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¹ ʹ ²UCLA Department of Mathematics, ³UCLA Department of Computer Science  

Abstract 

When examining the structural identifiability properties of dynamic system models, some parameters 

can take on an infinite number of values and yet yield identical input-output data.  These parameters 

and the model are then said to be unidentifiable.  Finding identifiable combinations of parameters with 

which to reparameterize the model provides a means for quantifying the model and exercising its 

solutions.  In this paper, we revisit and explore the properties of an algorithm for finding identifiable 

parameter combinations using Gröbner Bases and prove useful theoretical properties of these 

parameter combinations.  We find conditions for the existence of a set of   algebraically independent 

identifiable parameter combinations and find sufficient conditions for rational reparameterization of the 

input-output equations derived from a given model.  We also demonstrate the application of the 

procedure to a nonlinear biomodel.      

Key words: Identifiability, Differential Algebra, Gröbner Basis, Reparameterization 

1.  Introduction 

Parameter identifiability analysis for dynamic system ODE models addresses the question of which 

unknown parameters can be quantified from given input-output data.  Unidentifiable parameters can 

take on arbitrary values and yet result in identical input-output data.   In such cases, the model and its 

parameter vector p are underdetermined with respect to the input-output data.  This indeterminacy can 

be removed by finding combinations of parameters that take on a unique or finite number of values, 

which are then used as candidates to reparameterize the model, rendering it identifiable.  Thus the 

question becomes, how can identifiable parameter combinations be found?   

This question has been partially answered for several model classes, under limited conditions.  Evans 

and Chappell [1] and Gunn et al [2] adapt the Taylor series approach of Pohjanpalo [3] to find locally 

identifiable combinations.  Chappell and Gunn [4] use the similarity transformation approach to 

generate locally identifiable reparameterizations.  Thus, with these methods identifiability can only be 

guaranteed (at least) locally.  The problem of finding identifiable parameter combinations has also been 

addressed using differential algebraic methods, as Denis-Vidal et al [5,6], Verdière et al [7], and Boulier 

[8] find globally identifiable combinations of parameters using an “inspection” method as discussed later 

in this paper.  However, as shown by Meshkat et al [9], this method is difficult to implement as a fully 

*Corresponding author: Email address: nmeshkat@math.ucla.edu 
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automated computational procedure.    

In [9], an algorithm was outlined for finding the ‘simplest’ set of globally identifiable parameter 

combinations for a practical class of nonlinear ODE models.  This algorithm extended the method of 

Saccomani and coworkers [10] using a variation of the Gröbner basis approach.  In this paper, we 

address several issues that arose in [9] regarding properties of the identifiable parameter combinations 

found, including algebraic independence and the existence of a rational reparameterization of the input-

output equations.  Although a rational reparameterization of the original nonlinear model cannot always 

be done (as shown in [1]), we prove here that a rational reparameterization of the input-output 

equations derived from the original nonlinear model can always be found over algebraically 

independent parameter combinations.   In other words, we can always use the “normal canonical form” 

to reparameterize the input-output equations over identifiable parameter combinations.  In addition to 

being useful in quantifying the model and exercising its solutions, we will show that the ability to 

rationally reparameterize the input-output equations leads to a rigorous proof of identifiability.   

2.  Nonlinear ODE Model 

The general form of the models under consideration is: 

                                      

                                                                                    (2.1) 

           

Here   is a n-dimensional state variable,    is the initial state at time   ,   is a   -dimensional parameter 

vector,   is the r-dimensional input vector, and   is the m-dimensional output vector.  We assume   and 

  are rational polynomial functions of their arguments.  Also, constraints reflecting known relationships 

among parameters, states, and/or inputs are assumed to be already included in (2.1), because they 

generally affect identifiability properties [11].  For example,       is common.   

3.  Identifiability and the Differential Algebra Approach 

The question of a priori structural identifiability concerns finding one or more sets of solutions for the 

unknown parameters of a model from noise-free experimental data.  Structural identifiability is a 

necessary condition for finding parameter values in the real “noisy” data problem, often called the 

numerical identifiability problem.   

Structural identifiability can be expressed as an injectivity condition, as in [10].  Let          be the 

input-output map determined from (2.1) by eliminating the state variable  .  Consider the equation 

              , where    is an arbitrary point in parameter space and   is the input function.  If 

there exists only one solution     , then this corresponds to global identifiability,  If there exists 

finitely many distinct solutions for  , then this corresponds to local identifiability.  Infinitely many 

solutions for   corresponds to unidentifiability.    
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The a priori structural identifiability problem can be solved using the differential algebra approach of 

Saccomani et al [10], which follows methods developed by Ljung and Glad [12] and Ollivier [13,14].  

Their program, DAISY, can be used to automatically check global identifiability of nonlinear dynamic 

models [15].  We summarize their approach below.   A detailed description can be found in [9,15].  

Using Ritt’s pseudodivision algorithm, an input-output map can be determined in implicit form.  The 

result of the pseudodivision algorithm is called the characteristic set [13], which is a “minimal” set of 

differential polynomials which generate the same differential ideal as the ideal generated by (2.1) [15].  

The first m equations of the characteristic set are those independent of the state variables, and form the 

input-output relations [15]: 

                (3.1) 

The characteristic set is in general non-unique, but the coefficients of the input-output equations can be 

fixed uniquely by normalizing the equations to make them monic [15].  

The m equations of the input-output relations,            are polynomial equations in the variables 

                          with rational coefficients in the parameter vector  .  Specifically, these 

equations involve polynomials from the differential ring          , where      is the field of rational 

functions over the real numbers in the parameter vector  .  For each equation, we can write 

                        , where       is a rational function in the parameter vector   and 

        is a monomial function in the variables                            etc.  We call       the 

coefficients of the input-output equations.    

To form an injectivity condition, we set                   .  This becomes          

    
             for each input-output equation.  Since the characteristic set is computed from a 

prime ideal [16], then              
             can be factored in such a way that         are 

linearly independent and global identifiability thus becomes injectivity of the map      [15].  That is, 

identifiability is determined by the equations 

                (3.2) 

for arbitrary    [15].  Thus, the model (2.1) is a priori globally identifiable if and only if            

implies      for arbitrary    [15].  The equations            are called the exhaustive summary 

[13].   

The model (2.1) is locally identifiable if and only if there are finitely many distinct solutions for  .  The 

model (2.1) is unidentifiable if and only if there are infinitely many solutions for  , that is, the solution 

for   is expressed in terms of one or more free variables.  Thus, determining structural identifiability is 

reduced to the nature of the solutions to           , which is typically solved by finding a Gröbner 

Basis and using elimination [15].   

4. Some methods for finding identifiable parameter combinations 
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We focus on the case when (3.2) has infinitely many solutions (unidentifiability) in this paper. 

Unidentifiable models cannot be quantified from input-output data.  A useful alternative is to find 

identifiable parameter combinations which can always be determined from input-output data, and 

attempt to reparameterize our model (2.1) in terms of these new parameters.  Before we revisit our 

method for finding identifiable parameter combinations [9], we briefly present two other methods for 

finding identifiable parameter combinations.  Both of these procedures rely on using the exhaustive 

summary            to find parameter combinations that are either uniquely or finitely determined 

by   .  

Let   be the number of free parameters, defined as the number of total parameters   minus the number 

of equations   in a solution of           .  That is, there are    free parameters and   “non-free” 

parameters, where      .  Sometimes identifiable combinations can be found directly from the 

solutions to the equations           , by algebraically manipulating their solutions to form 

      parameter combinations in terms of    only.  For example, if the solution to            is 

of the following form:   

   
  
   

 

  
 

     
  

Then clearly           are uniquely determined by    because we can move the parameter vector   all 

to one side of the equation.  To verify global identifiability, one would then reparameterize      

      over these parameter combinations           and check the injectivity condition.  

However, this ability to “move all parameters to one side of the equation” and thus “decouple” our 

parameter solution cannot always be done, as demonstrated in the example below: 

   
     

 

  
  

     
  

Here we see that we cannot put the first equation in the form           .   

Why is this the case?  The solutions to            can be found by solving for a Gröbner Basis, which 

is basically a way of simplifying the equations to be solved to a “triangular form” where we attempt to 

eliminate some parameters, based on a chosen ranking.  Thus no attempt to keep the   and    

parameters separated is made during the elimination process, so it is simply fortuitous if this occurs!  

Several examples of models whose parameter solutions cannot be decoupled can be found in [9].  

The other way to find identifiable combinations is through the process called “inspection” *8].  The 

coefficients       of the input-output equations are assumed to be identifiable [17]. The process of 

“inspection” involves adding/subtracting/multiplying/dividing the coefficients       amongst each other 
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to form simpler identifiable combinations, which are always of the form           .  For example, if 

the coefficients are:   

             

         

Then it is obvious that the combinations           are also uniquely determined by    and by 

reparameterizing      over these combinations, one could verify injectivity and thus global 

identifiability.   

However, if we instead have the following as coefficients: 

                  

                          

then it is not so easy to simplify these coefficients amongst each other to form simpler identifiable 

combinations.  If we solve           , then we discover that               have two distinct sets 

of solutions:     
    

    
    

   and    
    

    
    

   and thus can be shown to be locally identifiable.  

There are some examples of models in [9] where inspection gets trickier, primarily in examples where 

there a finite number of distinct solutions for  , expressed in terms of one or more free variables.  This 

is where a Gröbner Basis can come to the rescue.  

5.  Method for finding identifiable parameter combinations 

Our algorithm for finding identifiable combinations is based on the principle that a Gröbner Basis is in a 

sense a “simpler form” of           .  When testing for identifiability using the differential algebra 

approach of [15], we are solving the system            by finding a Gröbner Basis and then by 

elimination, finding a solution for    in terms of    and possibly free parameters. Since a Gröbner Basis 

helps solve the system           , by reducing it to a simpler (triangular) form, then we speculated 

and consequently demonstrated in [9] that the Gröbner Basis can find identifiable combinations that are 

‘simpler’ than     .   

There are at least   coefficients of the input-output equations, by definition.  Thus, the ideal generated 

by            is composed of at least   equations.  From the exhaustive summary,           , we 

construct a Gröbner Basis in the form          
           

   , where    is a polynomial function 

with    , depending on the ranking of parameters.  Our goal is to find   terms of the form  

          
             (5  ) 

appearing either as an element by itself or as a factor of an element in a Gröbner Basis, since when set 

to zero this means       has either a unique or finite number of solutions, respectively.  In other words, 

      
   is “decoupled” into a polynomial in   minus the same polynomial in   . 
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For example, if there is a Gröbner Basis element        
   

 , this means      has a unique solution.    

Or we may have         
   

          
   

   and         
   

          
   

   as elements, which 

means that      and      have a finite number of distinct solutions.   

Note that instead of (5.1), we may have elements scaled by an arbitrary polynomial function       , 

                      
   

whose solution reduces to the simplified form (   ).  For example,   
        

   
   

  reduces to 

       
   

 .  

Additionally, sometimes the Gröbner Basis element or factor can be rewritten in decoupled form in 

order to get an identifiable expression.  For example, an element   
      

    can be decoupled as  
  

  
 

  
 

  
  .   

Determination of additional expressions of the type       depends upon the choice of ranking of 

parameters when constructing the Gröbner Basis.  The combinations we seek may not all appear in a 

single Gröbner Basis, hence the need for several rankings of parameters.  One technique described in [9] 

is to try all   shifts of the parameter vector  , since this forces each parameter to have the highest 

ranking, and thus be eliminated in that order.  However, this may not give all   decoupled terms, thus 

different permutations of the parameter vector   may also need to be tested [9].   

More than   decoupled elements can appear in the Gröbner Bases, so as stated in [9], we look for the 

  ‘simplest’ algebraically independent combinations that as a set span all   parameters.  We note that 

if the model is reducible, i.e. if one or more parameters in the model equations do not appear in the 

input-output equations, then we rename   to the number of parameters appearing in the input-output 

equations.  By ‘simplest’, we mean the lowest degree and fewest number of terms.  Algebraic 

independence will be defined in Section 8.  We called the   simplest terms of the form (5.1) the 

canonical set [9].  It is important to note that the canonical set is not necessarily unique, as discussed in 

[9].  We called the polynomials in the canonical set of the form       the simplified canonical set [9].    

To formally check identifiability, one attempts to reparameterize the coefficients      of the input-

output equations over the terms         in the simplified canonical set.  If a rational 

reparameterization       exists, then injectivity of       is tested, i.e. if             , does     ?  We 

found in [9] that if           
   appeared as an element in a Gröbner Basis, then global identifiability 

results, whereas if           
   appeared as a factor in a Gröbner Basis, then local identifiability 

results.  

A more detailed explanation of our algorithm can be found in [9].  Here, we summarize it as three basic 

steps: 

Step 1: Search through all relevant rankings and determine elements of the Gröbner Bases (or factors, as 

needed) that can be simplified to the decoupled form           
  .   
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Step 2: Select the   ‘simplest’ algebraically independent combinations.  By ‘simplest’, we mean the 

lowest degree and fewest number of terms.  The set of   combinations must span all   parameters.   

Step 3: Verify the injectivity condition of the model, that is, reparameterize      as       and then test if 

             implies that   has a unique or finite number of solutions. 

It should be noted that the method used in the DAISY program is capable of handling nonzero initial 

conditions [15, 18], and once the input-output equations are generated, the algorithm described in this 

paper can still be used to find identifiable combinations.   

6. Example of finding decoupled combinations 

We now demonstrate our algorithm on a classic 2-compartment model that has been made nonlinear.   

                     
      

         
              

       

Definitions: 

        state variables 

    input 

    output 

                        unknown parameters 

Figure 1.  

Let                           and                 .   

The input-output equation determined by Ritt’s pseudodivision algorithm is: 

     
                                                  

                 
         

    

We normalize the equation to make it monic by diving by     
  [15].  The coefficients      are: 

 

    
 

       
    

 

          

    
  



8 
 

           

                    

    
  

Notice there are 5 coefficients, but only 4 of them are algebraically independent.  Thus, we only use the 

first, third, fourth, and fifth coefficients.  We will address this in more detail in section 9 of this paper.   

We solve           : 

        

    
                  

  

            

    
                                    

  

To get: 

    
    

            
 

    
            

 
 

    
                          

            
 

   
  

  
 

Thus not all of the identifiable combinations are obvious from this solution.  

From the Gröbner Basis with ranking                         , we have: 

                                                         

                      

Notice there are 5 decoupled terms to choose from, but we only need       = 5 – 1 = 4 terms.  

Thus we pick the following algebraically independent decoupled combinations, which we also call our 

simplified canonical set: 
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Which we call:              

We can reparameterize our coefficients as:   

 

  
 

  
  

 

   
  

 

    

       
  

 

Thus we have found a rational reparameterization of the input-output equation.  Then, when we set 

            , we get     , which means that our decoupled combinations   are globally identifiable.    

Thus, we can reparameterize our nonlinear model using the normal canonical form, i.e. reduction to a 

first order system.  Let                            .  Then the input-output equations 

become: 

       

     
  
  
   

   
  

          
       

  
  
  

 

  
   

where             are all globally identifiable.  

Note that in this case, the identifiable combinations could be found from a single Gröbner basis, but this 

is not true in general, as seen in *9+.  Additionally, the “inspection” method could have been used to find 

the identifiable parameter combinations we found, but we note that this method is not easily 

automatable.  

Using these  , we seek to reparameterize the original model.  In this case, this can be done by using the 

scaling:         and            
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7. Theoretical Considerations 

As discussed above, there are 3 steps in our approach.  First, we find parameter combinations      from 

the Gröbner Bases of the exhaustive summary.  Second, we reparameterize      over      to get      .  

Third, we show that              implies that   has a unique or finite number of solutions, and thus we 

have rigorously proved identifiability.   

The main objective of the theoretical work is to show that the Gröbner Bases formed from the 

exhaustive summary            always provide a set of   combinations      such that there exists a 

unique rational reparameterization of      over     .  To establish this, we show: 

I. A set of exactly   algebraically independent combinations      can always be obtained 

from the Gröbner Bases of the exhaustive summary or from the exhaustive summary itself 

(Theorem 1). 

II. For such a set of   combinations, there exists a unique rational reparameterization of      

over     , i.e.        (Theorem 2).   

III. By construction of the     , we have that              will yield that the combinations 

     are either globally or locally identifiable, depending on whether they had a unique or 

finite number of solutions in the Gröbner Bases of the exhaustive summary  (Theorem 3).   

We address (I) in section 8 and we prove that there are at least   algebraically independent decoupled 

combinations      in the Gröbner Bases of the exhaustive summary (adjoined with the exhaustive 

summary).   

We address (II) in section 9 and we prove that if a decoupled term is contained in the ideal of other 

decoupled terms (thus “redundant”), then it is a polynomial or rational combination of these terms.  We 

will show any term           
   is “redundant” with respect to the ideal generated by        

    
             

               
   .  We also show there are at most   algebraically 

independent decoupled combinations, thus there are exactly  .  We combine these results to get that 

there is a unique rational reparameterization of the input-output equations over our   algebraically 

independent decoupled combinations 

We address (III) in section 10 and we show that a unique rational reparameterization of the coefficients 

of input-output equations over our   algebraically independent decoupled combinations implies that 

these combinations are in fact identifiable.   

Before we address the algebraic independence of     , one must first show that the Gröbner Bases 

generate enough (that is,  ) decoupled combinations that as a set span all   parameters.  A simple 

explanation is that even in the pathological case where the Gröbner Bases do not generate enough 

combinations, we always have at least   coefficients      of the input-output equations, which are 

known to be identifiable [17] and must span all   parameters, by definition.  Thus, there is no possibility 

of not finding enough identifiable combinations to reparameterize     , i.e. we can trivially 

reparameterize      over itself.  The point of using a Gröbner Basis is that we can form ‘simpler’ 

parameter combinations.  However, in the case that no new ones are generated, this suggests the      
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were “simple enough”!  Thus, from now on, when we refer to decoupled combinations     , we are 

referring to the decoupled combinations found in the Gröbner Bases of           , and in the 

pathological case where not enough are generated, then      possibly includes terms in     .   

In our previous work [9], we referred to a decoupled combination found in the Gröbner Basis of (3.2) as 

“identifiable”.  We refrain from preemptively calling the decoupled combinations “identifiable” here, 

since the goal is to find the conditions to rationally reparameterize      over      and thus get 

identifiability in the rigorous sense, i.e. the injectivity definition.  We will see that a sufficient condition 

for finding a rational reparameterization is that our   parameter combinations      are algebraically 

independent.    

8. Algebraic Independence   

Definition: A subset             of a field   is algebraically dependent over a subfield   if there 

exists a nonzero polynomial   of   variables with coefficients in   such that  

               (*) 

Definition: If   is not algebraically dependent, i.e. if there exists no nonzero polynomial   such that (*) 

holds, then   is algebraically independent [19].   

In this paper,        and    .  Thus,   is a subset of polynomials in     .   

Algebraic independence can be tested in the following way.  Let our polynomials be 

                   .  We let    be a tag variable, i.e. a variable introduced in order to eliminate other 

variables [9].   Then we take the Gröbner Basis of the set                                   with the 

ranking                    .  A polynomial in only           will result if and only if the set is algebraically 

dependent.  If no such polynomial results, then the set is algebraically independent [19].   

We now show that if there exist   algebraically independent      (which we will discuss in section 9), 

then there exists   algebraically independent     .  To prove this, we show that if there were less than 

  algebraically independent     , for instance,    , then these            elements cannot be 

algebraically dependent with each of the   original coefficients       because then the original   

coefficients would also be dependent.    This contradiction implies that we can adjoin a subset of the 

algebraically independent      to our set of algebraically independent       to obtain   algebraically 

independent     .      

Theorem 1: Assume that there are (at least)   decoupled      terms over   parameters.  Assume there 

are exactly   algebraically independent coefficients      . Then there exist (at least)   algebraically 

independent     .   

Proof:  We want to show that there exists a set of   algebraically independent      .  Assume every set 

of   elements chosen is algebraically dependent. In other words, the largest set of algebraically 

independent elements is less than  , say     (proof follows similarly if any number less than or equal 

to     is chosen).   
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Assume for a contradiction that these     elements       are algebraically dependent with each of 

the   original coefficients       (taken individually).  Then we have the following polynomials:   

                                  

                                  

  

                                  

Where each    includes    and one or more   .   

Then since each          must include some           , then this means the    cannot be 

disjoint, i.e. they overlap in some   .  Since there are   such   , using elimination we can form a 

polynomial                          [19].  This implies that the       are algebraically dependent, 

thus we have a contradiction.    

Thus, these     elements       must be algebraically independent with (at least) one of the   

original coefficients, say      .  Thus, we adjoin       to the set of      algebraically independent 

      to get a total of   algebraically independent decoupled combinations (which is, of course, a 

simpler set of decoupled combinations than the original      we started with).  Thus, in the pathological 

case where there are not   algebraically independent     , we can adjoin a subset of the   

algebraically independent coefficients      to get the “simplest set” of algebraically independent 

decoupled terms.    

Thus, in addition to looking for the ‘simplest’ identifiable combinations, we look for   algebraically 

independent ones.  As described above, we take the Gröbner Basis of the set                

                   with the ranking                     to test if our set of      is algebraically 

independent.   

The algebraic independence of      is important for the reparameterization the input-output equations 

and the original state-space equations.  If a rational reparameterization over algebraically independent 

     is possible (which we prove), then algebraic independence implies the reparameterization is 

unique, since if another reparameterization existed, then this would imply dependence amongst the 

    .   

9. Rational Reparameterization 

We now will prove that a unique rational reparameterization of      over algebraically independent 

     always exists.  To do this, we prove that it is sufficient to show that           
   is “redundant” 

with respect to the ideal generated by            
             

               
   , because 

we will show this implies that       is a polynomial or rational combination of                    .   

9.1 Redundancy 
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When we consider solving a system of equations             , an interesting question arises:  do we 

need every equation           
  , or are some of these equations redundant?  Redundant means 

that the solution space of some equation contains the intersection of the solution spaces of other 

equations in the set.  In the language of ideals, redundancy means one ideal is contained in the ideal 

generated by the intersection of other ideals.   The question of redundancy can be reduced to the 

question of algebraic dependence.  Thus, we examine a more general space of the form           for 

an arbitrary tag variable   .  We now show that a redundant system, i.e. a system where one ideal is 

contained in the intersection of other ideals, implies that the polynomials are algebraically dependent.         

Lemma 1:  Let                                            be polynomials of the decoupled 

form        .  If           is contained in the ideal (                                , then 

      must be a polynomial/rational combination of                     and      , 

                    are algebraically dependent.   

Proof:  Let           be contained in the ideal                                  .    

This means that the solution space of           contains the solution space of                  

                , so this means:  

There exists a   such that                                   must satisfy            . 

This means that if we solve for   in the equations                                 and 

substitute into          , it identically vanishes.  In other words, find a Gröbner Basis of             

                        and use it to substitute into          .  Since     is a tag variable and not a 

function of  , then this means     must be only a function of    ,     , …,     .  Since           is contained 

in the ideal                                   , then this means      must be a polynomial or 

rational function of    ,    , …,     .  Thus,      ,                     are algebraically dependent.         

Thus we have shown that if           
   is contained in the intersection of  

          
               

  , then       must be a polynomial or rational function of 

             , which means that       and               are algebraically dependent.     

Corollary to Lemma 1:  Assume there are   algebraically independent terms              .  Then the 

set {                       contains no redundant elements.   

Proof:  This is the contra-positive to Lemma 1, thus it is proven.       

We have just found that a sufficient condition for   non-redundant equations            is that 

there are   algebraically independent coefficients     .    In other words, the number of algebraically 

independent coefficients      determines the number of non-redundant equations and thus the 

number of non-free parameters in the solution set to           .  So another definition for   is the 

number of algebraically independent terms.  This means if there are more than   coefficients of the 

input-output equations, then we only need to choose   coefficients that are algebraically independent 

to be used in the exhaustive summary           . Thus, we pick   algebraically independent      

amongst the original coefficients and obtain   non-free parameters and   free parameters.  As 
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discussed earlier, algebraic independence can be easily checked by taking a Gröbner Basis of  {     

   .    

9.2  Solution space  

We now seek to prove that           
   is in fact redundant with respect to the ideal generated by 

           
             

               
    which will immediately prove       can be 

rationally reparameterized over     .  To do this, we examine the solution space generated the 

exhaustive summary            and the solution space generated by            
         

    
               

   .   

By the p-solution (or simply solution space) of a polynomial set of                       , we mean 

the set of values of p’s where each polynomial vanishes.  This is also known as an algebraic set or 

variety, which we call      . 

Definition: A variety       is irreducible if whenever       is written in the form             where 

   and    are varieties, then either          or           [19].   

For example,         
   is irreducible, but      

    
    is not irreducible.  The varieties we examine 

will be irreducible, and this will be useful in proving Lemma 3.   

There are two cases for the form of the solution to the exhaustive summary            in the 

unidentifiable case:  

In case 1, the solution can be written as   non-free parameters in terms of   free parameters (described 

as    ) with only 1 solution branch:  

           
             

               
     

In case 2, the solution can be written as   non-free parameters in terms of   free parameters with 

multiple branches of solutions: 

      
              

                
          

      
              

                
          

… 

      
              

                
          

Where   equals the number of distinct solutions in  .  In this case, we describe the algebraic set of  

      
              

                
          

as the sub-variety   
    .  So we have that          

    
 
   .  Note that there are only two cases 

because when solving polynomial equations there cannot be an infinite number of branches in the 

solution. 
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Let                       be a set of algebraically independent parameter combinations found from 

decoupled terms/factors in the Gröbner Bases of (3.2).  As mentioned above, there are two cases for 

     . 

In case 1,       appears in some Gröbner Basis as           
  , i.e. by itself. 

In case 2,       appears as a factor of a Gröbner Basis element, i.e. in the form 

            
               

               
        where    is the multiplicity of      .  We 

know that for each      , one of the      
   must be     

   since this represents the trivial solution.  

Let the elements      , where    ,   is a subset of the indicies          , be the elements of      

which belong to case 2, i.e. those that appear as a factor in a Gröbner Basis.  Thus, the elements      , 

where    , are the elements of      which belong to case 1.   

We are now going to relate the variety       to the variety      .  The variety       corresponding to 

equations            is an intersection of varieties formed by its Gröbner Basis elements.  If one of 

the Gröbner Basis elements factorizes non-trivially, then a solution is formed by taking one of the factors 

and again intersecting it with other elements or factors of other elements in the Gröbner Basis.  Thus, 

the variety generated by each element in a Gröbner Basis contains the variety      .  So this means the 

variety of a Gröbner Basis element           
   contains the variety      .  (*) 

For a Gröbner Basis element             
               

               
     , the variety of 

each            
   factor contains one or more sub-varieties   

    .  Since each element of a Gröbner 

Basis contains the solution space generated by the whole Gröbner Basis, then the union of the varieties 

of            
               

     contains the union of   
    , i.e.      .   Thus, for every   

    , 

there exists some factor            
   whose variety contains   

     (for all    , for some  ).  (**) 

We call   
     the sub-variety formed by the variety of             

   for all    , for some  , where 

       , together with            
   for     .  In other words,   

     is generated by choosing 

a factor from elements like             
               

               
      where     and 

combining it with elements           
   for    , and then finding the algebraic set of zeroes of this 

set.  Here      , where   is the product of the multiplicities of all      , i.e.         .   

Combining (*) and (**), we get that some   
     contains   

    .    

Loosely speaking, the dimension of a variety is the number of parameters that can vary freely [20].  We 

will employ the dimension of a variety to prove the next two lemmas, by using the following fact:  If 

  
     contains   

    , then this means the dimension of   
     is greater than or equal to the 

dimension of   
    , thus   

      has equal or more free parameters than   
    .  Before we examine 
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when this containment becomes equality, we first prove that there are exactly   algebraically 

independent     .   

Lemma 2:  Assume there are at least        terms over   parameters in the Gröbner Bases of the 

exhaustive summary (3.2).  There are exactly   algebraically independent     .   

Proof:  Theorem 2 showed that there are at least   algebraically independent     .   We now show 

there are at most   algebraically independent     .     

Assume there are more than   algebraically independent parameter combinations      in the Gröbner 

Bases, i.e. there are more than   terms of the form           
    or            

   where       

are algebraically independent.  As described above, the variety   
     contains   

    .  Thus, a variety 

  
     generated by more than   terms of the form           

    or            
   still contains 

  
    .  This implies that   

      has equal or more free parameters than   
    .  Since there are more 

than   algebraically independent      (by assumption) but exactly   algebraically independent     , 

then Corollary to Lemma 1 implies that there are more non-redundant constraints, thus more non-free 

parameters that form   
     than form   

    .  Thus   
     will contain fewer free parameters than 

  
    .   However, this contradicts   

     containing   
    .  Thus, there are exactly   algebraically 

independent     .            

Lemma 3:  When the solution to (3.2) can be written as   non-free parameters in terms of   free 

parameters with only 1 solution branch (case 1), then       equals      . 

When the solution to (3.2) can be written as   non-free parameters in terms of   free parameters with 

multiple branches of solutions (case 2), some union of   different sub-varieties   
     equals the union 

of sub-varieties   
     for      .   

Proof:    

First we examine case 1, where there is a single solution branch where non-free parameters can be 

written in terms of the free parameters in      .  As mentioned above, the variety       contains the 

variety       since the variety of each element           
   contains the solution to           .  

By Lemma 2, both of the ideals generated by            and            contain   algebraically 

independent elements, thus by Corollary to Lemma 1, none of the elements that generate the ideals are 

redundant.  This means the solutions to            and            can be solved for (over the 

complex numbers) in terms of   non-free parameters in    free parameters [19]. This means that both 

of the varieties        and       are spanned by   free parameters.  Thus, since each of the varieties can 

be parameterized in terms of   free parameters, then the dimensions for each of these varieties is the 

same.  Since we are in case 1 and the variety       is formed by taking irreducible elements in the 

Gröbner Bases, then the varieties       and       themselves are irreducible. Thus, the fact that       

contains       but the dimensions are the same implies that       equals       [21].    
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Next, we examine case 2, where the non-free parameters are written in terms of the free parameters in 

a finite number of distinct ways in      .  As mentioned above, some   
     contains   

     since for 

every   
    , there exists some factor            

   whose variety contains   
     (for all    , for 

some  ) and the variety of each element           
   contains   

     (for    ).  We want to show 

that some   
     will result in some   

    .   Again, these varieties are irreducible since they are formed 

by taking irreducible factors.  Again, the dimensions of   
     and   

     must be the same due to the 

number of free parameters, but   
     containing   

     implies that some   
     equals some   

     

[21].  Thus, some union of   different   
     equals      .    

Thus we have shown that the p-solution space generated by            is the same as the p-solution 

space generated by (a subset of) the union of the solutions of        terms.  Mathematically, this is 

interesting because it means that our space            can be represented by the solution spaces 

associated with the simpler combinations      instead.  Thus, even though      may not all come from 

a single Gröbner Basis, the decoupled combinations of the form           
    or            

    still 

behave like a basis for the ideal generated by the exhaustive summary.     

9.3 Reparameterization of      over      

In [9], we showed that when a rational reparameterization of      over      exists, then the ideal 

generated by            is congruent to the ideal generated by           , i.e. that       equals 

     .  Now we show the converse is also true.   

We show that Lemma 3 implies that each           
   is redundant with respect to the ideal 

generated by            
             

               
   .  Then by Lemma 1 we have that 

each       is an rational combination of     . Thus we always have a rational reparameterization of 

     over     :  

Theorem 2:  Assume there exists a set of   algebraically independent identifiable combinations      in 

the input-output equations.  Then we can form a simpler set of   algebraically independent decoupled 

combinations (called     ) by using the Gröbner Bases of (3.2) and the original     .  Then there exists 

a unique rational reparameterization of      over     , call it      .   

Proof:  From Lemma 2, we have that there exists a set of   algebraically independent decoupled 

combinations     .  Lemma 3 implies that:  

           
   is contained in the ideal generated by            

             
           

    
       (***)  

since        equals       in case 1 or some   
     equals some   

     in case 2.     

From Lemma 1, if           is contained in the ideal generated by                              

    , then     equals a polynomial or rational function of              .  Applying this to (***), we have 

that     is a polynomial or rational function of              , or in other words, each coefficient       is 

equal to a rational combination of     .  This reparameterization is unique, since if there were two 
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distinct reparameterizations       and      , then since                       , this implies 

dependence amongst the      , a contradiction.     

To find the rational reparameterization of      over     , one finds the Gröbner Basis of      

                                               over the ranking                          for 

each coefficient      .  As discussed in [9], a linear polynomial                              will result. 

10. Global or Local Identifiability 

Theorem 3:  Assume there exists a unique rational reparameterization of      over     , call it      .  

Then   is either globally or locally identifiable.  

Proof:   

Since each      has at most a finite number of solutions in the Gröbner Basis of (3.2), then solving 

             gives that each        is either globally or locally identifiable, depending on whether 

each       has a unique (case 1) or finite number (case 2) of solutions.  In other words, if the      only 

appeared as elements           
   in the Gröbner Bases, then global identifiability results, and if at 

least one       appears as a factor            
   in a Gröbner Basis, then local identifiability results.  

   

This means we can take for granted that a set of algebraically independent      are identifiable and 

thus the       reparameterization step mentioned is truly a mathematical formality, as predicted in [9].    

In addition, this means the reparameterization of the input-output equations via the “normal canonical 

form” will always result in polynomial or rational functions.    

11. Conclusion 

In this paper, we have shown that the Gröbner Bases formed from the exhaustive summary can be used, 

in conjunction with the exhaustive summary, to provide a set of   algebraically independent parameter 

combinations      to uniquely reparameterize the coefficients of the input-output equations as rational 

terms.  These parameter combinations are found by searching for “decoupled” terms or factors in the 

Gröbner Bases of the exhaustive summary.  A unique rational reparameterization over these parameter 

combinations immediately implies global identifiability when decoupled terms are used and local 

identifiability when decoupled factors are used.  Thus, the algebraic independence of      is a sufficient 

condition for a rational reparameterization of the input-output equations.  We have thus provided a 

class of nonlinear models for which a “normal canonical form” always exists to rationally reparameterize 

the input-output equations over identifiable parameter combinations.  One practical consequence of 

this work is the result that when seeking      one need not only consider those arising from a single 

Gröbner Basis, but can consider      arising from any ordering.  This freedom to use      from any 

ordering means that one may need to search through a large number of Gröbner Bases, at most   . In 

the future, we hope to find a more efficient method to find these algebraically independent identifiable 

parameter combinations.    
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