi,

Note that by using soft-thresholding instead of hard-thresholding which is tra-
ditionally used to sharpen edges, we reduce artifacts and obtain the desired mini-
mization property in each iteration. The thresholding operator Tλ also plays two
other important roles, namely, removing noises in the image and perturbing the
frame coefficients Wuk so that information contained in the given region Λ can
permeate into the missing region Ω \ Λ.

Now, define αk = Tλ(Wuk). Then (4.14) can be rewritten as an iteration in
terms of αk:

αk+1 = Tλ
(
WPΛf +W (I − PΛ)W


αk
)
.

Then we have the following frame based image inpainting algorithm:

Algorithm 4.1.

(i) Set an initial guess α0.
(ii) Iterate on k until convergence:

(4.17) αk+1 = Tλ
(
WPΛf +W (I − PΛ)W


αk
)

(iii) Let α to the output of Step (ii). If η(i) = 0 for all i ∈ Λ in (4.13),
we set u := PΛf + (I − PΛ)W


α to be the solution (to the inpainting
problem); otherwise, since Tλ can remove noise, we set u� =W
α to be
the solution (to the inpainting-plus-denoising problem).

Algorithm 4.1 was first proposed in [37], and a complete analysis of its conver-
gence was given in [16]. It was proved in [16] that αk generated by Algorithm 4.1
is a converging sequence that minimizes

(4.18) min
α∈Rm

1

2
‖PΛW


α− PΛf‖22 +
1

2
‖(I −WW
)α‖22 + ‖diag(λ)α‖1.

Note that the problem (4.18) is a special case of (4.8) with D = I, A = PΛ

and κ = 1. In fact, (4.18) was discovered first and was later generalized to (4.8)
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and (4.12). Here, we consider a slightly more general problem than (4.18), with
κ ∈ [0,∞),

(4.19) min
α∈Rm

1

2
‖PΛW


α− PΛf‖22 +
κ

2
‖(I −WW
)α‖22 + ‖diag(λ)α‖1.

Now, we follow arguments that is similar to those in [16] to show that Algorithm
4.1 converges to a minimizer of (4.18) (i.e. (4.19) with κ = 1). Define
(4.20)

F1(α) := ‖diag(λ)α‖1 and Fκ2 (α) :=
1

2
‖PΛ(W


α)−PΛf‖22+
κ

2
‖(I−WW
)α‖22.

Here for the case κ = 1 we denote F 1
2 (α) simply as F2(α). Then the minimization

problem (4.18) can be written as

min
α∈Rm

F1(α) + F2(α).

For any proper, convex, lower semi-continuous function ϕ which takes values
in (−∞,+∞], its proximal operator (see e.g. [109, 137, 138]) is defined by

(4.21) proxϕ(x) := argmin
y

{1
2
‖x− y‖22 + ϕ(y)}.

It is easy to show that (see e.g. [58])

(4.22) proxF1
(β) = arg min

α∈Rm
{1
2
‖β − α‖22 + ‖diag(λ)α‖1} = Tλ(β).

Now, we can rewrite the iterations of αk in (4.17) in terms of proximal operators
defined in (4.21).

Lemma 4.1. Iteration of αk given by (4.17) is equivalent to

(4.23) αk+1 = proxF1
(αk −∇F2(αk)).

Proof. Indeed, by (4.22), we have

αk+1 = proxF1
[WPΛf +W (I − PΛ)W


αk]
= proxF1

[αk − αk +WPΛf +WW
αk −WPΛW

αk]

= proxF1
[αk − ((I −WW
)αk +WPΛ(PΛW


αk − PΛf))].

Since (I −WW
)2 = I −WW
, we have

αk+1 = proxF1
[αk − ((I −WW
)2αk +WPΛ(PΛW


αk − PΛf))]

= proxF1
[αk −∇(

1

2
‖PΛW


αk − PΛf‖22 +
1

2
‖(I −WW
)αk‖22)]

= proxF1
(αk −∇F2(αk)).

This concludes the proof of the lemma.

The new form of iteration (4.23) of αk is known as the proximal forward-
backward splitting. A rather comprehensive convergence analysis of this type of
iterations was given in [58]. Let us now recall the main convergence theorem in
[58] for the finite dimensional case.

Theorem 4.1. Consider the minimization problem

(4.24) min
x∈Rm

F1(x) + F2(x),
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where F1 : Rm 
→ R̄ is a proper, convex, lower semi-continuous function, and
F2 : Rm 
→ R is a convex, differentiable function with an L-Lipschitz continuous
gradient. Assume a minimizer of (4.24) exists. Then for any initial guess x0, the
iteration (called the proximal forward-backward splitting):

xk+1 = proxF1/L(xk −∇F2(xk)/L)

converges to a minimizer of F1(x) + F2(x).

We do not provide a proof for Theorem 4.1 because it does not reveal any
information on the speed of convergence of the sequence αk. In the next section,
we prove another version of Theorem 4.1 (Theorem 4.4) for a general balanced
approach (4.8).

By Lemma 4.1, proving convergence of Algorithm 4.1 is now reduced to proving
that F1 and F2 defined in (4.20) satisfy all the assumptions in Theorem 4.1.

Theorem 4.2. The sequence αk defined by (4.17) converges to a minimizer of the
minimization problem (4.18) for any initial guess α0.

Proof. Obviously F1 is a proper, convex, lower semi-continuous (in fact con-
tinuous) function, and F2 is a convex and differentiable function. Therefore, all we
need to prove are:

(1) F2 is 1-Lipschitz.
(2) F1(α) + F2(α) is coercive, i.e. F1(α) + F2(α) → ∞ as ‖α‖2 → ∞, which

implies that minα{F1(α) + F2(α)} has at least one solution.

For (1), noting that W (I − PΛ)W

 � 0, we have

∇2F2 = (I −WW
) +WPΛW



� (I −WW
) +WW


= I

Therefore, F2 is 1-Lipschitz.
For (2), we have

F1(α) + F2(α) ≥ F1(α) =
m∑
j=1

λj |αj | ≥ λmin‖α‖1 ≥ λmin‖α‖2,

which proves coercivity of F1(α) + F2(α).

Theorem 4.2 proves convergence of Algorithm 4.1 to (4.19) for the case κ = 1.
In fact, Theorem 4.1 suggests the following Algorithm 4.2 for the general inpainting
model (4.19) with 0 ≤ κ <∞.

Algorithm 4.2.

(i) Set an initial guess α0.
(ii) Iterate on k until convergence:

(4.25) αk+1 = Tλ/L
(
αk −∇Fκ2 (αk)/L

)
,

where L is the Lipschitz constant of Fκ2 defined by (4.6).
(iii) Let α to the output of Step (ii). If η(i) = 0 for all i ∈ Λ in (4.13),

we set u := PΛf + (I − PΛ)W

α to be the solution (to the inpainting

problem); otherwise, since Tλ/L can remove noise, we set u� = W
α to
be the solution (to the inpainting-plus-denoising problem).



LECTURE 4. FRAME BASED IMAGE RESTORATIONS 107

Then we have the following convergence theorem.

Theorem 4.3. The sequence αk defined by (4.25) converges to a minimizer of the
minimization problem (4.19) with 0 ≤ κ <∞ for any initial guess α0.

Proof. All we need to show is that L, the Lipschitz constant of Fκ2 , is bounded.
In fact, we will show that L ≤ max{1, κ}. Indeed, we have

∇2Fκ2 = κ(I −WW
) +WPΛW



� κ(I −WW
) +WW


� κI + (1− κ)WW


�
{
I, for 0 ≤ κ ≤ 1
κI, for κ ≥ 1

which implies L ≤ max{1, κ}.

2.2. Proximal Forward-Backward Splitting for General Balanced Ap-
proach

This section presents a proximal forward-backward splitting algorithm for the
general balanced approach (4.8) with 0 ≤ κ < ∞, as well as some convergence
analysis of the algorithm. The corresponding algorithm for the balanced approach
involving multiple frame systems (4.12) can be obtained similarly. Let

F1(α) = ‖diag(λ)α‖1 and F2(α) =
1

2
‖AW
α− f‖2D +

κ

2
‖(I −WW
)α‖22.

Then, the proximal forward-backward splitting algorithm can be written in the
following short form (see [14, 15, 16, 17, 25, 32, 34, 36, 38, 58])

αk+1 = proxF1/L(αk −∇F2(αk)/L).

The detailed form of the above algorithm is given as follows:

Algorithm 4.3. For a given vector λ ∈ Rm+ , choose any α0 ∈ Rm. For k =
0, 1, 2, . . ., generate αk+1 from αk according to the following iterations:

(i) Set gk = αk −∇F2(αk)/L;
(ii) Set αk+1 = Tλ/L(gk).

Here, the gradient of F2 is given by

∇F2(α) =WATD(AW
α− f) + κ(I −WW
)α,

and the Hessian matrix of F2 is

∇2F2 =WATDAW
 + κ(I −WW
).

It is obvious that F2 is L-Lipschitz, and L ≤ ρmax(A

DA) + κ. This generalizes

the inpainting algorithms given in the previous section to algorithms for various
image restoration problems. Although the original development of algorithms took
a different path, this idea is used in the proof of the convergence of the balanced
approach frame based algorithms given in [14, 15, 16, 17, 25, 32, 34, 36, 38].

First, we prove the following lemma ([168, Lemma 2.1]) which characterizes
the optimal solutions of (4.8).
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Lemma 4.2. For each λ > 0, the optimal solution α of (4.8) satisfies

‖α‖1 ≤ C,

where

C =

{
min{‖f‖2D/2, ‖diag(λ)αLS‖1}/λmin if A is surjective
‖f‖2D/(2λmin) otherwise,

with αLS :=WA
(AA
)−1f .

Proof. Let α be an optimal solution of (4.8). Then

λmin‖α‖1 ≤ F1(α
) + F2(α

) ≤ F1(0) + F2(0) =
1

2
‖f‖2D

Hence ‖α‖1 ≤ ‖f‖2D/(2λmin). In addition, if A is surjective then we have

λmin‖α‖1 ≤ F1(α
) + F2(α

) ≤ F1(αLS) + F2(αLS) = ‖diag(λ)αLS‖1.

This concludes the proof of the lemma.

Now, we prove that the sequence {αk}k≥0 generated by Algorithm 4.3 converges
to a minimizer of:

min
α∈Rm

F1(α) + F2(α),

under suitable conditions. A similar proof can be found in e.g. [4]. For notational
convenience we denote F (α) := F1(α) + F2(α) and

�F (α;β) := F2(β) + 〈∇F2(β), α− β〉+ ‖diag(λ)α‖1,

where the sum of the first two terms is the linear approximation of F2 at β. Since
F2 has an L-Lipschitz continuous gradient and is convex, we have the following
inequality

(4.26) F (α) − L

2
‖α− β‖22 ≤ �F (α;β), for all α, β ∈ Rm.

Theorem 4.4. Consider the minimization problem

(4.27) min
α∈Rm

F1(α) + F2(α),

where F1 = ‖diag(λ)α‖1 and F2 : Rm 
→ R is a convex, differentiable function with
an L-Lipschitz continuous gradient. Let F := F1 + F2 and denote α be a solution
of (4.27). Then the sequence {αk}k≥0 generated by Algorithm 4.3 satisfies

(4.28) F (αk)− F (α) ≤ L‖α − α0‖22
2k

.

As a consequence, for given ε > 0, we have

(4.29) F (αk)− F (α) ≤ ε, whenever k ≥ L(C + ‖α0‖2)2
2ε

.

When (4.27) has a unique solution α, we have

lim
k→∞

‖αk − α‖2 = 0.
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Proof. For a given k ≥ 1 and any optimal solution α, let

αk+1 := Tλ/L(αk −∇F2(αk)/L).

First, we show that

(4.30) αk+1 ∈ argmin
α

{�F (α;αk) + L〈αk+1 − αk, α〉}.

By letting gk = αk −∇F2(αk)/L and removing constant terms in (4.30), it is easy
to see that (4.30) is equivalent to

(4.31) αk+1 ∈ argmin
α

{〈αk+1 − gk, α〉+ ‖diag(λ)α‖1/L}.

Now by the definition of αk+1, we have

gk[j]− αk+1[j] =

{
sgn(gk[j])λj/L, when |gk[j]| > λj/L
gk[j], when |gk[j]| ≤ λj/L.

This implies that

gk − αk+1 ∈ ∂‖diag(λ)αk+1‖1/L,
or equivalently,

0 ∈ αk+1 − gk + ∂‖diag(λ)αk+1‖1/L,
which implies (4.31) and hence (4.30). By (4.30), we now have

(4.32) �F (αk+1;αk) + L〈αk+1 − αk, αk+1〉 ≤ �F (α
;αk) + L〈αk+1 − αk, α

〉.
Letting α = αk+1 and β = αk in (4.26), we have

(4.33) F (αk+1) ≤ �F (αk+1;αk) +
L

2
‖αk+1 − αk‖22.

Applying (4.32) to (4.33), we have

F (αk+1) ≤ �F (α
;αk) + L〈αk+1 − αk, α

 − αk+1〉+
L

2
‖αk+1 − αk‖22

= �F (α
;αk) +

L

2
‖α − αk‖22 −

L

2
‖α − αk+1‖22,

where the last equality follows from straightforward calculations. Now, we have

F (αk+1) ≤ �F (α
;αk) +

L

2
‖α − αk‖22 −

L

2
‖α − αk+1‖22,

≤ F (α) +
L

2
‖α − αk‖22 −

L

2
‖α − αk+1‖22.

(4.34)

Here, the last inequality follows from the definition of �F and the convexity of F2.
Subtracting F (α) from both sides of the last inequality of (4.34) gives

F (αk+1)− F (α) ≤ L

2
‖α − αk‖22 −

L

2
‖α − αk+1‖22.

Telescoping on the above inequality, we have

(4.35)

k+1∑
j=1

F (αj)− (k + 1)F (α) ≤ L

2
‖α − α0‖22.

Now, by using (4.30) with α = αk, we have

�F (αk+1;αk) + L〈αk+1 − αk, αk+1〉 ≤ �F (αk;αk) + L〈αk+1 − αk, αk〉
= F (αk) + L〈αk+1 − αk, αk〉.
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By applying the above inequality to (4.33) we obtain

F (αk+1)− F (αk) ≤ −L
2
‖αk+1 − αk‖22.

After multiplying k at both sides of the above inequality and then telescoping, we
have

(k + 1)F (αk+1)−
k+1∑
j=1

F (αj) = kF (αk+1)−
k∑
j=1

F (αj) ≤ −L
2

k∑
j=1

j‖αj+1 − αj‖22.

Combining the above inequality with (4.35), we have

(k + 1)(F (αk+1)− F (α)) ≤ L

2
‖α − α0‖22,

and thus (4.28) follows. In addition, by applying the following inequalities

‖α − α0‖2 ≤ ‖α‖2 + ‖α0‖2 ≤ ‖α‖1 + ‖α0‖2,
and Lemma 4.2, we obtain (4.29).

The conclusion that αk → α whenever α is the unique minimizer of F follows
directly from Proposition 4.1.

Remark 4.11. Theorem 4.1 whose proof is given in [58] says that the sequence
αk itself converges to an optimal solution α whenever there exists one as given in
Theorem 4.1, which is stronger than what we have shown above. The interested
reader should consult [58] for details. However, the speed of convergence, which is
more important in practice, is not clear from the proof of [58]. Here, we focused
on showing that αk is a minimizing sequence that reaches to an ε-optimal solution
after O(L/ε) iterations. Furthermore, in image restorations we are more interested
in finding a solution at which the cost functional has a value that is close to the
minimal value, rather than knowing whether the solution is close to a minimizer or
not. In this regard, the proof here is more informative.

2.3. Accelerated Algorithm

As shown in Theorem 4.4, the proximal forward-backward splitting algorithm
generates an ε-optimal solution of (4.8) in O(L/ε) iterations, which is reasonably
efficient. However, in practice, faster algorithms are always desired. For example
when the matrix A is huge (e.g. Radon transform for tomography in 3D), each it-
eration of Algorithm 4.3 can be expensive. Therefore, one always wishes to reduce
the total number of iterations. As we will see from Theorem 4.5 the accelerated
proximal gradient (APG) algorithm of [168] (see also the FISTA algorithm of [4])
is much more efficient than the proximal forward-backward splitting algorithm be-
cause it only requires O(

√
L/ε) iterations to obtain an ε-optimal solution.

The APG algorithm of [168] is obtained by adjusting the step gk = αk −
∇F2(αk)/L in the proximal forward-backward splitting algorithm. This idea has
already appeared in [4, 173]. Next, we describe the APG algorithm for solving
(4.8).

Algorithm 4.4. (APG for (4.8)) For a given vector λ ∈ Rm+ , choose α0 = α−1 ∈
Rm, t0 = 1, and t−1 = 0. For k = 0, 1, 2, . . ., generate αk+1 from αk according to
the following iteration:

(i) Set βk = αk +
tk−1−1
tk

(αk − αk−1).
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(ii) Set gk = βk −∇F2(βk)/L.
(iii) Set αk+1 = Tλ/L(gk).

(iv) Compute tk+1 =
1+

√
1+4t2k
2 .

Note that, when κ = 0, i.e. F2(α) =
1
2‖AW
α − f‖2D, Algorithm 4.4 leads to

an efficient algorithm for the synthesis based approach. When we take tk = 1 for all
k in the APG algorithm, it is reduced to the proximal forward-backward splitting
algorithm for the balanced approach in frame based image restorations, and it is the
popular iterative shrinkage/thresholding algorithms proposed in [62, 66, 90, 91].

The iterative shrinkage/thresholding algorithms and the proximal forward-
backward splitting algorithms have been developed and analyzed independently
by many researchers. These algorithms only require gradient evaluations and soft-
thresholding operations, so the computation cost for each iteration is very cheap.
But, for any ε > 0, these algorithms terminate in O(L/ε) iterations with an ε-
optimal solution as proven in Theorem 4.4. The APG algorithm proposed here,
however, reaches an ε-optimal solution in O(

√
L/ε) iterations. Thus APG algo-

rithm of [168] greatly accelerates the proximal forward-backward splitting algo-
rithms used in [14, 15, 16, 17, 25, 32, 34, 36, 38] for the balanced approach in
frame based image restorations.

Here, we recall the proof of convergence of Algorithm 4.4 given by [168, The-
orem 2.1], which gives an upper bound on the number of iterations for the APG
algorithm for solving (4.8) to achieve ε-optimality. The proof follows a similar idea
to that of [4, 173] and Theorem 4.4.

We note that for the sequence tk defined in Algorithm 4.4, we have the following
inequality which can be easily verified by induction

(4.36) tk ≥ k + 1

2
.

Theorem 4.5. Let {αk}, {βk}, and {tk} be the sequences given by Algorithm 4.4.
Then for any k ≥ 1 and any optimal solution α to the minimization problem (4.8)
with 0 ≤ κ <∞, we have

(4.37) F (αk)− F (α) ≤ 2L‖α − α0‖22
(k + 1)2

.

Hence

(4.38) F (αk)− F (α) ≤ ε, whenever k ≥
√

2L

ε
(‖α0‖2 + C)− 1,

where C is given by Lemma 4.2. Furthermore, if α is the unique minimizer of
F (α), then αk → α as k → ∞.

Proof. For a given k ≥ 1 and any optimal solution α, let sk := Tλ/L(gk) and
α̃ := ((tk − 1)αk + α)/tk. We first show that

(4.39) sk ∈ argmin
α

{�F (α;βk) + L〈sk − βk, α〉}.

By definition of gk in Algorithm 4.4 and removing constant terms in (4.39), it is
easy to see that (4.39) is equivalent to

(4.40) sk ∈ argmin
α

{〈sk − gk, α〉+ ‖diag(λ)α‖1/L}.
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Now by the definition of sk, we have

gk[j]− sk[j] =

{
sgn(gk[j])λj/L, when |gk[j]| > λj/L
gk[j], when |gk[j]| ≤ λj/L.

This implies that

gk − sk ∈ ∂‖diag(λ)sk‖1/L,
or equivalently

0 ∈ sk − gk + ∂‖diag(λ)sk‖1/L,
which implies (4.40) and hence (4.39). By (4.39), we now have

(4.41) �F (sk;βk) + L〈sk − βk, sk〉 ≤ �F (α̃;βk) + L〈sk − βk, α̃〉.
Letting α = sk and β = βk in (4.26) and noting that αk+1 = sk, we have

F (αk+1) = F (sk) ≤ �F (sk;βk) +
L

2
‖sk − βk‖22.

Applying (4.41) to the above inequality, we have

F (αk+1) ≤ �F (α̃;βk) + L〈sk − βk, α̃− sk〉+
L

2
‖sk − βk‖22

= �F (α̃;βk) +
L

2
‖α̃− βk‖22 −

L

2
‖α̃− sk‖22

= �F (α̃;βk) +
L

2
‖α̃− βk‖22 −

L

2
‖α̃− αk+1‖22,

where the second to the last equality follows from straightforward calculations. Plug
the definition of α̃ into the above inequality and denoting γk := (tk−1 − 1)αk−1 −
tk−1αk, one obtains

F (αk+1) ≤
tk − 1

tk
�F (αk;βk) +

1

tk
�F (α

;βk)

+
L

2t2k
‖(tk − 1)αk + α − tkβk‖22 −

L

2t2k
‖(tk − 1)αk + α − tkαk+1‖22,

=
tk − 1

tk
�F (αk;βk) +

1

tk
�F (α

;βk) +
L

2t2k
‖α − γk‖22 −

L

2t2k
‖α − γk+1‖22

≤ tk − 1

tk
F (αk) +

1

tk
F (α) +

L

2t2k
‖α − γk‖22 −

L

2t2k
‖α − γk+1‖22.

(4.42)

Here, the first inequality follows from the fact that �F is convex and tk ≥ 1 by
(4.36). The last inequality follows from the convexity of F2.

Subtracting F (α) from both sides of the last inequality of (4.42), multiplying
t2k at both sides and noticing that t2k−1 = tk(tk − 1), we have

t2k(F (αk+1)− F (α)) ≤ t2k−1(F (αk)− F (α)) +
L

2
‖α − γk‖22 −

L

2
‖α − γk+1‖22.

Telescoping on the above inequality, and using t−1 = 0 and γ0 = α0, we have

t2k(F (αk+1)− F (α)) ≤ L

2
‖α − α0‖22.

By (4.36), the inequality (4.37) follows; and using Lemma 4.2, we obtain (4.38).
The conclusion that αk → α whenever α is the unique minimizer of F follows

directly from Proposition 4.1.
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Remark 4.12.

(1) Theorem 4.5 shows that the number of iterations to get an ε-optimal

solution is of order O(
√
L/ε). Therefore, less iterations are required if we

have a smaller Lipschitz constant L. For the general balanced approach,
we have L ≤ ρmax(A


DA) + κ. Then for given A and D, the smaller κ
is, the faster αk from the APG algorithm converges.

(2) For the inpainting problem considered in the previous section, we have
A = PΛ and D = I. We have shown in the proof of Theorem 4.3 that
L = max{1, κ}. Thus APG converges fastest whenever κ ≤ 1 and κ = 1
is the case where we have fast convergence while the reconstructed image
has good regularity.

(3) It is clear that the Algorithm (4.4) can be used for both the balanced
approach and the synthesis based approach (the combination of the two
is called the general balanced approach here). In general, the balanced
approach and the synthesis based approach can have the same algorithm
by using different cost functionals, while algorithms for the analysis based
approach need to be developed separately.

We finally present the APG algorithm for the two-system balanced approach
(4.12) whose convergence can be proved in a manner similarly to Theorem 4.5. We
denote

F2(α
1, α2) :=

1

2
‖A(

2∑
i=1

W

i α

i)− f‖2D +

2∑
i=1

κi
2
‖(I −WiW



i )αi‖22

and denote its Lipschitz constant as L (see [168] for an estimate of L). We note
that the two-system balanced approach generally works better than (4.8) when the
given image has two different layers, e.g. cartoon and textures that can be sparsely
approximated by two different tight frame systems.

Algorithm 4.5. (APG for (4.12)) Let i = 1, 2. For given vectors λi ∈ Rm+ , choose

αi0 = αi−1 ∈ Rm, t0 = 1, and t−1 = 0. For k = 0, 1, 2, . . ., generate αik+1 from αik
according to the following iteration:

(i) Set

β1
k = α1

k +
tk−1 − 1

tk
(α1
k − α1

k−1) and β2
k = α2

k +
tk−1 − 1

tk
(α2
k − α2

k−1).

(ii) Set

g1k = β1
k −∇α1F2(β

1
k, β

2
k)/L and g2k = β2

k −∇α2F2(β
1
k, β

2
k)/L.

(iii) Set

α1
k+1 = Tλ1/L(g

1
k) and α2

k+1 = Tλ2/L(g
2
k).

(iv) Compute tk+1 =
1+

√
1+4t2

k

2 .

2.4. Linearized Bregman Algorithm

Recently, the linearized Bregman algorithm has been applied to develop a fast
algorithm for frame based image deblurring in [23], which converges to the mini-
mizer of the following minimization problem:

(4.43) min
α∈Rm

{κ
2
‖α‖22 + ‖diag(λ)α‖1 : AW
α = f},
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when A is surjective. Furthermore, the optimal solution uλ converges to the mini-
mizer of minα∈Rm{‖α‖1 : AW
α = f} as λ→ ∞, where, for simplicity, each entry
of the vector λ is set to be the same (see [23]). Hence, the linearized Bregman
algorithm is used to solve a variation of the synthesis based approach when λ is
sufficiently large. The linearized Bregman algorithm was first proposed to solve
�1-minimization problems in compressed sensing by [184] and was made efficient in
[147]. The convergence analysis of the linearized Bregman algorithm was given in
[21, 22]. Then, it was used in the nuclear norm minimization for matrix completion
by [13], where the authors realized that the linearized Bregman can be reformu-
lated as the Uzawa’s algorithm (see e.g. [82] for more details about the Uzawa
algorithm).

A simple computation of [23] shows that when A is invertible, (4.43) is equiv-
alent to

min
α∈Rm

{κ
2
‖(I −WW
)α‖22 + ‖diag(λ)α‖1 : AW
α = f}.

This looks like a variation of the balanced approach. However, when the large
parameter vector λ is chosen, which happens when one applies linearized Bregman,
it is closer to a variation of the synthesis based approach. A detailed discussion of
the case when A is not invertible is provided in [23].

The advantage of Bregman iterations (either linearized Bregman or split Breg-
man iterations) in frame based image restorations is that big coefficients come back
at first after few iterations and stay. This, in particular, is important to image
deblurring, since big wavelet frame coefficients contain information of edges and
features of images. The main goal of deblurring is to restore blurred edges and
features.

Iterative algorithms involving Bregman distance were introduced to image and
signal processing by many authors including [30, 31]. See [145] for an overview.
In [145], a Bregman iteration was proposed for the nondifferentiable TV energy
for image restoration. Then, in [184], it was shown to be remarkably successful for
�1-norm minimization problems in compressive sensing. To further improve the per-
formance of the Bregman iteration, a linearized Bregman algorithm was invented
in [59]; see also [184]. More details and an improvement called “kicking” of the
linearized Bregman algorithm were described in [147], and a rigorous theory was
given in [21, 22]. Wavelet-based denoising using the Bregman iteration was intro-
duced in [182], and was further extended by using translation invariant wavelets in
[129]. Here, we focus on the linearized Bregman algorithm for wavelet frame based
image restorations of [23].

The linearized Bregman algorithm is given as follows.

Algorithm 4.6. (Linearized Bregman)

(i) Set initial guess β0 ∈ Rm.
(ii) For k = 0, 1, . . ., perform the following two-line-iteration until conver-

gence:

αk+1 =
1

κ
Tλ(βk)

βk+1 = βk +WA
(f −AW
αk+1).
(4.44)

The linearized Bregman algorithm looks similar to proximal forward-backward
splitting algorithm. For simplicity, we suppose κ = 1. If we let F1(α) = ‖diag(λ)α‖1
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and F2(α) =
1
2‖AW
α− f‖22, then from (4.44) we have

αk+1 = Tλ(βk) = proxyF1
(βk−1 −∇F2(αk))

= proxyF1
(β0 −

k∑
j=1

∇F2(αj)).

Therefore, one essential difference between the linearized Bregman algorithm (4.44)
and the proximal forward-backward splitting algorithm is that the linearized Breg-
man uses all {αj : j = 1, 2, . . . , k} to update αk+1, while the proximal forward-
backward splitting algorithm only uses the approximation of the previous iteration
αk. On the other hand, the linearized Bregman algorithm is in fact a primal-dual
algorithm, where the variable βk links to the dual variable of αk. We further explain
this in the following discussions.

It was proved in [22] that if the sequence {αk}k∈N from (4.44) converges, its
limit is the unique solution of the following optimization problem

(4.45) min
u∈Rn

{
‖diag(λ)α‖1 +

κ

2
‖α‖22 : AW
α = f

}
,

where 0 < κ < ∞. Later, in [21], it was proved that the sequence {uk}k∈N con-
verges. A rather crucial discovery that makes it possible to link the linearized
Bregman algorithm to the Uzawa’s algorithm is the discovery of the optimization
problem (4.45) corresponding to the linearized Bregman algorithm [22].

The linearized Bregman algorithm coincides with the Uzawa’s algorithm (see
e.g. [13, 82, 151] for details on Uzawa’s algorithm) applied to the problem (4.45).
In this section, we first show the equivalence of the linearized Bregman algorithm
with Uzawa’s algorithm when applied to (4.45). Then we prove convergence of
Uzawa’s method in a more general setting, which in turn gives a convergence proof
of linearized Bregman algorithm.

For simplicity, we denote B = AW
 and denote the objective function in (4.45)
as Fλ(α), i.e.

Fλ(α) := ‖diag(λ)α‖1 +
κ

2
‖α‖22.

The Lagrangian for the problem (4.45) is given by

L(α, p) = Fλ(α) + 〈p, f −Bα〉.
If strong duality holds (which is indeed the case for (4.45)), then α and p are
called primal-dual optimal if the pair (α, p) is a saddle point of the Lagrangian
L(α, p), i.e. the pair satisfies

(4.46) sup
p

inf
α

L(α, p) = L(α, p) = inf
α

sup
p

L(α, p).

The Uzawa’s algorithm is an iterative procedure that solves the above saddle point
problem as follows

αk+1 = argmin
α

L(α, pk)

pk+1 = pk + δk(f −Bαk+1),
(4.47)

where {δk}k∈N are positive step sizes. Note that the second step in (4.47) is one
step of gradient ascend solving the maximization problem supp L(αk+1, p), because
∇L(αk+1, p) = f − Buk+1. Therefore, Uzawa’s algorithm is an alternative mini-
mization and maximization method solving the saddle point problem (4.46).
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By adding some terms independent of variable α, we have

argmin
α

L(α, pk) = argmin
α
Fλ(α) + 〈pk, f −Bα〉

= argmin
α

‖diag(λ)α‖1 +
κ

2
‖α− 1

κ
B
pk‖22

=
1

κ
Tλ(B
pk).

Applying B
 on both sides of the second equation in (4.47), letting βk = B
pk and
δk = 1, we obtain the linearized Bregman algorithm (4.44). In fact, the sequence
αk for the linearized Bregman algorithm is exactly the same as Uzawa’s method.
Therefore, we focus on analyzing the convergence of Uzawa’s algorithm (4.47).

First, we establish the strong convexity of Fλ(α) in the following lemma.

Lemma 4.3. Let v1 ∈ ∂Fλ(α1) and v2 ∈ ∂Fλ(α2). Then

(4.48) 〈v1 − v2, α1 − α2〉 ≥ κ‖α1 − α2‖22.

Proof. An element in vi ∈ ∂Fλ(αi), i = 1, 2, takes the form vi = wi + καi,
with wi ∈ ∂‖diag(λ)αi‖1. Therefore, we have

〈v1 − v2, α1 − α2〉 = 〈w1 − w2, α1 − α2〉+ κ‖α1 − α2‖22.
Thus we only need to show that the first term of the right-hand side is nonnegative.
By the definition of subgradient, it is easy to see that 〈wi, αi〉 = ‖diag(λ)αi‖1.
Furthermore, we have

〈w1, α2〉 = 〈diag(λ)−1w1, diag(λ)α2〉
≤ ‖diag(λ)−1w1‖∞‖diag(λ)α2‖1 ≤ ‖diag(λ)α2‖1.

Similarly we have 〈w2, α1〉 ≤ ‖diag(λ)α1‖1. Therefore, we have

〈w1 − w2, α1 − α2〉 = 〈w1, α1〉+ 〈w2, α2〉 − 〈w1, α2〉 − 〈w2, α1〉
= ‖diag(λ)α1‖1 + ‖diag(λ)α2‖1 − 〈w1, α2〉 − 〈w2, α1〉
≥ 0

This concludes the proof of the lemma.

Theorem 4.6. Suppose the step sizes obey 0 < infk δk ≤ supk δk < 2κ/‖B‖22.
Then the sequence αk obtained from Uzawa’s algorithm (4.47) converges to the
unique solution of (4.45).

Proof. Let (α, p) be the optimal primal-dual pair for the problem (4.45).
Then the optimality conditions in (4.46) and (4.47) give

vk+1 −B
pk = 0,

v −B
p = 0,

where vk+1 ∈ ∂Fλ(αk+1), and v
 ∈ ∂Fλ(α

). Then we have,

(vk+1 − v)− B
(pk − p) = 0,

and it follows from Lemma 4.3 that

〈αk+1 − α, B
(pk − p)〉 = 〈αk+1 − α, vk+1 − v〉 ≥ κ‖αk+1 − α‖22.
Thus,

〈B(αk+1 − α), pk − p〉 ≥ κ‖αk+1 − α‖22.
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Noting that Bα = f and using the second equation in (4.47), we have

‖pk+1 − p‖22 = ‖pk − p + δk(f −Bαk+1)‖22
= ‖pk − p + δkB(α − αk+1)‖22
= ‖pk − p − δkB(αk+1 − α)‖22.

If we let rk := ‖pk − p‖2, we then have

r2k+1 = r2k − 2δk〈pk − p, B(αk+1 − α)〉 + δ2k‖B(αk+1 − α)‖22
≤ r2k − 2κδk‖αk+1 − α‖22 + δ2k‖B‖22‖αk+1 − α‖22.

From the assumptions of δk, we have 2κδk−δ2k‖B‖22 ≥ C, for some C > 0. Therefore,

r2k+1 ≤ r2k − C‖αk+1 − α‖22.
The above inequality shows that rk is a monotonically decreasing sequence and thus
converges. Applying limits to both sides of the above inequality gives limk→∞ ‖αk+1−
α‖2 = 0 and this concludes the proof of the theorem.

Now, we have the following convergence theorem for the linearized Bregman
algorithm (4.44), which is a direct consequence of Theorem 4.6.

Theorem 4.7. The sequence αk obtained from Algorithm 4.6 converges to the
unique solution of (4.45), provided that κ > ‖B‖22/2.

Proof. Convergence follows from Theorem 4.6, and the uniqueness of the
solution of (4.45) follows from the fact that

‖diag(λ)α‖1 +
κ

2
‖α‖22

is strictly convex for any κ > 0.

Finally, we note that in order to speed-up Algorithm 4.6, i.e. to reduce the total
number of iterations required for a given stopping criterion, a preconditioned version
of Algorithm 4.6 was proposed in [23]. The idea is that instead of considering
equation AW
α = f in (4.45), we consider the equivalent equation

D
1
2AW
α = D

1
2 f,

where D is a symmetric positive definite matrix that approximates the pseudoin-

verse of A. Then by replacing A with D
1
2A and f with D

1
2 f in Algorithm 4.6, one

obtains the preconditioned linearized Bregman algorithm. Here, we use the same
notationD as in (4.8) for example, because they serve the same purpose. Therefore,
just as in (4.8), we choose D = (AA
 + θI)−1.

2.5. Role of the redundancy

Tight frames are different from orthonormal systems because tight frames are
redundant. What does the redundancy bring us here? We start with a philosophical
point about the algorithm and then give some quantitative analysis on the error
reduction with each iteration.

Assume that some blocks of pixels are missing in a given image and we want
to solve the inpainting problem in the wavelet frame domain as mentioned before.
Since the framelets used are compactly supported, the coefficients of those framelets
whose supports fall in the missing blocks are missing and the coefficients of those



118 BIN DONG AND ZUOWEI SHEN, FRAMES AND APPLICATIONS

framelets whose supports overlap with the missing blocks are inaccurate. The main
step of Algorithm 4.1 perturbs the frame coefficients Wun via thresholding so that
information contained in the available coefficients will permeate into the missing
frame coefficients. Here, the redundancy is very important, since the available co-
efficients and its associated atoms in the system contain information of the missing
coefficients and missing atoms only if the system is redundant, as the atoms in an
orthonormal basis are orthogonal to each other and do not contain information of
other atoms in L2-sense.

While applying the thresholding operator on the frame coefficients is a very im-
portant step in Algorithm 4.1, to remove noise, perturb the coefficients and sharpen
the edges, it also introduces new errors and artifacts. We use image inpainting as an
example to show how the numerical errors and artifacts introduced by thresholding
can be reduced by the redundancy of the systemW . We take the computed solution
u for the case η = 0 as an example. Similar analysis holds for the computation of
each iteration. Our computed solution u that interpolates the given data satisfies
α = Tλ(Wu) and

u = PΛf + (I − PΛ)W

TλWu.

That is, on Λ, W
TλWu is replaced by f . But since PΛf = PΛu
 = PΛW


Wu,
we are actually replacing PΛW


TλWu by PΛW

Wu, which generates artifacts.

Hence to reduce the artifacts, we require that the norm of

PΛW

Wu − PΛWTλWu = PΛW


(Wu − TλWu)

is small.
Clearly, the smaller the norm of W
e := W
(Wu − TλWu) is, the smaller

the artifact is. Note that the reconstruction operator W
 can eliminate the error
components sitting in the kernel of W
. In fact, since W
 projects all sequences
down to the orthogonal complement of the kernel of W
, which is the range of W ,
the component of e in the kernel ofW
 does not contribute. The redundant system
reduces the errors as long as the component of e in the kernel of W
 is not zero.
Therefore, in general, the larger the kernel of W
 is, i.e. the more redundant the
frame system is, the greater the error reduction. To increase the redundancy, we
use quasi-affine tight frame system (which is also called an undecimated tight frame
system since no downsampling is required during decompositions). In contrast, if
W is an orthonormal system (not redundant at all), then the kernel of W
 is just
{0} and we have ‖W
e‖ = ‖e‖. The point here is that redundancy reduces the
norm of (α −Wf).

2.6. Some Simulations

First, we provide a comparison of computation efficiency between the PFBS
and the APG algorithm under the scenario of image inpainting. Qualities of in-
painting and deblurring using both single- and two-system balanced approach (4.8)
and (4.12) are presented as well. In particular, we present results using the syn-
thesis based approach (i.e. (4.8) and (4.12) with κ = 0). Finally, we present
deblurring results using the linearized Bregman algorithm given by Algorithm 4.6
with preconditioning.

For the balanced approach (4.8), we take W corresponding to the piecewise
linear B-spline quasi-affine tight frame system. For the two-system balanced ap-
proach (4.12), we take W1 the same as W for (4.8), while W2 is generated by a
local discrete cosine transform.
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Throughout this section, we adopt the following stopping criterion for Algo-
rithm 4.4 (we use a similar stopping criterion for Algorithm 4.5):

min

{
‖αk − αk−1‖2
max{1, ‖αk‖2}

, γ

∣∣‖AW
αk − f‖D − ‖AW
αk−1 − f‖D
∣∣

‖AW
αk − f‖D

}
< 5× 10−4,

where γ = 1 for image inpainting and γ = 4 for deblurring (in order to prevent the
algorithm from stopping too early since for deblurring the residual ‖AW
αk−f‖D
usually changes slowly with k). To measure the quality of the restored image, we
use the PSNR value defined by

PSNR := −20 log10
‖u− ũ‖
255n

,

where u and ũ are the original and restored images respectively, and n is total
number of pixels in u. Finally, we note that all algorithms are programmed in
MATLAB and run on a 64-bits Windows laptop with a Quad Core 1.73GHz CPU
and 8.0G RAM.
2.6.1. Balanced Approach for Image Inpainting. In Table 1, we compare the effi-
ciency of the APG and the PFBS algorithms for image inpainting without noise,
i.e. A = PΛ, D = I and η = 0. Level of framelet decomposition is chosen to
be 1 for optimal quality of restored images. One can see that the APG algorithm
is more efficient than the PFBS algorithm while the quality of restored images is
comparable. Some image results are shown in Figure 1.

Inpainting results using the two-system balanced approach (4.12) are also pre-
sented in Table 1. It is worth noticing that for images containing both cartoons and
textures, e.g. “barbara512”, the two-system balanced approach (4.12) works better
than the single-system balanced approach (4.8). Such improvement is shown in
Figure 2, where one can see that textures are better restored using the two-system
balanced approach (4.12), because in general, textures can be sparsely approxi-
mated by local cosine transforms.

Results of the synthesis based approach, i.e. (4.8) and (4.12) with κ = 0, are
presented in Table 2. The level of framelet decomposition is chosen to be 2 for
optimal quality of restored images. When comparing Table 2 with Table 1 one can
see that the balanced approach usually produces better results than the synthesis
based approach. This is due to the lack of smoothness for the synthesis based
approach (κ = 0).

Table 1: Comparisons of PFBS and APG algorithms: image inpainting without
noise (i.e., η = 0 in (4.1)). Level of framelet decomposition is taken to be 1.

Inpainting APG for (4.8) PFBS for (4.8) APG for (4.12)

σ = 0 κ = 1, λ = 0.03 κ = 1, λ = 0.03 κi = 1, λi = 0.01

iter psnr time (s) iter psnr time (s) iter psnr time (s)

peppers256 19 39.38 3.07 59 38.09 9.17 29 39.09 6.11

goldhill256 21 35.17 3.34 60 34.79 10.51 30 35.34 6.47

boat256 22 33.79 3.42 64 33.64 11.30 29 33.78 6.34

camera256 20 32.95 3.23 62 32.62 9.67 29 33.23 7.04

bridge256 24 34.85 3.80 74 33.93 11.84 33 34.39 7.64

bowl256 19 36.93 2.97 59 36.45 9.11 35 38.54 7.90

barbara512 23 34.48 24.44 88 33.49 91.27 30 39.08 39.66
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Table 1: Comparisons of PFBS and APG algorithms: image inpainting without
noise (i.e., η = 0 in (4.1)). Level of framelet decomposition is taken to be 1.

Inpainting APG for (4.8) PFBS for (4.8) APG for (4.12)

σ = 0 κ = 1, λ = 0.03 κ = 1, λ = 0.03 κi = 1, λi = 0.01

iter psnr time (s) iter psnr time (s) iter psnr time (s)

baboon512 24 31.68 25.28 73 30.98 76.28 32 31.65 41.61

fingerprint512 23 32.89 24.25 73 30.41 77.25 34 33.46 44.79

zebra512 23 34.38 24.42 67 33.42 69.18 33 34.91 42.44

Figure 1. Inpainting results for “goldhill256” (first row), “bar-
bara512” (second row) and “baboon512” (third row) using the
single-system balanced approach (4.8) solved by APG algorithm
(images taken from Table 1). Column 1-3 are the original image,
observed image and restored image.
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Figure 2. Comparison of image inpainting using the single-
system balanced approach (4.8) and the two-system balanced ap-
proach (4.12). Images from left to right are: original image, ob-
served image, and restored image using single- and two-system.
The image presented is a zoom-in view of “barbara512” (taken
from Table 1).

Table 2: Numerical results of APG algorithm in solving synthesis based
method, i.e. (4.8) with κ = 0, for image inpainting without noise. Level
of framelet decomposition is taken to be 2.

Inpainting Single-System Two-Systems

σ = 0 λ = 0.03 λ1 = λ2 = 0.01

iter psnr time iter psnr time

peppers256 51 39.00 13.51 83 39.36 26.02

goldhill256 62 33.45 16.71 78 34.40 24.42

boat256 61 32.93 16.65 29 33.52 9.22

camera256 67 31.27 17.82 29 32.53 9.39

bridge256 79 33.41 21.15 81 33.99 25.80

bowl256 59 35.78 15.98 29 37.35 9.22

barbara512 59 32.48 102.97 186 36.39 367.66

baboon512 81 29.86 143.44 29 30.36 57.35

fingerprint512 75 34.66 132.93 188 34.93 367.11

zebra512 80 33.90 141.98 84 34.95 165.97

2.6.2. Image Deblurring. Here, we present numerical results using the single- and
two-system balanced approach (4.8) and (4.12) solved by the APG algorithm for
image deblurring with noise. The matrix A in (4.1) is taken to be a convolu-
tion matrix with the corresponding kernel being a Gaussian function (generated in
MATLAB by “fspecial(’gaussian’,15,1.5);” to be precise) and η is generated from
a zero mean Gaussian distribution with variance σ = 3. Also, numerical results
of image deblurring using the (preconditioned) linearized Bregman algorithm are
presented.

For all the methods we used (i.e. the APG algorithm for the single- and two-
system balanced approach, and the linearized Bregman algorithm), we choose θ =
0.01 for the matrix D = (AA
 + θI)−1 which can be computed efficiently via fast
Fourier transform (FFT). We choose the level of framelet decomposition to be 1 for
the AGP algorithms and 4 for linearized Bregman algorithm for optimal quality of
the restored images. Finally, we note that for the linearized Bregman algorithm,
we use the following stopping criterion:

std(AW
αk − f) < σ.

In Table 3, we summarize the deblurring results for all of three algorithms, and
the corresponding images are presented in Figure 3. Note that all three models pro-
duce comparable results in terms of PSNR values. However, the APG algorithm for
both the single- and two-system balanced approaches are faster than the linearized
Bregman algorithm. Also, we show a zoom-in view for “barbara” in Figure 4 where
we can see that texture components of the image are best recovered by using the
two-system balanced approach (4.12).



122 BIN DONG AND ZUOWEI SHEN, FRAMES AND APPLICATIONS

Table 3: Comparisons of APG algorithm for both single-system balanced ap-
proach (4.8) and two-system balanced approach (4.12), and linearized Bregman
algorithm for (4.45).

deblurring Single-System Two-Systems Linearized Bregman

σ = 3 κ = 1, λ = 0.005 κi = 1, λi = 0.005 κ = 1, λ = 0.01

psnr time (s) psnr time (s) psnr time (s)

barbara 24.64 20.7 24.75 63.2 24.67 126.2

duck 31.15 17.5 31.04 41.8 30.87 100.1

wolf 30.83 25.9 30.6 72.6 30.66 186.5

Figure 3. Deblurring results for “barbara”, “duck” and “wolf”.
Column 1-5 are: the original image, observed image, results of
single-system, results of two-system and results of the linearized
Bregman algorithm.

Figure 4. Zoom-in to the texture part of “barbara”. Images from
left to right are: original image, observed image, results of single-
system, results of two-system and results of linearized Bregman
algorithm.
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3. Analysis Based Approach

In this section, we present the split Bregman algorithm [96] for a more general
analysis based approach:

(4.49) min
u∈Rn

H(u) + ‖diag(λ)Wu‖1,

where H(·) is some smooth convex function. In particular, when

H(u) =
1

2
‖Au− f‖2D,

(4.49) coincides with (4.11) given in the introduction. The optimization problem
(4.49) can be solved by the split Bregman algorithm which was proposed by [96].
We provide a convergence analysis of the split Bregman algorithm following the
proof given by [24].

3.1. Split Bregman Algorithm

The �1 term involved in (4.49) is nonsmooth and nonseparable. This prevents
us from using optimization methods for smooth functions. A natural idea to solve
(4.49) is to use a smoothed �1 norm to approximate the actual �1 norm and then
apply optimization methods for smooth functions. This approach is commonly used
in some early algorithms for PDE based, particularly for total variation (TV) based,
variational models for image processing

min
u∈Rn

H(u) + λ|∇u|,

(see e.g., [180, 40]). However, in these smoothing methods, the better the approx-
imations (to the �1 norm) are, the slower the algorithms converge. Therefore, in
order to make these algorithms converge faster, the smooth approximation to the
�1 norm cannot be too accurate. Consequently, one cannot obtain a sparse solution
by solving the minimization problem with a smoothed norm. However, sparsity is
important in many cases of �1 regularization problems.

Another difficulty for the analysis based approach of (4.49) is that the term
‖diag(λ)Wu‖1 is not separable. Therefore, one cannot simply use soft thresholding
as one normally does in the synthesis based approach, since it is impossible to
keep any sequence in the range of W after applying a thresholding operator. An
iterative method to find a solution in the range of W for a special case of (4.49),
where H(u) = 1

2‖u− f‖2, was proposed by [33] by exploring duality.
As mentioned above, compared with the synthesis based approach, the �1 norm

of |Wu| involved in (4.49) is neither smooth nor separable. To overcome this, one
transfers (4.49) to a problem involving only separable nonsmooth terms. This is the
main idea of split Bregman. In particular, one replaces the term Wu in (4.49) by
a new variable d first and then adds a new constraint d = Wu into (4.49). Hence,
(4.49) becomes

(4.50) min
u,d

H(u) + ‖diag(λ)d‖1 subject to d =Wu,

In order to solve (4.50), an iterative algorithm based on the Bregman distance
with an inexact solver was proposed in [96]. This leads to the alternating split
Bregman algorithm for (4.50). The split Bregman algorithm for (4.50) was first
demonstrated in [96] to be an efficient tool for solving problems arising from TV
norm minimization problems of PDE based models for image restoration, such as
denoising.
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The derivation of the split Bregman algorithm in [96, 24] is based on Bregman
distance. The split Bregman method can also be understood as the augmented
Lagrangian method (see e.g. [94]) applying to (4.50) (see e.g.[85, 171]). Here, we
use the augmented Lagrangian method to derive the split Bregman algorithm, since
this connects to the Uzawa’s algorithm as we discussed for the linearized Bregman
algorithm. Note that (4.50) is equivalent to the following optimization problem

(4.51) min
u,d

H(u) + ‖diag(λ)d‖1 +
μ

2
‖Wu− d‖22 subject to d =Wu.

The Lagrangian for problem (4.51), which is called the augmented Lagrangian, is
given as

Lμ(u, d, p) := H(u) + ‖diag(λ)d‖1 + 〈p, d−Wu〉+ μ

2
‖Wu− d‖22.

The saddle points of Lμ(u, d, p) can be obtained by the following iterative procedure⎧⎨⎩(uk+1, dk+1) = argmin
u,d

H(u) + ‖diag(λ)d‖1 + 〈pk, d−Wu〉+ μ
2 ‖Wu− d‖22,

pk+1 = pk + δμ(dk+1 −Wuk+1),

which consists of one step of joint optimization of variables (u, d) followed by one
step of gradient ascend of variable p. Now, letting bk = −pk/μ, we have⎧⎨⎩(uk+1, dk+1) = argmin

u,d
H(u) + ‖diag(λ)d‖1 + μ〈bk,Wu− d〉+ μ

2 ‖Wu− d‖22,

bk+1 = bk + δ(Wuk+1 − dk+1),

which is equivalent to⎧⎨⎩(uk+1, dk+1) = argmin
u,d

H(u) + ‖diag(λ)d‖1 + μ
2 ‖Wu− d+ bk‖22,

bk+1 = bk + δ(Wuk+1 − dk+1).

Now, if one alternatively optimizes the variables u and d in the first equation above,
we have the split Bregman algorithm as follows

(4.52)

⎧⎪⎪⎨⎪⎪⎩
uk+1 = argmin

u
H(u) + μ

2 ‖Wu− dk + bk‖22,
dk+1 = argmin

d
‖diag(λ)d‖1 + μ

2 ‖d−Wuk+1 − bk‖22,
bk+1 = bk + δ(Wuk+1 − dk+1).

Since H(u) is convex and differentiable, the subproblem in the first line is easy to
solve. Further, noting that the first term of the subproblem in the second line is the
�1 norm, the subproblem in the second line can be solved by a simple soft shrinkage.
These features make the iteration efficient and fast for many problems that are
difficult to solve by other means. Besides its speed, the split Bregman method has
several advantages. It has a relatively small memory footprint when compared to
second order methods that require explicit representations of the Hessian matrix.
Also, the method is easy to code. Both of these characteristics make this split
Bregman method a practical algorithm for large scale problems.

For image restoration problems (4.1), we choose H(u) = 1
2‖Au− f‖2D and then

(4.50) becomes

(4.53) min
u

1

2
‖Au− f‖2D + ‖diag(λ)d‖1 subject to d =Wu,
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which is equivalent to the analysis based approach (4.11). We summarize the split
Bregman algorithm (4.52) for the analysis based approach in the following algo-
rithm.

Algorithm 4.7. (Split Bregman)

(i) Set initial guess d0 and b0.
(ii) For k = 0, 1, . . ., perform the following iterations until convergence

uk+1 = (A
DA+ μI)−1(A
Df + μW
(dk − bk)),

dk+1 = Tλ/μ(Wuk+1 + bk),

bk+1 = bk + δ(Wuk+1 − dk+1).

(4.54)

Note that when A is diagonalizable by discrete Fourier transform, e.g. a con-
volution matrix, the first equation of (4.54) can be solved efficiently by FFT.

3.2. Convergence Analysis of Split Bregman Algorithm

Now, we provide a convergence analysis of the split Bregman algorithm (4.52)
for a general convex differentiable function H(u). In particular, the convergence
analysis applies to Algorithm 4.7 for image restoration problems. We note that,
since all the subproblems involved in (4.52) are convex, the first order optimality
condition gives

(4.55)

⎧⎪⎨⎪⎩
0 = ∇H(uk+1) + μW
(Wuk+1 − dk + bk),

0 = pk+1 + μ(dk+1 −Wuk+1 − bk), with pk+1 ∈ ∂‖diag(λ)dk+1‖1,
bk+1 = bk + δ(Wuk+1 − dk+1).

This simple observation will be used in the proof of the convergence of the un-
constrained split Bregman method (4.52). Note that we will not use the fact that
W
W = I, because it is not required by the proof. Therefore, the following con-
vergence analysis also applies when W is replaced by any other linear operator like
∇ (see [24] for details).

Theorem 4.8. Assume that there exists at least one solution u of (4.49). As-
sume that 0 < δ � 1 and μ > 0. Then, we have the following properties for the
unconstrained split Bregman algorithm (4.52):

(4.56) lim
k→+∞

‖diag(λ)Wuk‖1 +H(uk) = ‖diag(λ)Wu‖1 +H(u).

Furthermore,

(4.57) lim
k→+∞

‖uk − u‖2 = 0

whenever (4.49) has a unique solution.

Proof. Let u be an arbitrary solution of (4.49). By the first order optimality
condition, u must satisfy

(4.58) 0 =W
p +∇H(u),

where p ∈ ∂‖diag(λ)d‖1 with d =Wu. Let

b =
1

μ
p.
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We obtain

(4.59)

⎧⎪⎨⎪⎩
0 = ∇H(u) + μW
(Wu − d + b),

0 = p + μ(d −Wu − b), with p ∈ ∂‖diag(λ)d‖1,
b = b + δ(Wu − d).

Therefore, (u, d, b) is a fixed point of (4.55). Consequently, if the iteration (4.52)
converges, it converges to a solution of (4.49) when (4.56) is proven.

Denote the errors by

uek = uk − u, dek = dk − d, bek = bk − b.

Subtracting the first equation of (4.59) from the first equation of (4.55), we have

0 = ∇H(uk+1)−∇H(u) + μW
(Wuek+1 − dek + bek).

Taking the inner product of the left- and right- hand sides with respect to uek+1,
we have
(4.60)
0 = 〈∇H(uk+1)−∇H(u), uek+1〉+μ‖Wuek+1‖22−μ〈W
dek, u

e
k+1〉+μ〈W
bek, u

e
k+1〉.

When similar manipulations are applied to the second equation of (4.55) and the
second equation of (4.59), we obtain

(4.61) 0 = 〈pk+1 − p, dk+1 − d〉+ μ‖dek+1‖22 − μ〈Wuek+1, d
e
k+1〉 − μ〈bek, dek+1〉,

where pk+1 ∈ ∂‖diag(λ)dk+1‖1 and p = μb ∈ ∂‖diag(λ)d‖1. By summing (4.60)
and (4.61), we get

0 = 〈∇H(uk+1)−∇H(u), uek+1〉+ 〈pk+1 − p, dk+1 − d〉
+ μ

(
‖Wuek+1‖22 + ‖dek+1‖22 − 〈Wuek+1, d

e
k + dek+1〉+ 〈bek,Wuek+1 − dek+1〉

)
.

(4.62)

Now, subtracting the third equation of (4.59) from the third equation of (4.55) we
obtain

bek+1 = bek + δ(Wuek+1 − dek+1).

Taking the inner product of the above identity with itself and reorganizing the
terms, we have

(4.63) 〈bek,Wuek+1 − dek+1〉 =
1

2δ

(
‖bek+1‖22 − ‖bek‖22

)
− δ

2
‖Wuek+1 − dek+1‖22.
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Substituting (4.63) into (4.62), we have

μ

2δ

(
‖bek‖22 − ‖bek+1‖22

)
=〈∇H(uk+1)−∇H(u), uek+1〉+ 〈pk+1 − p, dk+1 − d〉

+ μ

(
‖Wuek+1‖22 + ‖dek+1‖22 − 〈Wuek+1, d

e
k + dek+1〉 −

δ

2
‖Wuek+1 − dek+1‖22

)
=〈∇H(uk+1)−∇H(u), uek+1〉+ 〈pk+1 − p, dk+1 − d〉

+ μ

(
1− δ

2
‖Wuek+1 − dek+1‖22 +

1

2
‖Wuek+1‖22 +

1

2
‖dek+1‖22 − 〈Wuek+1, d

e
k〉
)

=〈∇H(uk+1)−∇H(u), uek+1〉+ 〈pk+1 − p, dk+1 − d〉

+ μ

(
1− δ

2
‖Wuek+1 − dek+1‖22 +

1

2
‖Wuek+1 − dek‖22 +

1

2
‖dek+1‖22 −

1

2
‖dek‖22

)

(4.64)

By summing the above equation from k = 0 to k = K, we get

μ

2δ

(
‖be0‖22 − ‖beK+1‖22

)
+
μ

2
‖de0‖22

=

K∑
k=0

〈∇H(uk+1)−∇H(u), uk+1 − u〉+
K∑
k=0

〈pk+1 − p, dk+1 − d〉

+ μ

(
1− δ

2

K∑
k=0

‖Wuek+1 − dek+1‖22 +
1

2

K∑
k=0

‖Wuek+1 − dek‖22 +
1

2
‖deK+1‖22

)
.

(4.65)

By (4.4), and that 0 < δ ≤ 1, all terms involved in the right-hand side of the above
equation are nonnegative. This observation leads to the following inequality:

μ

2δ
‖be0‖22 +

μ

2
‖de0‖22 ≥

K∑
k=0

〈∇H(uk+1)−∇H(u), uk+1 − u〉.(4.66)

By the assumption μ > 0, we have
∑+∞
k=0〈∇H(uk+1)−∇H(u), uk+1 − u〉 < +∞,

which leads to

(4.67) lim
k→+∞

〈∇H(uk)−∇H(u), uk − u〉 = 0.

By (4.3), we have

H(uk)−H(u)− 〈uk − u,∇H(u)〉 ≥ 0,

and

H(u)−H(uk)− 〈u − uk,∇H(uk)〉 ≥ 0,

which leads to

0 ≤ H(uk)−H(u)− 〈uk − u,∇H(u)〉 ≤ 〈∇H(uk)−∇H(u), uk − u〉.

This, together with (4.67), leads to

(4.68) lim
k→+∞

H(uk)−H(u)− 〈uk − u,∇H(u)〉 = 0.
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Similarly, (4.65) also provides us the following inequalities

μ

2δ
‖be0‖22 +

μ

2
‖de0‖22 ≥

K∑
k=0

〈pk+1 − p, dk+1 − d〉,

and

μ

2δ
‖be0‖22 +

μ

2
‖de0‖22 ≥μ

2

K∑
k=0

‖Wuek+1 − dek‖22.

Then by noticing that Wu = d and following the same argument as above, we
have

(4.69) lim
k→+∞

‖diag(λ)dk‖1 − ‖diag(λ)d‖1 − 〈dk − d, p〉 = 0,

and

(4.70) lim
k→+∞

‖Wuk+1 − dk‖2 = 0.

Since ‖ · ‖1 is continuous, by (4.69) and (4.70), we obtain

(4.71) lim
k→+∞

‖diag(λ)Wuk‖1 − ‖diag(λ)Wu‖1 − 〈Wuk −Wu, p〉 = 0.

Summing this and (4.68) yields

lim
k→+∞

((
‖diag(λ)Wuk‖1 +H(uk)

)
−

(
‖diag(λ)Wu‖1 +H(u)

)
− 〈uk − u,∇H(u) +WT p〉

)
= 0.

(4.72)

This, together with (4.58), proves (4.56), and (4.57) follows from Proposition 4.1.

Remark 4.13. The proof of convergence still works if H(u) is merely convex and
continuous (then H(u) is subdifferentiable). In that case, one can simply replace
the first line of (4.55) by

(4.73) 0 = qk+1 + μW
(Wuk+1 − dk + bk), qk+1 ∈ ∂H(uk+1),

and revise accordingly in the proof of Theorem 4.8. However, the equation (4.73)
may be much harder to solve than the original one given in (4.55). For many
applications, H(u) corresponds to fidelity term and takes the form H(u) = 1

2‖Au−
f‖2D, which is differentiable. Then the first equation of (4.55) corresponds to a linear
system of equations which can be solved efficiently whenever A is diagonalizable by
discrete Fourier transform, e.g. when A is a convolution matrix.

3.3. Simulations

Now, we apply Algorithm 4.7 to image deblurring problems. The matrix A in
(4.1) is taken to be a convolution matrix with the corresponding kernel being a
Gaussian function (generated in MATLAB by “fspecial(’gaussian’,15,1.5);”) and η
is generated from a zero mean Gaussian distribution with variance σ = 3. For the
matrix D = (AA
 + θI)−1 we choose θ = 0.01, and we pick the level of framelet
decomposition to be 4. For stopping criterion, we use

‖Wuk+1 − dk+1‖2
‖f‖2

< 5× 10−4.



LECTURE 4. FRAME BASED IMAGE RESTORATIONS 129

Table 4 summarizes the deblurring results of Algorithm 4.7 and the correspond-
ing images are shown in Figure 5. For convenience of comparison, we also present
the results from Table 3 and Figure 3. As one can see, the single-system balanced
approach outperform the analysis based approach in terms of both quality and
speed. The two-system balanced approach is comparable to both Linearized Breg-
man and split Bregman algorithms, but it works better when images contain both
cartoons and textures (see Figure 6).

Figure 5. Deblurring results for “barbara”, “duck” and “wolf”.
Column 1-5 are: the original image, results of single-system, results
of two-system, results of the linearized Bregman algorithm and
results of the analysis based approach.

Figure 6. Zoom-in to texture component of “barbara”. Images
from left to right are: the original image, results of single-system,
results of two-system, results of linearized Bregman algorithm and
results of the analysis based approach.
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Table 4: Comparisons of APG algorithm for both single-system balanced ap-
proach (4.8) and two-system balanced approach (4.12), and linearized Bregman
algorithm for (4.45).

Deblurring Single-System Two-Systems Linearized Bregman Analysis Approach

σ = 3 κ = 1, λ = 0.005 κi = 1, λi = 0.005 κ = 1, λ = 0.01 μ = 0.1, λ = 0.05

psnr time (s) psnr time (s) psnr time (s) psnr time (s)

barbara 24.64 20.7 24.75 63.2 24.67 126.2 24.58 32.18

duck 31.15 17.5 31.04 41.8 30.87 100.1 31.00 26.57

wolf 30.83 25.9 30.6 72.6 30.66 186.5 30.75 81.40



LECTURE 5

Other Applications of Frames

1. Background and Models

The previous lecture focused on using sparse approximations of wavelet frames
to solve image restoration problems; however, these techniques have much broader
applications. In this lecture, we consider some other interesting and important
applications of tight frames. In Section 2, we discuss the model proposed in [18]
on blind deblurring (motion deblurring to be specific) problems. Blind deblurring
problems can still be modeled as (4.1), but the convolution kernel that determines A
is unknown and needs to be solved simultaneously with u. In Section 3, we present a
frame based image segmentation model of [71]. This model is no longer of the form
(4.1) for image restoration problems. However, the concept of sparse approximation
of tight frame systems still applies. More importantly, this model sheds some light
on geometric interpretations of tight frames and grants links between tight frames
and differential operators. In Section 4, we recall the model proposed by [112] on
reconstruction of scenes (visible surfaces) from scattered, noisy and possibly sparse
range data (point clouds).

Tight frames and the concept of sparse approximation of them have even more
applications than described in this lecture. For example, researchers have recently
applied frames to tomography (e.g. CT, PET and MRI). Medical images are similar
to usual photographs (e.g. images of people, building or nature scenes) in the sense
that they can be sparsely approximated by tight frames. Therefore, the basic idea
of frame based tomography is to use the �1-norm to penalize frame coefficients of the
image that needs to be recovered with an appropriate fidelity term that modes the
specific signal acquisition technique (i.e. types of tomography) and type of noise.
Also, applications of tight frames to geometric modeling have been developed.

1.1. Blind Deconvolution

Motion blur caused by camera shake has been one of the prime causes of poor
image quality in digital imaging, especially when using telephoto lenses or using
long shutter speeds. In practice, using long shutter speeds is unavoidable when
there is little light in the scene. Many researchers have worked on recovering clear
images from motion-blurred images. The motion blur caused by camera shake is
usually a spatially-invariant blurring process, which can be modeled as

(5.1) f = u ∗ p+ η,

where ∗ is the convolution operator, u is the clear image to recover, f is the observed
blurred image and p is the blur kernel (or point spread function), and η is the noise.
If the blur kernel is given a priori, the model (5.1) is the same as (4.1), and the
recovery of the clear image u is called a non-blind deconvolution problem; otherwise
it is called a blind deconvolution problem.

131
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It is known that the non-blind deconvolution problem is an ill-conditioned prob-
lem because of its high sensitivity to noise. Blind deconvolution is not only ill-
conditioned but also ill-posed since both the blur kernel and the clear image are
unknown. Thus the problem is highly under-determined as there are much more
unknowns than available information. Since the relative motion between the cam-
era and the scene can be arbitrary and usually hard to estimate a priori, motion
deblurring is a typical blind deconvolution problem.

Early works on blind deblurring commonly use a single image and assume a
parametric model of the blur kernel p, such that the blur kernel can be obtained
by only estimating a few parameters (e.g. [149]). In practice, this is usually an
oversimplification. In order to handle more complicated motion blurring, multi-
image based approaches have been proposed to obtain more information about the
blur kernel by either actively or passively capturing multiple images on the scene
(e.g., [3, 5, 46, 153, 172]).

In recent years, there has been steady progress on removing motion blur from a
single image for more general blur kernels. There are two typical approaches. One
approach is to use some probabilistic priors on image’s edge distribution to derive
the blur kernel (e.g., [89, 119, 127]) or to manually select blurred edges to obtain
the local blur kernel ([113]). The main issue with this type of method is that the
assumed probabilistic priors do not always hold true for general images, especially
for nature images of complex structures. The second approach is to formulate the
blind deconvolution as a joint minimization problem with a certain regularization
on both the blur kernel p and the clear image u:

(5.2) E(u, p) = min
p,g

Φ(u ∗ p− f) + λ1Ψ1(p) + λ2Ψ2(u),

where Φ(p ∗ u− f) is the fidelity term, Ψ1(p) and Ψ2(u) is the regularization term
on the kernel and the clear image respectively.

In [2, 44, 49] TV-based approaches were proposed to solve general blind decon-
volution problems, where the fidelity term in (5.2) is the usual �2 norm on image in-
tensities; and both regularization terms in (5.2) are total variation measurement (�1
norm on function derivatives). In [166] a more sophisticated minimization model
was presented where the fidelity term is a weighted �2 norm on both similarities in
image intensity and similarities in the image’s derivatives; and the regularization
terms are the �1 norm of the blur kernel’s derivatives and the �1 norm of the im-
age intensities. This method demonstrated impressive performance on recovering
motion-blurred images containing moderately complex structures. However, the
minimization model proposed in [166] is quite complicated and requires a fairly
accurate prior on the size of the blur kernel. Moreover, the recovered images from
this method, as well as other TV-based methods, were lacking sufficient details and
textures on the regions of complex structure, which limited their applications in
practice.

In Section 2, we follow the tight frame based blind deconvolution model of
[18]. This model takes into account both the sparsity of the image u and that of
the kernel p. To be precise, both the image and the kernel are assumed to have
sparse representation under two different quasi-affine tight frame systems. A fast
algorithm is provided in [18] based on the linearized Bregman algorithm. Here, we
recall the general model of [18] and leave the details to Section 2. The tight frame
based blind deconvolution model can be found in [19, 20] as well.



LECTURE 5. OTHER APPLICATIONS OF FRAMES 133

Given a blurred image f , our goal is to recover the clear image u and the blur
kernel p from (5.1):

f = u ∗ p+ η.

Let α denote the framelet coefficients of the clear image u with u =W

1 α, and let

β denote the framelet coefficients of the blur kernel p with p =W

2 β. Then,

f = (W

1 α) ∗ (W


2 β) + η.

Thus, we formulate the frame based blind motion deblurring model as:

min
α,β

‖α‖1 + λ‖β‖1

subject to
‖(W


1 α) ∗ (W

2 β)− f‖2 � σ,

where Wi, i = 1, 2, are the decomposition operators of framelet systems, λ is the
parameter which balances the sparseness between the kernel and the image, and σ
is the noise parameter of the observed image f . The solution of this minimization is
approximated by applying the linearized Bregman algorithm alternatively as shown
in Section 2 with full details.

1.2. Segmentation

As we mentioned before, tight frames give redundant representations to signals
and images, and the redundancy of tight frames usually leads to sparse approxi-
mation of images, which is known to be a desirable property for image restoration
problems, like denoising, inpainting, deblurring, etc. Also, there is some research on
texture classification and segmentation using wavelets or wavelet frames [178, 1].
However, utilizing the property of sparse approximation of tight frames for general
image segmentation problems has not been considered in the literature. In Section
3 we recall a frame based segmentation model by [71].

The segmentation model of [71] is applicable to general images. However, we
focus on medical images. Segmenting biological structures, e.g. cortical or subcor-
tical structures, blood vessels, tumors etc., from various types of medical images
(e.g. CT, MRI, ultrasound, etc.) is very important for detecting abnormalities,
studying and tracking progress of diseases, and surgery planning. Medical im-
age segmentation is a difficult problem due to medical images commonly having
poor contrasts, different types of noise, and missing or diffusive boundaries. Nu-
merous algorithms have been developed in the literature targeting either general
segmentation problems or the segmentation of specific biological structures (see
[48, 133, 126, 176, 183, 128, 179, 150, 174, 92, 139, 122] and the references
therein).

Now, we give a brief preview of the frame based segmentation model of [71]
and leave the details to Section 3. Since it is confusing to denote images as vectors
in Rn for segmentation problems, we shall understand image f as s-dimensional
arrays, i.e. f ∈ RN1×N2×···×Ns =: Ss, with s typically 2 or 3. We still denote
the fast framelet decomposition and reconstruction as W and W
, while they
should be understood as linear operators, instead of matrices, defined precisely as
in Algorithm 2.3. We note that we can use the same notation for image restoration
problems because, mathematically speaking, it makes no difference.

For a given observed image f ∈ Ss (Figure 1(a)), a typical objective of segmen-
tation is to divide the image domain into two sub-domains: one is the domain of the
object of interest Ω (white region in Figure 1(b)) and the other is the background
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Ωc (black region in Figure 1(b)). The quality of segmentation is usually measured
by: (1), how well the boundary of Ω (Figure 1(c)), denoted as ∂Ω, fits the boundary
of the object of interest in f ; (2), the smoothness of ∂Ω. Here (2) is an important
requirement when noise or other types of error are present in the image f .

(a) (b) (c)

Figure 1. Figure (a) shows an observed image. Figure (b) shows
the domain decomposition based on some segmentation where the
white regions indicate the object of interest while the black regions
indicate the background. Figure (c) shows the boundary of the
segmented object (red curves).

One of the most popular ways of modeling segmentation problems is to use
level set formulations. The key idea of the level set based segmentation models (see
e.g. [41, 146, 148, 164]) is to find an appropriate level set function u ∈ Ss such
that Ω := {u ≥ α} provides a desired segmentation of the given image f for some α
(α = 0 is commonly used). The beauty of the level set formulation is that it models
general domains (not necessarily connected) with complicated boundaries, and the
quality of segmentation is easily controlled by adding appropriate penalties to the
level set function u.

The frame based segmentation model of [71] combines the property of sparse
approximation of tight frame systems to piecewise smooth functions with the idea
of the level set method. We now illustrate how the frame based segmentation model
of [71] is motivated. The idea is motivated by that of [43, 45, 12] where TV-based
segmentation models are considered.

Let χΩ denotes the characteristic function supporting on domain Ω. A desired
segmentation of a given image f ∈ Ss should be a solution to the following non-
convex optimization problem

(5.3) min
Ω;c1,c2∈R

‖λ ·WχΩ‖1 + μ
(
‖χΩ(c

1 − f)‖22 + ‖χΩc(c2 − f)‖22
)
.

Remark 5.14.

(1) The first term of (5.3) controls the regularity of ∂Ω. The frame trans-
form operator W can be understood as a certain discretization of some
differential operator. For example in 2D, when W corresponds to the
piecewise linear wavelet, W contains difference operators that approxi-
mate ∂xu and ∂yu with the corresponding 2D filters [1, 2, 1]
 · [1, 0,−1]
and [1, 0,−1]
 · [1, 2, 1]; also it contains difference operators that approxi-
mate ∂xxu and ∂yyu with the corresponding 2D filters [1, 2, 1]
 · [−1, 2,−1]
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and [−1, 2,−1]
 · [1, 2, 1]. This observation indicates that with different
choices of parameter λ and tight frames, the frame transform operatorW
approximates different differential operators. Therefore, the first term of
(5.3) provides rather rich geometric information of ∂Ω.

(2) The second term of (5.3) is the fidelity term that controls the accuracy of
the segmentation. The two constants c1 and c2 approximate the average
values of f inside and outside of Ω respectively. In general, one can
consider c1 and c2 as arrays in Ss that approximate f itself inside and
outside of Ω. However, for simplicity, we will only consider c1 and c2 as
constants here.

(3) Note that when W = ∇, the model (5.3) is known as the piecewise con-
stant Mumford-Shah model studied by [43], where the authors employed
the level set method and used gradient descent to solve the energy (5.3).

The major difficulty of solving (5.3) is that it is a nonconvex optimization
problem which in general is hard to solve. Here, we describe a way that one can
partially convexify the problem (5.3) following a similar idea as [45, 12].

If one replaces χΩ by u and χΩc by 1 − u in (5.3), it is easy to rewrite the
problem (5.3) equivalently as

(5.4) min
u∈{0,1};c1,c2∈R

‖λ ·Wu‖1 + μ〈ζ(c1, c2), u〉,

where u ∈ {0, 1} forces u to be a binary array, and ζ(c1, c2) is defined as

ζ(c1, c2) := (c1 − f)2 − (c2 − f)2.

The problem (5.4) is equivalent to (5.3) in the sense that χΩ is a solution to (5.4) if
and only if Ω is a solution to (5.3), for any given c1 and c2. Note that the objective
function of (5.4) is now convex with respect to u, while the non-convexity is moved
to the constraints u ∈ {0, 1}, which are usually referred to as binary constraints.

Optimization problems with binary constraints are usually very hard to solve
due to the existence of local minimum. One common way of relaxing binary con-
straints like u ∈ {0, 1} is to use 0 ≤ u ≤ 1 instead. This leads to the frame based
segmentation model of [71] given as follows:

(5.5) min
0≤u≤1;c1,c2∈R

‖λ ·Wu‖1 + μ〈ζ(c1, c2), u〉.

Note that (5.5) is still a non-convex problem; however, with fixed c1 and c2 it is a
convex problem.

When c1 and c2 are fixed, an optimal solution u of (5.5) is generally not a
solution of (5.4), unless u happens to be binary itself. When u is not binary,
a segmentation of image f can be obtained by taking Ωα := {u ≥ α} for some
α ∈ [0, 1]. Now the question is, for which α, is the function χΩα a solution to
(5.4)? For the case W = ∇, this question is answered by [45, 12], where they
showed that for almost every α ∈ [0, 1], χΩα is a solution to (5.4) (when W = ∇,
the model (5.4) is known as the piecewise Mumford-Shah model first considered
by [43]). Although there is no corresponding theory for general tight frames where
W 	= ∇, our numerical simulations indicate that a similar result holds. Note that
for different α, the set Ωα is generally different. This raises the question of which
choice of α results in Ωα providing the best segmentation result. Recall from the
theory of linear programming that an optimizer of a linear program must lie on
one of the extreme points of the feasible set (see e.g. [11]). Therefore, when μ
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is comparably large, the problem (5.5) is close to a linear program, and thus u

is close to a binary array (which is confirmed by numerical experiments). As a
consequence, choices of α are not crucial and we choose α = 0.5.

1.3. Scene Reconstruction from Range Data

High-quality 3D scene modeling has long been an important research topic in
computer vision, robotic navigation, computer graphics and animation. The 3D
geometrical model of a scene is usually reconstructed from pre-acquired range data
sets of the scene, which are usually very noisy, corrupted with a lot of outliers,
and sparsely sampled with large gaps. In the past, there have been extensive
studies on reconstructing objects or scenes using range data from a single view
or from multiple views. Interested readers are referred to a recent survey [100,
Chapter 4] for more details. In Section 4, we focus on how to reconstruct the scene
model using 3D range data of a single view. Since range data from a single view
can only provide 3D information for the visible surfaces of the scene, a piecewise
smooth explicit surface model is usually adequate to describe visible surfaces of a
scene. It is noted that discontinuities on the reconstructed piecewise smooth surface
provide very important information for many applications (e.g. robotics), because
surface discontinuities represent either the boundaries of objects in the scene or
sharp geometrical changes of individual objects. Thus, in contrast to what most
traditional surface-fitting methods tend to do, a desired reconstruction algorithm
should well preserve surface discontinuities.

Reconstructing a piecewise smooth surface using range data can be formulated
as a function reconstruction problem. Assume that we are given a set of scattered
data sites:

Ξ = {x[1], x[2], . . . , x[n]} ⊂ R2

and associated function values

f |Ξ = {f [1], f [2], . . . , f [n]},

where fi is the function value of an unknown data function f(x) at x[i] and possibly
contains noise, i.e.,

f [i] = f(x[i]) + ε[i].

Our goal is then to reconstruct the data function f under the assumption that
f is a piecewise smooth function. It is emphasized that the discontinuities of f
need to be well preserved in the reconstruction, because they encode important
information about boundaries of objects on which many high-level tasks depend.
On the other hand, the input data sites Ξ can be scattered such that they are non-
uniformly sampled, with large gaps. Furthermore, the obtained function values f |Ξ
are usually corrupted by different types of noise, e.g. Gaussian or impulsive noise.
All of these challenges make reconstruction a rather difficult problem.

The frame based model of [112] is motivated by work in [107, 117, 169] which
use a simple principal shift invariant space and its associated wavelet transform to
fit scattered data, [118] proposed an efficient algorithm to approximate the solution
of a smoothing spline in a principal shift invariant space.

Let Ω ⊂ R2 be a bounded domain of interest that contains all data, and let
φ be a carefully chosen compactly supported continuous function (e.g. uniform
B-splines, box splines, nodal basis functions). We look for fitting functions in the
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space spanned by 2−L-dilates and 2−L-shifts of φ whose support intersects Ω, i.e.,

SL(φ,Ω) =

{ ∑
k∈Z2

c(k)φ(2L · −k) : c(k) = 0 whenever suppφ(2L · −k) ∩Ω = ∅
}
,

where L ∈ Z+ is a scaling parameter that controls the refinement of the space.
Then, any fitting function s(x) ∈ SL(φ,Ω) can be written as a finite expansion:

(5.6) s(x) =
∑
k∈I

u[k]φ(2Lx− k),

where I := {k ∈ Z2 : suppφ(2L · −k) ∩ Ω 	= ∅}. Let u and f denote the column
vector {u[k]}k∈I and {f [i]}1≤i≤n respectively. Our goal here is to find u such
that s(x) approximates the unknown function f(x) based on the observed data f .
The function f(x) that we are approximating is generally piecewise smooth and
can be sparsely approximated by tight frame systems. Therefore, the key idea of
[112] is to reconstruct s(x) such that s(x) can be sparsely approximated by certain
tight frame systems, which naturally leads to the penalization of the �1-norm of
tight frame coefficients of s(x) as shown in the previous lecture. Therefore, we will
obtain a desired u by solving the following problem

min
u

1

2
‖Au− f‖22 + ‖diag(λ)Wu‖1,

where

A(i, k) = φ(2Lx[i]− k), i = 1, 2, . . . , n, k ∈ I,
for some given L ∈ Z+. We shall now leave the details to Section 4.

2. Frame Based Blind Deconvolution

As we see from (5.1), blind deblurring is an under-constrained problem with
many possible solutions. Thus we need to enforce extra constraints on the image
and the kernel to overcome the ambiguity. In past years, there have been exten-
sive studies showing that most natural images usually have a sparse approximation
under some tight frame systems, which include, for example, shift-invariant or-
thonormal wavelets, Gabor transform, framelet, curvelet, etc. This inspires the
authors in [18] to use the sparseness of the image under the suitable tight frame
system as the constraint on the image. The same sparseness constraint is also
applicable to the kernel if we understand the kernel as a special image.

2.1. Problem Formulation and Analysis

Given a blurred image f , our goal is to recover the clear image u and the blur
kernel p from (5.1):

f = u ∗ p+ η.

Let W1 and W2 denote the fast framelet decomposition corresponding to two pos-
sibly different tight frame systems. Denote α and β the framelet coefficients of the
clear image u with u =W


1 α and the blur kernel p with p =W

2 β. Then,

f = (W1

α) ∗ (W2


β) + η.

Thus, we can formulate the blind motion deblurring problem as:

(5.7) E(α, β) = min
α,β

‖α‖1 + λ‖β‖1



138 BIN DONG AND ZUOWEI SHEN, FRAMES AND APPLICATIONS

subject to

(5.8) ‖(W1

α) ∗ (W2


β)− f‖2 � σ,

where λ is the parameter which balances the sparseness between the kernel and the
image, σ is the noise parameter of the observed image f .

It is known that the �1 norm is a fairly good measurement of the sparseness of
vectors. Thus, the first and second term in (5.7) penalize the sparseness of framelet
coefficients of the image u and kernel p under two tight frame systems. Since u
and p are usually two different types of images, the tight frame systems that can
provide an ideally sparse approximation to them should be different. The constraint
in (5.8) is the fidelity constraint between the observed and computed image. The
minimization problem (5.7-5.8) is a challenging one. In the next section, we present
an alternating minimization approach to solve this minimization problem efficiently.
The key idea is to adopt a modified version of the linearized Bregman algorithm.

2.2. Numerical algorithm and analysis

The minimization (5.7-5.8) is a joint minimization problem on α and β. It may
not always yield a physically meaningful solution because (5.7-5.8) does not have a
unique solution in general. In order to obtain a physically meaningful solution, we
chose to impose the following physical conditions:

(5.9)

{
p =W2


β ≥ 0, and
∑
p = 1;

u =W1

α ≥ 0.

Even with the constraint (5.9), the problem (5.7)-(5.8) is not easy to solve.
Here, we take the traditional heuristic alternative approach. The outline of the
alternative algorithm for solving (5.7)-(5.8) is given as follows:

Algorithm 5.1. Let α0 = W1f and β0 = W2δc be initial guess, where f is the
observed image and δc takes value one at the center pixel of the image and zero
elsewhere. Iterate on k until convergence.

(1) Fixing βk, solve (5.7-5.8) with respect to α, i.e., set αk+ 1
2
be a solution of

(5.10)
min
α

‖α‖1 subject to

‖(W2

βk) ∗ (W1


α)− f‖2 � σ,

Then impose

αk+1 =W1uk+1,

where

uk+1[j] =

{
W1


αk+ 1
2
[j], if W1


αk+ 1
2
[j] ≥ 0,

0, otherwise.

(2) Fixing αk+1, solve (5.7-5.8) with respect to β, i.e., set βk+ 1
2
, be a solution

of

(5.11)
min
α

‖β‖1 subject to

‖(W1

αk+1) ∗ (W2


β)− f‖2 � σ.

Then impose

βk+1 =W2hk+1,
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where

hk+1[j] =

{
W2


βk+ 1
2
[j], if W2


βk+ 1
2
[j] ≥ 0,

0, otherwise,

followed by normalization hk+1 =
hk+1

‖hk+1‖1
.

In each step of the alternative algorithm, there are two minimization problems
(5.10) and (5.11), which in fact take exactly the same form. In the following, we
present an efficient algorithm to solve such minimization problems, which is derived
from the linearized Bregman algorithm (Algorithm 4.6). For (5.10), let [p]∗ denote
the matrix form of the convolution operator corresponding to the kernel p. Define

w0 = x0 = 0.

Then we generate a sequence of wi and xi as follows

(5.12)

{
wi+1 = νTμ(xi),
xi+1 = xi − ZkW1[W2


βk]
∗ ([W2

βk]∗(W1


wi+1 − f)),

where Tμ is the soft-thresholding operator defined by (4.15) and (4.16), and Z(k)

is a preconditioning matrix to accelerate the convergence of the iteration, which is
chosen in the implementation as

Zk =
(
[W2


βk]
∗ ([W2

βk]∗) + λiΔ)−1,

where Δ is the discrete Laplacian. The convergence of the sequence w(i) is guaran-
teed by the following proposition which is a direct consequence of Theorem 4.7. It
is proved in [22] that the sequence w(i) generated by (5.12) actually converges to
an approximated solution of (5.10) when νμ → ∞.

Proposition 5.1. The sequence wi generated via (5.12) with a proper ν converges
to the unique solution of

(5.13)

{
minα ‖α‖1 + 1

2νμ‖α‖22,
s.t. (W2


βk) ∗ (W1

α) = f,

if there exists at least one solution of (W2

βk) ∗ (W1


α) = f .

Proof. It is a direct consequence of Theorem 4.7 by noticing that the con-

straint (W2

βk) ∗ (W1


α) = f is equivalent to Z
1
2

k (W2

βk) ∗ (W1


α) = Z
1
2

k f , and
Zk commutes with convolution operators.

The method (5.12) is extremely efficient. Usually it takes only a few iterations
for (5.12) to get an approximate solution of (5.10) (cf. [22]), and the accuracy of the
approximation is adequate during the alternative iterations in the main algorithm.

For (5.11), the same method can be applied to find the solution: start with
zi = xi = 0, and generate the sequence

(5.14)

{
zi+1 = νTμ(xi),
xi+1 = xi − ZkW2[W1


αk]
∗ ([W1

αk]∗(W2


zi+1 − f)).

Then after a few iterations, zi becomes a good approximated solution to (5.11).
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2.3. Numerical Experiments

Here, we present deblurring result using Algorithm 5.1 for one image with syn-
thetic motion blur and one real image that was taken by a digital camera using a
long shutter speed under a weak light condition. The synthetic motion blur is gen-
erated by MATLAB function “fspecial(’motion’,11,120)” and noise with σ = 3 is
also added to the image. For simplicity, we choose W1 =W2 as the decomposition
matrix corresponding to piecewise linear quasi-affine tight frame system. Numer-
ical results of the two images are given in Figure 2 and 3. For more numerical
experiments, one should consult [18].

Figure 2. Deblurring results for the synthetic motion blur. Col-
umn 1-3 are: the original image, observed blurry and noisy image,
and deblurring result of Algorithm 5.1. Row 2 and 3 show two
different close-ups of the corresponding images shown in row 1.

3. Frame Based Image Segmentation

In this section, we review the frame based segmentation model proposed by
[71]. First, we introduce a few notations that will be used throughout this section.

An observed s-dimensional image f is an array in Ss := RN1×···×Ns . Framelet
decomposition and reconstruction operators are denoted as W and W
 which are
given by Algorithm 2.3 and satisfy W
W = I with I the identity operator. Here,
we use the tensor product quasi-affine tight frame systems discussed in Lecture 2.
Suppose there are r univariate tight framelets constructed from UEP. The total
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Figure 3. Deblurring results for the real image. For each row, the
left image is the observed blurry and noisy image, and the right
image is the deblurred image using Algorithm 5.1. Row 2 shows a
close-up of the corresponding images shown in row 1.

number of s-dimensional tight framelets obtained by tensor product is rs := (r +
1)s − 1.

For simplicity of notation, we suppose the level of framelet decomposition is 1.
We denote W0 as the operator that corresponds to the decomposition with respect
to the refinable function; and denote Wi, with 1 ≤ i ≤ rs, as the operator that
corresponds to the decomposition with respect to the i-th framelet. Under this
notation, we denote Wu ∈ Ss × Rrs+1 as

Wu :=
[
W0u,W1u,W2u, . . . ,Wrsu

]
.

3.1. Frame Based Segmentation Model

For a given image f ∈ Ss, we consider the following optimization problem

(5.15) min
0≤u≤1;c1,c2∈R

‖λ ·Wu‖1 + μ〈ζ(c1, c2), u〉,

where ζ(c1, c2) is defined as

ζ(c1, c2) := (c1 − f)2 − (c2 − f)2

with c1 and c2 real constants. Here λ ∈ Ss×Rrs+1 is a weight function that weights
Wiu differently for different i in general. However, we choose the following λ for
simplicity

λ[·, i] =
{

0, i = 0;
1

1+σ
∑rs

j=1 |Wjf |2 , i = 1, 2, . . . , rs.

Notice that λ can be regarded as the so-called edge indicator function (see e.g.
[28, 45, 12]) under the framelet transform W .
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To solve (5.15), one can alternatively optimize variables u and ci, i = 1, 2.
Since when u is fixed, the optimal values ci can be easily determined. Therefore,
the key step is to optimize (5.15) with ci fixed. Here, we adopt the idea of the split
Bregman algorithm that was discussed in Section 3.

Let d =Wu and write (5.15) equivalently as the following problem

min
d=Wu

‖λ · d‖1 + μ〈ζ(c1, c2), u〉+ C0≤u≤1,

where C0≤u≤1 is the indicator function w.r.t. the set {0 ≤ u ≤ 1}. Then, from
(4.52) in Section 3, we have the following iterative scheme

uk+1 = argminu μ〈ζ(c1, c2), u〉+ C0≤u≤1 +
ν

2
‖Wu− dk + bk‖22

dk+1 = argmind ‖λ · d‖1 +
ν

2
‖Wuk+1 − d+ bk‖22

bk+1 = bk +
(
Wuk+1 − dk+1

)
.

(5.16)

This, together with the optimization of c1 and c2, leads to the following algorithm
for (5.15):

Algorithm 5.2. Given image f .

(1) Start with u0 = 0, c1 = min f , and c2 = max f .
(2) For a given α ∈ [0, 1], iterate until convergence:

uk+ 1
2
=W
(dk − bk)−

μ

ν
ζ(c1k, c

2
k)

uk+1 = max{min{uk+ 1
2
, 1}, 0}

dk+1 = Tλ/ν (Wuk+1 + bk)

bk+1 = bk +
(
Wuk+1 − dk+1

)
c1k+1 =M(f,Ωk+1), c2k+1 =M(f, (Ωk+1)

c), Ωk+1 = {uk+1 > α},

(5.17)

where M(f,Ω) returns the mean value of f within domain Ω.
(3) Let u be the output of step (2). Then the segmentation of f is given by

Ω := {u ≥ α}.
Note that Algorithm 5.2 is very efficient. For each iteration k, the most time

consuming operation is performing the fast framelet decomposition and reconstruc-
tion, which are of the same complexity as fast Fourier transform (FFT) (see Lecture
2, Section 1.4 and 3). Furthermore, numerical experiments show that we usually
only need a few hundred iterations until the algorithm converges to a given toler-
ance.

3.2. Numerical Results

In this section, we compare the frame based segmentation model (5.15) with the
TV-based segmentation model [45, 12] using a 2D-slice of an MRI image and a 3D
CT angiography (CTA) image. For more results of 3D CTA image segmentation,
please see [71].

In our implementation, we adopt the stopping criterion: ‖bk+1‖ < 10−3. Based
on this stopping criterion, the number of iterations for 2D and 3D cases varies
from 100 to 500. Within each iteration, the comparably expensive operation is
the framelet decomposition and reconstruction, i.e. W and W
. Although the
complexity of applyingW andW
 is of the same order as FFT, by applying the fast
algorithm of [65], in practice the constants really matter. We note, however, that
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this constant is not big, and hence the framelet decomposition and reconstruction
can be done rather efficiently. For example, for a 3D image of size 50× 50× 50, the
computational time for one level of framelet decomposition and reconstruction is
approximately 5–6 times slower than the forward and inverse FFT. This comparison
is done using MATLAB2007. Throughout this section, the parameter α in (5.17)
is chosen to be 0.5, and the level of framelet decomposition L is chosen to be 1 for
the 2D image and 2 for the 3D image for the best quality of segmentations.

We will solve the TV-based model using the split Bregman algorithm as given

in [95]. Basically if one replace the update for uk+
1
2 in the first line of (5.17) by

Δuk+ 1
2
= ∇ · (dk − bk)−

μ

ν
ζ(c1k, c

2
k),

replace allW by ∇ and λ by g, then we obtain the split Bregman algorithm for TV-
based segmentation model (see [95] for details). Note that the Laplace equation
above is solved by FFT, instead of Gauss-Seidel relaxation as proposed in [95].

Since the decomposition operator W for tight frames corresponds to higher
order difference operators, the frame based segmentation models should be more
sensitive to low contrast boundaries and yet still robust to noise. To test this, we
take a clean and high contrast image (first image in Figure 4) and then lower the
contrast by 80%, add blurring and noise. We use the corrupted image (second image
in Figure 4) as the input for both the TV-based and the frame based segmentation
models.

In order to truly show the improvement of using tight frame systems, we pick
the same set of parameters (μ, ν) and use the same λ for both the TV-based segmen-
tation model and the frame based segmentation models (5.15). One can see from
both Figure 4 and 5 that by using tight frame systems we can capture more features
from the images and obtain better segmentations, especially for low contrast and
blurry images.

4. Scene Reconstruction from Range Data

4.1. Formulation and Algorithm

For a given set of scattered sites {x[i]}ni=1 ⊂ Ω ⊂ R2 and the corresponding
data {f [i]}ni=1, our task is to approximate the unknown surface f(x) using s(x) ∈
SL(φ,Ω) by finding an appropriate vector u such that

s(x) =
∑
k∈I

u[k]φ(2Lx− k),

where φ is the 2D tensor product of some uniform B-spline function and

I := {k ∈ Z2 : suppφ(2L · −k) ∩ Ω 	= ∅}.
Since the function f that we want to recover can be sparsely approximated by tight
frame systems, the desired u can be obtained by solving the following problem

(5.18) min
u

1

2
‖Au− f‖22 + ‖diag(λ)Wu‖1,

where
A(i, k) = φ(2Lx[i]− k), i = 1, 2, . . . , n, k ∈ I.

The matrix W is the fast wavelet frame transform associated with the bivariate
B-spline tight frame. Note that Wu is the canonical frame coefficient sequence of
s(x), hence the regularization term ‖diag(λ)Wu‖1 penalizes the roughness of the
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Figure 4. Comparisons of TV-based segmentation model with
frame based segmentation model (5.15). First row: images from
left to right are: original image; observed low contrast blurry im-
age; segmentation results of the TV-based (blue) and the frame
based (red) segmentations. Second row: zoom-in views of segmen-
tation results. The set of parameters used is (μ, ν) = (500, 5).

Figure 5. First row: comparisons of TV-based segmentation
model (left) with frame based segmentation model (5.15) (right).
Second row: axial, sagittal and coronal views of the results of the
TV-based (blue) and the frame based (red) segmentation. The set
of parameters used is (μ, ν) = (100, 0.5).
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fitting function s(x), and also encourages preserving sharp edges as it is biased
toward sparse solutions of s(x). We note that the matrix W is constructed via
the Neumann boundary condition, which implies that the symmetric boundary
condition is used to extend u across the boundaries of Ω.

The key part of the scene reconstruction model is to solve (5.18) efficiently,
which can be achieved using split Bregman algorithm given in Section 3 of Lecture
4. For the readers’ convenience, we recall the algorithm for problem (5.18). Given
initializations u0 = 0,d0 = b0 = 0, iterate the following steps until convergence

uk+1 = (A
A+ μI)−1(A
f + μW (dk − bk)),

dk+1 = Tλ/μ(Wuk+1 + bk),

bk+1 = bk + δ(Wuk+1 − dk+1).

(5.19)

The stopping criterion for the iteration (5.19) is chosen as ‖dk −Wuk‖ ≤ ε with ε
being some given tolerance. One aspect of split Bregman iteration that contributes
to its efficiency is that it is unnecessary to exactly solve the first equation of (5.19).
Therefore, we approximate the solution uk+1 of the first equation of (5.19) by a
few steps of the conjugate gradient method.

In practice, there are usually a lot of outliers in the observed data (See e.g.
[177]) and it is well-known that an �2 fidelity term is very sensitive to outliers.
When there are outliers in the data, we use the �1 fidelity term instead:

(5.20) min
u

‖Au− f‖1 + ‖diag(λ)Wu‖1,

The implications of the �1 data fidelity term have been well studied in the literature
(e.g. [120, 111, 39, 144]). In particular, [144] justified the use of the �1 data
fitting term for processing data corrupted with outliers in both theoretical analysis
and numerical experiments.

In terms of Bayesian statistical estimation (see e.g. [8, 111]), the models (5.18)
and (5.20) can be interpreted as the maximization of a posteriori estimator:

(5.21) max
u

Exp

(
−1

p
‖Au− f‖pp

)
Exp (−‖diag(λ)Wu‖1) ,

where the first factor is the likelihood that models the noise, and the second factor
is the prior of u. The prior is usually chosen based on the a priori knowledge we
have for the unknown u. For example, we know that the surface we need to recover
from range image data is piecewise smooth and hence can be sparsely approximated
by tight wavelet frames. Therefore, the prior given by (5.21) is reasonable. As for
the likelihood, when the noise η := Au − f is i.i.d. Gaussian with zero mean, one
should use p = 2 in order to obtain a statistically correct likelihood. When the
noise η is impulsive noise, i.e. outliers, one may choose p = 1, because impulsive
noise is sparse and can be well modeled by the �1-norm (i.e. we believe that outliers
are i.i.d. Laplace distribution). Notice that for 0 < p < 1, the objective function of
(5.21) is not concave. Therefore, although the �p-norm with 0 < p < 1 may model
impulsive noise better than the �1-norm, we usually use the �1-norm in practice for
computational concerns.

In contrast to the �2 fitting term, the �1 fitting term is not smooth. In our
numerical simulations, we approximate the non-differentiable �1 fitting term by a
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smoothed version

(5.22)
n∑
i=1

√
(Au[i]− f [i])2 + s

to approximate ‖Au− f‖1, where s is a small positive number.
To solve the �1-norm fidelity model (5.20), we again use the split Bregman

algorithm. Given initializations u0 = 0,d0 = b0 = 0, iterate the following steps
until convergence

uk+1 = argmin
u

n∑
i=1

√
(Au[i]− f [i])2 + s+

μ

2
‖Wu− dk + bk‖22,

dk+1 = Tλ/μ(Wuk+1 + bk),

bk+1 = bk + δ(Wuk+1 − dk+1).

(5.23)

For the first minimization subproblem of (5.23), since its objective functional is
differentiable, it can be solved by the standard gradient descent method. One of
the merits of the split Bregman algorithm that contributes to its efficiency is that
it is unnecessary to solve the first subproblem of (5.23) to the full convergence.
Instead, only a small number of inner iterations will be adequate at each split
Bregman algorithm.

We remark that although we are using a smoothed version of the �1 data fidelity
term in the above robust algorithm (5.23), the split Bregman algorithm actually
can also be used to minimize an energy functional with both an �1 data fidelity term
and an �1 regularization term without any smoothing (e.g. L1-TV minimization
problem). Interested readers are referred to [73, 85] for more details.

4.2. Numerical experiments

The main purpose of this section is to briefly evaluate the performance of the
tight frame based model (5.18) and (5.20) on reconstructing a piecewise smooth
surface from sparse range data corrupted by Gaussian or impulse noise. More
experiments and comparisons with some other existing methods can be found in
[112]. Range image data are obtained from OSU (MSU/WSU) Range Image Data-
base (http://sampl.ece.ohio-state.edu/data/3DDB/RID/index.htm). Figure 6 and
7 contain the reconstruction results of two scenes, where noise that is added to the
original data is Gaussian and impulse plus small Gaussian noise respectively. Note
that the input range data are scattered point sets, which are visualized as surfaces.
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Figure 6. Reconstruction of scenes from range image data cor-
rupted by Gaussian noise.

Figure 7. Reconstruction of scenes from range image data cor-
rupted by impulse noise.
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99. K. Gröchenig, Foundations of time-frequency analysis, Birkhauser, 2001.
100. M. Gross and H. Pfister, Point-based graphics, Morgan Kaufmann Pub, 2007.
101. B. Han, On Dual Wavelet Tight Frames, Applied and Computational Harmonic Analysis 4

(1997), no. 4, 380–413.
102. B. Han, G. Kutyniok, and Z. Shen, A Unitary Extension Principle for Shearlet Systems,

Arxiv preprint arXiv:0912.4529 (2009).
103. B. Han and Z. Shen, Wavelets with short support, SIAM Journal on Mathematical Analysis

38 (2007), no. 2, 530–556.
104. , Compactly supported symmetric C wavelets with spectral approximation order,

SIAM J. Math. Anal 40 (2008), 905–938.



LECTURE 5. BIBLIOGRAPHY 153

105. , Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight
wavelet frames, Israel Journal of Mathematics 172 (2009), no. 1, 371–398.

106. , Dual wavelet frames and Riesz bases in Sobolev spaces, Constructive Approximation
29 (2009), no. 3, 369–406.

107. X. He, L. Shen, and Z. Shen, A data-adaptive knot selection scheme for fitting splines, IEEE
Signal Processing Letters 8 (2001), no. 5, 137.

108. E. Hernández and G. Weiss, A first course on wavelets, Studies in Advanced Mathematics,
CRC Press, 1996.
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