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Abstract

The physics of particle-laden thin film flow are not fully understood, and recent experiments have
raised questions with current theory. There is a need for fully 2-D simulations to compare with
experimental data. To this end, a numerical scheme is presented for a lubrication model derived for
particle-laden thin film flow in two dimensions with surface tension. The scheme relies on an ADI
process to handle the higher-order terms, and an iterative procedure to improve the solution at each
timestep. This is the first paper to simulate the 2-D particle-laden thin film lubrication model.
Several aspects of the scheme are examined for a test problem, such as the timestep, runtime,
and number of iterations. The results from the simulation are compared to experimental data.
The simulation shows good qualitative agreement. It also suggests further lines of inquiry for the
physical model.

Keywords: adaptive timestepping, alternating direction implicit, coupled system, fourth order,
particle-laden, thin film

1. Introduction1

In recent years, the problem of numerically solving gravity-driven thin film flow for clear fluids2

has had ample work done in both one and two dimensions. However, the case when the film3

contains particles suspended within it has received less attention, especially in two dimensions.4

The evolution of a clear fluid down an inclined plane is modeled using a single partial differential5

equation and numerical schemes have been derived using finite differences [15] and finite elements6

[31]. For similar equations, such as spreading thin films, there are methods for finite elements in7

one dimension [9, 10, 36] and for finite differences in two dimensions [34]. The incorporation of8

particles into such a flow leads to another variable in the model, namely the particle concentration,9

and an accompanying equation related to the evolution of the particles. The result is a system10

of equations that requires a different approach from the clear-fluid case to formulate a practical11

numerical scheme.12

An active area of research in the last decade has been the development of numerical methods13

for higher-order thin film equations including complex fluids described by systems of equations.14

Related problems include methods for coupled systems of nonlinear parabolic equations [21, 25].15

The scheme presented here is, in part, inspired by recent models for surfactants [33] and thin films16

[34]. We choose an Alternating Direction Implicit (ADI) scheme as a tractable method for implicit17
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timesteps, because surface tension introduces a severe restriction on the timestep in the case of18

explicit schemes. While ADI schemes for numerically solving parabolic equations date back to the19

1950’s [26], their use in higher-order problems is rather new, e.g., [34], and not all that well-studied.20

However, the ease of parallelization makes such schemes a very viable choice for multiprocessor21

platforms. Since their inception, ADI schemes have been extended to handle parabolic problems22

with mixed derivative terms [2, 8, 23, 29], variable coefficients [14, 34],and high-order terms [34].23

The ideas present in these schemes can be combined to create an efficient way to numerically24

solve the particle-laden thin film flow equations. The nonlinearity and higher-order terms are han-25

dled in a similar manner to Witelski and Bowen [34], which dealt with thin-film equations, and26

the remaining terms are treated as in Warner et al. [33], which devised a semi-implicit scheme27

for surfactants. This combined approach is fine-tuned to draw out better efficiency, via adaptive28

timestepping and an iterative procedure within each timestep. At the cost of the extra calcula-29

tions due to the iterative nature of the scheme, the timestep needed for stability can be improved30

over recent methods. The result is an efficient method to simulate the continuum model in two31

dimensions.32

The full physics of particle-laden thin film flow is not well understood. Recent experiments,33

and their comparison to the model, have raised questions. We present such a comparison in this34

paper, where the results show qualitative agreement. In particular, by performing 2-D simulations,35

we are able to observe finger formation and compare directly with experiments. There is a need36

for accurate, fully 2-D simulations of the model for comparison with experimental data, such as in37

the case of mudslides and oil spills.38

The paper is organized as follows: Section 2 presents the system of evolution equations for39

the flow. In Section 3, the numerical scheme for this system is derived. Section 4 covers the40

adaptive timestepping scheme implemented in the code. A complete explanation of the spatial41

discretization is given in Section 5. The practicality and implementation of a moving reference42

frame in the simulations are discussed in Section 6. Numerical simulations are presented in Section43

7. We compare the results generated from the numerical scheme to an experiment using silicone44

oil and glass beads in Section 8. Finally, in Section 9, we provide a discussion of the results and45

future work.46

2. Model47

The results from experiments indicate that particle-laden thin film flows exhibit three distinct48

regimes, based on the initial particle concentration and angle of inclination [35]. For low concentra-49

tions and angles, the particles settle to the substrate with clear fluid flowing over top of them. The50

behavior after sedimentation is similar to clear-fluid experiments, such as those done by Huppert51

[13]. High concentrations and angles cause a particle-rich ridge to emerge at the front of the flow.52

Medium concentrations and angles lead to a particle concentration which appears to stay well-53

mixed throughout the duration of the experiment. Based on Cook [5], this behavior likely belongs54

to one of the two previously mentioned regimes but may not have evolved to the point where this55

distinction can be made.56

The evolution equations for the flow are based on the regime where the inclination angle and57

particle concentration are both high enough to induce the formation of a particle-rich ridge. It is58

formulated in terms of the thickness of the film, h, and the particle concentration by volume, φ (see59

Figure 1). The equations for modeling this regime were first derived in Zhou et al. [35]; re-derived60

in Cook et al. [6], using conservation of volume rather than mass; and modified in Cook et al. [7],61
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Figure 1: The coordinate system and variables considered in this problem.

adding in a shear-induced diffusion term to correct for an instability affecting φ. The dimensionless62

system [7] is63

ht +∇ · (hvav) = 0, (1)

(φh)t +∇ · [φh (vav + (1− φ)vrel)− Fdiff ] = 0. (2)

The orientation for (1)-(2) is such that x lies in the plane and is parallel to the direction of the64

flow, y is across the inclined plane and perpendicular to x, and z is normal to the plane.65

The volume-averaged velocity of the liquid and the particles together is66

vav =
h2

µ(φ)
∇∇2h−D(α)

[
h2

µ(φ)
∇ (ρ(φ)h)− 5

8

h3

µ(φ)
∇ (ρ(φ))

]
+
ρ(φ)

µ(φ)
h2x̂, (3)

where the terms in (3) come from surface tension, the effects of gravity normal to the inclined67

plane, and the effects of gravity parallel to the inclined plane.68

The density of the fluid as a whole is ρ(φ) = 1 + ∆φ; ∆ = ρp−ρl
ρl

is the difference in the densities69

between the particles and the liquid. The function µ(φ) = (1 − φ/φmax)−2 [17, 30] is the effective70

fluid viscosity, where φmax is the maximum packing fraction of particles, assuming the particles71

are spheres. For this problem, the maximum packing fraction has been empirically determined to72

be 0.58, while the theoretical value is 0.64 [32]. D(α) = (3Ca)1/3cot(α) [3] is a modified capillary73

number, where Ca is the capillary number of the liquid and α is the angle of inclination of the74
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plane on which the fluid is flowing (α = 0 corresponds to the plane being horizontal while α = π/275

to vertical).76

The settling velocity of the particles, relative to the velocity of the liquid, is a combination of77

three factors, assumed to be multiplicative,78

vrel = Vsf(φ)w(h)x̂. (4)

The coefficient Vs = 2
3
a2∆ in (4) is the Stokes settling velocity of a single sphere settling in a79

viscous liquid, where a is the dimensionless particle radius. A hindered settling function, in this80

case the Richardson-Zaki function f(φ) = (1 − φ)5 [28], accounts for the effect of sedimentation.81

The particles settling parallel to the substrate is modeled using a wall effects function, w(h) =82

A(h/a)2/
√

1 + (A(h/a)2)2 with A = 1/18. This function is an approximation to a method of83

images solution to a single sphere falling parallel to a vertical wall [12]. This has the property that84

it is near 0 for h small and near 1 for h large.85

Since (3) contains higher-order terms but (4) does not, vrel is not regularized. This leads to an86

instability affecting the particle concentration in numerical simulations [7]. To correct for this, a87

shear-induced diffusion term (5) was added in,88

Fdiff =
3

2
a2(3Ca)1/3D̂(φ)

h2ρ(φ)

µ(φ)
∇φ. (5)

This behavior can be seen in a 1-D example on the domain x : 0 − 50 with ∆x = 0.05. The89

initial film thickness is a jump, from 1 to 0.05, smoothed by hyperbolic tangent. The initial particle90

concentration is taken to be φ = 0.3. This simulation is similar to those described in Section 7, and91

a moving reference frame is used, as discussed in Section 6. By time t = 1000, the solution without92

the extra diffusion term has developed an instability (Figure 2) while the one with it is still stable93

(Figure 3).94

Figure 2: The numerical solution of φ at time t = 1000 without shear-induced diffusion. By this time, an instability
has developed.
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Figure 3: The numerical solution φ at time t = 1000 with shear-induced diffusion (5). The solution is still stable
due to the extra term.

Equation (5) accounts for horizontal diffusion of particles in the fluid caused by horizontal gradients95

of φ and was derived based on results from Leighton [19] and Leighton and Acrivos [20]. The term96

D̂(φ) = (1/3)φ2
(
1 + (1/2)e8.8φ

)
is a dimensionless diffusion coefficient.97

3. Numerical Scheme98

In the case of a gravity-driven clear fluid flow, the model reduces to a single equation [3] for the99

film thickness, h,100

ht + (h3)x +∇ ·
(
h3∇∇2h−D(α)h3∇h

)
= 0. (6)

Solving (6), and similar problems, numerically in one and two dimensions has been done using101

several different methods [1, 15, 22, 31, 34]. Including particles in the physics not only adds a102

second equation, but couples it to the equation for the film thickness. The particle-laden case103

has been solved numerically in one dimension with methods such as forward Euler with upwind104

differencing [35] and the Lax-Friedrichs method [6] when the high-order terms are omitted, and105

backward Euler with centered differencing [35] when the terms are included.106

This system of PDE’s in two dimensions poses numerical difficulties beyond those present in the107

clear-fluid problem. For both the clear and particle-laden cases, fully explicit schemes typically have108

the problem that an O(∆x4) timestep, assuming ∆x = ∆y, is needed for stability. One solution is109

to use an implicit scheme. For the clear-fluid and similar problems, the nonlinearity combined with110

an implicit scheme amounts to solving the problem at each timestep using an iterative process, such111

as Newton’s method, to converge to the solution [34]. For the particle-laden case, using an implicit112

scheme typically requires that both equations be solved simultaneously, using an iterative process113

to account for the nonlinearity. This results in a linear algebra problem with twice the number114

of unknowns and a matrix that is twice as large in each dimension, compared to the clear-fluid115

problem. Therefore, solving the particle-laden case leads to larger linear algebra problems to solve116

5



at each timestep and the matrix from Newton’s method will have a more complex structure than117

for clear fluids.118

The goal of the scheme presented here is to circumvent some of the aforementioned difficulties.119

The advantages of this approach, over a purely explicit scheme or implicit with Newton’s method,120

is that the timestep is more lenient than for a fully explicit scheme and the linear algebra problem121

that results from the implicit part of the scheme is reduced to a series of smaller banded matrix122

solves, which can be done efficiently and independently for each equation.123

The numerical scheme that we employ for the particle-laden thin film flow problem is inspired by124

the schemes presented in Witelski and Bowen [34] for higher-order parabolic PDE’s and Warner et125

al. [33] for surfactants. In Witelski and Bowen, an ADI scheme is derived for solving the nonlinear126

PDE known as the thin film equation,127

ht +∇ ·
(
f(h)∇∇2h

)
= 0. (7)

The ADI scheme for (7) is backward Euler in time and uses approximate values of h in the nonlinear128

and mixed-derivative implicit terms. It is suggested to start with approximations, such as time-129

lagged values, for evaluating these terms and calculating the numerical solution at the timestep.130

Then use this solution for the new approximate values within the same timestep and recalculate.131

This results in an iterative scheme at each timestep. However, for solving the thin film equation,132

it was noted that the iterations did not provide a noticeable improvement. Warner et al. use133

this method for a coupled system of nonlinear PDE’s relating to surfactants. They handle the134

higher-order terms implicitly using Crank-Nicholson, and apply ADI to this. The remaining terms,135

which are at least second-order in space, are treated explicitly. For the nonlinearity and mixed-136

derivative terms, the values are time-lagged and the problem is solved only once per timestep. In137

the simulations, ∆x = ∆y = π/100 ≈ 0.0314 required a timestep of O(10−5).138

Our approach is to handle applicable terms implicitly, using ADI, and treat the remaining terms139

explicitly, as we show below. Iterations within each timestep allow for a larger ∆t to be taken at140

the cost of some extra calculations. In general, the increase in the size of the timestep outweighs141

the extra computational work, as shown in Section 7.142

For equation (1), the terms143

∇ ·
(

h3

µ(φ)
∇∇2h+

ρ(φ)

µ(φ)
h3x̂

)
(8)

can be handled implicitly. This is because the spatial derivatives on these terms are applied to144

h. Including the first-order terms in the implicit treatment allows them to be discretized spatially145

using centered differencing to maintain stability. First discretize the terms in (8) in time with146

backward Euler, including the time derivative,147

hn+1 + ∆t∇ ·
(

h3

µ(φ)
∇∇2h+

ρ(φ)

µ(φ)
h3x̂

)n+1

= hn. (9)

Write out the operators in (9) fully,148

hn+1 + ∆t
[
∂x

(
h3

µ(φ)
hxxx

)
+ ∂y

(
h3

µ(φ)
hyyy

)
(10)

+∂x

(
ρ(φ)
µ(φ)

h3
)]n+1

+ ∆t
[
∂x

(
h3

µ(φ)
hyyx

)
+ ∂y

(
h3

µ(φ)
hxxy

)]n+1

= hn.
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The idea behind the ADI approach is to reduce the implicit part of (10), with derivatives in149

both x and y, to a product of two operators, each with only derivatives in either x or y. To achieve150

this, the terms involving only x-derivatives and only y-derivatives are grouped together. Define the151

operators152

Dx = ∂x

(
h3

µ(φ)
∂xxx +

ρ(φ)

µ(φ)
h2I

)n+1

, Dy = ∂y

(
h3

µ(φ)
∂yyy

)n+1

. (11)

Then replacing the terms in (10) with the definitions in (11), we have153

hn+1 + ∆t(Dx +Dy)h
n+1 (12)

+∆t
[
∂x

(
h3

µ(φ)
hyyx

)
+ ∂y

(
h3

µ(φ)
hxxy

)]n+1

= hn.

In order to obtain an ADI scheme from (12), note that I + ∆tDx + ∆tDy = (I + ∆tDx)(I +154

∆tDy)−(∆t)2DxDy and so the left-hand side, with the addition of an O (∆t2) term, can be written155

as a product of two one-dimensional operators.156

(I + ∆tDx)(I + ∆tDy)h
n+1 − (∆t)2DxDyh

n+1 (13)

+∆t
[
∂x

(
h3

µ(φ)
hyyx

)
+ ∂y

(
h3

µ(φ)
hxxy

)]n+1

= hn.

To handle the nonlinear terms, which occur in front of derivatives, and mixed-derivative terms in157

(13), define them as approximate, denoted by a tilde (e.g., h̃n+1). The approximate terms can be158

chosen in some reasonable manner, such as time-lagged or extrapolated. This will be discussed159

in more detail later. Subtract the mixed-derivative terms from and add the O(∆t2) term to both160

sides. This leaves a scheme in which all the terms operating on hn+1 are known, as is the entire161

right-hand side.162

(I + ∆tD̃x)(I + ∆tD̃y)h
n+1 = hn (14)

+
{

(∆t)2D̃xD̃y −∆t
[
∂x

(
h̃3

µ(φ̃)
∂yyx

)
+ ∂y

(
h̃3

µ(φ̃)
∂xxy

)]}n+1

h̃n+1.

For simplicity, define the operators in (14) as163

L̃x = I + ∆tD̃x, L̃y = I + ∆tD̃y.

Subtracting L̃xL̃yh̃
n+1 from both sides of (14), which cancels the O(∆t2) term, yields164

L̃xL̃y

(
hn+1 − h̃n+1

)
= −

(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(φ̃)
∇∇2h̃+

ρ(φ̃)

µ(φ̃)
h̃3

)n+1

. (15)

At this point, the implicit part of the scheme is complete and the explicit terms can be added back165

into (15) using forward Euler.166
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L̃xL̃y

(
hn+1 − h̃n+1

)
= −

(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(φ̃)
∇∇2h̃+ ρ(φ̃)

µ(φ̃)
h̃3
)n+1

(16)

+∆t∇ ·
{
D(α)

[
h3

µ(φ)
∇ (ρ(φ)h)− 5

8
h4

µ(φ)
∇ (ρ(φ))

]}n
.

Define167

u = hn+1 − h̃n+1,

which can be thought of as a correction term to the approximation of hn+1, and (16) can be written168

as a three-step process: two one-directional solves (17)-(18) and an update step (19).169

L̃xv = −
(
h̃n+1 − hn

)
−∆t∇ ·

(
h̃3

µ(φ̃)
∇∇2h̃+ ρ(φ̃)

µ(φ̃)
h̃3
)n+1

(17)

+∆t∇ ·
{
D(α)

[
h3

µ(φ)
∇ (ρ(φ)h)− 5

8
h4

µ(φ)
∇ (ρ(φ))

]}n
,

L̃yu = v, (18)

hn+1 ≈ h̃n+1 + u. (19)

Since the operators L̃x and L̃y involve at most fourth-order terms, the spatial discretization of170

them will lead to a five-point stencil in the x- and y-direction, respectively. This discretization is171

discussed fully in Section 5. Along each row/column of the discretized domain, this results in a172

pentadiagonal linear algebra problem. This can be solved using a pentadiagonal solver, or a more173

generic banded matrix solver.174

To help with the inaccuracy in the nonlinear and mixed-derivative terms resulting from approx-175

imation, an iterative procedure can be used at each timestep to improve the solution and size of the176

timestep. This was first suggested for the ADI scheme in the context of thin film equations [34].177

This procedure amounts to repeating the three-step process associated with solving each equation178

at each timestep and updating the approximate solution with the most recent solution, until the179

new and approximate solutions sufficiently converge. This is similar to fixed-point iteration.180

For the first equation, when entering the timestep, a choice must be made as to the value of h̃n+1
181

and (φ̃h̃)n+1. Using h as an example, two reasonable choices would be a time-lagged approximation,182

hn, which is a first-order accurate approximation in time, or an extrapolated approximation, 2hn−183

hn−1, which is second-order in time. For adaptive timestepping, this extrapolation is given by184

hn + (∆t/∆told)(h
n − hn−1), where ∆t is the prospective timestep between tn and tn+1 and ∆told185

is the timestep between tn−1 and tn. While the second choice of an approximation is second-order,186

it also requires storing an extra set of data, namely hn−1. With this choice made, the three-step187

process can be implemented, obtaining a solution, hn+1. At this point, the approximation can188

be redefined, h̃n+1 = hn+1, and the process run again. This can be continued until convergence189

between the approximate and new solution, or equivalently when the correction term u is small in190

a chosen norm.191

For (2), the ADI method is applied to φh as a whole, since the time derivative is on this term.192

The applicable terms in the equation are193
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∇ ·
[
−D(α)

(
∆

(φh)h2

µ(φ)
∇(φh)

)
+ φh

(
ρ(φ)

µ(φ)
h2 + (1− φ)Vsf(φ)w(h)

)
x̂

]
. (20)

As with (1), the time discretization of (20) is based on a backward Euler method194

(φh)n+1 + ∆t∇ ·
[
−D(α)

(
∆ (φh)h2

µ(φ)
∇(φh)

)
(21)

+φh
(
ρ(φ)
µ(φ)

h2 + (1− φ)Vsf(φ)w(h)
)
x̂
]n+1

= (φh)n.

Writing out the operators in (21) explicitly,195

(φh)n+1 −∆tD(α)∆
[
∂x

(
(φh)h2

µ(φ)
∂x(φh)

)
+ ∂y

(
(φh)h2

µ(φ)
∂y(φh)

)]n+1

(22)

+∆t∂x

[
φh
(
ρ(φ)
µ(φ)

h2 + (1− φ)Vsf(φ)w(h)
)]n+1

= (φh)n.

Define the operators in (22) involving only x-derivatives and only y-derivatives as Dx and Dy,196

respectively.197

Dx = −D(α)∆∂x

(
(φh)h2

µ(φ
∂x

)n+1

+ ∂x

([
ρ(φ)
µ(φ)

h2(1− φ)Vsf(φ)w(h)
]
I
)n+1

, (23)

Dy = −D(α)∆∂y

(
(φh)
µ(φ)

h2∂y

)n+1

.

Using (23), the equation can be compactly written as198

(φh)n+1 + ∆t (Dx +Dy) (φh)n+1 = (φh)n. (24)

Note that there are no mixed-derivative terms to handle in (24). The left-hand side can be written199

as the product of two one-dimensional operators, incurring an O(∆t2) term in the process.200

(I + ∆tDx) (I + ∆tDy) (φh)n+1 − (∆t)2DxDy(φh)n+1 = (φh)n. (25)

Add the O(∆t2) term to both sides of (25), and make all terms that occur nonlinearly at time201

tn+1 approximate, as before.202 (
I + ∆tD̃x

)(
I + ∆tD̃y

)
(φh)n+1 = (φh)n + (∆t)2D̃xD̃y(φ̃h̃)n+1. (26)

Define203

L̃x = I + ∆tD̃x, L̃y = I + ∆tD̃y
and subtract L̃xL̃y(φ̃h̃)n+1 from both sides of (26) to obtain204

L̃xL̃y
(

(φh)n+1 − (φ̃h̃)n+1
)

= −
(

(φ̃h̃)n+1 − (φh)n
)

(27)

−∆t∇ ·
[
−D(α)

(
∆ (φ̃h̃)h̃2

µ(φ̃)
∇(φ̃h̃)

)
+ φ̃h̃

(
ρ(φ̃)

µ(φ̃)
h̃2 + (1− φ̃)Vsf(φ̃)w(h̃)

)
x̂
]n+1

.
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The remaining terms can be incorporated into (27) via forward Euler.205

L̃xL̃y
(

(φh)n+1 − (φ̃h̃)n+1
)

= −
(

(φ̃h̃)n+1 − (φh)n
)

−∆t∇ ·
[
−D(α)

(
∆ (φ̃h̃)h̃2

µ(φ̃)
∇(φ̃h̃)

)
+ φ̃h̃

(
ρ(φ̃)

µ(φ̃)
h̃2 + (1− φ̃)Vsf(φ̃)w(h̃)

)
x̂
]n+1

(28)

−∆t∇ ·
[
φh
(

h2

µ(φ)
∇∇2h−D(α)

(
h2

µ(φ)
∇h− 5

8
h3

µ(φ)
∇ (ρ(φ))

))
− Fdiff

]n
.

Define206

w = (φh)n+1 − (φ̃h̃)n+1.

Then (28) can be written out as the three-step process (29)-(31):207

L̃xv = −
(

(φ̃h̃)n+1 − (φh)n
)

−∆t∇ ·
[
−D(α)

(
∆ (φ̃h̃)h̃2

µ(φ̃)
∇(φ̃h̃)

)
+ φ̃h̃

(
ρ(φ̃)

µ(φ̃)
h̃2 + (1− φ̃)Vsf(φ̃)w(h̃)

)
x̂
]n+1

(29)

−∆t∇ ·
[
φh
(

h2

µ(φ)
∇∇2h−D(α)

(
h2

µ(φ)
∇h− 5

8
h3

µ(φ)
∇ (ρ(φ))

))
− Fdiff

]n
,

L̃yw = v, (30)

(φh)n+1 ≈ (φ̃h̃)n+1 + w. (31)

The spatial operators in the L̃x and L̃y terms are at most second-order, and spatial discretization208

leads to a three-point stencil in each direction. Similar to with the first equation, a tridiagonal209

solver or banded matrix solver can be used to solve along each row/column.210

Solving the system, as a whole, at each timestep can be then done by solving the first equation211

for hn+1, solving the second equation for (φh)n+1, then recovering the particle concentration as212

φn+1 = (φh)n+1/hn+1.213

4. Adaptive Timestepping214

We use an adaptive timestepping scheme to advance the solution. The scheme utilizes the215

solution at consecutive timesteps tn−1, tn, tn+1. Based on a measure of error, it decides whether or216

not to accept the new solution, and if it is reasonable to increase the size of the timestep. This217

is a modification of the scheme used in Bertozzi et al. [4], in which it serves as an estimate of a218

dimensionless local truncation error in time. Consider the solution of the film thickness, h, at times219

tn−1, tn, and tn+1. Calculate en+1 = (hn+1 − hn)/hn and en = (hn − hn−1)/hn. The modification220

from the original method is to divide by the value hn at each point rather than hnmax = maxi,j{hni,j},221

since it produces a better-working adaptive scheme for this problem. Denote the timestep going222

from time tn to tn+1 as ∆t and from tn−1 to tn as ∆told. Then define223

Error =

∣∣∣∣∣∣∣∣en+1 − ∆t

∆told
en
∣∣∣∣∣∣∣∣ . (32)
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This provides a dimensionless estimate of the local truncation error in time, accumulated over the224

grid. The solution will be accepted if this error is less than some tolerance, denoted Tol1. If the225

error is less than a smaller tolerance, Tol2 < Tol1, for a fixed number of steps, the timestep is226

increased by a scale factor. If the error is larger than Tol1, the maximum number of iterations227

within a timestep is surpassed, or the solution becomes negative, the timestep is reduced by a228

factor of 2.229

Since (32) only takes into account one of the two variables, this error can be computed for230

φh as well. These two errors can be combined into an overall measure of the error by taking the231

maximum of the two, or by some other reasonable combination.232

5. Spatial Discretization233

We use centered finite differences for all spatial discretizations. Using the notation, hi+1/2,j ≈234

(hi,j + hi+1,j)/2, the fourth-order term in (1) is235

∇ ·
(

h3

µ(φ)
∇∇2h

)
i,j

≈
(

h3
i+1/2,j

µ(φi+1/2,j)
hxxx,i+1/2,j −

h3
i−1/2,j

µ(φi−1/2,j)
hxxx,i−1/2,j

)
/∆x

+

(
h3
i+1/2,j

µ(φi+1/2,j)
hyyx,i+1/2,j −

h3
i−1/2,j

µ(φi−1/2,j)
hyyx,i−1/2,j

)
/∆x (33)

+

(
h3
i,j+1/2

µ(φi,j+1/2)
hxxy,i,j+1/2 −

h3
i,j−1/2

µ(φi,j−1/2)
hxxy,i,j−1/2

)
/∆y

+

(
h3
i,j+1/2

µ(φi,j+1/2)
hyyy,i,j+1/2 −

h3
i,j−1/2

µ(φi,j−1/2)
hyyy,i,j−1/2

)
/∆y.

Here, the third derivatives are calculated at half-grid points by differencing consecutive standard236

second-order approximations. Two representative examples are237

hxxx,i+1/2,j ≈ (hi+2,j − 3hi+1,j + 3hi,j − hi−1,j) /∆x3, (34)

hxxy,i,j+1/2 ≈ ((hi+1,j+1 − 2hi, j + 1 + hi−1,j+1)/∆x
2 (35)

−(hi+1,j − 2hi, j + hi−1,j)/∆x
2) /∆y.

The two second-order terms are discretized as238

∇ ·
(

h3

µ(φ)
∇(ρ(φ)h)

)
i,j

≈
(

h3
i+1/2,j

µ(φi+1/2,j)
(ρ(φi+1,j)hi+1,j − ρ(φi,j)hi,j)−

h3
i−1/2,j

µ(φi−1/2,j)
(ρ(φi,j)hi,j − ρ(φi−1,j)hi−1,j)

)
/∆x2 (36)

+

(
h3
i,j+1/2

µ(φi,j+1/2)
(ρ(φi,j+1)hi,j+1 − ρ(φi,j)hi,j)−

h3
i,j−1/2

µ(φi,j−1/2)
(ρ(φi,j)hi,j − ρ(φi,j−1)hi,j−1)

)
/∆y2,
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∇ ·
(

h4

µ(φ)
∇(ρ(φ))

)
i,j

≈
(

h4
i+1/2,j

µ(φi+1/2,j)
(ρ(φi+1,j)− ρ(φi,j))−

h4
i−1/2,j

µ(φi−1/2,j)
(ρ(φi,j)− ρ(φi−1,j))

)
/∆x2 (37)

+

(
h4
i,j+1/2

µ(φi,j+1/2)
(ρ(φi,j+1)− ρ(φi,j))−

h4
i,j−1/2

µ(φi,j−1/2)
(ρ(φi,j)− ρ(φi,j−1))

)
/∆y2.

The advective term is discretized using a standard centered-differencing scheme.239

The terms in (2) are discretized in the same manner since many of them are similar to those in240

(1). The fourth- and second-order terms that come from vav are discretized as in (33)-(37), with h241

replaced by φh. Both advective terms are done via standard centered differencing.242

The shear-induced diffusion term is discretized the same way as (36)-(37).243

∇ ·
(
D̂(φ)h

2ρ(φ)
µ(φ)
∇φ
)
i,j

≈
(
D̂(φi+1/2,j)

h2
i+1/2,j

ρ(φi+1/2,j)

µ(φi+1/2,j)
(φi+1,j − φi,j)− D̂(φi−1/2,j)

h2
i−1/2,j

ρ(φi−1/2,j)

µ(φi−1/2,j)
(φi,j − φi−1,j)

)
/∆x2

+

(
D̂(φi,j+1/2)

h2
i,j+1/2

ρ(φi,j+1/2)

µ(φi,j+1/2)
(φi,j+1 − φi,j)− D̂(φi,j−1/2)

h2
i,j−1/2

ρ(φi,j−1/2)

µ(φi,j−1/2)
(φi,j − φi,j−1)

)
/∆y2.

Centered differencing is not used for the moving reference frame, if one is employed. Instead, a244

second-order upwind differencing scheme is used, which will be discussed in the next section.245

6. Reference Frame246

The area of interest in the simulations is near the front of the flow, where effects like the capillary247

and particle-rich ridge occur. With a fixed reference frame, the spatial domain would need to be248

taken as the entire area over which the flow would evolve, leading to large portions of the domain249

where no change is occurring. This issue can be easily addressed by using a moving reference frame.250

To implement a moving reference frame, we add an extra term to each equation, −shx on the251

left-hand side of (1) and −s(φh)x on (2). Here, s is the speed at which the moving reference frame252

travels. Zhou et al. [35] approximate the front speed by removing all terms from the equations253

which are higher than first order, leaving only the advective terms. They observe that these terms254

capture the large scale dynamics, including the speed of the shocks, and the ridges that develop in255

h and φ. This leaves a 2× 2 system of scalar conservation laws of the form256

ht + [F (h, φh)]x = 0, (φh)t + [G(h, φh)]x = 0, (38)

F (h, φh) = ρ(φ)
µ(φ)

h3, G(h, φh) = ρ(φ)
µ(φ)

(φh)h2 + (φh)(1− φ)Vsf(φ)w(h).

The initial conditions for (38) are257

h(x, 0) =

{
hl, x ≤ 0,
hr, x > 0,

(39)
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(φh)(x, 0) =

{
φ0hl, x ≤ 0,
φ0hr, x > 0.

(40)

where hl and hr in (39) and (40) are the initial film thickness and the height of the precursor b,258

respectively, and φ0 in (40) is the initial particle concentration of the fluid. These initial conditions259

specify a Riemann problem [18]. From the initial shock in both equations, an intermediate state260

emerges, (hi, (φh)i). The weak form of this system produces two Rankine-Hugoniot jump condi-261

tions, which define the shock speeds, ahead and behind the intermediate states. For s1, the speed262

of the shock behind the intermediate state, and s2, the speed ahead, these conditions are given by263

s1 = F (hi,(φh)i)−F (hl,(φh)l)
hi−hl

= G(hi,(φh)i)−G(hl,(φh)l)
(φh)i−(φh)l

, (41)

s2 = F (hr,(φh)r)−F (hi,(φh)i)
hr−hi = G(hr,(φh)r)−G(hi,(φh)i)

(φh)r−(φh)i .

This nonlinear system (41) of four equations and four unknowns, hi, φihi, s1, and s2, can be264

solved via Newton’s method. For the simulations shown in Section 7, our reference frame speed is265

an average of the two speeds, s = (s1 + s2)/2.266

The discretization of the terms for the moving reference frame is done explicitly using forward267

Euler combined with second-order upwind-differencing,268

−shx ≈ −s
−hi+2,j + 4hi+1,j − 3hi,j

2∆x
.

This was chosen for simplicity and that it visually produced better results than the other discretiza-269

tions that were tried. The effects of this choice appear to be some minor dissipation and dispersion270

in some cases behind the particle-rich ridge in the concentration.271

The moving reference frame can be used for both the 1-D and 2-D cases (see Figures 4 and 5).272

To demonstrate this, simulations were run under the same conditions as those in Section 7. The273

theory-based solution for the problem without higher-order terms (38)-(40) aligns well with the 1-D274

numerical solution for the full problem. The 2-D solution for the full problem with a perturbation275

to the initial film thickness leads to a finger that moves faster than the 1-D case and the troughs,276

to the sides of the finger, move slower.277

This can be viewed more succinctly in Figures 6 and 9, where the contours of the 1-D and278

perturbed 2-D cases are overlayed. The position of the finger runs ahead of the 1-D front while279

the troughs lag behind. Figure 7 shows the average front position of the flow for both cases. The280

averaging of the front position was first done by Huppert [13] for experiments involving clear fluids.281

Both simulations start with the same volume and, after an initial transient, the average front282

positions of the film for the 1-D and perturbed 2-D cases (measured at h = 0.5) remains constant283

and close to each other. Figure 8 shows the position of the finger and the trough in the 2-D case284

over time.285

7. Simulations286

A rectangular domain is used with the x-direction oriented down the inclined plane and the287

y-direction across the inclined plane. In all cases, the particle concentration is initially taken to be288

13



Figure 4: Comparison of theory and simulations at time t = 100 for the film thickness, h: theory without higher-order
terms (solid line), 1-D solution to the full problem (dashed line), perturbed 2-D finger (dotted line), and perturbed
2-D trough (dot-dashed line).

Figure 5: Comparison of theory and simulations at time t = 100 for the particle concentration, φ. The labels are
the same as in Figure 4.

φ(x, y, 0) = φ0, where 0 ≤ φ0 ≤ φmax. This corresponds to having a well-mixed initial fluid. The289

film thickness far behind the contact line is set at h(x, y, 0) = 1 and ahead of the flow, a precursor290

of height h(x, y, 0) = b is assumed. At the contact line, a perturbation to a linear front can be291

applied to induce behavior such as a fingering instability. The parameters in the model are taken292

to be: a = 0.1,∆ = 1.7, Ca = 10−3, α = π/4. The constant φmax is taken to be 0.67, in line with293

the simulations in Cook et al. [7]. The initial timestep is set to ∆t = 10−6.294

For the model, two sources contribute to the height of the film thickness and particle concentra-295
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Figure 6: A contour plot of the simulation at times t = 0 and t = 100 for the film thickness, h, in the 1-D and
perturbed 2-D cases. The perturbation in 2-D leads to a fingering instability not seen in the 1-D case.

Figure 7: The average front position of the film thickness, h, of the 1-D and perturbed 2-D cases up to time t = 100.
After an initial transient, the speeds stay close to constant and to each other.

tion near the front of the flow. The first is the higher-order terms, such as surface tension, which296

produce smooth ridges in both h and φ. Second, even without these terms, an intermediate state297

at the front emerges for both variables, higher than either of their respective left or right states.298

These heights are dependent on the precursor b.299

The height of the precursor in the following simulations is chosen out of convenience, to keep the300

size of ∆x close to the precursor height. In general, choosing a different precursor has a small effect301

on the speed of the flow, but a large effect on both the film thickness and particle concentration.302

To illustrate this, Table 1 shows the height of the intermediate states for both h and φ as well303

as the speeds of the trailing and leading shocks obtained from the theory-based solution to the304

system of scalar conservation laws (38)-(40) (see Section 6 for a more in-depth discussion). The305
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Figure 8: The front position of the film thickness, h, of the perturbed 2-D case up to time t = 100 along the finger
and trough.

Figure 9: A contour plot of the simulation data at time t = 100 for the particle concentration, φ, in the 1-D and
perturbed 2-D cases. The perturbation leads to a particle-rich ridge that outlines and begins to fill in the finger.

intermediate film thickness hi and particle concentration φi increase as the height of the precursor306

b decreases. For the shock speeds, a smaller precursor leads to the trailing shock speed s1 staying307

relatively the same, but the leading shock speed s2 slows down and approaches s1. These results308

agree with the previous ones related to solving the system of scalar conservation laws [6, 35]. For309

this model, the smallest precursor for which a solution exists is b ≈ 9 × 10−4 [6]. A precursor310

close to this case, b = 0.001, produces shocks speeds which are close together and an intermediate311

particle concentration near the maximum packing fraction. An alternative settling function that312

permits solutions with smaller precursors, fB(φ) = (1− φ/φmax)5, is examined in Cook et al. [6].313
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b hi φi s1 s2
0.1 1.01653 0.307566 0.459323 0.510221
0.05 1.03478 0.315538 0.459314 0.483782
0.025 1.07107 0.330331 0.459301 0.471418
0.0125 1.1427 0.356006 0.459289 0.465441
0.00625 1.28276 0.396078 0.459294 0.462488
...

...
...

...
...

0.001 9.14247 0.635545 0.459788 0.459916

Table 1: The intermediate states and shock speed solutions from equation (41) based on the precursor thickness b.
As the precursor decreases, both hi and φi increase and the shock speeds converge.

The boundary conditions for h are Dirichlet in front and behind the flow and Neumann on the314

sides. The same is done for φ. In addition, all third derivatives in h, normal to the boundary, are315

set to 0. More specifically, for a rectangular domain with length X0 and width Y0, the boundary316

conditions are317

h(0, y) = 1, hxxx(0, y) = 0, h(X0, y) = b, h(X0, y) = 0,

hy(x, 0) = 0, hyyy(x, 0) = 0, hy(x, Y0) = 0, hyyy(x, Y0) = 0,

φ(0, y) = φ0, φ(X0, y) = φ0, φy(x, 0) = 0, φy(x, Y0) = 0.

The simulations are all run using moving reference frames, with the speed of the frame determined318

as in Section 6.319

Figure 10: The speed-up gained by going from 1 to N processors using OpenMP. The line y = N is shown as a point
of reference.

The code is written in parallel using the C++ OpenMP package. This choice of parallelization320

was made since the majority of calculations are done via for loops and OpenMP works well with321
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loop-heavy code. This includes the calculation of all finite differences and the solves along rows and322

columns associated with the ADI part of the scheme. This is especially useful since rows/columns323

can be solved independently of each other for each equation. In addition, writing special solvers324

for linear systems of equations across multiple processors [24, 27] is avoided by this approach. The325

speed-up attained using N processors is calculated by dividing the runtime for one processor by326

the runtime for N processors (Speed− Up = Time(1 Processor)/T ime(N Processors)).327

Based on Figure 10, the scaling seems close to linear up to 4 processors, with a small drop-off328

in performance as the number increases. This almost-linear behavior is a result of all of the code,329

outside of a few minor calculations and the recording of the data, being amenable to parallelization.330

To test some preferences that need be chosen a priori in the simulation, we conducted short-331

time tests to gauge the effectiveness of each approach. The ones considered here are (a) whether to332

time-lag or extrapolate the approximate terms and (b) whether or not to perform iterations past333

a single solve to improve the approximate terms, and therefore the solution at each timestep (see334

Table 2).335

(a) Approximate Terms Time-Lag Extrapolate
(b) Iterations One Iteration Multiple Iterations

Table 2: The two choices to be made when implementing the numerical scheme. One must choose whether to (a)
time-lag or extrapolate the approximate terms and (b) whether to perform additional iterations past the initial solve.

Consider an initial condition of φ0 = 0.3 and a front perturbed from Riemann initial data,336

h(x, y, 0) = 1 behind far behind the front, h(x, y, 0) = 0.05 far ahead of the front. At the jump337

from fluid to precursor, the shape of the front given as xfront = X0/2 − cos(2πy/Y0). This initial338

data is then smoothed using hyperbolic tangent and matched to the boundary condition (see Figure339

13). This has the effect that the initial timestep can be taken more leniently.340

We ran this initial simulation for each of the four combinations in Table 2 to time t = 1 and341

the maximum timestep allowed, average number of iterations per timestep, and the total runtime,342

in seconds, are listed in the table below (Table 3). This choice was made as the timestep changes343

dramatically over this time interval and can provide insight as to what methods seem practical344

for long-time runs. Since adaptive timestepping is utilized here, the tolerances are tuned so as to345

ensure that the simulation stays stable, not only to time t = 1 but for some time afterwards as well346

(it is taken up to t = 100 in this case, which is the length of the long-run simulations).347

∆tmax Avg. Iter. Runtime
Time-Lagged and One Iteration 0.000568341 1.0 518.2
Time-Lagged and Iterations 0.00183296 2.20997 601.468
Extrapolation and One Iteration 4.07743× 10−5 1.0 19596.1
Extrapolation and Iterations 0.00486338 1.29668 376.603

Table 3: Results for time t = 1 based on various choices for implementation.

Using Iterations does well for both choices of approximate terms in that the total runtimes are348

low, the maximum timesteps are large, and the number of iterations stays close to 1. Between349
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these two, Extrapolation and Iterations does best, with nearly one fewer iteration required per350

timestep, on average, and a runtime that is 37% shorter. Performing One Iteration, the runtime for351

Time-Lagged is in between the two cases with Iterations, but for Extrapolation, it performs poorly,352

producing a runtime that is 33 to 52 times worse than the other three options. This is due to the353

small maximum timestep that is associated with this approach, which is 14 to 119 times smaller354

than the other three. At this point, it makes sense to discard the Extrapolation and One Iteration355

approach due to its excessive runtime and explore the remaining ones.356

Under the same conditions, we ran a longer simulation, this time to t = 100. Using the best357

remaining options, we can glean some idea as to which one(s) will work best for a longer simulation.358

∆tmax Avg. Iter. Runtime
Time-Lagged and One Iteration 0.00107169 1.0 17811.3
Time-Lagged and Iterations 0.00329173 2.95498 13153.8
Extrapolation and Iterations 0.0106161 2.01204 3364.93

Table 4: Results for time t = 100.

Comparing Tables 3 and 4, the maximum timestep for each approach has increased. Using359

Iterations, the average number has gone up in for both Time-Lagged and Extrapolations. However,360

the average number of iterations per timestep for Extrapolation is approximately one iterations fewer361

than for Time-Lagged. Also the runtime takes about 2.9 times longer for Time-Lagged compared to362

Extrapolation. One can see the benefit of performing iterations instead of using a smaller timestep in363

comparing the results for Time-Lagged and One Iteration and Time-Lagged and Iterations. Time-364

Lagged and One Iteration advances the solution approximately the same time forward with three365

timesteps as Time-Lagged and Iterations does with one timestep and three iterations. However,366

doing two extra timesteps costs more than two extra iterations, as seen in their respective runtimes.367

This is because the explicit terms do not need to be re-calculated for each iteration while they do368

for each timestep. Therefore, the only two options which make sense to use are the ones involving369

Iterations. Of these, Extrapolation is the clear favorite.370

In Figure 11, we see that by time t = 8, all three approaches have settled into a respective371

timestep. The timestep for Extrapolations and Iterations does best, followed by Time-Lagged and372

Iterations and Time-Lagged and One Iteration. The timestep for Extrapolation and Iterations is373

3.2 times better than Time-Lagged and Iterations and 9.9 times better than Time-Lagged and One374

Iteration. The benefit of the larger timestep for both approaches with Iterations is partially offset375

by the need for extra calculations related to the iterations.376

Figure 12 shows the number of iterations required throughout the simulation. For Extrapolation377

and Iterations, the increase in iterations approximately between times t = 20 and t = 30 corresponds378

to the finger forming and stretching out ahead of the flow in the film thickness and the particle-rich379

ridge growing higher and outlining the finger. While the number of iterations jumps once to 3 and380

then back down to 2 for Extrapolation and Iterations, it remains constant at 3 for Time-Lagged381

and Iterations. The cost of storing extra data and performing a small computation to find the382

extrapolated approximations seems a small price to pay to save one iteration per timestep, which383

includes recalculating values involving the approximate terms and performing the ADI solves.384

Using the simulation data up to t = 100, we can examine the effects of the initial perturbation385

graphically. For the film thickness, a small capillary ridge forms in the center of the perturbation386
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Figure 11: The adaptive timestep up to time t = 20. The timestep, ∆t, is recorded in intervals of 0.25 for the three
cases. Extrapolation and Iterations has a significantly larger timestep than either Time-Lagged and One Iteration
or Time-Lagged and Iterations.

Figure 12: The number of iterations up to time t = 100. The iterations are recorded in intervals of 0.25 for the two
cases. Using Extrapolation and Iterations does better than Time-Lagged and Iterations in terms of fewest number
of iterations.

(Figure 14) and begins to stretch out ahead of the bulk flow (Figures 15 and 16). This is the well-387

known fingering instability present in thin-film flows. For the particle concentration, a particle-388

rich ridge initially forms at the contact line (Figure 17) and, as the fingering instability evolves,389

outlines the shape of the finger (Figures 18 and 19). Directly behind the ridge, a pocket of lower390

concentration forms. The interior of the finger is slowly encroached upon by the particles that have391

accumulated near the back and sides of the finger. This can be seen in Figure 19 as an interior392
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Figure 13: The initial film thickness. It is perturbed by a cosine wave along y and smoothed along x by hyperbolic
tangent.

Figure 14: Film thickness at time t = 25. A small capillary ridge forms in the center of the flow.

layer along the inside of the particle-rich ridge. It is possible that this phenomenon is not physical,393

and may be a result of the current model not containing all of the necessary physics.394

8. Comparison to Experiments395

Experiments for particle-laden thin film flows have been compared in one dimension to the396

solution, both analytically and numerically, for clear-fluid flows. The average front position for397

clear fluids is given by a power law, where the location of the front scales like t1/3 [13]. Ward et al.398

[32] compare the average front position of the flow to this scaling. Grunewald et al. [11] compare399
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Figure 15: Film thickness at time t = 50. A fingering instability begins to develop from the ridge.

Figure 16: Film thickness at time t = 100. The finger stretches out ahead of the bulk flow.

the average front position to a re-derived 1-D model, based on results from Huppert [13] with a400

precursor, and to numerical solutions of the 1-D problem. Both find some agreement between the401

experiments and the scaling for the 1-D front position for clear fluids. We seek to compare the402

numerical solution in two dimensions to images of experiments, taking into account that variations403

occur across the front of the flow.404

We use 1000 cSt Polydimethylsiloxane (PDMS), a silicone oil, for the liquid component of the405

fluid. For the particles, glass beads with diameters in the range of 250 − 425 µm are used. The406

two components are then well-mixed and released down an inclined plane from a reservoir. This407

corresponds to a constant-volume experiment, whereas our simulations are constant-flux.408
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Figure 17: Particle concentration at time t = 25. A small particle-rich ridge forms at the front of the flow with a
slightly higher concentration in the center.

Figure 18: Particle concentration at time t = 50. The particle-rich ridge increases in concentration and has a higher
concentration in and around the fingering instability.

The experiment, which we will compare to simulation, is a fluid of approximately 90 cm3
409

containing a volume which is 35.9% particles. The plane is inclined at a 32-degree angle. The fluid is410

allowed to flow down the plane, which is 14 cm across and 90 cm down. In the experiments, the flow411

starts out close to uniform across the front, away from the edges, and over time develops instabilities,412

in the form of fingers stretching out ahead of the bulk flow. Since, for simulations, starting with a413

uniform front along the y-direction leads to a uniform solution, we start the simulation some time414

after the start-time to add a perturbation to the initial data, which induces the type of behavior415

seen in the latter stages of the experiments.416
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Figure 19: Particle concentration at time t = 100. The particle-rich ridge is composed of two parts: one outlining
the finger and one entering the finger from the troughs.

In order to avoid simulating the problem over the entire domain, we truncate the solution near417

the front and treat the problem locally as being constant-flux. We are interested in the dynamics418

of finger formation during which time the film thickness only changes by at most 20% , so a local419

approximation by constant-flux is reasonable.420

Figure 20: The initial condition of the experiment, used for comparing with the simulation. At this point, the front
of the flow has begun to develop perturbations, which will lead to fingering instabilities.

We use two images, taken three minutes apart, to compare with the simulation. The first image421

is taken when the front of the flow has reached approximately 53 cm down the plane. The shape422

of the front is parabolic-like with two large perturbations at either end of the front. In between,423
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smaller perturbations exist which lead to fingering instabilities. The two outer perturbations lead424

to longer and thicker fingers than the smaller inner perturbations. We take a front similar to this425

in our simulation.426

The scales for a constant-flux problem can be taken from Cook et al. [6], which are the same427

as for the clear-fluid case. The height scale is taken to be h0 = 1 mm. The length scale is428

x0 = (l2h0)
1/3, where the capillary length, l, is l =

√
γ/ρlg‖. The constants are γ, the coefficient429

of surface tension; ρl, the liquid density; and g‖, the component of gravity parallel to the inclined430

plane. The time scale is t0 = (3µl/γ)x0l
2/h20, where µl is the dynamic liquid viscosity. The capillary431

number is given by Ca = µlx0/γt0 = h20/3l
2.432

The scales, given these parameters, are h0 = 0.001 m, x0 = 0.00161396 m, l = 0.00205041 m,433

t0 = 0.93235 s, and Ca = 0.0792863. Using this, we can construct an initial condition which434

resembles the experiment and will produce similar results. This is done by measuring the features435

of the initial image and creating a similar condition. While the flow in the experiment is asymmetric,436

we take a symmetric initial condition in the simulation which has features that are approximately,437

in both location and size, the same as in the experiment. The track is taken to be 86.75 units438

wide (rounded up to the nearest 0.05 increment), which corresponds to the 14 cm wide track. The439

precursor in the simulation is set to b = 0.05, as in the previous simulations.440

A moving reference frame is used since this is taken to be a constant-flux problem locally. The441

speed of the moving reference frame is approximately s = 0.343198, calculated as in Section 6.442

Running a simulation over the course of three minutes leads to a distance traveled for the frame of443

approximately 10.69 cm, where the actual displacement, based on experiments, is around 12 cm,444

so using the constant-flux assumption seems to produce a decent approximation of the distance the445

fluid will flow.446

Figure 21: The initial condition for the film thickness, h, used in the simulation. This is an artificially-created
starting condition to be representative of the state shown for the experiment. The height is in mm.

The initial data is generated using a sine wave to form the two large perturbations and the447

space away from the edges. The three fingers that develop between these two perturbations are448

simulated with a cosine wave of small amplitude, 0.25 in dimensionless units. The simulation is449
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run to t = 193.06, the equivalent of three minutes of real-time.450

Figure 22: The evolution of the experiment after three minutes. The fingering instability starts to form at the front.

Figure 23: The evolution of the film thickness, h, in the simulation after three minutes. Both the experiment and
simulation exhibit a fingering instability, but the instability in the simulation is less pronounced. The height is in
mm.

Over the course of the three minutes, the exterior of the outer fingers in the experiments go451

from 4 cm and 6.5 cm on the left and right, respectively, to 7.5 cm and 12 cm. The interior of these452

fingers go from less than 1 cm on each side to about 3 cm. The interior fingers are not discernable453

in the initial image. The flow as a whole, measured from where the fluid touches the walls, has454

moved about 11 cm down the plane. The interior fingers in the experiment, extend about 0.5 cm455

ahead of the flow.456
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Figure 24: Particle concentration, φ, for the film thickness in Figure 23.

In the simulation, the moving reference frame accounts for 10.69 cm of movement, so the position457

where the fluid touches the edges has moved approximately 7.5 cm. The evolution of the fingers458

in the simulation is slightly less pronounced than in the experiments. This is likely due to the459

simulation initially undergoing a transient state where the fluid travels slower than at later times,460

while the transient in the experiment has occurred prior to this three-minute interval. The exterior461

of the outer fingers is approximately 4.2 cm and interior 1.2 cm. The interior fingers extend ahead462

of the flow about 0.8 cm. The tip of the longest finger in the experiments has moved 15 cm while in463

the simulations, it has advanced approximately 11.4 cm. The tips of the fingers, in the z-direction,464

reach up to 1.37 mm.465

The particle concentration cannot be determined accurately at the particle-rich ridge in the466

experiment, but the increased opacity at the leading edge of the flow indicates an increase in the467

concentration, relative to the ambient concentration. This change in shade is approximately 1 cm468

long in the direction of the flow. In the simulations, the thickness of the ridge ranges from 0.6 to469

1.1 cm, which is consistent with the experiments.470

9. Discussion471

Schemes originally derived for numerically solving high-order parabolic problems have recently472

been extended to high-order systems, such as the case of surfactants and particle-laden thin films.473

Handling the higher-order terms in a practical way is necessary for fast and efficient computation.474

The scheme we have presented here for particle-laden thin film flow provides an easy-to-program475

and effective way to solve this high-order coupled system. This scheme can provide a blueprint for476

approaches to solving similar problems.477

The numerical scheme developed for particle-laden thin film flow has several nice attributes.478

The timestep required for this scheme is in the range of O(∆x2), which is much better than the479

O(∆x4) for a fully explicit scheme. The structure of the scheme allows for the possibility of solving480

each equation with its own unique timestep for better efficiency, as the particle concentration is481
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typically the equation that fails the timestep restriction criteria. The linear algebra problem that482

results from an implicit time discretization along with the nonlinearity is reduced to a series of tri-483

and pentadiagonal solves, which can be done in parallel along the rows/columns of the grid.484

The parallelization of the code is straightforward using OpenMP. The loops for computing the485

explicit and approximate terms as well as the solves along rows and columns can be done in parallel,486

leading to a code that scales close to linearly for up to 8 processors, getting close to 8 times speed-487

up. Adding OpenMP implementation to C++ code on any multicore machine is easy to implement,488

as it only requires adding a few lines of code to existing for loops and needs no managing of the489

movement of data on the programmer’s part. Since the code is predominantly such loops, it is easy490

to parallelize and is highly effective in getting better runtimes.491

Implementing Iterations within each timestep, which is first presented in Witelski and Bowen492

[34], but not used in Warner et al. [33], seems to work best for this problem, in terms of allowing493

for a larger timestep and producing an accurate solution. Among the choices for the approximate494

terms when performing Iterations, Extrapolation seems to produce the best runtime and fewest495

iterations. Implementation requires only storing an extra set of data used in extrapolating the496

approximate terms but, using the adaptive timestepping discussed here, this data is stored anyway.497

The choice of Extrapolation and Iterations may work best for this problem, but for other prob-498

lems or initial conditions, another choice may fare better. It is recommended, as in this case, that499

a short-term simulation be performed for the different choices of approximate terms and whether500

or not to perform extra iterations. The small cost of these short runs may allow for a more efficient501

run for actual simulations. It is also recommended that one examines the results to make sure that502

the scheme is not only fast with the choice, but sufficiently accurate.503

The numerical solution agrees reasonably well with the behavior seen in experiments. This is in504

part because the model was derived for the case when a particle-rich ridge forms. This is seen in the505

experiments for high angles of inclination and high concentrations, but will occur in model for all506

concentrations and angles. The particle-rich ridge in the simulations is two thin layers of particles,507

one which originates at the front of the flow and the other from the troughs of the emerging fingers,508

which may not be physical.509

The current model assumes a constant, or average, particle concentration throughout the fluid510

layer in the z-direction. The same is true for the velocity, which is averaged in the z-direction.511

Theory exists for the vertical movement of the particles [5], whether they will settle to the inclined512

plane or form a ridge, and incorporating this behavior into a new model is the current research of513

the authors. It is hoped that the current numerical scheme will be adaptable to this new model.514
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