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Abstract

Musical noise often arises in the outputs of time-frequency domain binary mask based blind source separation
methods. Post-processing is desired to enhance the separation quality. An efficient musical noise reduction method is
presented, based on a convex model of time-domain sparse filters. The sparse filters are computed by l1 regularization
and the split Bregman method. The proposed musical noise reduction method is used as a post-processing tool for
binary mask or non-binary mask based blind source separation methods. Evaluations by both synthetic and room
recorded speech and music data show that the method outperforms existing musical noise reduction methods in
terms of objective and subjective measures.
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I. INTRODUCTION

Sound signals in daily auditory scenes often appear as mixtures when multiple speakers or sound sources
are active. It is of both fundamental and practical interest to recover the sound source signals from the
received mixtures with minimal information of the environment, mimicing what human ears can do by
paying attention to a selected speaker. Blind source separation (BSS) methods aim to achieve this goal,
based on some a-priori knowledge of the source signal properties. Following the physics of sound mixing,
let us consider N sources sn(t), n = 1, · · · , N , to be convolutively mixed. At J sensors, the recorded
mixture signals xj(t), j = 1, · · · , J , are :

xj(t) =
N∑

n=1

D∑
d=0

hjn(d) sn(t− d), (1.1)

where D is the delay length on the order of 103–104 in a standard room, hjn(d) is the discrete Green’s
function of the room, also known as the room impulse response (RIR), from source n to receiver j. The
mathematical problem is to recover both hjn(d) and sn(t) from xj(t) which is severely ill-posed.

A major branch of BSS is the so called independent component analysis (ICA) which assumes that the
source signals are orthogonal to (or independent of) each other [7]. ICA is a more general methodology
than recovering sound signals. The time domain ICA attempts to estimate hjn’s directly and has to deal
with a high dimensional noncovex optimization problem ([7], [12]). Frequency domain ICA solves an
instantaneous (D = 0) version of (1.1) in each frequency bin after applying the discrete Fourier transform
(DFT) to (1.1) frame by frame:

Xj(f, τ) ≈
N∑

n=1

Hjn(f) Sn(f, τ), (1.2)

where (Xj, Hjn, Sn) are T -point DFT of (xj, hjn, sn) respectively, τ is the frame number. The larger
T/D is, the better the approximation. Due to the absence of periodicity in d of hjn and sn, DFT does
not transform convolution to local product exactly. The frequency domain approach is limited to using a
long DFT, in addition to computations to sort out scaling and permutation ambiguities when synthesizing
multi-frequency estimation of Sn(f, τ) back to a time domain output ([7], [11]). Imperfections and errors
in scaling and permutation in the frequency domain may lead to artifacts in the time domain signals at
the final output.

The time-frequency (TF) approaches have been developed ([18], [1] among others) more recently. It is
based on the working assumption that Sn(f, τ) and Sn′(f, τ) (n 6= n′) are relatively sparse or have almost
no overlap in (f, τ) domain. The non-overlap assumption is satisfied quite well by clean speech signals,
though is found to deteriorate in reverberant room (a regular room with reflecting surfaces) conditions
[4]. It follows from (1.2) and the non-overlap assumption that:

Xj(f, τ) ≈ Hjk(f) Sk(f, τ), (1.3)

where k ∈ [1, N ] is such that Sk is the dominant source at (f, τ). The source signals can be classified by
clustering on TF features. In the two receiver case (similar to two ears), a common feature vector is:

Θ(f, τ) =

[
|X2(f, τ)|
|X1(f, τ)|

,
1

2πf
angle(X2(f, τ)/X1(f, τ))

]
, (1.4)

which are amplitude ratio and normalized phase difference (phase delay) at each point (f, τ). The angle
ranges in (−π, π]. In view of (1.3), X2(f, τ)/X1(f, τ) ≈ H2k(f)/H1k(f), so the feature vector Θ reflects
the Fourier transform of RIRs from the dominant source k. The success of the method relies on the
formation of clusters in the histogram of the feature vector. The number of clusters is the number of
identified source signals, see Fig. 1 for an illustration of two peaks in the Θ histogram with input data
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Fig. 1. Histogram of Θ feature points (amplitude ratio and phase delay) of 2 mixtures of 2 speech signals, showing 2 distinct peaks.

being a mixture of two speech signals. Each TF point (f, t) whose Θ belongs to cluster Ck (by comparing
distances from Θ(f, τ) to the cluster centroids) is regarded as occupied by the Fourier spectrum of the
k-th source signal. One can then define a binary mask (BM) function:

Mk(f, τ) =

{
1 Θ(f, τ) ∈ Ck

0 otherwise.
(1.5)

An estimation of the k-th source in TF domain is:

S̃k(f, τ) = Mk(f, τ)X1(f, τ), (1.6)

where X1 may be replaced by X2 as another choice. Finally, taking inverse DFT (iDFT) yields the estimate
of sk(t). The method is robust in the sense that more than two source signals may be recovered from two
receivers.

However some remarks are in order. First, the phase of the estimated signal in (1.6) is same as that
of the mixture signal. While the amplitude of the dominant k-th source is a good approximation of the
mixture signal at those points in Ck, it is not clear that the phase of the k-th signal is close to that of the
mixture signal. Phase errors exist in (1.6). Second, the angle function in (1.4) can cause aliasing errors
if the phase of H2k(f)/H1k(f) goes out of (−π, π]. For example if H2k(f)/H1k(f) = exp{i φk f}, with
|φk f | > π, then the angle part of Θ is equal to the remainder of φk f modulo π, missing the true
value φk f and causing artifacts in clustering and classification. Here dk represents a typical delay of the
dominant source in the model (1.1). This restriction translates into an upper limit of a few centimeters on
the interdistance of the two receivers, and is recently relaxed [17] by a technique of oversampled Fourier
transform and modular arithmetics. Third, the binary mask function Mk makes a zero or one (winner-take-
all) decision in the TF domain, which easily leads to nonlinear nonlocal distortions perceived as ringing
sounds (musical noise [3]) in the time domain. Fourth, the non-overlap working assumption is violated to
various degrees when music signals are in the sources or when the number of source signals increases.

A few methods were proposed recently ([2], [3]) to suppress musical noise. The main ingredients
of these methods are: (1) employing the overlap-add method for reconstructing the waveform outputs
from estimated spectra of source signals; (2) using a finer shift of window function while taking short
time Fourier transform (STFT); (3) adopting non-binary masks. One choice for (3) is based on the so
called sigmoid function, namely Mk is defined by Mk(f, τ) = 1/[1 + exp(g(dk(f, τ) − θk))], here θk

and g are shape parameters, dk(f, τ) is the distance between cluster members and their centroids. The
other choice for (3) comes from Bayesian inference. The mask function is a conditional probability
function Mk(f, τ) = P (Ck|X(f, τ)) where Ck is the k-th cluster and X(f, τ) the mixture spectrogram
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(absolute value of the DFT vector as a function of frequency and frame number). In short, the above
noise reduction methods relied on either a gradual change of the Fourier spectra or non-binary masks to
increase smoothness of processing in the TF domain.

In this paper, we introduce a simple and efficient time domain method to suppress musical noise
like artifacts in the output of binary mask based TF domain BSS. Our method can be also used as a
postprocessing tool for removing artifacts in any other frequency domain based processing. The idea
is to formulate a convex optimization problem for seeking sparse filters to cancel the interference and
re-estimate the source signals in the time domain. As a result, we effectively reduced errors in phase
aliasing and the discontinuous masking operations of the initial TF mask based method. The sparse filters
are computed by l1 norm regularization and the split Bregman method for which fast convergence was
recently studied [10]. The paper is organized as follows. In section II, we propose a way to modify the
mask function to reduce fuzzy points in the feature space that lie in almost equal distances to two cluster
centroids. This treatment reduced clustering errors and extended the TF binary mask based BSS [1] in the
regime where the microphone spacing exceeds the effective range of [18] and phase aliasing errors occur.
In section III, a convex musical noise suppression model is introduced based on a convex optimization
problem with l1 norm regularization. In section IV, the computational framework by the split Bregman
method is shown. In section V, evaluations of the proposed method demonstrate its merits in comparison
with existing methods. Even in the case of large and unknown microphone spacing, the proposed masking
and musical noise reduction method enhances the recovered speech and music signals significantly. The
concluding remarks are in section VI.

II. INITIAL SOURCE ESTIMATION

The initial sound separation is carried out by the TF domain binary mask method [18] as described in
the introduction with K-means algorithm for clustering. We shall however propose some improvements
towards the accurate estimation of the feature parameters with less restriction on the receiver interdistances.
Because the single source dominance assumption at each TF point may not be valid with the increase
of source number N or reverberation time (convolution length D in model (1.1)), we introduce a stricter
criterion below for clustering accuracy. At each TF point (f, τ), the confidence coefficient of (f, τ) ∈ Ck

is defined by CC(f, τ) = dk

minj 6=k dj
, where dj is the distance between Θ(f, τ) and the centroid of the j-th

peak. The new mask function is defined for some ρ > 0 as

Mk(f, τ) =

{
1 (f, τ) ∈ Ck and CC(f, τ) ≤ ρ

0 otherwise.
(2.1)

The motivation for the refined mask (2.1) is to reduce the number of fuzzy feature points which have
nearly equal distances to at least two cluster centers. The refined mask function (2.1) applies to the
situation where the unknown receiver spacing is not small enough and phase aliasing errors are present
[18], [1]. Similar to the TF binary mask BSS method of [1], we adopt the amplitude only feature
Θ(f, τ) =

[
|X1(f,τ)|
|X(f,τ)| , ...,

|XM (f,τ)|
|X(f,τ)|

]
, where |X(f, τ)| is a normalization factor and M is the number of

receivers (sensors). Such phase free feature vector, though robust to receiver inter-distances and free
of phase aliasing errors, is found to less discriminative and produce lower quality separations [1]. Our
modified mask function (2.1) helps to compensate for this loss of separation quality, and sets a better
stage for the subsequent time-domain noise reduction and quality enhancement of the recovered source
signals.

Besides the above binary mask based BSS methods, non-binary masks such as sigmoid function based
mask and Bayesian inference based mask discussed in section I were also implemented as initial step
of separation for our proposed musical noise reduction method. Further reduction of musical noise is
observed for these methods as well after our post-processing.
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III. MUSICAL NOISE REDUCTION MODEL

Let us first consider the determined case of mixing model with 2 sensors and 2 sources (N = J = 2).
The output signals of the TF domain mask based BSS are denoted as yk(t), k = 1, 2. The mixing model
(1.1) can be abbreviated as xj(t) =

∑2
k=1 hjk ∗ sk, where the star denotes linear convolution (the inner

sum of (1.1)). The following algebraic identities hold:

h22 ∗ x1(t)− h12 ∗ x2(t) = (h22 ∗ h11 − h12 ∗ h21) ∗ s1(t),

h21 ∗ x1(t)− h11 ∗ x2(t) = (h21 ∗ h12 − h11 ∗ h22) ∗ s2(t). (3.1)

The identities are also known as cross-channel cancellation for blind channel identification in communi-
cation theory [15]. Now the modeling idea is to replace the convolutions of source signals on the right
hand side of (3.1) by the initial separations y1 and y2 respectively. We then seek a pair of filters ujk,
j, k = 1, 2, such that

u1k ∗ x1 − u2k ∗ x2 ≈ yk. (3.2)

In general, y1 or y2 may differ from (h22 ∗ h11 − h12 ∗ h21) ∗ s1(t) or (h21 ∗ h12 − h11 ∗ h22) ∗ s2(t)
by a convolution [12]. Identities (3.1) imply a family of solutions to (3.2) of the form: u11 = g1 ∗ h22

(u12 = g2 ∗ h21) and u21 = g1 ∗ h12 (u22 = g2 ∗ h11), where g1 and g2 are a pair of unknown filters.
In other words, the solutions ujk may differ from the room impulse responses (RIRs, or the hjk’s) by a
convolution gk. The optimal choice of g1 (g2) is the so called de-reverberation filter which minimizes the
length or support of g1 ∗h12 (g2 ∗h11) and g1 ∗h22 (g2 ∗h21). Without knowledge of RIRs (hjk’s) however,
we shall use l1 norm regularization of u1k and u2k to achieve this goal indirectly as follows.

Let us consider a duration D of yk(t), and seek a pair of sparse filters ujk, j, k = 1, 2, to minimize
the energy (l2 norm) of u1k ∗ x1 − u2k ∗ x2 − yk subject to l1-norm regularization. The l2 norm comes
from the Gaussian fit of the unknown noise (mismatch) distribution. The resulting convex optimization
problem for t ∈ D is:

(u∗1k, u
∗
2k) = arg min

(u1k,u2k)

1

2
||u1k ∗ x1 − u2k ∗ x2 − yk||22 + µ(||u1k||1 + ||u2k||1). (3.3)

Let us denote the length of signal in D as LD and the length of filter solution as L. With ujk’s l1-
regularized, we aim to recover minimal-length (minimal-support) solutions of (3.3). The l1 regularization
helps to fully resolve the major spikes in ujk’s, or the early arrival part of RIR’s, so that the filter
solutions are stable and robust up to leading peaks under reverberant and noisy conditions. In matrix
form, the convex objective (3.3) becomes:

u∗k = arg min
uk

1

2
||Auk − yk||22 + µ||uk||1 (3.4)

where uk is formed by stacking up u1k and u2k, and LD × 2L matrix A is (T is transpose):

A =



x1(1) x1(2) ... ... x1(LD−1) x1(LD)
x1(1) ... ... x1(LD−2) x1(LD−1)

. . . ...
x1(1) ... x1(LD−L+1)

−x2(1) −x2(2) ... ... −x2(LD−1) −x2(LD)
−x2(1) ... ... −x2(LD−2) −x2(LD−1)

. . . ...
−x2(1) ... −x2(LD−L+1)



T

Once u∗1k and u∗2k are found, we compute u∗1k ∗x1−u∗2k ∗x2 for a better approximation of sk with muscial
noise reduced. If the acoustic environment does not change much, the estimation during t ∈ D still applies
when t 6∈ D. Otherwise, an adaptive estimation can be repeated at a later time interval. The objective
(3.3) takes the same form as that in image denoising [10].
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The above derivation generalizes to M sensors and N sources (M ≥ 3 and N = M ). We approximate
yk by a linear combination of the mixtures xj , j = 1, 2, ...,M . When t ∈ D, for a proper value of µ > 0,
we minimize:

(u∗jk) = arg min
ujk

1

2
||

M∑
j=1

ujk ∗ xj − yk||22 + µ
M∑

j=1

||ujk||1 (3.5)

and estimate sk by ŝk =
M∑

j=1

u∗jk ∗ xj . Though two sensors are enough for mask based BSS methods, the

remaining M − 2 sensors are also used here for reducing the musical noise.

IV. MINIMIZATION BY BREGMAN METHOD

In this section, we adapt the split Bregman method and apply it to the musical noise reduction model
(3.4) in reverberant conditions such as in a normal room with acoustic reflections. The split Bregman
method was introduced by Goldstein and Osher [10] for solving l1, total variation, and related regularized
problems. It has connections to Lagrangian-based alternating direction methods in convex optimization
[8]. The split Bregman method aims to solve the unconstrained problem:

min
u

J(Φu) + H(u), (4.1)

where J is convex but not necessarily differentiable, H is convex and differentiable, and Φ is a linear
operator. The general split Bregman iteration with initial values d0 = 0, u0 = 0, b0 = 0, is:

dk+1 = arg min
d

1

λ
J(d)− 〈bk, d− dk〉+

1

2
||d− Φuk||22 (4.2)

uk+1 = arg min
u

1

λ
H(u) + 〈bk, Φ(u− uk)〉+

1

2
||dk+1 − Φu||22 (4.3)

bk+1 =bk − (dk+1 − Φuk+1) (4.4)

where λ is a positive constant, and 〈·, ·〉 is regular inner product.
If J is the l1 norm, the subproblem (4.2) has explicit solutions. The subproblem (4.3) is also easy

to solve since the objective is differentiable. Convergence of the split Bregman method for the case of
J(u) = µ||u||1 was analyzed [6], and the result is:

Theorem IV.1. Assume that there exists at least one solution u∗ of (4.1). Then we have the following
properties for the split Bregman iterations (4.2),(4.3), and (4.4):

lim
k→∞

µ||Φuk||1 + H(uk) = µ||Φu∗||1 + H(u∗)

Furthermore,
lim
k→∞

||uk − u∗||2 = 0

if u∗ is the unique solution.

Now we implement the split Bregman method on our proposed musical noise reduction model. Let
J(u) = µ||u||1, Φ = I , and H(u) = 1

2
||Au − f ||22. Setting d0 = 0, u0 = 0, and b0 = 0, we have the

iterations:

dk+1 = arg min
d

µ

λ
||d||1 − 〈bk, d− dk〉+

1

2
||d− uk||22 (4.5)

uk+1 = arg min
u

1

2λ
||Au− f ||22 + 〈bk, u− uk〉+

1

2
||dk+1 − u||22 (4.6)

bk+1 =bk − (dk+1 − uk+1) (4.7)
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Fig. 2. Illustration of the one dimensional shrink operator in the while loop of the algorithm in section IV.

Explicitly solving (4.5) and (4.6) gives the simple algorithm

Initialize u0 = 0, d0 = 0, b0 = 0

While ||uk+1 − uk||2/||uk+1||2 > ε

(1) dk+1 = shrink(uk + bk,
µ

λ
)

(2) uk+1 = (λI + AT A)−1(AT f + λ(dk+1 − bk))

(3) bk+1 = bk − dk+1 + uk+1

end While

Here shrink is the soft threshold function defined by shrink(v, t) = (τt(v1), τt(v2), · · · , τt(vn)) for v =
(v1, v2, · · · , vn) ∈ Rn and t > 0, where τt(x) = sign(x) max{|x| − t, 0} see Fig. 2 for a one dimensional
plot. Noting that the matrix A is fixed, we can precalculate (λI +AT A)−1, then the iterations only involve
matrix multiplication.

Unlike previous applications of Bregman methods to under-determined problems in compressed sensing,
here A is an m by n matrix with m � n (over-determined). The complexity of calculating (λI +AT A)−1

is O(mn2) + O(n3) = O(mn2). The complexity of each iteration is O(n2). The Forward-Backward
splitting method [8] is also a candidate for this problem. It does not involve matrix inversion. But the
complexity of each iteration is O(mn). We can accelerate it by precalculating AT A and AT f to reduce
the complexity in each iteration to O(n2), where AT A has complexity O(mn2). However, the Forward-
Backward splitting method usually needs more iterations to converge than the split Bregman method. We
tested various cases and found that the convergence time of the split Bregman method is less than that of
the Forward-Backward splitting method by about 40%. Our entire algorithm is summarized as follows:

Input: Observed mixture signals, xj , j = 1, ...,M ≥ 2.
Output: Estimated sources with musical noise suppressed, ŝk, k = 1, ..., N (N = M ).
Initial separation: Extract signals yk, k = 1, ..., N by TF mask approaches with a proper ρ.
Filter estimation: Apply the split Bregman method to obtain the filters u∗jk, j = 1, ...,M for each
source k, according to (3.5).

Musical Noise Suppression: ŝk =
M∑

j=1

u∗jk ∗ xj .

V. EVALUATION AND COMPARISON

The parameters for the proposed method are chosen as µ = ε = 10−3, η = 1, λ = 2µ, LD = 30000, and
L = 1000. So matrix A is 30000× 2000, and AT A is 2000× 2000. As suggested in [3], the STFT frame
size is 512 and frame shift is 512/8. For simplicity, we denote by BM1 the so called DUET method of
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[18], and by BM2 the extended binary mask BSS method of [1] with the modified feature Θ(f, τ) in
section II.

The performance measure [16] is calculated in two steps, provided that the true source signals and
sensor noises are known. The first step is to decompose by orthogonal projection an estimate ŝ(t) of a
source s(t) into a sum of four terms:

ŝ(t) = starget(t) + einterf (t) + enoise(t) + eartif (t) (5.1)

where starget(t) is an allowed deformation of the target source s(t), einterf (t) is an allowed deformation of
the interferring (unwanted) sources, enoise(t) for sensor noises, and eartif (t) for artifacts of the separation
algorithms such as musical noise or other forbidden distortions of the sources. The second step is to
compute performance criteria on the decibel (dB) scale as follows ([16], [9]).

• The Signal to Distortion Ratio (SDR)

SDR , 10 log10

||starget||22
||einterf + enoise + eartif ||22

(5.2)

• The Signal to Interferences Ratio (SIR)

SIR , 10 log10

||starget||22
||einterf ||22

(5.3)

• The Signal to Artifacts Ratio (SAR)

SAR , 10 log10

||starget + einterf + enoise||22
||eartif ||22

(5.4)

Besides these objective measures, the average Perceptual Evaluation of Speech Quality (PESQ,[14]) score
was computed as a measure of performance. This measure was designed to estimate the subjective quality
of speech. The output is an estimate of the Mean Opinion Score (MOS), a number between 1 and 5.
The meanings of the scores in relation to speech quality are: 1-Bad, 2-Poor, 3-Fair, 4-Good and 5-Excellent.

To test the musical noise reduction portion of our method, synthetic mixture data are used to recover
a source signal where energy loss due to binary mask is simulated. The masked signal plays the role of
BSS output yk in section III. Measured binaural RIRs (hjk, j, k = 1, 2) are used to generate mixtures
x1 and x2. For the spectrogram of h11 ∗ s1 (or absolute value of S11 = STFT (h11 ∗ s1)), a mask M
of the same size as S11 is defined. The mask is multiplied entry by entry to S11 to produce a distorted
waveform signal sd = iSTFT (S11 ◦M), where ◦ is entrywise product. We recover h11 ∗ s1 from the two
mixture signals x1, x2 and sd (in place of y1) with the Bregman iterations in section IV. Fig. 3 shows the
spectrogram of the source signal h11 ∗ s1 (left), the spectrogram of the distorted signal sd (middle) and
the spectrogram of the recovered signal (right) in some time frames. The test is repeated under different
reverberation times: anechoic, 150 milliseconds (ms), and 580 ms. Though a little interference from s2 is
introduced, i.e. a little decrease of SIR, the gain in SDR [9] is found to be significant in the low input
SDR regime (Fig. 4). This phenomenon is observed in processing room recorded data as well.

Comparison of several musical noise suppression methods is carried out on room recorded data. The
set-up is shown in Fig. 5. In case of 2 sources, their locations are at S1 and S2 in Fig. 5, and the sensors
Mic1 and Mic2 provide data for separation and noise suppression. In case of 4 sources, all the loudspeakers
and microphones contribute to the musical noise reduction but only Mic2 and Mic3 are used for separation.
Table I and II list results of different musical noise suppression methods discussed in section I. Compared
with BM1, sigmoid mask and Bayesian mask methods, our method leads in the overall quality PESQ
[14], and with a significant margin in SDR and SAR. The SIR improvement is however not uniformly
better. In the case of 4 sources, SIR improvement lags the other methods. When the number of sources
increases, ρ in the mask (2.1) should increase accordingly to control the growth of zero-paddings.
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Fig. 3. Spectrograms of a source signal (left), the distorted source signal sd(middle) and the recovered source signal (right). From the
left to the middle spectrogram, 80% of the energy is masked out. The reverberation time is 150 ms and the input SIR ≈ −5.9 dB (decibel).
Patterns inside the circles illustrate the improvement by the proposed method.
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Fig. 4. Upper panel: average signal to distortion (SDR) ratios of input and output signals in synthetic test. Lower panel: signal to interference
ratio (SIR) vs. unmasked percentage (percentage of 1’s) in the mask. The data points in the upper panel have the same unmasked percentage
as those in the lower panel.

Next we remove Mic1 and Mic4 from the set-up of Fig. 5, so only 2 microphones Mic2 and Mic3

are active. The unknown microphone spacing between Mic2 and Mic3 is reset to [15, 20] cm outside the
effective range of binary mask BSS methods ([18], [1]). The azimuths of the two loudspeakers (emitting
speech and music signals sampled at 8000Hz and of 5 second duration) are changed to 0◦ and 60◦. We
continue to use the refined mask (2.1) with a nearly optimal value of ρ = 0.5 based BM2, sigmoid mask
and Bayesian mask respectively as the initial separation for our method. As discussed in section II, since
BM2 may not work well, eliminating fuzzy feature points by a proper value of ρ helps to gain a good SIR
but sacrifice the signal quality. However, as seen in Table III, the overall quality is improved significantly
by both the Bayesian mask and our method without losing SIR.

Furthermore, we conduct a subjective test on ten listeners with normal hearing to evaluate the reduction
of musical noise. The paired comparison test requires each listener to rank the four methods according
to the performance of musical noise reduction in the groups of experiments conducted in Tables I, II and
III. The percentage of our method’s preference over three other methods in musical noise reduction is
shown in Table IV. Since the initially estimated music sources contain more musical noise, the contrasts
between these methods on the music channel are more pronounced.
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S1
150o

S2
110o

S3
70o

S4
30o

Mic1

Mic2

Mic3

Mic4

1.2m

Reverberation time: 130 ms

Sampling rate: 8000 Hz

Source: male and female speeches 
with 7s duration

Room height: 2.5 m

Loudspeaker 1.4 m height

Omni-directional microphones 1.4 m height
with 4 cm spacing

4.5 m

3.6 m

Fig. 5. Configuration and parameters of the room recording.

TABLE I
Comparison of musical noise reduction methods on room recorded speech data. Average evaluation results are shown for 2 sources case.
BM1 with conventional mask (1.5); SM (Sigmoid mask); BYM (Bayesian mask). The initial separation for our method employs BM1 with

refined mask (2.1) (where ρ = 0.50, 0.25, 0.10, 0.05), SM and BYM respectively (where ρ = 1).

Method PESQ SIR SDR SAR

Input 1.37 0.04 0.02 46.48

BM1[18] 2.24 13.24 6.44 9.37
SM[2] 2.17 11.38 6.52 9.14
BYM[2] 2.33 13.30 7.20 10.20
BM1+Ours-0.50 2.18 9.47 8.58 17.74
BM1+Ours-0.25 2.21 10.07 9.26 17.97
BM1+Ours-0.10 2.22 10.18 9.51 18.94
BM1+Ours-0.05 2.40 13.41 12.18 19.05
SM+Ours 2.35 10.34 9.35 17.97
BYM+Ours 2.34 11.25 9.86 18.04

VI. CONCLUSIONS

We proposed and evaluated an efficient time domain method for reducing musical noise in the output
of TF mask based BSS methods. By a more selective TF mask, we reduced percentage of fuzzy points
on TF domain to improve separation quality. We employed fast Bregman iterations to minimize a convex
l1 norm regularized objective to compute sparse time-domain filters for musical noise reduction. The time
domain filters effectively reduced musical noise and enhanced the overall quality of the recovered music
and speech signals in terms of both objective and subjective measures.
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TABLE II
Comparison of musical noise reduction methods on room recorded speech data. Average evaluation results are shown for 4 sources case.
BM1 with conventional mask (1.5); SM (Sigmoid mask); BYM (Bayesian mask). The initial separation for our method employs BM1 with

refined mask (2.1) (where ρ = 0.50, 0.25, 0.10, 0.05), SM and BYM respectively (where ρ = 1).

Method PESQ SIR SDR SAR

Input 1.10 -4.49 -4.51 26.54

BM1[18] 1.89 9.39 3.79 6.57
SM[2] 1.71 8.22 2.21 5.40
BYM[2] 1.83 8.21 3.34 6.65
BM1+Ours-0.50 1.90 6.30 5.85 19.06
BM1+Ours-0.25 1.91 6.35 5.89 18.93
BM1+Ours-0.10 1.84 5.63 5.23 18.76
BM1+Ours-0.05 1.75 5.36 4.79 16.86
SM+Ours 1.82 4.94 4.31 15.38
BYM+Ours 1.82 4.76 4.36 17.10

TABLE III
Comparison of musical noise reduction methods on speech/music mixtures with unknown large microphone spacing. Refined mask (2.1)

with ρ = 0.5, sigmoid mask and Bayesian mask are employed respectively.

Method PESQ SIR SDR SAR

Input 1.50 1.90 1.85 33.16

BM2 1.63 16.87 3.58 4.01
SM [2] 2.07 22.10 8.86 9.10
BYM[2] 2.52 16.54 11.66 14.50
BM2+Ours 2.45 16.52 12.81 16.32
SM+Ours 2.33 16.66 11.48 17.76
BYM+Ours 2.60 15.42 11.73 20.32
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